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Abstract—Three-dimensional face landmarking aims at auto-7
matically localizing facial landmarks and has a wide range of8
applications (e.g., face recognition, face tracking, and facial ex-9
pression analysis). Existing methods assume neutral facial expres-10
sions and unoccluded faces. In this paper, we propose a general11
learning-based framework for reliable landmark localization on12
3-D facial data under challenging conditions (i.e., facial expres-13
sions and occlusions). Our approach relies on a statistical model,14
called 3-D statistical facial feature model, which learns both the15
global variations in configurational relationships between land-16
marks and the local variations of texture and geometry around17
each landmark. Based on this model, we further propose an occlu-18
sion classifier and a fitting algorithm. Results from experiments19
on three publicly available 3-D face databases (FRGC, BU-3-DFE,20
and Bosphorus) demonstrate the effectiveness of our approach, in21
terms of landmarking accuracy and robustness, in the presence of22
expressions and occlusions.23

Index Terms—Facial expression, fitting, landmarks, occlusion,24
statistical face model, 3-D face feature.25

I. INTRODUCTION26

THE RECENT emergence of 3-D facial data has provided27

an alternative to overcome the challenges in 2-D face28

recognition, caused by pose changes and lighting variations29

[6]. Although 2.5D/3-D face data acquisition is known to be30

insensitive to changes in lighting conditions, the data need to31

be pose normalized and correctly registered for further face32

analysis (e.g., 3-D face matching [20], tracking [33], recogni-33
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tion [26], [28], and facial expression analysis [34]). As most of 34

the existing registration techniques assume the availability of 35

some 2.5D/3-D face landmarks, a reliable localization of these 36

facial feature points is essential. 37

A. Related Work 38

Although there is no general consensus yet, we consider 39

stable facial landmarks to be the fiducial points defined by 40

anthropometry [9] that have consistent reproducibility even 41

in adverse conditions such as facial expression or occlusion. 42

Stable facial landmarks generally include the nose tip, the 43

inner eye corners, the outer eye corners, and the mouth cor- 44

ners. Such landmarks are not only characterized by their own 45

properties, in terms of local texture and local shape, but are 46

also characterized by their global structure resulting from the 47

morphology of the face. Therefore, local feature information 48

and the configurational relationships of landmarks are jointly 49

important for accurate and robust face landmarking. This find- 50

ing is coherent with human studies on face analysis suggesting 51

that both local features and configurational relationships are 52

important [44]. 53

Despite the increasing amount of related literature, 3-D face 54

landmarking is still an open problem. Current face landmarking 55

techniques lack both accuracy and robustness, particularly in 56

the presence of lighting variations, head pose variations, scale 57

changes, facial expressions, self-occlusions, and occlusion by 58

accessories (e.g., hair, moustache, and eyeglasses) [1]. This 59

paper proposes a data-driven general framework for precise 60

3-D face landmarking, which is robust to changes in facial 61

expressions and partial occlusions. 62

Face landmarking on 2-D facial texture images has been 63

extensively studied [1], and several approaches have been pro- 64

posed. These approaches can be classified into appearance- 65

based [2], geometry-based [3], and structure-based approaches 66

[4], [5]. Interesting approaches include 2-D statistical mod- 67

els, such as the popular active appearance model [12] or the 68

more recent constrained local model (CLM) [14], which per- 69

form statistical analysis both on the facial appearance and the 70

2-D shape. However, since they are applied to 2-D texture 71

images, these approaches inherit the sensitivity to lighting and 72

pose changes. 73

1083-4419/$26.00 © 2011 IEEE
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Research on 3-D face landmarking is rather recent. Most of74

the existing methods embed a priori knowledge on landmarks75

on 3-D face by computing the response to local 3-D shape-76

related features (e.g., spin image [28], [42], [43], effective77

energy [10], Gabor filtering [7], [11], generalized Hough trans-78

form [24], local gradients [19], HK curvature [22], shape index79

[20], [42], [43], curvedness index [21], and radial symmetry80

[29]). While these approaches enable a rather accurate detection81

of landmarks that are shape prominent (e.g., the nose tip or the82

inner corners of eyes), their localization accuracy drastically83

decreases for other less prominent landmarks.84

As current 3-D imaging systems can deliver registered range85

and texture images, a straightforward method to discriminate a86

landmark is to accumulate evidence from both face representa-87

tions (i.e., face geometry and texture). Boehnen and Russ [27]AQ7 88

computed the eye and mouth maps based on both color and89

range information. Wang et al. [25] used a “point signature”90

representation to code a 3-D face mesh as well as Gabor91

jets of landmarks from the 2-D texture image. Gabor wavelet92

coefficients [1], [23] were used to model the local appearance93

in the texture map and local shape in a range map around94

each landmark. Lu and Jain [32] proposed to compute and fuseAQ8 95

the shape index response (range) and the cornerness response96

(texture) in local regions around seven feature points.97

As the combinations of candidate landmarks resulting from98

shape and/or texture related descriptors are generally impor-99

tant, some studies also proposed to make use of the structure100

between landmarks. This is accomplished by using heuristics101

[21], a 3-D geometry-based confidence [27], an extended elastic102

bunch graph [23], or a simple mean model constructed as the103

average 3-D position of landmarks from a learning data set104

[30]. However, there is no technique that best takes into account105

both the configurational relationships between landmarks and106

the local properties in terms of geometric shape/texture around107

each landmark.108

Furthermore, only few of the aforementioned studies address109

the issue of face landmarking in the presence of facial expres-110

sions or occlusions. Nair and Cavallaro [21] used their 3-DAQ9 111

point distribution model (PDM) to locate five landmarks (the112

two outer eye points, the two inner eye points, and the nose113

tip) under facial expressions with a locating accuracy ranging114

from 8.83 mm for the nose tip to 20.46 mm for the right outer115

eye point. However, all the five landmarks were located on116

stable face regions during facial expressions. Dibeklioglu et al.117

[19] studied 3-D facial landmarking under expression, pose,118

and occlusion variations. They built statistical models of local119

features around landmark locations using a mixture of factor120

analysis in order to determine landmark locations on a coarse121

level. Heuristics were then applied to locate the nose tip at a122

fine level. Using the configurational relationships and geometry123

features, Perakis et al. [42], [43] addressed landmarking on124

3-D facial data under multiple orientations, taking into account125

missing data due to self occlusion.126

B. Proposed Approach127

In this paper, we propose a general learning-based framework128

for 3-D face landmarking which combines both configurational129

relationships between the landmarks and their local properties 130

in a principled way, through optimization of a global objective 131

function. This data-driven based approach aims to overcome 132

the shortcomings of the previous feature-based approaches that 133

require the embedding of a discriminative prior knowledge for 134

each landmark. Instead, it relies on a statistical model, called 135

3-D Statistical Facial feAture Model (SFAM), which learns 136

both the global variations in 3-D face morphology and the local 137

variations around each 3-D face landmark in terms of texture 138

and geometry. To train the model, we manually labeled the tar- 139

get landmarks for each aligned frontal 3-D face. Preprocessing 140

is first performed to enhance the quality of facial scans, and 141

then, the scans are remeshed to normalize the face scale. The 142

SFAM is then constructed by applying principle component 143

analysis (PCA) to the global 3-D face landmark configurations, 144

the local texture, and the local shape around each landmark 145

from the training facial data. PCA-based learning is popular 146

for face recognition since human faces are similar, and hence, 147

it is quite reasonable to assume that the properties of facial 148

features follow a Gaussian distribution, as demonstrated by 149

previous studies (e.g., eigenfaces [45]). In our approach, only 150

the salient variation modes (95% of the variation) for the 151

three representations (morphology, texture, and geometry) are 152

retained. By varying the control parameters of SFAM, different 153

3-D partial face instances that consist of local face regions with 154

texture and shape (structured by their global 3-D morphology) 155

can be generated. In this paper, we have used a simple local 156

range map and an intensity map to characterize the local shape 157

and texture properties around each landmark. Alternatively, the 158

SFAM may use all the aforementioned descriptors of local 159

features around each landmark (e.g., mean and Gaussian curva- 160

ture or shape index for local shape characterization and Gabor 161

jets or cornerness response for local texture description). An 162

interesting property for the characterization of the local shape 163

around a landmark is that the descriptor is sufficiently robust 164

against shape deformation, which typically occurs in facial 165

expressions. Popular geometric descriptors (e.g., shape index or 166

HK curvatures) provide an accurate local shape description and 167

are sensitive to geometric shape differences. However, when the 168

normalized correlation is used as the similarity measure, local 169

shape properties described by raw range maps are less discrim- 170

inative with respect to identity and deformations. Similarly, the 171

description of local texture should be tolerant to changes caused 172

by lighting or expressions. A similar reasoning also applies to 173

using the raw texture maps for texture characterization. The 174

combination of raw texture maps and the similarity measure 175

relieves, to some extent, the effect of lighting conditions and 176

expressions on texture. Our experiments indicate that the use 177

of a local raw range map and a local raw texture map around 178

each landmark provides a good tradeoff between computational 179

efficiency and robustness. Although a comprehensive study of 180

the selection of robust local features is needed, it is beyond the 181

scope of this paper. 182

Our learning-based framework can be considered as a natural 183

extension of the morphable 3-D face model [15] and the CLM 184

[14] as we propose to learn, at the same time, the global vari- 185

ations of 3-D face morphology and the local ones in terms of 186

texture and shape around each landmark. Fitting the SFAM on AQ10187
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TABLE I
SUMMARY OF SYMBOLS

a probe facial scan is accomplished by maximum a posteriori188

(MAP) probability. The fitted morphology instance deliversAQ11 189

the locations of targeted landmarks. Using 3-D training faces190

with expressions, the SFAM has the ability to learn expression191

variations and generate instances with the learned variations192

so as to increase the a posteriori probability in fitting faces193

with expression. Furthermore, we propose to use a k-nearestAQ12 194

neighbor (k-NN) classifier to identify the partially occludedAQ13 195

faces and the type of occlusion. A histogram of the similarity196

map between the local shapes of the target face and shape197

instances from the SFAM is used as the input. This information198

about occlusions is also integrated into the objective function199

used in the fitting process to handle landmarking on partially200

occluded 3-D facial scans.201

The main contributions of this paper are the following.202

1) We build an SFAM that elegantly combines the global and203

local features extracted from three facial representations.204

2) An occlusion detection and classification algorithm is205

proposed to detect occlusions and classify them into206

different types, thereby providing occlusion information207

to the fitting algorithm.208

3) A fitting algorithm is proposed to locate landmarks209

through optimizing an objective function, implemented210

on local patch-based correlation meshes. In addition, the211

fitting algorithm incorporates occlusion knowledge and212

thus is able to locate landmarks on partially occluded213

faces.214

The rest of this paper is organized as follows. In Section II,215

our statistical model SFAM is introduced. In Section III, the216

objective function that combines the local shape and texture217

properties and the fitting algorithm are described. Section IV218

addresses 3-D face partial occlusion. Experimental results are219

discussed in Section V, while Section VI concludes this paper.220

Table I presents a summary of the different symbols used in this221

paper.222

II. SFAM223

Three-dimensional facial data acquired by the current 3-D224

imaging systems are usually noisy and may contain holes and225

spikes. Hence, we first preprocess all the 3-D facial scans to226

remove noise. Head pose and scale variations are normalized by227

alignment and remeshing (see Section II-A). Then, we model228

the variations in 3-D configurations of landmarks and their229

local variations in terms of texture and shape around each230

landmark (see Section II-B). New partial 3-D face instances can231

be synthesized from the learned model (see Section II-C).232

A. Preprocessing the Training Facial Data 233

To remove the noise (e.g., spikes and holes) and enhance 234

the quality of 3-D facial scans, we perform the following 235

operations. 236

1) Median cut: Spikes are detected by checking the discon- 237

tinuity of points and are removed by the application of a 238

median filter. 239

2) Hole filling: Holes that are caused by the 3-D scanner 240

and the removed spikes are located on the range maps of 241

facial scans by a morphological reconstruction [38] and 242

filled by cubic interpolation. The open mouth is excluded 243

from this preprocessing step by estimating the size of 244

the hole corresponding to the open mouth region with an 245

empirically set threshold. 246

Although faces are usually scanned from a frontal viewpoint, 247

variations in head pose still exist and interfere with the learning 248

of global variations in 3-D facial morphology. Consequently, 249

these variations may perturb the learning of local shape and 250

texture variations. To compensate for head pose variations, the 251

facial data are first translated close to the origin of the camera 252

coordinate system. The iterative closest point algorithm [18] is 253

then used to minimize the difference between the two point 254

clouds of the new scan and the selected facial scan, which 255

holds a frontal and straight pose. Since the head pose variations 256

have been compensated after alignment, the SFAM can be 257

learned with more accurate variations in local face texture and 258

geometry. 259

To train the model, the targeted anthropometric landmarks 260

have to be manually labeled for each aligned frontal 3-D face. 261

This is the major difference between the proposed approach and 262

most of the existing 3-D face landmarking algorithms. Instead 263

of directly embedding a priori knowledge on landmarks into 264

the landmarking algorithm, we propose a data-driven approach 265

which, through statistical learning, encodes into a model dis- 266

criminatory information of targeted landmarks, in terms of their 267

global configurational relationships as well as the properties 268

of local texture and shape around each landmark. For any 269

given training data set, the set of targeted landmarks can be 270

easily changed according to the particular application. This 271

general characteristic of the proposed approach is demonstrated 272

in our experiments on three different public data sets: FRGC, 273

BU-3-DFE, and Bosphorus data sets. Most landmarks out of 15 274

(as illustrated in Fig. 5) on the FRGC data set were selected 275

from the rigid part of the face as they were subsequently used 276

for 3-D face recognition. On the other hand, landmarks on the 277

BU-3-DFE and the Bosphorus data sets (as illustrated in Figs. 6 278

and 8) encompass anthropometric points from all facial regions 279

as they are used for facial expression analysis. 280

To learn the local geometry and texture around each land- 281

mark, it is necessary to have the same number of points in a 282

local region and have a dense correspondence among different 283

faces. However, changes due to face scale and subject identity 284

make this normalization difficult. Therefore, we use uniform 285

grids to remesh local regions around landmarks. First, all the 286

points are sampled from point clouds within a specified distance 287

from each landmark. The number of sampled points, or the 288

point density, in local regions varies from face to face due 289
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Fig. 1. Scale normalization in a local region associated to the left corner of
the left eye from the (a) frontal view and (b) side view. Circles denote sampled
points from the 3-D face model, and the grid is composed of the interpolated
points. Interpolation is also performed on the point intensity values.

to face scale. Second, a uniform grid is associated with each290

landmark. As illustrated in Fig. 1, each grid is centered at its291

corresponding landmark with a size of 15 × 15 (225 nodes on a292

grid) and a resolution of 1 mm (the intervals of grids on the X ,293

Y dimensions are fixed to 1 mm). The z values of a node (and294

the associated intensity values) on a grid are interpolated from295

the range values of sampled points. Using this normalization, a296

fixed number of points can be obtained regardless of face scale297

and subject identity. Thus, the point-to-point correspondence298

among faces is established easily and efficiently.299

B. Modeling the Configurational Relationships and Local300

Shape and Texture Features of the Landmarks301

Once a 3-D facial scan is preprocessed, 3-D coordinates of all302

the landmarks (3-D morphology) are concatenated into a vector303

si, which describes the configurational relationships among304

local regions305

sk = (x1, y1, z1, x2, y2, z2, . . . , xN , yN , zN )T (1)

where N is the number of landmarks (e.g., in this paper, N =306

15 or 19).307

We further generate the two vectors gk and zk by concate-308

nating intensity and range values on all the grids on a face309

(M is the number of interpolated points collected from all the310

local regions). The zk vectors capture the variations of local311

geometric shapes around each landmark while the gk vectors312

capture the local texture properties313

gk =
(
gk
1 , g

k
2 , . . . , g

k
M

)T
, zk =

(
zk
1 , z

k
2 , . . . , z

k
M

)T
. (2)

PCA is then applied to the three vector sets {sk}, {gk}, and314

{zk}, extracted from the training 3-D facial data (k denotes315

the kth training example). Thus, three linear models are built316

by retaining 95% of the variance in landmark configurations as317

well as local texture and shape around each landmark. The three318

models are represented as follows:319

s = s̄ + P sbs (3)

g = ḡ + P gbg,z = z̄ + P zbz (4)

where s̄, ḡ, and z̄ are the mean landmark configuration, the320

mean intensity, and the mean range value, respectively, while321

P s, P g , and P z are the three sets of modes of configuration, 322

intensity, and depth variation, respectively. The terms bs, bg , 323

and bz are the corresponding sets of control parameters. All 324

individual components in bs, bg , and bz are independent. 325

We further assume that all the bq-parameters, where bq ∈ 326

(bs, bg, bz), follow a Gaussian distribution with zero mean and 327

standard deviation σq . 328

C. Synthesizing Instances From a New Face 329

Given the parameters bs, a configuration instance can be 330

generated using (3). Then, given a new facial scan, the set of 331

scan points closest to the configuration instance is computed. 332

Based on these points, the vectors gn and zn are obtained by 333

applying the process described in the training phase (2). Then, 334

bg and bz are estimated as follows: 335

bg = P T
g (gn − ḡ), bz = P T

z (zn − z̄). (5)

bg and bz are limited to the range [−3σ, 3σ]. Then, using 336

these constrained bg and bz , we can generate texture and shape 337

instances ĝn and ẑn by using (4). The landmarks, along with 338

their local texture and local shape instances, compose a partial 339

face instance. 340

III. LOCALIZING LANDMARKS 341

The SFAM-based landmark localization procedure consists 342

of MAP probability of landmark configuration, given a 3-D 343

facial scan to be landmarked, and leads to optimizing an 344

objective function. In Section III-A, we present the objective AQ14345

function to be optimized, and in Section III-B, we introduce the 346

fitting algorithm for localizing landmarks. We then discuss our 347

assumptions in Section III-C. 348

A. Objective Function and MAP 349

We first define the objective function f(bs) = p(s|T,R, ψ) 350

as the a posteriori probability of landmark configuration s to be 351

maximized for a 3-D facial scan represented by its texture map 352

T and range map R and the learned statistical model SFAM ψ. 353

Using the Bayes rule, we obtain 354

p(s|T,R, ψ) = p(T,R, s, ψ)/p(T,R, ψ)

∝ p(T,R|s, ψ)p(s|ψ)

∝ p(T |s, ψ)p(R|s, ψ)p(s|ψ) (6)

where p(T |s, ψ) and p(R|s, ψ) are the probabilities of having 355

the facial texture T and the range R, given a landmark configu- 356

ration s and SFAM ψ, respectively. We assume that the random 357

variables R and T from the different facial representations 358

are independent within a local face region. The term p(s|ψ) 359

denotes the probability of having a landmark configuration s 360

given the SFAM ψ. Thus, the prior p(s|ψ) can be estimated 361

using the assumption of Gaussian distribution on the corre- 362

sponding control parameters bj in the third term of (7). 363
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The probabilities p(T |s, ψ) and p(R|s, ψ) can be estimated364

using the Gibbs–Boltzmann distribution as described in365

p(s|T,R, ψ) ∝
N∏

i=1

e−(αηi)
N∏

i=1

e−(βγi)
K∏

j=1

e
−b2

j
λj

log p(s|T,R, ψ) ∝
N∑

i=1

(−αηi) +
N∑

i=1

(−βγi) −
K∑

j=1

b2j
λj

(7)

whereN is the number of local regions, ηi and γi are the energy366

functions of the associated local region i in terms of texture and367

range properties, respectively, given the landmark configuration368

s and the SFAM ψ, and α and β are weight constants. The369

third term in (7) represents the Mahalanobis distance [13],370

where K is the number of retained landmark configuration371

modes and λj denotes the corresponding eigenvalue in the372

landmark configuration model. bj denotes the control parameter373

that generates the landmark configuration s given the statistical374

model ψ. For the energy functions ηi and γi, high energies375

occur when the corresponding local texture Ti and range Ri do376

not match the texture and range instances which are generated377

by the SFAM ψ given the landmark configuration s. In this378

paper, instead of using the distances in these energy functions379

to express the degree of mismatch, we use a similarity measure,380

namely, the normalized correlations defined in (9), and derive381

the following objective function f(bs) (thereby changing the382

polarity of the terms associated with ηi and γi):383

f(bs) = α

N∑
i=1

miFgi(si) + β

N∑
i=1

miFzi(si) −
k∑

j=1

b2j
λj

(8)

where Fgi and Fzi are explained in (9) and mi is introduced384

to address partially occluded facial data. The term mi is the385

probability of the region around the ith landmark being un-386

occluded. The term si denotes the landmark location from the387

morphology model. Specifically388

Fgi =
〈

gi

‖gi‖
,

ĝi

‖ĝi‖

〉
Fzi =

〈
zi

‖zi‖
,

ẑi

‖ẑi‖

〉
(9)

where 〈·, ·〉 is the inner product and ‖ · ‖ is the L2 norm. The389

values of α and β are fixed and are computed as the ratios390

of
∑N

i=1 Fgi and
∑K

j=1(b
2
j/λj),

∑N
i=1 Fzi, and

∑K
j=1(b

2
j/λj),391

respectively, during the offline training.392

In this paper, we have used a simple occlusion classification393

algorithm which delivers a binary value formi: zero if the local394

region is occluded and one if the region is not occluded.395

B. Fitting Algorithm396

Landmarking a 3-D facial scan consists of fitting the SFAM397

ψ while maximizing the objective function (8). First, the 3-398

D facial scan is preprocessed as described in Section II-A,399

including spike removal, hole filling, and head pose normal-400

ization. The occlusion algorithm, introduced in Section IV, is401

then applied to identify the occluded local regions and then402

used to set the correspondingmi coefficients to zero. Therefore,403

only the unoccluded local regions are considered in the fitting404

process. The algorithm works in a straightforward manner and405

is described in Algorithm 1.406

Fig. 2. Depiction of the correlation meshes from the frontal and side views.
These meshes capture the similarity between instances and local facial regions
in both texture and shape representations. The red color corresponds to large
correlation values while blue corresponds to small correlation values. Large
values on the correlation meshes correspond to large probabilities of finding
landmarks on their locations. The meshes are in four-dimensional space,
where the first three dimensions are x, y, z and the last dimension represents
correlation values. In these figures, we display the correlation values instead of
z. (a,b) Two viewpoints of the same correlation mesh capturing the similarity
of texture (intensity) instances from SFAM and local texture regions (intensity)
on a given face. (c,d) Correlation mesh capturing the similarity of shape (range)
instances from SFAM and the local face shapes (range).

Algorithm 1 SFAM Fitting 407

Input: A 3-D scan and a trained SFAM. 408

1. Optimize the morphology parameters bs to minimize 409

the distance between corresponding morphology instances and 410

their closest points on the input facial data, and obtain a set of 411

points S. 412

2. Synthesize texture and shape instances Ĝ, Ẑ as described 413

in Section II-C using S. 414

3. Normalize local regions around points S within a neigh- 415

borhood large enough to cover the potential landmark locations 416

as in Section II-A, creating a set of local mesh G, Z . 417

4. Compute correlation meshes on both texture and geometry 418

representations (see Fig. 2) by correlating Ĝ, Ẑ with G, Z, 419

respectively, which are different parts of G, Z sampled by a 420

sliding window (size of 15 × 15) on local regions (9). 421

5. Optimize the morphology parameters bs to reach the 422

maximum of the sum of values on the two correlation meshes 423

while minimizing the Mahalanobis distance associated with the 424

landmark configuration defined by the control parameters bs. 425

Output: Optimized morphology parameters bs 426

The optimization process in steps one and five of the algo- 427

rithm is processed by the Nelder–Mead simplex algorithm [16]. 428

Once convergence is reached, the instance s resulting from the 429

optimized bs indicates the location of landmarks. For partially 430

occluded faces, occluded landmarks and their corresponding 431

local meshes are excluded from the optimization process. In the 432

case of incorrect occlusion classification, local nonface meshes 433

lead the optimization to converge to an unpredictable point far 434

from the desired minimum. 435
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C. Discussion436

To deduce (7), we assumed that the probabilities p(T |s, ψ)437

and p(R|s, ψ) follow a Gibbs–Boltzmann distribution. This438

assumption is reasonable and motivated by the fact that the439

problem of 3-D face landmarking is actually a Markov random440

field (MRF) which consists of assigning a label from a set of441

labels L to each vertex of a 3-D facial scan. The set L encom-442

passes all targeted landmarks (e.g., nose tip and eye corners)443

and a null value labeling any vertex which is not the location444

of a targeted landmark. Then, the theorem of the equivalence445

between MRFs and Gibbs distributions defined by Hammersley446

and Clifford [39] implies that the probabilities p(T |s, ψ) and447

p(R|s, ψ) follow a Gibbs–Boltzmann distribution [40].448

We also used the Nelder–Mead simplex algorithm [16],449

which is one of the best known algorithms for multidimensional450

unconstrained optimization without derivatives. This method451

does not require any derivative information and is widely used452

to solve parameter estimation and statistical problems of similar453

nature [41].454

IV. OCCLUSION DETECTION AND CLASSIFICATION455

Facial data analysis in the presence of partial occlusions456

(caused by a variety of factors such as hair, glasses, mustaches,457

and scarf) is a difficult problem. In 3-D facial landmarking, only458

occlusions which may occur in local regions around landmarks459

are of interest. Thus, in this paper, we adopt an approach to460

classify the occlusion type and provide a set of binary values to461

local regions: either occluded or not occluded. Alternatively, we462

may compute a probability associated with a local region being463

occluded or a measure indicating roughly the extent to which a464

local region is occluded.465

To perform occlusion detection, features from the range map466

are extracted as the presence of occlusion definitively changes467

local shape. Therefore, given a new facial scan, its closest points468

to the mean landmark configuration s̄(3) are first computed.469

Then, grids (50 × 50) are used to remesh local regions around470

these points for range values (see Section II-A). The size of471

local regions is chosen to be large enough to account for472

variations due to scale and subject changes as well as to cover473

the local regions near landmarks for occlusion detection.474

For each local region i, processing is performed in a sliding475

window manner (the size of the sliding window is the same as476

the size of the local regions considered in the SFAM). At each477

step, we compute a local depth map Zα and its local shape478

instance Zβ to further obtain a similarity LS as follows:479

balpha =P T
z,i(Zα − z̄i),Zβ = z̄i + P z,ibβ (10)

LS =
〈

Zα

‖Zα‖
,

Zβ

‖Zβ‖

〉
(11)

where P z,i is the submatrix composed of the rows in P z480

associated with local region i. The term z̄i is the subvector481

composed of the rows in z̄ also associated with local region i.482

The term bβ is obtained by limiting bα within the boundary as483

described in Section II-C. In the case of occlusion, bα does not484

necessarily obey a Gaussian distribution and may be distributed485

far away from the mean value. Thus, by boundary limitation, the 486

instances Zβ are different from the occluded local shape Zα, 487

leading to a low similarity value in (11). 488

The local similarity value LS is computed for all points in 489

a local region, leading to a local similarity map. We then build 490

a histogram of LS values using 50 bins to represent the values 491

ranging from −1 to 1. Since most values in the local similarity 492

map are close to 1, we allocate more bins near 1. Then, the his- 493

tograms computed from all the local regions are concatenated 494

into a single feature vector. Partially occluded 3-D facial scans 495

in the training set are manually labeled according to a given 496

occlusion type (i.e., occlusion in the ocular region, occlusion 497

in the mouth region, occlusion by glasses, or unoccluded). The 498

distance between histograms is computed using the Euclidean 499

metric, and the classification is performed using a simple k-NN 500

classifier. 501

In our experiments, we used the Bosphorus data set which 502

encompasses partially occluded 3-D facial scans according to 503

several occlusion patterns. We preset a set of binary values 504

indicating the occlusion state in each local region for each 505

occlusion pattern. By classifying facial scans into these states, 506

we can thus obtain a list of local regions that are occluded 507

[mi in (8)]. 508

V. EXPERIMENTAL RESULTS 509

The proposed statistical learning-based framework for 3-D 510

facial landmarking was applied on three data sets, namely, the 511

FRGC [35], BU-3-DFE [36], and Bosphorus [37] data sets. In 512

Section V-A, we describe the data sets and the experimental 513

setup and present the various experimental results in the follow- 514

ing sections. These results are further discussed in Section V-E. 515

A. Data Sets and Experimental Setup 516

The FRGC data set includes two versions. FRGC v1 con- 517

tains 953 scans from 275 people, captured under controlled 518

illumination conditions and generally neutral expressions [35]. 519

However, these 953 facial scans have slight head pose and scale 520

variation. In addition, FRGC v1 contains 33 noisy 3-D facial 521

scans having uncorrected correspondence between the range 522

and texture maps. These scans were not used in our experi- 523

ment. FRGC v2 contains 4007 facial scans from 466 persons. 524

These 3-D facial scans were captured under different illumina- 525

tion conditions and contain various facial expressions (such as 526

happiness or surprise). 527

The BU-3-DFE database contains data from 100 subjects 528

[36]. Each subject performed a neutral expression and six uni- 529

versal expressions in front of a 3-D scanner. Each of these six 530

universal expressions (happiness, disgust, fear, anger, surprise, 531

and sadness) is displayed with four levels of intensity. In our 532

experiments, we have used the neutral facial data and facial data 533

with expressions in the two high-level intensities from all the 534

subjects, resulting in 1300 facial scans in total. 535

The Bosphorus data set contains 3396 facial scans from 104 536

subjects [37]. This data set contains not only the six universal 537

facial expressions but also 3-D scans under realistic occlusions 538

(e.g., glasses, hands around the mouth, and eye rubbing). 539



IE
EE

Pr
oo

f

IE
EE

Pr
oo

f

ZHAO et al.: ACCURATE LANDMARKING OF THREE-DIMENSIONAL FACIAL DATA 7

TABLE II
CONFUSION MATRIX OF OCCLUSION CLASSIFICATION

Moreover, the data set includes many male subjects that have540

moustache and beard.541

As illustrated in Figs. 5–8, we manually labeled 15 facial542

landmarks in the FRGC data set and used 19 labeled landmarks543

in the BU-3-DFE and Bosphorus data sets. They were used544

as ground truth for learning the SFAM model and testing our545

landmark fitting algorithm. These three landmark data sets546

contain some common landmarks, such as eye corners and547

mouth corners, which are sensitive to facial expressions.548

B. Occlusion Classification Results549

The proposed algorithm for occlusion detection was applied550

to 3-D scans from the Bosphorus data set. In our experiment,551

we excluded partial occlusions by hair as they do not occur in552

the landmark regions. We have considered partial occlusions553

caused by glasses, a hand near the mouth region, and a hand554

near the ocular region in addition to unoccluded 3-D scans.555

We experimentally set k to five in the k-NN classifier and556

performed a two-fold cross-validation. The confusion matrix557

is provided in Table II. An average classification accuracy up558

to 93.8% is achieved, which appears to be sufficient for the559

subsequent landmarking task.560

C. Results on SFAM561

We used 452 scans from the FRGC v1 data set to build562

the SFAM-1 model by learning the local properties around563

15 landmarks and their configurational relationships. The train-564

ing facial scans have limited illumination variations and do not565

contain facial expressions.566

Furthermore, we used facial scans from 11 subjects in the567

BU-3-DFE data set and the first 32 subjects in the Bosphorus568

data set to build the SFAM-2 and SFAM-3, respectively. For569

every subject, 13 scans were used for training in the case of570

the BU-3-DFE data set (a neutral scan and the two scans for571

each of the six universal expressions at the intensity levels three572

and four), and seven scans in the case of the Bosphorus data573

set (a neutral scan and a scan for each of the six universal574

expressions). Fig. 3 illustrates the SFAM-3 learned from the575

Bosphorus data set containing the first mode of configuration,576

local texture, and local shape for variances 3 ± σ.577

D. Results on Landmarking578

Using the learned statistical models, the fitting algorithm579

for 3-D face landmarking was evaluated on three different580

experimental setups. In all these experiments, the errors were581

computed as the Euclidean distance between the automatically582

localized and the corresponding manually labeled landmarks.583

Fig. 3. SFAM learned from the Bosphorus data set. (a) First landmark
configuration mode explains variations in terms of the face size and expression.
(b) First texture mode explains skin color variations. (c) First range mode
explains surface geometry variations, mainly in the nose and mouth regions.

Using the SFAM-1, the fitting algorithm was first applied on 584

the remaining FRGC v1 data sets (i.e., 462 scans from subjects 585

different from those in training). We then tested the algorithm 586

on 1500 facial scans (randomly selected from the FRGC v2 data 587

set) which contain illumination variations and facial expres- 588

sions. Fig. 4 depicts the cumulative distribution of the fitting 589

error for all 15 landmarks. Note that most landmarks were 590

automatically localized within 9 mm in both tests. Table III 591

summarizes the mean, the standard deviation of localization 592

errors associated with each landmark tested on FRGC v1 and 593

FRGC v2, and a comparison with the result achieved by a 594

curvature-analysis-based landmarking method [31]. The first 595

two columns show the mean and the standard deviation of lo- 596

calization error for each landmark (di) from our method while 597

the third column depicts the results achieved by the curvature- 598

analysis-based method. Note that the mean localization error 599

of all landmarks is less than 5 mm. An increase in the mean 600

and the standard deviation of errors generated in the experiment 601

on FRGC v2 compared with FRGC v1 was mainly caused by 602

uncontrolled illumination and facial expressions on tested facial 603

scans. Compared to curvature-analysis-based method, which 604

only uses geometry knowledge on faces, the proposed approach 605

can locate a larger number of landmarks. The mean and stan- 606

dard deviation in localization errors from our method were 607

smaller when compared to those obtained from the curvature- 608

analysis-based method except for the nose tip, which is the 609

most shape salient landmark on a face. Fig. 5 illustrates selected 610

landmark localization results from the first two experiments. 611
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Fig. 4. Cumulative error distribution of the error for the 15 landmarks using
(a) FRGC v1 and (b) FRGC v2. The symbols used are the following: LCLE—
left corner of left eye, RCLE—right corner of left eye, UCLE—upper corner
of left eye, LWCLE—lower corner of left eye, LCRE—left corner of right
eye, RCRE—right corner of right eye, UCRE—upper corner of right eye,
LWCRE—lower corner of right eye, LCN—left corner of nose, NT—nose
tip, RCN—right corner of nose, LCM—left corner of mouth, CUL—center of
upper lip, CLL—center of lower lip, and RCM—right corner of mouth.AQ15

The third experiment was carried out on the BU-3-DFE612

data set. Recall that 143 facial scans from the first five male613

subjects and six female subjects were used for training the614

SFAM-2. From the remaining 89 subjects, 1157 facial scans615

in total were used for testing. Each tested subject has a neutral616

expression and the six universal facial expressions at the inten-617

sity levels three and four. Fig. 6 illustrates several localization618

examples having facial expressions. Fig. 7 depicts the effect619

of expressions on landmarking accuracy. Note that landmarks620

with less deformation in expressions were better localized (i.e.,621

eye corner, nose tip, and nose corner). Mouth corners and the622

middle of the lower lip were detected with the worst accu-623

racy, and the largest standard deviation was observed in scans624

displaying surprise because of the large mouth displacement625

and ample deformation in this region. Table IV summarizes626

TABLE III
COMPARISON OF MEAN ERROR AND STANDARD DEVIATION ASSOCIATED

WITH EACH OF THE 15 LANDMARKS ON THE FRGC DATA SET

Fig. 5. Landmark localization examples from the FRGC data set.

Fig. 6. Landmarking examples from the BU-3-DFE data set with expressions.
(a) Anger. (b) Disgust. (c) Fear. (d) Happiness. (e) Sadness. (f) Surprise.

the mean error and the standard deviation of the proposed 627

landmarking algorithm compared to the mean error of a PDM 628

[21], which is trained with 150 face scans and tested on the 629

remainder of the BU-3-DFE data set. Because of the use of 630

local texture and geometry knowledge in our approach, there is 631

a significant decrease in the localization errors. The mean error 632

for all 19 landmarks is within 10 mm while most of standard 633

deviations are lower than 5 mm. The localization accuracy of 634

landmarks in the rigid face region is comparable to those of the 635

corresponding landmarks automatically localized in FRGC. 636
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Fig. 7. Landmarking accuracy on different expressions with the BU-3-DFE data set. 1: Left corner of left eyebrow. 2: Middle of left eyebrow. 3: Right corner
of left eyebrow. 4: Left corner of right eyebrow. 5: Middle of left eyebrow. 6: Right corner of right eyebrow. 7: Left corner of left eye. 8: Right corner of left eye.
9: Left corner of right eye. 10: Right corner of right eye. 11: Left nose saddle. 12: Right nose saddle. 13: Left corner of nose. 14: Nose tip. 15: Right corner of
nose. 16: Left corner of mouth. 17: Middle of upper lip. 18: Right corner of mouth. 19: Middle of lower lip.

TABLE IV
MEAN ERROR AND THE CORRESPONDING STANDARD DEVIATION

(IN MILLIMETERS) OF THE 19 AUTOMATICALLY LOCALIZED

LANDMARKS ON THE FACIAL SCANS FROM THE BU-3-DFE
DATA SET (ALL EXPRESSIONS INCLUDED)

Fig. 8. Landmarking examples from the Bosphorus data set with occlusion.
From left to right, faces are occluded in the eye region, in the mouth region, by
glasses, and by hair.

The last experiment tested the fitting algorithm using the637

SFAM-3 to locate 19 landmarks on 3-D scans under occlusion638

from the Bosphorus data set. Fig. 8 illustrates several localiza-639

tion examples under occlusion. This experiment was carried out640

on 292 scans from all the subjects excluding the ones used for641

training in the Bosphorus data set. To evaluate the efficiency of642

our proposed occlusion classifier, the fitting algorithm was first643

tested with occlusion knowledge directly provided by the data644

set and, then, with occlusion knowledge from our occlusion645

detection and classification algorithm (see Table V). In both646

configurations, the mean errors ranged from 6 to 11 mm.647

Meanwhile, 71.4% of the landmarks were localized with a 10-648

TABLE V
MEAN ERROR AND THE CORRESPONDING STANDARD DEVIATION

ASSOCIATED WITH EACH OF THE 19 AUTOMATICALLY LOCALIZED

LANDMARKS ON THE FACIAL SCANS FROM THE

BOSPHORUS DATA SET UNDER OCCLUSION

mm precision, and 97% of the landmarks were located with a 649

20-mm precision. Note that there is only a slight increase on 650

mean error and standard deviation on average when we switch 651

the accurate knowledge on occlusion as provided by the data 652

set to the one provided by the proposed occlusion detection 653

algorithm described in Section IV. 654

E. Discussion 655

We studied the influence of landmark configuration on the 656

landmarking results (see Table VI). Three sets of landmarks, 657

consisting of 5, 9, and 15 landmarks, respectively, were tested 658

on 100 facial scans randomly selected from the FRGC v1 data 659

set. The subjects depicted in these scans were different from 660

the subjects used for training the SFAM, which is the SFAM-1 661

described in Section V-C. From Table VI, it is evident that the 662

mean errors remain stable (with a slight decrease in some cases) 663

when the number of landmarks increases from 5 to 15. Mean- 664

while, there exists an upper bound on the number of landmarks, 665

which depends upon the distinctiveness of landmarks so far 666

characterized in this paper based on their global configurational 667
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TABLE VI
INFLUENCE OF LANDMARK CONFIGURATION

ON MEAN ERRORS (IN MILLIMETERS)

Fig. 9. Selected examples of failure cases. Facial data with (a) surprise,
(b) happiness, (c) occlusion in mouth region, and (d) occlusion in eye region.

relationships and their local properties in terms of texture and668

geometric shape.669

The computation time of the proposed algorithm for local-670

izing landmarks on a scan (coded in Matlab) is around 10 min671

on a desktop PC with Intel Core i7-870 CPU and 8-GB RAM.672

The time consumed in Step 1 of the fitting algorithm is 130 s on673

average. It takes 70 to 96 s to compute the correlation meshes674

in Step 4, depending on the density of the point clouds. The675

computation time for the optimization of the objective function676

mainly depends on the speed of convergence. Over 99% of the677

cases converge within 2000 iterations or 422 s on average.AQ16 678

Fig. 9 illustrates several failure cases of landmarking under679

different conditions. Cases (a) and (b) are mainly due to ample680

deformation on the mouth region when faces display exagger-681

ated expressions. The morphology model in the SFAM learns682

major variation modes from a mixture of expressions and sub-683

ject identities and does not contain a specific mode for defor-684

mation caused by a specific facial expression. When fitting an685

SFAM on a facial scan having exaggerated facial morphology686

deformation (e.g., when displaying happiness and surprise),687

the fitting algorithm sometimes cannot generate morphology688

instances which approximate these extreme deformations in the689

mouth region. Cases (c) and (d) are mainly due to information690

loss in the fitting process when occlusion occurs. The occluded691

local regions are excluded in the fitting algorithm. Thus, the692

prediction of morphology parameters uses less information and693

is not as accurate and robust to local minima as the prediction694

when there is no occlusion.695

We also studied the reproducibility and the corresponding 696

accuracy of manual landmarking. For this purpose, 11 subjects 697

were asked to manually label the 15 landmarks as defined 698

in Fig. 5 on the same 10 facial scans randomly selected 699

from FRGC v1. We then computed the mean error and the 700

corresponding standard deviation of these manually labeled 701

landmarks based on their mean landmark positions. The mean 702

error of these manually labeled 15 landmarks was 2.49 mm with 703

the associated standard deviation at 1.34 mm. In comparison, 704

our localization technique achieved a mean error of 3.43 mm 705

with the corresponding standard deviation of 1.68 mm on the 706

same data set. 707

Compared to previous 3-D face landmarking algorithms [7], 708

[8], [10], [17], [19], [21], [31], [32], our SFAM-based algorithm 709

is a general data-driven 3-D landmarking framework which 710

encodes the configurational relationships of the landmarks and 711

their local properties in terms of texture and shape by a sta- 712

tistical learning approach instead of using heuristics directly 713

embedded within the algorithm. Thus, our algorithm is more 714

flexible and enables localizing landmarks which are not neces- 715

sarily shape prominent or texture salient. 716

VI. CONCLUSION 717

In this paper, we have presented a general learning-based 718

framework for 3-D face landmarking which proposes to char- 719

acterize, through a statistical model called SFAM, the con- 720

figurational relationships between the landmarks as well as 721

their local properties in terms of texture and shape. The fitting 722

algorithm locates the landmarks by maximizing the a posteriori 723

probability through the optimization of an objective function. 724

The effectiveness of the framework has been demonstrated 725

in the presence of facial expressions and partial occlusions. 726

Consideration of both the global and local properties helps to 727

characterize landmarks deformed under expressions. Further- 728

more, partial occlusion can be easily taken into account in 729

the objective function provided that the occlusion probability 730

around each landmark can be estimated. Based on this evidence, 731

we have also introduced a 3-D facial occlusion detection and 732

classification algorithm which exhibited a 93.8% classifica- 733

tion accuracy on the Bosphorus data set. This detection is 734

based on local shape similarity between local ranges of an 735

input 3-D facial scan and the instances synthesized from the 736

SFAM. The effectiveness of our technique was supported by 737

the experiments on the FRGC data set (v1 and v2), BU-3-DFE 738

containing expressions, and the Bosphorus data set containing 739

partial occlusion. 740

In this paper, local range and texture maps were used as sim- 741

ple descriptors of local shape and texture around a landmark. In 742

future work, we plan to further improve landmark localization 743

accuracy in considering other descriptors. We also plan to study 744

the generalization capability of the proposed method. 745
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Abstract—Three-dimensional face landmarking aims at auto-7
matically localizing facial landmarks and has a wide range of8
applications (e.g., face recognition, face tracking, and facial ex-9
pression analysis). Existing methods assume neutral facial expres-10
sions and unoccluded faces. In this paper, we propose a general11
learning-based framework for reliable landmark localization on12
3-D facial data under challenging conditions (i.e., facial expres-13
sions and occlusions). Our approach relies on a statistical model,14
called 3-D statistical facial feature model, which learns both the15
global variations in configurational relationships between land-16
marks and the local variations of texture and geometry around17
each landmark. Based on this model, we further propose an occlu-18
sion classifier and a fitting algorithm. Results from experiments19
on three publicly available 3-D face databases (FRGC, BU-3-DFE,20
and Bosphorus) demonstrate the effectiveness of our approach, in21
terms of landmarking accuracy and robustness, in the presence of22
expressions and occlusions.23

Index Terms—Facial expression, fitting, landmarks, occlusion,24
statistical face model, 3-D face feature.25

I. INTRODUCTION26

THE RECENT emergence of 3-D facial data has provided27

an alternative to overcome the challenges in 2-D face28

recognition, caused by pose changes and lighting variations29

[6]. Although 2.5D/3-D face data acquisition is known to be30

insensitive to changes in lighting conditions, the data need to31

be pose normalized and correctly registered for further face32

analysis (e.g., 3-D face matching [20], tracking [33], recogni-33
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tion [26], [28], and facial expression analysis [34]). As most of 34

the existing registration techniques assume the availability of 35

some 2.5D/3-D face landmarks, a reliable localization of these 36

facial feature points is essential. 37

A. Related Work 38

Although there is no general consensus yet, we consider 39

stable facial landmarks to be the fiducial points defined by 40

anthropometry [9] that have consistent reproducibility even 41

in adverse conditions such as facial expression or occlusion. 42

Stable facial landmarks generally include the nose tip, the 43

inner eye corners, the outer eye corners, and the mouth cor- 44

ners. Such landmarks are not only characterized by their own 45

properties, in terms of local texture and local shape, but are 46

also characterized by their global structure resulting from the 47

morphology of the face. Therefore, local feature information 48

and the configurational relationships of landmarks are jointly 49

important for accurate and robust face landmarking. This find- 50

ing is coherent with human studies on face analysis suggesting 51

that both local features and configurational relationships are 52

important [44]. 53

Despite the increasing amount of related literature, 3-D face 54

landmarking is still an open problem. Current face landmarking 55

techniques lack both accuracy and robustness, particularly in 56

the presence of lighting variations, head pose variations, scale 57

changes, facial expressions, self-occlusions, and occlusion by 58

accessories (e.g., hair, moustache, and eyeglasses) [1]. This 59

paper proposes a data-driven general framework for precise 60

3-D face landmarking, which is robust to changes in facial 61

expressions and partial occlusions. 62

Face landmarking on 2-D facial texture images has been 63

extensively studied [1], and several approaches have been pro- 64

posed. These approaches can be classified into appearance- 65

based [2], geometry-based [3], and structure-based approaches 66

[4], [5]. Interesting approaches include 2-D statistical mod- 67

els, such as the popular active appearance model [12] or the 68

more recent constrained local model (CLM) [14], which per- 69

form statistical analysis both on the facial appearance and the 70

2-D shape. However, since they are applied to 2-D texture 71

images, these approaches inherit the sensitivity to lighting and 72

pose changes. 73

1083-4419/$26.00 © 2011 IEEE
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Research on 3-D face landmarking is rather recent. Most of74

the existing methods embed a priori knowledge on landmarks75

on 3-D face by computing the response to local 3-D shape-76

related features (e.g., spin image [28], [42], [43], effective77

energy [10], Gabor filtering [7], [11], generalized Hough trans-78

form [24], local gradients [19], HK curvature [22], shape index79

[20], [42], [43], curvedness index [21], and radial symmetry80

[29]). While these approaches enable a rather accurate detection81

of landmarks that are shape prominent (e.g., the nose tip or the82

inner corners of eyes), their localization accuracy drastically83

decreases for other less prominent landmarks.84

As current 3-D imaging systems can deliver registered range85

and texture images, a straightforward method to discriminate a86

landmark is to accumulate evidence from both face representa-87

tions (i.e., face geometry and texture). Boehnen and Russ [27]AQ7 88

computed the eye and mouth maps based on both color and89

range information. Wang et al. [25] used a “point signature”90

representation to code a 3-D face mesh as well as Gabor91

jets of landmarks from the 2-D texture image. Gabor wavelet92

coefficients [1], [23] were used to model the local appearance93

in the texture map and local shape in a range map around94

each landmark. Lu and Jain [32] proposed to compute and fuseAQ8 95

the shape index response (range) and the cornerness response96

(texture) in local regions around seven feature points.97

As the combinations of candidate landmarks resulting from98

shape and/or texture related descriptors are generally impor-99

tant, some studies also proposed to make use of the structure100

between landmarks. This is accomplished by using heuristics101

[21], a 3-D geometry-based confidence [27], an extended elastic102

bunch graph [23], or a simple mean model constructed as the103

average 3-D position of landmarks from a learning data set104

[30]. However, there is no technique that best takes into account105

both the configurational relationships between landmarks and106

the local properties in terms of geometric shape/texture around107

each landmark.108

Furthermore, only few of the aforementioned studies address109

the issue of face landmarking in the presence of facial expres-110

sions or occlusions. Nair and Cavallaro [21] used their 3-DAQ9 111

point distribution model (PDM) to locate five landmarks (the112

two outer eye points, the two inner eye points, and the nose113

tip) under facial expressions with a locating accuracy ranging114

from 8.83 mm for the nose tip to 20.46 mm for the right outer115

eye point. However, all the five landmarks were located on116

stable face regions during facial expressions. Dibeklioglu et al.117

[19] studied 3-D facial landmarking under expression, pose,118

and occlusion variations. They built statistical models of local119

features around landmark locations using a mixture of factor120

analysis in order to determine landmark locations on a coarse121

level. Heuristics were then applied to locate the nose tip at a122

fine level. Using the configurational relationships and geometry123

features, Perakis et al. [42], [43] addressed landmarking on124

3-D facial data under multiple orientations, taking into account125

missing data due to self occlusion.126

B. Proposed Approach127

In this paper, we propose a general learning-based framework128

for 3-D face landmarking which combines both configurational129

relationships between the landmarks and their local properties 130

in a principled way, through optimization of a global objective 131

function. This data-driven based approach aims to overcome 132

the shortcomings of the previous feature-based approaches that 133

require the embedding of a discriminative prior knowledge for 134

each landmark. Instead, it relies on a statistical model, called 135

3-D Statistical Facial feAture Model (SFAM), which learns 136

both the global variations in 3-D face morphology and the local 137

variations around each 3-D face landmark in terms of texture 138

and geometry. To train the model, we manually labeled the tar- 139

get landmarks for each aligned frontal 3-D face. Preprocessing 140

is first performed to enhance the quality of facial scans, and 141

then, the scans are remeshed to normalize the face scale. The 142

SFAM is then constructed by applying principle component 143

analysis (PCA) to the global 3-D face landmark configurations, 144

the local texture, and the local shape around each landmark 145

from the training facial data. PCA-based learning is popular 146

for face recognition since human faces are similar, and hence, 147

it is quite reasonable to assume that the properties of facial 148

features follow a Gaussian distribution, as demonstrated by 149

previous studies (e.g., eigenfaces [45]). In our approach, only 150

the salient variation modes (95% of the variation) for the 151

three representations (morphology, texture, and geometry) are 152

retained. By varying the control parameters of SFAM, different 153

3-D partial face instances that consist of local face regions with 154

texture and shape (structured by their global 3-D morphology) 155

can be generated. In this paper, we have used a simple local 156

range map and an intensity map to characterize the local shape 157

and texture properties around each landmark. Alternatively, the 158

SFAM may use all the aforementioned descriptors of local 159

features around each landmark (e.g., mean and Gaussian curva- 160

ture or shape index for local shape characterization and Gabor 161

jets or cornerness response for local texture description). An 162

interesting property for the characterization of the local shape 163

around a landmark is that the descriptor is sufficiently robust 164

against shape deformation, which typically occurs in facial 165

expressions. Popular geometric descriptors (e.g., shape index or 166

HK curvatures) provide an accurate local shape description and 167

are sensitive to geometric shape differences. However, when the 168

normalized correlation is used as the similarity measure, local 169

shape properties described by raw range maps are less discrim- 170

inative with respect to identity and deformations. Similarly, the 171

description of local texture should be tolerant to changes caused 172

by lighting or expressions. A similar reasoning also applies to 173

using the raw texture maps for texture characterization. The 174

combination of raw texture maps and the similarity measure 175

relieves, to some extent, the effect of lighting conditions and 176

expressions on texture. Our experiments indicate that the use 177

of a local raw range map and a local raw texture map around 178

each landmark provides a good tradeoff between computational 179

efficiency and robustness. Although a comprehensive study of 180

the selection of robust local features is needed, it is beyond the 181

scope of this paper. 182

Our learning-based framework can be considered as a natural 183

extension of the morphable 3-D face model [15] and the CLM 184

[14] as we propose to learn, at the same time, the global vari- 185

ations of 3-D face morphology and the local ones in terms of 186

texture and shape around each landmark. Fitting the SFAM on AQ10187



IE
EE

Pr
oo

f

IE
EE

Pr
oo

f

ZHAO et al.: ACCURATE LANDMARKING OF THREE-DIMENSIONAL FACIAL DATA 3

TABLE I
SUMMARY OF SYMBOLS

a probe facial scan is accomplished by maximum a posteriori188

(MAP) probability. The fitted morphology instance deliversAQ11 189

the locations of targeted landmarks. Using 3-D training faces190

with expressions, the SFAM has the ability to learn expression191

variations and generate instances with the learned variations192

so as to increase the a posteriori probability in fitting faces193

with expression. Furthermore, we propose to use a k-nearestAQ12 194

neighbor (k-NN) classifier to identify the partially occludedAQ13 195

faces and the type of occlusion. A histogram of the similarity196

map between the local shapes of the target face and shape197

instances from the SFAM is used as the input. This information198

about occlusions is also integrated into the objective function199

used in the fitting process to handle landmarking on partially200

occluded 3-D facial scans.201

The main contributions of this paper are the following.202

1) We build an SFAM that elegantly combines the global and203

local features extracted from three facial representations.204

2) An occlusion detection and classification algorithm is205

proposed to detect occlusions and classify them into206

different types, thereby providing occlusion information207

to the fitting algorithm.208

3) A fitting algorithm is proposed to locate landmarks209

through optimizing an objective function, implemented210

on local patch-based correlation meshes. In addition, the211

fitting algorithm incorporates occlusion knowledge and212

thus is able to locate landmarks on partially occluded213

faces.214

The rest of this paper is organized as follows. In Section II,215

our statistical model SFAM is introduced. In Section III, the216

objective function that combines the local shape and texture217

properties and the fitting algorithm are described. Section IV218

addresses 3-D face partial occlusion. Experimental results are219

discussed in Section V, while Section VI concludes this paper.220

Table I presents a summary of the different symbols used in this221

paper.222

II. SFAM223

Three-dimensional facial data acquired by the current 3-D224

imaging systems are usually noisy and may contain holes and225

spikes. Hence, we first preprocess all the 3-D facial scans to226

remove noise. Head pose and scale variations are normalized by227

alignment and remeshing (see Section II-A). Then, we model228

the variations in 3-D configurations of landmarks and their229

local variations in terms of texture and shape around each230

landmark (see Section II-B). New partial 3-D face instances can231

be synthesized from the learned model (see Section II-C).232

A. Preprocessing the Training Facial Data 233

To remove the noise (e.g., spikes and holes) and enhance 234

the quality of 3-D facial scans, we perform the following 235

operations. 236

1) Median cut: Spikes are detected by checking the discon- 237

tinuity of points and are removed by the application of a 238

median filter. 239

2) Hole filling: Holes that are caused by the 3-D scanner 240

and the removed spikes are located on the range maps of 241

facial scans by a morphological reconstruction [38] and 242

filled by cubic interpolation. The open mouth is excluded 243

from this preprocessing step by estimating the size of 244

the hole corresponding to the open mouth region with an 245

empirically set threshold. 246

Although faces are usually scanned from a frontal viewpoint, 247

variations in head pose still exist and interfere with the learning 248

of global variations in 3-D facial morphology. Consequently, 249

these variations may perturb the learning of local shape and 250

texture variations. To compensate for head pose variations, the 251

facial data are first translated close to the origin of the camera 252

coordinate system. The iterative closest point algorithm [18] is 253

then used to minimize the difference between the two point 254

clouds of the new scan and the selected facial scan, which 255

holds a frontal and straight pose. Since the head pose variations 256

have been compensated after alignment, the SFAM can be 257

learned with more accurate variations in local face texture and 258

geometry. 259

To train the model, the targeted anthropometric landmarks 260

have to be manually labeled for each aligned frontal 3-D face. 261

This is the major difference between the proposed approach and 262

most of the existing 3-D face landmarking algorithms. Instead 263

of directly embedding a priori knowledge on landmarks into 264

the landmarking algorithm, we propose a data-driven approach 265

which, through statistical learning, encodes into a model dis- 266

criminatory information of targeted landmarks, in terms of their 267

global configurational relationships as well as the properties 268

of local texture and shape around each landmark. For any 269

given training data set, the set of targeted landmarks can be 270

easily changed according to the particular application. This 271

general characteristic of the proposed approach is demonstrated 272

in our experiments on three different public data sets: FRGC, 273

BU-3-DFE, and Bosphorus data sets. Most landmarks out of 15 274

(as illustrated in Fig. 5) on the FRGC data set were selected 275

from the rigid part of the face as they were subsequently used 276

for 3-D face recognition. On the other hand, landmarks on the 277

BU-3-DFE and the Bosphorus data sets (as illustrated in Figs. 6 278

and 8) encompass anthropometric points from all facial regions 279

as they are used for facial expression analysis. 280

To learn the local geometry and texture around each land- 281

mark, it is necessary to have the same number of points in a 282

local region and have a dense correspondence among different 283

faces. However, changes due to face scale and subject identity 284

make this normalization difficult. Therefore, we use uniform 285

grids to remesh local regions around landmarks. First, all the 286

points are sampled from point clouds within a specified distance 287

from each landmark. The number of sampled points, or the 288

point density, in local regions varies from face to face due 289
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Fig. 1. Scale normalization in a local region associated to the left corner of
the left eye from the (a) frontal view and (b) side view. Circles denote sampled
points from the 3-D face model, and the grid is composed of the interpolated
points. Interpolation is also performed on the point intensity values.

to face scale. Second, a uniform grid is associated with each290

landmark. As illustrated in Fig. 1, each grid is centered at its291

corresponding landmark with a size of 15 × 15 (225 nodes on a292

grid) and a resolution of 1 mm (the intervals of grids on the X ,293

Y dimensions are fixed to 1 mm). The z values of a node (and294

the associated intensity values) on a grid are interpolated from295

the range values of sampled points. Using this normalization, a296

fixed number of points can be obtained regardless of face scale297

and subject identity. Thus, the point-to-point correspondence298

among faces is established easily and efficiently.299

B. Modeling the Configurational Relationships and Local300

Shape and Texture Features of the Landmarks301

Once a 3-D facial scan is preprocessed, 3-D coordinates of all302

the landmarks (3-D morphology) are concatenated into a vector303

si, which describes the configurational relationships among304

local regions305

sk = (x1, y1, z1, x2, y2, z2, . . . , xN , yN , zN )T (1)

where N is the number of landmarks (e.g., in this paper, N =306

15 or 19).307

We further generate the two vectors gk and zk by concate-308

nating intensity and range values on all the grids on a face309

(M is the number of interpolated points collected from all the310

local regions). The zk vectors capture the variations of local311

geometric shapes around each landmark while the gk vectors312

capture the local texture properties313

gk =
(
gk
1 , g

k
2 , . . . , g

k
M

)T
, zk =

(
zk
1 , z

k
2 , . . . , z

k
M

)T
. (2)

PCA is then applied to the three vector sets {sk}, {gk}, and314

{zk}, extracted from the training 3-D facial data (k denotes315

the kth training example). Thus, three linear models are built316

by retaining 95% of the variance in landmark configurations as317

well as local texture and shape around each landmark. The three318

models are represented as follows:319

s = s̄ + P sbs (3)

g = ḡ + P gbg,z = z̄ + P zbz (4)

where s̄, ḡ, and z̄ are the mean landmark configuration, the320

mean intensity, and the mean range value, respectively, while321

P s, P g , and P z are the three sets of modes of configuration, 322

intensity, and depth variation, respectively. The terms bs, bg , 323

and bz are the corresponding sets of control parameters. All 324

individual components in bs, bg , and bz are independent. 325

We further assume that all the bq-parameters, where bq ∈ 326

(bs, bg, bz), follow a Gaussian distribution with zero mean and 327

standard deviation σq . 328

C. Synthesizing Instances From a New Face 329

Given the parameters bs, a configuration instance can be 330

generated using (3). Then, given a new facial scan, the set of 331

scan points closest to the configuration instance is computed. 332

Based on these points, the vectors gn and zn are obtained by 333

applying the process described in the training phase (2). Then, 334

bg and bz are estimated as follows: 335

bg = P T
g (gn − ḡ), bz = P T

z (zn − z̄). (5)

bg and bz are limited to the range [−3σ, 3σ]. Then, using 336

these constrained bg and bz , we can generate texture and shape 337

instances ĝn and ẑn by using (4). The landmarks, along with 338

their local texture and local shape instances, compose a partial 339

face instance. 340

III. LOCALIZING LANDMARKS 341

The SFAM-based landmark localization procedure consists 342

of MAP probability of landmark configuration, given a 3-D 343

facial scan to be landmarked, and leads to optimizing an 344

objective function. In Section III-A, we present the objective AQ14345

function to be optimized, and in Section III-B, we introduce the 346

fitting algorithm for localizing landmarks. We then discuss our 347

assumptions in Section III-C. 348

A. Objective Function and MAP 349

We first define the objective function f(bs) = p(s|T,R, ψ) 350

as the a posteriori probability of landmark configuration s to be 351

maximized for a 3-D facial scan represented by its texture map 352

T and range map R and the learned statistical model SFAM ψ. 353

Using the Bayes rule, we obtain 354

p(s|T,R, ψ) = p(T,R, s, ψ)/p(T,R, ψ)

∝ p(T,R|s, ψ)p(s|ψ)

∝ p(T |s, ψ)p(R|s, ψ)p(s|ψ) (6)

where p(T |s, ψ) and p(R|s, ψ) are the probabilities of having 355

the facial texture T and the range R, given a landmark configu- 356

ration s and SFAM ψ, respectively. We assume that the random 357

variables R and T from the different facial representations 358

are independent within a local face region. The term p(s|ψ) 359

denotes the probability of having a landmark configuration s 360

given the SFAM ψ. Thus, the prior p(s|ψ) can be estimated 361

using the assumption of Gaussian distribution on the corre- 362

sponding control parameters bj in the third term of (7). 363
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The probabilities p(T |s, ψ) and p(R|s, ψ) can be estimated364

using the Gibbs–Boltzmann distribution as described in365

p(s|T,R, ψ) ∝
N∏

i=1

e−(αηi)
N∏

i=1

e−(βγi)
K∏

j=1

e
−b2

j
λj

log p(s|T,R, ψ) ∝
N∑

i=1

(−αηi) +
N∑

i=1

(−βγi) −
K∑

j=1

b2j
λj

(7)

whereN is the number of local regions, ηi and γi are the energy366

functions of the associated local region i in terms of texture and367

range properties, respectively, given the landmark configuration368

s and the SFAM ψ, and α and β are weight constants. The369

third term in (7) represents the Mahalanobis distance [13],370

where K is the number of retained landmark configuration371

modes and λj denotes the corresponding eigenvalue in the372

landmark configuration model. bj denotes the control parameter373

that generates the landmark configuration s given the statistical374

model ψ. For the energy functions ηi and γi, high energies375

occur when the corresponding local texture Ti and range Ri do376

not match the texture and range instances which are generated377

by the SFAM ψ given the landmark configuration s. In this378

paper, instead of using the distances in these energy functions379

to express the degree of mismatch, we use a similarity measure,380

namely, the normalized correlations defined in (9), and derive381

the following objective function f(bs) (thereby changing the382

polarity of the terms associated with ηi and γi):383

f(bs) = α

N∑
i=1

miFgi(si) + β

N∑
i=1

miFzi(si) −
k∑

j=1

b2j
λj

(8)

where Fgi and Fzi are explained in (9) and mi is introduced384

to address partially occluded facial data. The term mi is the385

probability of the region around the ith landmark being un-386

occluded. The term si denotes the landmark location from the387

morphology model. Specifically388

Fgi =
〈

gi

‖gi‖
,

ĝi

‖ĝi‖
〉

Fzi =
〈

zi

‖zi‖ ,
ẑi

‖ẑi‖
〉

(9)

where 〈·, ·〉 is the inner product and ‖ · ‖ is the L2 norm. The389

values of α and β are fixed and are computed as the ratios390

of
∑N

i=1 Fgi and
∑K

j=1(b
2
j/λj),

∑N
i=1 Fzi, and

∑K
j=1(b

2
j/λj),391

respectively, during the offline training.392

In this paper, we have used a simple occlusion classification393

algorithm which delivers a binary value formi: zero if the local394

region is occluded and one if the region is not occluded.395

B. Fitting Algorithm396

Landmarking a 3-D facial scan consists of fitting the SFAM397

ψ while maximizing the objective function (8). First, the 3-398

D facial scan is preprocessed as described in Section II-A,399

including spike removal, hole filling, and head pose normal-400

ization. The occlusion algorithm, introduced in Section IV, is401

then applied to identify the occluded local regions and then402

used to set the correspondingmi coefficients to zero. Therefore,403

only the unoccluded local regions are considered in the fitting404

process. The algorithm works in a straightforward manner and405

is described in Algorithm 1.406

Fig. 2. Depiction of the correlation meshes from the frontal and side views.
These meshes capture the similarity between instances and local facial regions
in both texture and shape representations. The red color corresponds to large
correlation values while blue corresponds to small correlation values. Large
values on the correlation meshes correspond to large probabilities of finding
landmarks on their locations. The meshes are in four-dimensional space,
where the first three dimensions are x, y, z and the last dimension represents
correlation values. In these figures, we display the correlation values instead of
z. (a,b) Two viewpoints of the same correlation mesh capturing the similarity
of texture (intensity) instances from SFAM and local texture regions (intensity)
on a given face. (c,d) Correlation mesh capturing the similarity of shape (range)
instances from SFAM and the local face shapes (range).

Algorithm 1 SFAM Fitting 407

Input: A 3-D scan and a trained SFAM. 408

1. Optimize the morphology parameters bs to minimize 409

the distance between corresponding morphology instances and 410

their closest points on the input facial data, and obtain a set of 411

points S. 412

2. Synthesize texture and shape instances Ĝ, Ẑ as described 413

in Section II-C using S. 414

3. Normalize local regions around points S within a neigh- 415

borhood large enough to cover the potential landmark locations 416

as in Section II-A, creating a set of local mesh G, Z . 417

4. Compute correlation meshes on both texture and geometry 418

representations (see Fig. 2) by correlating Ĝ, Ẑ with G, Z, 419

respectively, which are different parts of G, Z sampled by a 420

sliding window (size of 15 × 15) on local regions (9). 421

5. Optimize the morphology parameters bs to reach the 422

maximum of the sum of values on the two correlation meshes 423

while minimizing the Mahalanobis distance associated with the 424

landmark configuration defined by the control parameters bs. 425

Output: Optimized morphology parameters bs 426

The optimization process in steps one and five of the algo- 427

rithm is processed by the Nelder–Mead simplex algorithm [16]. 428

Once convergence is reached, the instance s resulting from the 429

optimized bs indicates the location of landmarks. For partially 430

occluded faces, occluded landmarks and their corresponding 431

local meshes are excluded from the optimization process. In the 432

case of incorrect occlusion classification, local nonface meshes 433

lead the optimization to converge to an unpredictable point far 434

from the desired minimum. 435



IE
EE

Pr
oo

f

IE
EE

Pr
oo

f

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS

C. Discussion436

To deduce (7), we assumed that the probabilities p(T |s, ψ)437

and p(R|s, ψ) follow a Gibbs–Boltzmann distribution. This438

assumption is reasonable and motivated by the fact that the439

problem of 3-D face landmarking is actually a Markov random440

field (MRF) which consists of assigning a label from a set of441

labels L to each vertex of a 3-D facial scan. The set L encom-442

passes all targeted landmarks (e.g., nose tip and eye corners)443

and a null value labeling any vertex which is not the location444

of a targeted landmark. Then, the theorem of the equivalence445

between MRFs and Gibbs distributions defined by Hammersley446

and Clifford [39] implies that the probabilities p(T |s, ψ) and447

p(R|s, ψ) follow a Gibbs–Boltzmann distribution [40].448

We also used the Nelder–Mead simplex algorithm [16],449

which is one of the best known algorithms for multidimensional450

unconstrained optimization without derivatives. This method451

does not require any derivative information and is widely used452

to solve parameter estimation and statistical problems of similar453

nature [41].454

IV. OCCLUSION DETECTION AND CLASSIFICATION455

Facial data analysis in the presence of partial occlusions456

(caused by a variety of factors such as hair, glasses, mustaches,457

and scarf) is a difficult problem. In 3-D facial landmarking, only458

occlusions which may occur in local regions around landmarks459

are of interest. Thus, in this paper, we adopt an approach to460

classify the occlusion type and provide a set of binary values to461

local regions: either occluded or not occluded. Alternatively, we462

may compute a probability associated with a local region being463

occluded or a measure indicating roughly the extent to which a464

local region is occluded.465

To perform occlusion detection, features from the range map466

are extracted as the presence of occlusion definitively changes467

local shape. Therefore, given a new facial scan, its closest points468

to the mean landmark configuration s̄(3) are first computed.469

Then, grids (50 × 50) are used to remesh local regions around470

these points for range values (see Section II-A). The size of471

local regions is chosen to be large enough to account for472

variations due to scale and subject changes as well as to cover473

the local regions near landmarks for occlusion detection.474

For each local region i, processing is performed in a sliding475

window manner (the size of the sliding window is the same as476

the size of the local regions considered in the SFAM). At each477

step, we compute a local depth map Zα and its local shape478

instance Zβ to further obtain a similarity LS as follows:479

balpha =P T
z,i(Zα − z̄i),Zβ = z̄i + P z,ibβ (10)

LS =
〈

Zα

‖Zα‖ ,
Zβ

‖Zβ‖
〉

(11)

where P z,i is the submatrix composed of the rows in P z480

associated with local region i. The term z̄i is the subvector481

composed of the rows in z̄ also associated with local region i.482

The term bβ is obtained by limiting bα within the boundary as483

described in Section II-C. In the case of occlusion, bα does not484

necessarily obey a Gaussian distribution and may be distributed485

far away from the mean value. Thus, by boundary limitation, the 486

instances Zβ are different from the occluded local shape Zα, 487

leading to a low similarity value in (11). 488

The local similarity value LS is computed for all points in 489

a local region, leading to a local similarity map. We then build 490

a histogram of LS values using 50 bins to represent the values 491

ranging from −1 to 1. Since most values in the local similarity 492

map are close to 1, we allocate more bins near 1. Then, the his- 493

tograms computed from all the local regions are concatenated 494

into a single feature vector. Partially occluded 3-D facial scans 495

in the training set are manually labeled according to a given 496

occlusion type (i.e., occlusion in the ocular region, occlusion 497

in the mouth region, occlusion by glasses, or unoccluded). The 498

distance between histograms is computed using the Euclidean 499

metric, and the classification is performed using a simple k-NN 500

classifier. 501

In our experiments, we used the Bosphorus data set which 502

encompasses partially occluded 3-D facial scans according to 503

several occlusion patterns. We preset a set of binary values 504

indicating the occlusion state in each local region for each 505

occlusion pattern. By classifying facial scans into these states, 506

we can thus obtain a list of local regions that are occluded 507

[mi in (8)]. 508

V. EXPERIMENTAL RESULTS 509

The proposed statistical learning-based framework for 3-D 510

facial landmarking was applied on three data sets, namely, the 511

FRGC [35], BU-3-DFE [36], and Bosphorus [37] data sets. In 512

Section V-A, we describe the data sets and the experimental 513

setup and present the various experimental results in the follow- 514

ing sections. These results are further discussed in Section V-E. 515

A. Data Sets and Experimental Setup 516

The FRGC data set includes two versions. FRGC v1 con- 517

tains 953 scans from 275 people, captured under controlled 518

illumination conditions and generally neutral expressions [35]. 519

However, these 953 facial scans have slight head pose and scale 520

variation. In addition, FRGC v1 contains 33 noisy 3-D facial 521

scans having uncorrected correspondence between the range 522

and texture maps. These scans were not used in our experi- 523

ment. FRGC v2 contains 4007 facial scans from 466 persons. 524

These 3-D facial scans were captured under different illumina- 525

tion conditions and contain various facial expressions (such as 526

happiness or surprise). 527

The BU-3-DFE database contains data from 100 subjects 528

[36]. Each subject performed a neutral expression and six uni- 529

versal expressions in front of a 3-D scanner. Each of these six 530

universal expressions (happiness, disgust, fear, anger, surprise, 531

and sadness) is displayed with four levels of intensity. In our 532

experiments, we have used the neutral facial data and facial data 533

with expressions in the two high-level intensities from all the 534

subjects, resulting in 1300 facial scans in total. 535

The Bosphorus data set contains 3396 facial scans from 104 536

subjects [37]. This data set contains not only the six universal 537

facial expressions but also 3-D scans under realistic occlusions 538

(e.g., glasses, hands around the mouth, and eye rubbing). 539
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TABLE II
CONFUSION MATRIX OF OCCLUSION CLASSIFICATION

Moreover, the data set includes many male subjects that have540

moustache and beard.541

As illustrated in Figs. 5–8, we manually labeled 15 facial542

landmarks in the FRGC data set and used 19 labeled landmarks543

in the BU-3-DFE and Bosphorus data sets. They were used544

as ground truth for learning the SFAM model and testing our545

landmark fitting algorithm. These three landmark data sets546

contain some common landmarks, such as eye corners and547

mouth corners, which are sensitive to facial expressions.548

B. Occlusion Classification Results549

The proposed algorithm for occlusion detection was applied550

to 3-D scans from the Bosphorus data set. In our experiment,551

we excluded partial occlusions by hair as they do not occur in552

the landmark regions. We have considered partial occlusions553

caused by glasses, a hand near the mouth region, and a hand554

near the ocular region in addition to unoccluded 3-D scans.555

We experimentally set k to five in the k-NN classifier and556

performed a two-fold cross-validation. The confusion matrix557

is provided in Table II. An average classification accuracy up558

to 93.8% is achieved, which appears to be sufficient for the559

subsequent landmarking task.560

C. Results on SFAM561

We used 452 scans from the FRGC v1 data set to build562

the SFAM-1 model by learning the local properties around563

15 landmarks and their configurational relationships. The train-564

ing facial scans have limited illumination variations and do not565

contain facial expressions.566

Furthermore, we used facial scans from 11 subjects in the567

BU-3-DFE data set and the first 32 subjects in the Bosphorus568

data set to build the SFAM-2 and SFAM-3, respectively. For569

every subject, 13 scans were used for training in the case of570

the BU-3-DFE data set (a neutral scan and the two scans for571

each of the six universal expressions at the intensity levels three572

and four), and seven scans in the case of the Bosphorus data573

set (a neutral scan and a scan for each of the six universal574

expressions). Fig. 3 illustrates the SFAM-3 learned from the575

Bosphorus data set containing the first mode of configuration,576

local texture, and local shape for variances 3 ± σ.577

D. Results on Landmarking578

Using the learned statistical models, the fitting algorithm579

for 3-D face landmarking was evaluated on three different580

experimental setups. In all these experiments, the errors were581

computed as the Euclidean distance between the automatically582

localized and the corresponding manually labeled landmarks.583

Fig. 3. SFAM learned from the Bosphorus data set. (a) First landmark
configuration mode explains variations in terms of the face size and expression.
(b) First texture mode explains skin color variations. (c) First range mode
explains surface geometry variations, mainly in the nose and mouth regions.

Using the SFAM-1, the fitting algorithm was first applied on 584

the remaining FRGC v1 data sets (i.e., 462 scans from subjects 585

different from those in training). We then tested the algorithm 586

on 1500 facial scans (randomly selected from the FRGC v2 data 587

set) which contain illumination variations and facial expres- 588

sions. Fig. 4 depicts the cumulative distribution of the fitting 589

error for all 15 landmarks. Note that most landmarks were 590

automatically localized within 9 mm in both tests. Table III 591

summarizes the mean, the standard deviation of localization 592

errors associated with each landmark tested on FRGC v1 and 593

FRGC v2, and a comparison with the result achieved by a 594

curvature-analysis-based landmarking method [31]. The first 595

two columns show the mean and the standard deviation of lo- 596

calization error for each landmark (di) from our method while 597

the third column depicts the results achieved by the curvature- 598

analysis-based method. Note that the mean localization error 599

of all landmarks is less than 5 mm. An increase in the mean 600

and the standard deviation of errors generated in the experiment 601

on FRGC v2 compared with FRGC v1 was mainly caused by 602

uncontrolled illumination and facial expressions on tested facial 603

scans. Compared to curvature-analysis-based method, which 604

only uses geometry knowledge on faces, the proposed approach 605

can locate a larger number of landmarks. The mean and stan- 606

dard deviation in localization errors from our method were 607

smaller when compared to those obtained from the curvature- 608

analysis-based method except for the nose tip, which is the 609

most shape salient landmark on a face. Fig. 5 illustrates selected 610

landmark localization results from the first two experiments. 611
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Fig. 4. Cumulative error distribution of the error for the 15 landmarks using
(a) FRGC v1 and (b) FRGC v2. The symbols used are the following: LCLE—
left corner of left eye, RCLE—right corner of left eye, UCLE—upper corner
of left eye, LWCLE—lower corner of left eye, LCRE—left corner of right
eye, RCRE—right corner of right eye, UCRE—upper corner of right eye,
LWCRE—lower corner of right eye, LCN—left corner of nose, NT—nose
tip, RCN—right corner of nose, LCM—left corner of mouth, CUL—center of
upper lip, CLL—center of lower lip, and RCM—right corner of mouth.AQ15

The third experiment was carried out on the BU-3-DFE612

data set. Recall that 143 facial scans from the first five male613

subjects and six female subjects were used for training the614

SFAM-2. From the remaining 89 subjects, 1157 facial scans615

in total were used for testing. Each tested subject has a neutral616

expression and the six universal facial expressions at the inten-617

sity levels three and four. Fig. 6 illustrates several localization618

examples having facial expressions. Fig. 7 depicts the effect619

of expressions on landmarking accuracy. Note that landmarks620

with less deformation in expressions were better localized (i.e.,621

eye corner, nose tip, and nose corner). Mouth corners and the622

middle of the lower lip were detected with the worst accu-623

racy, and the largest standard deviation was observed in scans624

displaying surprise because of the large mouth displacement625

and ample deformation in this region. Table IV summarizes626

TABLE III
COMPARISON OF MEAN ERROR AND STANDARD DEVIATION ASSOCIATED

WITH EACH OF THE 15 LANDMARKS ON THE FRGC DATA SET

Fig. 5. Landmark localization examples from the FRGC data set.

Fig. 6. Landmarking examples from the BU-3-DFE data set with expressions.
(a) Anger. (b) Disgust. (c) Fear. (d) Happiness. (e) Sadness. (f) Surprise.

the mean error and the standard deviation of the proposed 627

landmarking algorithm compared to the mean error of a PDM 628

[21], which is trained with 150 face scans and tested on the 629

remainder of the BU-3-DFE data set. Because of the use of 630

local texture and geometry knowledge in our approach, there is 631

a significant decrease in the localization errors. The mean error 632

for all 19 landmarks is within 10 mm while most of standard 633

deviations are lower than 5 mm. The localization accuracy of 634

landmarks in the rigid face region is comparable to those of the 635

corresponding landmarks automatically localized in FRGC. 636
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Fig. 7. Landmarking accuracy on different expressions with the BU-3-DFE data set. 1: Left corner of left eyebrow. 2: Middle of left eyebrow. 3: Right corner
of left eyebrow. 4: Left corner of right eyebrow. 5: Middle of left eyebrow. 6: Right corner of right eyebrow. 7: Left corner of left eye. 8: Right corner of left eye.
9: Left corner of right eye. 10: Right corner of right eye. 11: Left nose saddle. 12: Right nose saddle. 13: Left corner of nose. 14: Nose tip. 15: Right corner of
nose. 16: Left corner of mouth. 17: Middle of upper lip. 18: Right corner of mouth. 19: Middle of lower lip.

TABLE IV
MEAN ERROR AND THE CORRESPONDING STANDARD DEVIATION

(IN MILLIMETERS) OF THE 19 AUTOMATICALLY LOCALIZED

LANDMARKS ON THE FACIAL SCANS FROM THE BU-3-DFE
DATA SET (ALL EXPRESSIONS INCLUDED)

Fig. 8. Landmarking examples from the Bosphorus data set with occlusion.
From left to right, faces are occluded in the eye region, in the mouth region, by
glasses, and by hair.

The last experiment tested the fitting algorithm using the637

SFAM-3 to locate 19 landmarks on 3-D scans under occlusion638

from the Bosphorus data set. Fig. 8 illustrates several localiza-639

tion examples under occlusion. This experiment was carried out640

on 292 scans from all the subjects excluding the ones used for641

training in the Bosphorus data set. To evaluate the efficiency of642

our proposed occlusion classifier, the fitting algorithm was first643

tested with occlusion knowledge directly provided by the data644

set and, then, with occlusion knowledge from our occlusion645

detection and classification algorithm (see Table V). In both646

configurations, the mean errors ranged from 6 to 11 mm.647

Meanwhile, 71.4% of the landmarks were localized with a 10-648

TABLE V
MEAN ERROR AND THE CORRESPONDING STANDARD DEVIATION

ASSOCIATED WITH EACH OF THE 19 AUTOMATICALLY LOCALIZED

LANDMARKS ON THE FACIAL SCANS FROM THE

BOSPHORUS DATA SET UNDER OCCLUSION

mm precision, and 97% of the landmarks were located with a 649

20-mm precision. Note that there is only a slight increase on 650

mean error and standard deviation on average when we switch 651

the accurate knowledge on occlusion as provided by the data 652

set to the one provided by the proposed occlusion detection 653

algorithm described in Section IV. 654

E. Discussion 655

We studied the influence of landmark configuration on the 656

landmarking results (see Table VI). Three sets of landmarks, 657

consisting of 5, 9, and 15 landmarks, respectively, were tested 658

on 100 facial scans randomly selected from the FRGC v1 data 659

set. The subjects depicted in these scans were different from 660

the subjects used for training the SFAM, which is the SFAM-1 661

described in Section V-C. From Table VI, it is evident that the 662

mean errors remain stable (with a slight decrease in some cases) 663

when the number of landmarks increases from 5 to 15. Mean- 664

while, there exists an upper bound on the number of landmarks, 665

which depends upon the distinctiveness of landmarks so far 666

characterized in this paper based on their global configurational 667
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TABLE VI
INFLUENCE OF LANDMARK CONFIGURATION

ON MEAN ERRORS (IN MILLIMETERS)

Fig. 9. Selected examples of failure cases. Facial data with (a) surprise,
(b) happiness, (c) occlusion in mouth region, and (d) occlusion in eye region.

relationships and their local properties in terms of texture and668

geometric shape.669

The computation time of the proposed algorithm for local-670

izing landmarks on a scan (coded in Matlab) is around 10 min671

on a desktop PC with Intel Core i7-870 CPU and 8-GB RAM.672

The time consumed in Step 1 of the fitting algorithm is 130 s on673

average. It takes 70 to 96 s to compute the correlation meshes674

in Step 4, depending on the density of the point clouds. The675

computation time for the optimization of the objective function676

mainly depends on the speed of convergence. Over 99% of the677

cases converge within 2000 iterations or 422 s on average.AQ16 678

Fig. 9 illustrates several failure cases of landmarking under679

different conditions. Cases (a) and (b) are mainly due to ample680

deformation on the mouth region when faces display exagger-681

ated expressions. The morphology model in the SFAM learns682

major variation modes from a mixture of expressions and sub-683

ject identities and does not contain a specific mode for defor-684

mation caused by a specific facial expression. When fitting an685

SFAM on a facial scan having exaggerated facial morphology686

deformation (e.g., when displaying happiness and surprise),687

the fitting algorithm sometimes cannot generate morphology688

instances which approximate these extreme deformations in the689

mouth region. Cases (c) and (d) are mainly due to information690

loss in the fitting process when occlusion occurs. The occluded691

local regions are excluded in the fitting algorithm. Thus, the692

prediction of morphology parameters uses less information and693

is not as accurate and robust to local minima as the prediction694

when there is no occlusion.695

We also studied the reproducibility and the corresponding 696

accuracy of manual landmarking. For this purpose, 11 subjects 697

were asked to manually label the 15 landmarks as defined 698

in Fig. 5 on the same 10 facial scans randomly selected 699

from FRGC v1. We then computed the mean error and the 700

corresponding standard deviation of these manually labeled 701

landmarks based on their mean landmark positions. The mean 702

error of these manually labeled 15 landmarks was 2.49 mm with 703

the associated standard deviation at 1.34 mm. In comparison, 704

our localization technique achieved a mean error of 3.43 mm 705

with the corresponding standard deviation of 1.68 mm on the 706

same data set. 707

Compared to previous 3-D face landmarking algorithms [7], 708

[8], [10], [17], [19], [21], [31], [32], our SFAM-based algorithm 709

is a general data-driven 3-D landmarking framework which 710

encodes the configurational relationships of the landmarks and 711

their local properties in terms of texture and shape by a sta- 712

tistical learning approach instead of using heuristics directly 713

embedded within the algorithm. Thus, our algorithm is more 714

flexible and enables localizing landmarks which are not neces- 715

sarily shape prominent or texture salient. 716

VI. CONCLUSION 717

In this paper, we have presented a general learning-based 718

framework for 3-D face landmarking which proposes to char- 719

acterize, through a statistical model called SFAM, the con- 720

figurational relationships between the landmarks as well as 721

their local properties in terms of texture and shape. The fitting 722

algorithm locates the landmarks by maximizing the a posteriori 723

probability through the optimization of an objective function. 724

The effectiveness of the framework has been demonstrated 725

in the presence of facial expressions and partial occlusions. 726

Consideration of both the global and local properties helps to 727

characterize landmarks deformed under expressions. Further- 728

more, partial occlusion can be easily taken into account in 729

the objective function provided that the occlusion probability 730

around each landmark can be estimated. Based on this evidence, 731

we have also introduced a 3-D facial occlusion detection and 732

classification algorithm which exhibited a 93.8% classifica- 733

tion accuracy on the Bosphorus data set. This detection is 734

based on local shape similarity between local ranges of an 735

input 3-D facial scan and the instances synthesized from the 736

SFAM. The effectiveness of our technique was supported by 737

the experiments on the FRGC data set (v1 and v2), BU-3-DFE 738

containing expressions, and the Bosphorus data set containing 739

partial occlusion. 740

In this paper, local range and texture maps were used as sim- 741

ple descriptors of local shape and texture around a landmark. In 742

future work, we plan to further improve landmark localization 743

accuracy in considering other descriptors. We also plan to study 744

the generalization capability of the proposed method. 745
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