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ABSTRACT. Recommender Systems are widely used to achieve a constantly growing variety of
services. Along with social networks recommendation systems have emerged that take into ac-
count friendship or trust between users. In this article, we propose several recommendation
algorithms that respect data privacy constraints in order to be implemented on decentralized
and dynamic architecture. They do not need any global knowledge on the network, they limit
data exchange to trusted friendship relations and protect private data from being spread over
the network.
We present an evaluation of different recommendation algorithms, in order to compare ours to
centralized ones, such as those used in online marketing services. Several concerns are con-
sidered: specific accuracy measures are defined, as well as the amount of required knowledge
on the overall dataset. We ran two series of simulation tests that are herein presented and
discussed.

RÉSUMÉ. Les systèmes de recommandation sont de plus en plus largement utilisés. Avec les ré-
seaux sociaux, ces systèmes tiennent désormais compte des relations d’amitié ou de confiance
entre les utilisateurs. Dans cet article, nous proposons des algorithmes de recommandation
respectant la confidentialité des données et pouvant être implantés sur des architectures dé-
centralisées et dynamiques. Ces algorithmes n’ont besoin d’aucune connaissance globale du
réseau, limitent l’échange de données aux relations d’amitié et de confiance entre les pairs et
évitent la diffusion des données privées sur le réseau.
Nous avons réalisé une évaluation de différents algorithmes de recommandation, afin de com-
parer notre proposition aux algorithmes centralisés. Pour cela, nous avons défini des mesures
spécifiques de précision des résultats et identifié l’ensemble des connaissances nécessaires pour
chaque algorithme. Nous avons mené deux séries de tests de simulation qui sont présentés et
discutés.

KEYWORDS: Trust-based recommender systems, decentralized algorithms, data privacy protec-
tion
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1. Introduction

Internet and pervasive environments tend to connect everyone to everything. Users
can access a lot of media/documents/resources easily and rapidly, through various
types of devices (computers, notebooks, smartphones. . . ). There are too many items
to make an informed choice on one’s own. Information overload is an ever growing
problem that Recommender Systems (RS) aim at coping with. RS ease item selection
by providing users with limited lists of preselected items (online music websites, cam-
eras. . . ) which are supposed to fit their needs. Users select the most appropriate item
in this limited list according to their needs and preferences. For this, RS are based on
users and items profiles. Most commonly, RS use ratings to preselect items regard-
ing a user by ranking these items and selecting the top−k items. Usually, users can
explicitly rate items to indicate if they like them or not, whereas some RS use traces
(items reviews, items visualization duration. . . ) in order to construct implicit ratings.

Whatever the way to construct ratings, it is quite impossible to get a full ratings
matrix between all users and all items. RS need to predict ratings in order to complete
the matrix. Classical RS are of two kinds [Balabanović et Shoham1997]. Content-
based RS compare items to recommend items similar to the ones already rated by
the user. Collaborative Filtering RS (CF) compare users in order to find those with
similar profiles and use their ratings to recommend items. Both are based on many
users and/or items descriptions that are often centralized. Trust RS use trust relations
between users to predict items scores; trust propagation among users is used to widen
the prediction capabilities. This technique also requires information on all users.

Privacy concerns require new techniques for RS that would drastically limit the
disclosure of information on users and trust relations. In a more and more mobile
and ad hoc network environment, the centralization of information is not conceivable
any more. Our aim is to show that a well chosen limited vision of the ratings is still
efficient in score propagation and that using the user social network is relevant for RS.

A social network (SN) consists of a finite set or sets of actors and the relation
or relations defined between them. An actor is a social entity (discrete individual,
corporate or collective social unit) [Wasserman et Faust1994]. In this paper, an actor
refers to any social entity in the SN.

Our overall objective is to make a RS suitable for decentralized architectures with
privacy consideration. Such architectures bring constraints that make classical RS
unadapted. First, since the local engine located on a peer cannot access a centralized
database containing all actors and items profiles, it has to cope with data spread among
peers in a decentralized architecture. Second, RS should use only information that
actors have accepted to share and respect their privacy. Trust relations are the basis of
this mechanism: actors accept sharing information with the people they have explicitly
defined as trustees. Finally, peers can connect or disconnect to and from the network
instantly and unpredictably, without destabilizing the RS.

2



As we use the social network of actors to propagate items score, our approach
computes social scoring. In our architecture, only trusted actors can communicate
together. The trust value is explicitly set by actors in their social network. We use the
term “friends” to refer to actors connected in the social network. Every actor keeps
his/her own private profile. He/she can share it on demand if he trusts the requester.
Possibly, actors can copy part of friends profile locally to limit network requests and
anticipate peers disconnection. It is adapted to peer to peer architectures, since peers
(actors) require only information from their trusted friends, scores are propagated from
peers to peers in order to predict missing ratings.

We have implemented metrics to compare and evaluate different RS, as explained
in the state of the art (section 2). We also propose a predictive accuracy metrics which
increases the importance of unusual ratings (i.e. far away from the mean ratings of an
item). Finally, we will discuss accuracy of this approach regarding existing RS.

2. State of the art

This work concerns three subjects: RS using collaborative filtering (CF); social
network and trust and evaluation metrics. This state of the art summarizes main works
of our knowledge in these three directions.

CF use users (actors) profiles in order to compute similarity between users and
then aggregate similar users’ ratings. Two classical aggregation functions are used
[Adomavicius2005]:

ra,i =

∑
a′∈Ai sim(a, a′)× ra′,i∑

a′∈Ai sim(a, a′)
(1)

ra,i = ra +

∑
a′∈Ai sim(a, a′)× (ra′,i − ra′)∑

a′∈Ai sim(a, a′)
(2)

Where sim(a, a′) is the similarity between a and a′ and ra,i is the rating given by a
to item i and Ai is the set of users having rated item i, sim is traditionally a Pearson
coefficient correlation between users’ ratings.

Most CF use all ratings in order to select similar users and then propagate missing
scores between them. Although global CF are successfully used by most e-commerce
websites, they require to know pieces of information on every user: purchase history,
items views (which item, how many times, how long. . . ), users information (gender,
city, work). . . Data is aggregated and centralized by the system, which knows ev-
erything. This approach is only suitable for a centralized architecture. This kind of
approach is not adapted to the preservation of user privacy, and cannot work in a de-
centralized architecture or peer to peer network.

Thanks to their social network, people share data and opinions anytime with their
family, friends or simple relations. Smartphones bring this connectivity to another
level where they can share every single detail immediately on their network, without
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intermediaries, from anywhere. The social relation between actors used here is trust.
In the literature, one can find multiple definition of trust [McKnight et Chervany1996,
Hasan2010]. In this paper, trust is defined as the belief of an actor in the usefulness of
information provided by an other actor [Lee2009].

Trust-based RS use social networks of trust to improve the collaborative recom-
mendations [O’Donovan et Smyth2005, Massa et Avesani2007, Ma et al.2009]. More-
over, CF methods suffer some drawback that can be addressed by trust-based RS. As
resumed in [Lee2009], CF is not well-protected against malicious [Mehta et al.2007]
or peculiar [Schafer et al.2007] users. CF compares all users together to compute sim-
ilarity, which requires important off-line calculation. Traditional problems as the cold
start user or sparsity can be resolved by trust-based RS: users do not need to have rat-
ings to use the system, they only need to trust other users through specific or existing
SN [Massa et Avesani2007, Pitsilis et Knapskog2009].
Different kinds of trust metrics are used in RS. Global trust metrics as PageRank
([Page et al.1999]) or eBay feedback are widely used, they concern a unique and
global value of trust by user. Local metrics define a trust value from one user to
another. Moreover, the trust can be subjective or objective (reputation). Subjective lo-
cal metrics are defined by each user to indicate who is trustee or not, it is user-centric
and user-controlled, which allows some privacy guaranties.
Traditionally, trust is propagated in the network in order to compute new links between
users [Hang et al.2009, Massa et Avesani2007]. Existing trust RS propagate trust: the
systems adds new trust relations in the network, based on some “transitivity” property
of trust relations. We believe that trust must be controlled by the user and can only
be explicitly set by users. Moreover, to compute those links, the system must know
all trust values between users. SN clustering is also used to improve recommendation
[DuBois et al.2009], but here again trust relations are created between users who are
not directly related in the SN.

[Herlocker et al.2004] indicates several metrics to evaluate RS, including predic-
tive accuracy metrics and rank accuracy metrics. Predictive accuracy metrics measure
how close predicted ratings are to existing ratings. The main one is the Mean Absolute
Error (Eq. 3). pi is the predicted rating for item i, ri is the existing rating for item i
and N is the total number of items. The Root Mean Square Error (RMSE) is used to
accentuate larger errors (Eq. 3). The lower are the metrics, the nearer are predicted
ratings from existing ones, so the better is the RS.

MAE =
∑N
n=1 |pn−rn|

N RMSE =

√∑N
n=1 (pn−rn)2

N
(3)

Rank accuracy metrics compare predicted (p) item ranks with existing ones (r).
The Pearson correlation measures the linear relation between two variables. Spear-
man’s rank correlation measures the relation between items ranks. The same formula
(Eq. 4) is applied in both cases but Pearson uses items ratings whereas Spearman uses
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items ranks [Herlocker et al.1999]. The greater the metrics are, the more the ratings
(or ranks) are correlated, so the better the RS is.

ρ =

∑N
n=1 (rn − r̄)(pn − p̄)

N ×
√∑N

n=1 (rn − r̄)2 ×
√∑N

n=1 (pn − p̄)2

(4)

Coverage metrics are also good indicators of the overall quality of a RS. They
indicate how many ratings a RS can predict, since having a recommendation is almost
as important as having a good recommendation for the users. In this paper, we used
three coverage metrics. Count is the count of scores actually predicted. Actors count
is the count of actors having at least one score predicted. Actors scores mean is the
mean of scores count by actor: count

actor_count .

Ratings take their values in a limited set of values (e.g. J1, 5K), so RS can be seen
as classifiers where the classes are the possible ratings. Precision, recall, f-measure,
true positive or false positive rate are some measures used in classification. However
our classes are not independent: a predicted 2 value for a rating of 1 is better than a
predicted 3.
In information retrieval, a document is relevant or not regarding a query. Precision
and recall are frequently used. In recommendation, the result is not bound to a query,
so it is not appropriate. However, [Basu et al.1998] took the first quartile of items (the
best rated) and defined this set as the relevant set, the remainder being the irrelevant
set. Then precision and recall are computed with predicted scores. But since ratings
range is quite small (typically from 1 to 5), most ratings have the same value, and it
becomes difficult to take the top−k best items if the twenty first have the same rating.

3. Example and definitions

We illustrate this article with a simple, yet adequate, example. Alice, Bob, Charlie
Danny and Estelle are five actors. The social network provides friendship relations
between actors (figure 1(a)). The trusts values shared between friends vary between 0
and 1. They are given in figure 1(b). The trust relation is defined in section 3: it is a
weighted and oriented relationship from an actor to one of his/her friends.

Figure 1(c) shows ratings by actors on items. Items are two cameras: camera1

and camera2 . The rating values set by actors on items are represented as weights on
edges. Actors do not rate items in the same way. Bob really likes camera1 whereas
Alice prefers camera2 . Danny and Estelle only rated camera2 and Charlie did not
rate any camera.

In our work, recommendation of cameras takes into account friends ratings and
trust. To do so, our social RS propagates scores through the social network in or-
der to predict Bob’s score for camera2 , Danny and Estelle’s scores for camera1 and
Charlie’s score for the two cameras.
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Figure 1. Social network, trust and ratings example

Let A be the set of actors and a denote an actor. Let I be the set of items and i
denote an item. In our motivating example:

– A = {Alice,Bob,Charlie,Danny ,Estelle}
– I = {camera1 , camera2}

The trust relation from actor a to his/her friend f is noted ta,f with ta,f ∈ [0, 1].
This relation is only defined between friends. Let T be the set of trust triples (a, f, ta,f )
with (a, f) ∈ A2 and ta,f ∈ [0, 1]. For each (a, f) ∈ A2 can be associated zero or
one trust ta,f . The greater ta,f is, the more actor a trusts actor f ’s scoring, and then
the more actor f ’s preferred items are valuable for a. This relation is not symmetric:
(a, f, ta,f ) ∈ T 6⇒ (f, a, tf,a) ∈ T and not transitive: (a, b, ta,b) ∈ T ∧ (b, c, tb,c) ∈
T 6⇒ (a, c, ta,c) ∈ T . Our social RS does not infer trust relations from existing ones.
In Fig.1(b) Bob trusts Charlie’s recommendations at 0.9 but Charlie trusts Bob only at
0.7. Friendship does not imply trust between actors: Alice and Charlie are friends but
share low trust.

Let Ta be the set of a’s trusted friends: Ta = {f ∈ A|∃(a, f, ta,f ) ∈ T∧ta,f > 0}.
Example on our motivating scenario:

– T = {(Alice,Bob, 0 .6 ), (Bob,Alice, 0 ), · · · , (Estelle,Charlie, 0 .5 )}
– TAlice = {Bob,Danny ,Estelle}
– TEstelle = {Alice,Charlie}

The ratings graph between actors and items (Fig. 1(c)) is a bipartite graph. Ratings
are edges between actors (first partition) and items (second partition). Moreover, each
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actor is the root of a one-depth tree which contains all items rated by this actor. The
rating given by actor a to item i is written ra,i. Let R be the set of ratings triples
(a, i, ra,i) with a ∈ A, i ∈ I and ra,i ∈ [0, 1]. 0 means that the actor does not like
this item. 1 means he/she does. For each (a, i) ∈ A× I can be associated zero or one
rating ra,i.

Let Ai = {a ∈ A|∃(a, i, ra,i) ∈ R} be the set of all actors who have rated item i.
Example on our motivating scenario:

– R = {(Bob, camera1 , 0 .9 ), (Alice, camera1 , 0 .2 ), · · · , (Danny , camera2 , 0 .8 )}
– Acamera1 = {Alice,Bob}
– Acamera2 = {Alice,Estelle,Danny}

4. Social scoring

In this work, we propose to use social scoring to predict a missing rating that could
have been made by an actor on an item. We call such missing ratings scores. Different
algorithms can be used to predict scores based on trust relationships. In this article,
we define and present four different algorithms that are presented below.

4.1. Immediate Social Scoring

In order to compute scores for a specific actor, immediate social scoring uses the
actor’s friends ratings to evaluate the actor score on an item. No data is transmitted
between actors if they are not friends. It is a way to ensure privacy for actors ratings.

The immediate social score of an item i by an actor a is the actor’s rating if it
is defined, otherwise it is a combination of a’s friends ratings weighted by trust. Of
course, if the actor has no friend having rated item i, then the score is not computed
(⊥), whatever the social scoring algorithm used is.

score1 : A× I → [0, 1] ∪ {⊥}

(a, i) 7→ score1 (a, i)

score1 (a, i) =


ra,i if ∃ra,i∑

f∈Ta∩Ai ta,f × rf,i∑
f∈Ta∩Ai ta,f

if @ra,i ∧ Ta ∩Ai 6= ∅

⊥ otherwise
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4.2. k−Depth Social Scoring

This algorithm extends the previous formula to use k−depth friends of friends
instead of immediate vicinity. This introduces a kind of transient, secured and anony-
mous transitivity of friendship at depth k. scorek gets user’s rating if exists. If not,
it asks the user’s trusted friends to provide their ratings (if any) or to predict their
score, using their friends’ ratings and so on, to depth k. To ease the next algo-
rithms definitions, we introduce Aka,l,i = {f ∈ Ta|f 6= l ∧ scorek(f, i, a) 6=⊥}
as the set of actors f different of l and trusted by a where scorek(f, i, a) is defined.
A0
a,l,i = Ai ∩ Ta, ∀l ∈ A.

scorek : A2 × I → [0, 1] ∪ {⊥}

(a, l, i) 7→ scorek (a, l, i)

scorek (a, l, i) =


ra,i if ∃ra,i∑

f∈Ak−1
a,l,i

ta,f × scorek−1 (f, i, a)∑
f∈Ak−1

a,l,i
ta,f

if @ra,i ∧ Ak−1
a,l,i 6= ∅

⊥ otherwise

To minimize cycles in the formula, we have introduced a “last requesting node”
l: a receives a score request from his/her friend l and if ta,l > 0, a will not ask back
l’s score for this item. Then, a becomes the last requesting node for his/her friends.
a’s friends will not know that l is the original requester. If f is a friend of a and l,
he/she might ask l’s score for the item. We have a limited cycle since k decreases at
every hop and since due to small world effect [Milgram1967], k must be low (2 or
3 maximum). If one wants to use k > 3, then a node with a pending request should
return ⊥ if he/she receives the same request again. The cycle remains at a low level
and the confidentiality increases since no information is shared between non trusted
actors. By definition, we set scorek (a, i) = scorek (a, a, i) for the first requester.

The k−depth social scoring shares data only between immediate friends. Scores
are aggregated before being transmitted to the requester so the requester does not
know from whom the replied score is computed. However full scores are exchanged
between friends. It may still be too much information exchange regarding privacy
policies, this is why we introduce the next social scoring.

4.3. Relative Social Scoring

The k−depth social scorer computes absolute scores, i.e. whatever the actor be-
haviour, it returns a score computed only using actor or friends ratings. The following
definition computes a relative score i.e. the difference, for each friend, between the
score and the friend’s ratings mean. Friends relative scores are aggregated and added
to the actor’s ratings mean.
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This approach has two main advantages. First, it does not transmit absolute scores,
but only relative scores: this means less information and therefore more privacy. Sec-
ond, it takes into account actors rating behaviour (low or high ratings in general). But
this approach has a main drawback: if an actor has rated no item, no mean is available.
In this case, 0.5 is used as a default mean.

δscorek : A2 × I → [0, 1] ∪ {⊥}

(a, l, i) 7→ δscorek (a, l, i)

δscorek (a, l, i) =


ra,i − ra if ∃ra,i∑

f∈Ak−1
a,l,i

ta,f × δscorek−1 (f, i, a)∑
f∈Ak−1

a,l,i
ta,f

if @ra,i ∧ Ak−1
a,l,i 6= ∅

⊥ otherwise

Each actor adds his/her ratings mean to the received relative score to compute the
absolute score:

∆scorek (a, i) = δscorek (a, a, i) + ra

This scoring shares even less data than the previous social scoring. Peers only
share the difference between their ratings and the computed mean. They indicate that
they like an item because it has a better rating than their mean.

4.4. Correlative Social Scoring

Since the trust relation used in the social network is manually defined by actors,
it is subjective. We have introduced a correlation between actors to refine this coef-
ficient. Unlike traditional approaches, the correlative social scorer does not compute
this correlation between all actors to make a global social network, but it computes
this correlation only between friends. The trust coefficient is then modulated with a
similarity coefficient. This coefficient is a classic Pearson correlation coefficient, as
in section 2 eq. 4, denoted by ρ. For ρa,f computation between two friends a and f ,
only items rated by both friends are used. If the two friends have no item in com-
mon, the coefficient is not defined. The correlative social scoring take into account
trust and correlation to compute scores, subsequently friends with similar tastes are
“promoted” in the recommendation process. ρ is computed using ra,i − ra, then we
can use absolute or relative correlative social scoring. We will only define the relative
social scoring here, but both scorers are implemented and evaluated in the section 5.
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δscoreρk : A2 × I → [0, 1] ∪ {⊥}

(a, l, i) 7→ δscoreρk (a, l, i)

δscoreρk (a, l, i) =


ra,i − ra if ∃ra,i∑

f∈Ak−1
a,l,i

ta,f × ρa,f × δscoreρk−1 (f, i, a)∑
f∈Ak−1

a,l,i
ta,f × ρa,f

if @ra,i ∧ Ak−1
a,l,i 6= ∅

⊥ otherwise

And finally:
∆scoreρk (a, i) = δscoreρk (a, a, i) + ra

5. Evaluation

In order to evaluate the social approach explained in section 4, we have imple-
mented several scoring algorithms: scorers presented in section 4, but also other non
social scorers that are introduced in section 5.4. The dataset is presented in section 5.1.
We have used different measures to compare the scoring algorithms, as shown in sec-
tion 5.3. The evaluation is made using the dataset, but we ran two different evaluation
campaigns as explained in section 5.2.

5.1. Epinions dataset

[Massa et Bhattacharjee2004] proposes a dataset derived from Epinions 1. This
dataset contains items rated by actors and trust values between actors. There are very
few datasets alike available, most social datasets do not contain ratings and most rat-
ings dataset do not include social networks. The dataset is anonymized: actors and
items are numbers, so content-based approaches are not available here. A rating is
an integer value between 1 (does not like) and 5 (likes). The dataset is very sparse
(only 0.01 % ratings). The ratings are distributed as shown in figure 2. Half of the
ratings are 5 and only the quarter is either 1, 2 or 3. The average is 4 and the standard
deviation is 1.2. Nearly 60 % of the actors made five ratings or less. 70 % of the items
have only one or two ratings.

Rating 1 2 3 4 5 total
Count 43 228 50 678 75 525 194 340 301 053 664 824
Percent 6.5 % 7.6 % 11.4 % 29.2 % 45.3 % 100 %

Figure 2. Epinions ratings distribution

1. www.epinions.com
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An actor trusts or not another actor. The trust value is 1 (trusts) or 0 (does not
trust). An actor trusts 10 actors on average. Most of the actors trust only a few actors
and are trusted by few actors. Nearly 50 % of the actors trust three actors or less.

Since the ratings range from 1 to 5, we have normalized the dataset using a linear
operation to stretch [1, 5] to [0, 1].

5.2. Evaluation campaigns

We ran two different kinds of evaluation campaign: the training set and the leave-
one-out evaluation.

Training set: This is a classical method of evaluation: the Epinions dataset is split
into two datasets: the evaluation dataset and the training dataset. The training dataset
is used by algorithms to predict scores in the evaluation dataset. Then we measure
the difference between predicted scores and real ratings contained in the evaluation
dataset.
To process this campaign, we shuffle all the ratings, then we split the ratings in two
groups. We considerate one experimentation for each shuffle. Then for each experi-
mentation, we split the ratings with different sizes: 10 % - 90 %, 20 % - 80 %, 50 % -
50 %. The first group becomes the evaluation dataset (we try to predict these ratings),
the second becomes the training dataset (we use these ratings to predict the others).
We then run this experience for each ratio.

Leave One Out: In this campaign, we take the whole Epinions dataset. For each
rating, we remove it, try to predict it, measure the difference between the predicted
one and the real one and we finally put it back in the dataset. There is no random
selection so this campaign is reproducible.

5.3. Measures

In section 2, we have selected some measures that are relevant for our problem.
Predictive and rank accuracy metrics and coverage metrics are described in the state
of the art. In addition to these metrics, here are two rank accuracy metrics based on
individual actors and two weighting predictive accuracy metrics.

5.3.1. Rank Correlation

This measure allows to explore how predicted scores rank regarding the real ones.
In other words, if each item has the same rank using ratings or scores, then the scorer
is perfect, even if scores are different from ratings [McLaughlin et Herlocker2004].

Pearson Correlation Coefficient (PCC), as explained in section 2 (Eq. 4), is a cor-
relation coefficient computed between items scores and items ratings, for each (actor,
item, score) triple where the score is defined.
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Actor Pearson Correlation Coefficient (APCC): for each actor, the Pearson corre-
lation coefficient is computed between items scores and items ratings for this specific
actor. The mean of all actors coefficient is then returned. Each actor coefficient has
the same weight, whatever the number of ratings or scores from this actor is.

Spearman’s Rank Correlation Coefficient (SRCC), as explained in section 2 (Eq. 4),
is a correlation coefficient computed between items scores ranks and items ratings
ranks, for each (actor, item, score) where the score is defined.

Actor Spearman’s Rank Correlation Coefficient (ASRCC): for each actor, the Spear-
man’s rank correlation coefficient is computed between items scores ranks and items
ratings ranks for this specific actor. The mean of all actors coefficient is then returned.
Each actor coefficient has the same weight, whatever the number of ratings or scores
from this actor is.

5.3.2. Error

Error metrics are used to measure the distance between ratings and scores.

Mean Absolute Error and Root Mean Square Error, c.f. section 2 (Eq. 3).

Weighted Absolute Error and Root Weighted Square Error are similar to MAE and
RMSE respectively, except that each error is weighted by the difference between the
rating and ratings mean. That is, ratings equal to the mean do not count, and the
further the rating is to the mean, the more it becomes important. This metric measures
the accuracy for outlier ratings.

WAE =

∑N
n=1 (|pn − rn| × |rn − r̄|)

N
RWSE =

√∑N
n=1 ((pn − rn)× (rn − r̄))2

N

5.4. Evaluated scorers

We have defined four trust-based scorers in section 4. We aim to compare those
with the existing scorers shown in figure 3. The less the scorer know, the best it is for

Scorer Definition Description Knowledge
all ratings r mean of all ratings r, i.e. 4 global
item ratings ri mean of all ratings ri of item i global
some item ratings rki , r

k
i ∈

(ri
k

)
mean of k random ratings of i local (k nearest peers)

k−depth social scorer scorek c.f. section 4.2 local trust and ratings
relative social scorer ∆scorek c.f. section 4.3 local trust and ∆ratings
correlative social scorer scoreρk c.f. section 4.4 local trust and ratings
relative correlative social scorer ∆scoreρk c.f. section 4.4 local trust and ∆ratings

Figure 3. Evaluated scorers

privacy considerations. Knowledge associated with each scorer indicates how much
information the scorer needs to compute scores. Global knowledge indicates that the
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scorer needs all ratings existing in the social network. It can only use ratings from one
specific item, but access all actors’ profile. Local knowledge indicates a more limited
knowledge on ratings. It can be randomly local, like for P2P architecture when a
peer asks the k nearest nodes. It can be local trust, like for social scorers that access
data from a specific set of actors, here the actor’s friends. Local ratings knowledge
indicates that only a subset of ratings is used by the scorer.

5.5. Results

Among the scorers described in figure 3, we have selected in this section the most
interesting ones for the evaluation. Coverage metrics are indicated in figure 4 and
accuracy measures in figure 5.

Scorer Count ActorCount ActorScoreMean
r10i 58114 19661 2.955801
ri 58114 19661 2.955801
score2 37374 11229 3.328346
∆score2 37260 11116 3.351925
scoreρ3 27664 5535 4.998013
scoreρ1 10761 3554 3.027856
∆scoreρ3 27664 5535 4.998013
∆scoreρ1 10761 3554 3.027856

(a) 90 % Training

Count ActorCount ActorScoreMean
115410 25935 4.449971
115410 25935 4.449971
73217 14361 5.098322
72943 14097 5.174363
54373 6168 8.815337
20187 4568 4.419221
54373 6168 8.815337
20187 4568 4.419221

(b) 80 % Training

Scorer Count ActorCount ActorScoreMean
r10i 275960 33520 8.232697
ri 275960 33520 8.232697
score2 164632 17397 9.463241
∆score2 163347 16408 9.955327
scoreρ3 124960 6495 19.239415
scoreρ1 38222 5378 7.107103
∆scoreρ3 124921 6483 19.269011
∆scoreρ1 38201 5366 7.119083

(c) 50 % Training

Count ActorCount ActorScoreMean
586359 39588 14.811534
586359 39588 14.811534
383218 21625 17.721064
381820 20227 18.876749
283010 6673 42.411209
114839 6673 17.209501
283010 6673 42.411209
114839 6673 17.209501

(d) Leave one out

Figure 4. Coverage metrics

The training set campaigns show that even with a low number of ratings for the
training set, social scorers perform good. The leave-one-out campaign, which pro-
vides the scorers with the maximum amount of existing ratings, is also well performed.
It is even better performed with user centered rank accuracy metrics, which means that
social scorers predict good personalized ratings. Figure 5 shows that our social scorers
are more accurate than the global scorers both in terms of predictive and rank accu-
racy. Using a social network to predict ratings is efficient, and using only trust relation
without creating new ones to preserve privacy does not reduce accuracy. The ∆scoreρk
scorer is the best regarding these metrics.
Logically, for our social scorers, the greater k is, the better the coverage is, since more
actors ratings are taken into account. However, even with k = 2, global scorers pre-
dict more ratings than social scorers. Since the formers know more information than
the latter, we expected this result.
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(a) Training set with 50 % of ratings (similar to 80 % and 90 %)
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Figure 5. Predictive and rank accuracy metrics

6. Conclusion

This paper focuses on recommender systems algorithms (aka. scorers), for trust-
based systems with privacy concerns for decentralized architectures. Many of existing
scorers use global knowledge on users and items profiles, and are not applicable to
decentralized architectures. Regarding scorers built on social networks, trust-based
algorithms do not always respect privacy since trust is often propagated through the
network. We introduce several algorithms that can be implemented on decentralized
network nodes and are privacy-aware. They use a limited vision of the network (the
node where they are implemented and its direct trusted friends). They maintain a high
level of privacy, since they do not propagate trust and only rely on trusted peers to
propagate scores. Moreover, our relative scorers do not even share complete infor-
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mation on users’ scores. We present a comparative evaluation of these scorers using
different metrics for predictive and rank accuracy and coverage. This evaluation shows
that our scorers using immediate social relations (k = 1) have a very good accuracy
but a low coverage. To enlarge this coverage, we propagate scores through the so-
cial network using only trusted peers with a limited depth (k). The evaluation results
show that coverage increases fast using only friends of friends (k = 2). Even if our
scorers still need to be compared to more accurate trust-based systems such as those
used on e-commerce online services, it then appears that it is possible to build efficient
decentralized, privacy-aware algorithms for recommender systems.

We remain conscious of the limits of our evaluation process. We have used the
Epinions dataset to evaluate our approach - even if it has several drawbacks - since
it is the only available dataset containing both trust and rating information. Other
datasets should be interesting: lastFM with social relations between users and user
ratings on music; FilmTrust [DuBois et al.2009] with trust relations and films ratings.
However no public release of the two latters is currently available. The sparsity of the
datasets (only 0.01 % ratings) remains a problem for local scorers, since they cannot
find ratings for an item that has not been rated by a user’s close environment. Content-
based approaches that take advantage of similarities between items could be tested, in
conjunction with our social scorers, to enlarge their coverage. In addition, since rat-
ings are opinions, RS can use fuzzy logic to predict a score regarding existing ratings
(I rather like, I rather don’t). Today, our aggregating function uses a weighted scores
mean; ordered weighted aggregation operators as presented in [Yager1988] could en-
hance the score prediction by taking into account the fuzziness involved by humans’
ratings and relations.
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