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ABSTRACT
We address the problem of object tracking within image se-
quences through region-based energy minimization. A com-
mon underlying assumption in region tracking is that color
statistics can be confidently estimated in a global manner over
object and background regions. This can be a drawback for
tracking in real scenes with cluttered backgrounds, where sta-
tistical color data is highly scattered, preventing the estima-
tion of reliable color statistics for object/background discrim-
ination. To overcome this limitation, we propose an approach
based on a narrow perception of background, which concen-
trates on the vicinity of tracked objects and thus extract more
consistent statistical data for region separation. The benefits
of our approach are demonstrated using two different statisti-
cal color models.

Index Terms— Region tracking, energy minimization,
color probability density, narrow approach

1. INTRODUCTION

A large variety of variational methods have been proposed
and applied to object tracking or segmentation within image
sequences. In this context, region-based energy minimization
approaches [1, 2] appear generally to be powerful. In [3], the
region tracking method is formulated as a Bayesian estima-
tion problem. Local feature distributions of both the object
and background regions were used for tracking. Brox and
Cremers [4] define an extended version of the Mumford-Shah
functional considering local estimation of region statistics.
These approaches consider the tracking functional over the
entire image domain. This can be a drawback for tracking in
real scenes, especially for the background region, which may
be cluttered and contain many objects. In such case, statistical
color data is highly scattered, so that background distribution
may not be confident. To overcome this problem, limiting the
spatial range of the energy within a narrow domain may be
considered.
There have been several methods in the literature which are
related to our work. Local modeling of statistical data within
narrow regions was recently addressed for object segmenta-
tion in still images (see for instance [5]). This kind of ap-
proach enables to relax assumptions made by global region-

based methods such as the Chan-Vese model [1], as they ba-
sically consist in replacing image homogeneity terms over
entire regions with combinations of piecewise homogeneity
terms over local subregions. To some extent, we adapt this
philosophy to the tracking problem and introduce a relaxed
version of the minimization problem.
We propose an approach based on a narrow perception of
background, which concentrates on the close neighborhood
of tracked objetcs to extract statistical color data. It allows
to obtain consistent indicators for separation between back-
ground and object regions. We provide two possible ways of
implementation. The first one is based on kernel estimation of
global color Probability Density Functions and the second one
relies on a local matching approach and motion prior. Energy
minimization is performed thanks to the recent variational re-
gion growing approach developed in [6]. Experiments com-
pare our ”narrow perception” energy against classical energy
and show the efficiency of our model.

2. BAYESIAN INFERENCE FOR REGION
TRACKING

Let us consider an input color image sequence where a single
object is being tracked at current time t. Given current im-
age frame It defined over D ⊂ R2 and a partition into object
and backgound regions Rt and Rt, object tracking consists in
determining next region Rt+1. We first rely on the Maximum
A Posteriori (MAP) framework introduced by Mansouri [3],
who uses Baye’s theorem and assumes conditional indepen-
dence between image pixels:
R∗t+1 = argmax

Rt+1

p(Rt+1|It, It+1, Rt)

= argmax
Rt+1

∏
x∈D

p(It+1(x)|It, Rt, Rt+1)p(Rt+1|It, Rt)

(1)
Probability p(It+1(x)|It, Rt, Rt+1) is the likelihood of ob-
serving a particular color at space-time location (x, t + 1)
given current image and both current and next object regions.
This term will represent our assumptions about color con-
stancy over time, whereas prior probability p(Rt+1|It, Rt)
models available prior knowledge about object shape and/or
motion. A tractable expression is obtained by making the rea-
sonable assumption that the likelihood of observing It+1(x)



depends only on It, Rt and the region which x will belong
to at time t+ 1. Moreover, object and background have their
distinct color likelihoods in next frame, conditioned on their
respective current configurations, leading to a piecewise defi-
nition of the likelihood function:

p(It+1(x)|It, Rt, Rt+1)

=

{
pin(It+1(x)|It, Rt) if x ∈ Rt+1

pout(It+1(x)|It, Rt) if x ∈ Rt+1

(2)

With a view to simplicity, we shorten pin(It+1(x)|It, Rt) to
pin
t+1(x) and similarly for pout in the remainder of the paper.

The MAP estimation of object regionRt+1 is turned into min-
imization of energyE[Rt+1], taken as the negative log of pos-
terior probability (1):

E[Rt+1] = −
∫
Rt+1

log pin
t+1(x)dx−

∫
Rt+1

log pout
t+1(x)dx

−log p(Rt+1|It, Rt)
(3)

One may note that if we removed temporal consistency be-
tween successive images and object states, both in the like-
lihood and the prior, the problem would boil down to a two-
region segmentation of image It+1 with respect to color dis-
tribution, regardless of previous image and object configu-
ration. Such an energy would assume that object and back-
ground could be discriminated from each other relying only
on their respective color distributions (notable examples in-
clude the region competition [7] or the information theory-
based approach of [8]).

3. NARROW PERCEPTION OF BACKGROUND

It is common to turn the minimization of energy (3) into its
corresponding curve evolution problem. Suppose that the
boundary ∂R is described by closed curve Γ parameterized
by arc-length s. Calculus of variations with respect to Γ gives
the following gradient flow (see for instance [3]):

∂Γ(s)

∂τ
= [log pout(Γ(s))− log pin(Γ(s))]n(s) + ...

where time index t+1 is dropped for simplicity, τ is the al-
gorithmic time and n is the unit inward normal. Regard-
less of curve implementation, which may rely on paramet-
ric contours or level-sets, the curve will locally expand if
color It+1(Γ(s)) matches inner statistical features more than
outer ones, and shrink in the opposite case. Estimating these
statistical features over entire regions can be a drawback for
tracking in real scenes, especially for the background region
distribution, which may be cluttered and contain many ob-
jects. In such case, statistical color data is highly scattered, so
that pout may not be confident.

To overcome this limitation and obtain reliable back-
ground image data, we head towards a background model
based on ”narrow perception”. To some extent, we adapt
the philosophy of local modeling approaches [5, 4] to our
tracking problem and introduce a relaxed version of the
minimization problem (3). Instead of considering statistical
knowledge over the entire background, we limit ourselves to
the outer neighborhood around R, i.e. the following narrow

Fig. 1. Background perceived by target region (outlined with
red curve) is limited within narrow band (outlined with blue
curve). Other moving people do not intervene in the back-
ground representation of target

band1 of width w: L = {x ∈ R | miny∈R ‖x− y‖ ≤ w}
We consider that background color statistics are relevant only
within L, and thus ignore available knowledge about color
appearance in the ”far” background B = R\L. Extending
this principle to multiple object tracking, each object would
have its own local perception of surrounding background, as
shown in fig. 1. The outer neighborhood and the far back-
ground have distinct color likelihoods, so pout

t+1(x) is rewritten
piecewisely, depending on the membership of x:

pout
t+1(x) =

{
pLt+1(x) if x ∈ Lt+1

pBt+1(x) if x ∈ Bt+1
(4)

Trivially, pout
t+1(x) = 0 if x∈Rt+1. Color likelihood in the

far background is intentionally ignored by making all colors
equiprobable in Bt+1, independently from previous configu-
ration (It, Rt):

pBt+1(x) = p(It+1(x)|It, Rt,x ∈ Bt+1) =
1

|C|
where C is the subset of admissible colors in the chosen col-
orimetric space. The outer term of energy (3) is split with
respect to definition (4), which gives:∫

Rt+1

log pout
t+1(x)dx =

∫
Lt+1

log pLt+1(x)dx− |Bt+1| log |C|

The energy to be minimized with respect to candidate object
is finally:

ELB[Rt+1] = −
∫
Rt+1

log pin
t+1(x)dx−

∫
Lt+1

log pLt+1(x)dx

+ |Bt+1| log |C| − log p(Rt+1|It, Rt)
(5)

Functionals over regions are most often optimized by gra-
dient descent applied on a level set-based reformulation, ei-
ther of the Euler-Lagrange equation or of the energy itself.
Instead of doing so, we minimize energy (5) with the recent
variational region growing approach [6], which we embed in
a greedy evolution scheme. In addition to its purely algorith-
mic benefits - direct evolution of a set of pixels instead of a
real-valued level set function, no need for time step param-
eter, ad hoc stopping criterion - it advantageously avoids to
perform calculus of variations. The greedy minimization of
energy ELB is summarized in algorithm 1 and holds for both
implementations presented in sections 4.1 and 4.2.

1This is different from the so-called narrow band technique employed for
level set-based segmentation



Algorithm 1 Basic greedy algorithm to minimize ELB

k := 0; Estimate d∗ if local matching is used
R

(0)
t+1 := Td∗(Rt)

repeat
Find best candidate pixel:

x∗ := argmin
x∈R(k)

t+1∪∂R
(k)
t+1

{
ELB[R

(k)
t+1\{x}] if x ∈ R(k)

t+1

ELB[R
(k)
t+1 ∪ {x}] if x /∈ R(k)

t+1

Add or remove x∗ if ELB decreases:
if x∗ ∈ R(k)

t+1 and ELB[R
(k)
t+1\{x∗}] < ELB[R

(k)
t+1]

R
(k+1)
t+1 := R

(k)
t+1\{x∗}

else if x∗ /∈R(k)
t+1 and ELB[R

(k)
t+1 ∪ {x∗}]<ELB[R

(k)
t+1]

R
(k+1)
t+1 := R

(k)
t+1 ∪ {x∗}

else R
(k+1)
t+1 := R

(k)
t+1

endif
k := k + 1

until R(k)
t+1 = R

(k−1)
t+1

4. ESTIMATION OF PROBABILITY FUNCTIONS

Until now, our probabilistic model has been described in
a general manner, which is suitable for any likelihood func-
tions pin

t+1 and pLt+1 as well as prior probability p(Rt+1|It, Rt).
The choice of likelihoods depends on the assumptions made
about temporal consistency of color, whereas prior probabil-
ity depends on constraints shape and motion of the tracked
object. We actually provide two possible examples of im-
plementation. The first one is based on kernel estimates of
global color Probability Density Functions (PDFs) and a sim-
ple non-temporal smoothness prior, while the second one
relies on a local matching approach and motion prior.

4.1. Global kernel-based estimation

The kernel-based estimation of PDFs is global in the extent
that a single distribution is used to describe color statistics in
an entire region. In image segmentation, this principle leads
for instance to the maximization of histogram entropy [8] or
discrepancy between object and background histograms [9].
In our tracking application, likelihood functions are estimated
as follows:

pin
t+1(x) =

1

|Rt|

∫
Rt

Kσ(It+1(x)− It(y))dy

and similarly for pLt+1(x) over band Lt. Kernel Kσ is a
zero-mean isotropic Gaussian with standard deviation σ.
Estimating color PDFs in this way may be simply thought
of as computing ”smoothed” normalized color histograms
within regions. To some extent, this instantiation is a ”time-
consistent” counterpart of the histogram-based segmentation
model of [8], since pixels are assigned to object or back-
ground regarding the statistics to which they best match. We
consider that no prior knowledge regarding shape or motion
is available. It is thus relevant to consider the length of object

boundary as a regularizer:
− log p(Rt+1|It, Rt) = ω |∂Rt+1|

where ω controls the significance of the smoothness term.

4.2. Local matching

In many cases, global modeling of color statistics is not suf-
ficient to guarentee discrimination between object and back-
ground pixels. It is then useful to consider a local matching
approach, relying on the fact that the non-rigid transformation
from It to It+1 can be expressed with motion field v and an
additive white Gaussian noise b:

It+1(x + v(x)) = It(x) + b(x) (6)
where b ∼ N (0;σ2

b). Local matching often requires motion
field v to be estimated. In our region tracking framework,
it is possible to rely on a simpler global motion descriptor
instead of a dense motion field. A simple prior consists in
assuming that the transformation of Rt into Rt+1 is made up
of translation d∗ and a non-translational component (possibly
including rotation, scaling and non-rigid deformation). There
is no such prior on background motion, but it is reasonable
to describe the variability of motion vectors with Gaussian
distributions for both object and background:

v(x) ∼
{
N (d∗;σ2

in) if x ∈ Rt+1

N (0;σ2
out) otherwise

(7)

We expect background motion not be oriented towards a par-
ticular direction and to exhibit a relatively high variability, at
least greater than motions within a single object. Thus, in
practice, we set σ2

out > σ2
in (conversely, σ2

out may be set close
to 0 in case of a nearly static background). The prior term can
be expressed using translational component d∗:
− log p(Rt+1|It, Rt) = ω1 |∂Rt+1|+ ω2D(Rt+1, Td∗(Rt))

where Td denotes transformation with respect to transla-
tion d. The oriented measure D(A,B) is the total distance
from points in A to closest points in B,

D(A,B) =

∫
A

inf
b∈B
‖a − b‖2 da

This constrains Rt+1 to be in the vicinity of a displaced
counterpart of Rt. Color likelihoods are inferred from def-
initions in eqs (6) and (7). At a given location x, proba-
bility p(It+1(x)|It, Rt, Rt+1) is expanded by marginaliz-
ing p(It+1(x)|It, Rt, Rt+1,y), integrating over all transfor-
mations relating (x, t+1) to possible predecessors (y, t), such
that x = y +v(y). As in [3], we make the major simplifying
assumption that the marginal probability is concentrated on
a small set of transformations. Neglecting any normalizing
constant and denominators of Gaussian probabilities, which
are independent from x and y, we write:

pin
t+1(x)≈ sup

y∈Rt

{
exp

(
−‖It+1(x)− It(y)‖2 (2σ2

b)−1
)

· exp
(
−‖(x−y)− d∗‖2 (2σ2

in)−1
)}

pLt+1(x)≈ sup
y∈Rt

{
exp

(
−‖It+1(x)− It(y)‖2 (2σ2

b)−1
)

· exp
(
−‖x−y‖2 (2σ2

out)
−1
)}



Fig. 2. Global histogram-based probability estimation applied on the tenniswoman sequence: ”entire background” energy
minimization reveals some inaccuracies (blue, top row) and narrow perception improves segmentation (red, bottom row)

Fig. 3. Local matching-based probability estimation applied on a PETS 2009 crowd sequence (with narrow perception)

Hence, at tested location x, we seek for the most probable
predecessor y that x would have in case it belonged to Rt+1

or Lt+1, respectively. We actually estimate the negative log-
likelihoods as follows:

−log pin
t+1(x)≈ inf

y∈Rt

{
‖It+1(x)−It(y)‖2+λin‖(x−y)−d∗‖2

}
−log pLt+1(x)≈ inf

y∈Rt

{
‖It+1(x)− It(y)‖2 + λout ‖x−y‖2

}
with λin = σ2

b/σ
2
in and λout = σ2

b/σ
2
out.

5. EXPERIMENTS AND DISCUSSION

We give an overview of a few tracking results to demonstrate
the benefits of our narrow background energy (5). Firstly,
we report a test with the histogram-based probability estima-
tion. For comparison purpose, we also apply this probabil-
ity estimation on the classical ”entire background” energy of
eq. (3). Color likelihoods are estimated using 64 × 64 × 64-
bin histograms, corresponding to downsampled RGB color
space subsequently smoothed at scale σ = 0.75. Average
processing time for a single frame is 0.8s for a C++ imple-
mentation running on an 2.4GHz Intel Core2 Duo. As shown
in the tenniswoman sequence depicted in fig. 2, the classical
approach may lead to several inaccuracies, whereas consider-
ing a narrow perception of background significantly improves
fitting to actual target boundaries. Note that the propagation
to neighboring parts with similar colors (from leg to hand, for
instance) is inherent to the probability model.

The local matching approach was applied to pedestrian
tracking within static camera configuration, on videos taken
from the PETS 2009 benchmark database2, as shown in fig. 3.
Average processing time for a single frame is 2.5s. Local
color statistics over object and narrow band surrounding back-
ground, combined with the motion prior, manage well to re-

2http://www.cvg.rdg.ac.uk/PETS2009

cover target boundaries. Notice that of the proximity of the
non-tracked pedestrian does not disrupt the tracking of the
target, whether it is partially included into the narrow band of
the target or not.
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