
Access Control to Materialized Views: an Inference-Based
Approach

Sarah Nait Bahloul
Advisors: Emmanuel Coquery, Mohand-Saïd Hacid

Université de Lyon, CNRS
Université Lyon 1, LIRIS, UMR5205, F-69622, France

sarah.nait-bahloul@liris.cnrs.fr

ABSTRACT
Ensuring security of data is one of the fundamental needs of
people. In this context, issues related to confidentiality, in-
tegrity and availability of the data arise with a crucial impor-
tance, whether in economic, legal or medical domains. Stan-
dards covering fine-grained access control were proposed and
adopted to control access to data through queries.
In this paper, we propose a novel approach to facilitate the
administration of access control rules to ensure the confi-
dentiality of data at the level of materialized views. Several
techniques and models have been proposed to control access
to databases, but to our knowledge the problem of auto-
matically generating from access control rules defined over
base relations the applicable access control rules needed to
control materialized views is not investigated. We are inves-
tigating this problem by resorting to an adaptation of query
rewriting techniques. We choose to express fine-grained ac-
cess control through authorization views. This paper mainly
discusses the problem of automatically ensuring confidential-
ity of materialized views based on basic access control rules,
and identifies formal tools to tackle the problem.

1. INTRODUCTION
Data security is one of the major concerns in the data man-
agement community. A complete solution of data security
must meet the following three requirements [3]:

• Confidentiality refers to limiting information access and
disclosure to authorized users and preventing access by
or disclosure to unauthorized ones.

• Integrity refers to prevention of unauthorized and im-
proper data modification.

• Availability of information resources; an information
system must be accessible and operational in any time
to a legitimate user.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT PhD 2011, March 25, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0696-6/11/03 ...$10.00

In very large systems such as data warehouses [18][16], or
distributed systems [6], materialized views can be used for
performance reasons or in order to duplicate or summarize
data (e.g., for analysis purposes). In relational database
management systems, a view is a virtual table representing
the result of a query. A materialized view records the results
returned by the query into a physical table. Thus, the user
can perform the known access by querying the materialized
view in the same manner as querying a database table: Se-
lection, Projection, Join with other tables or materialized
views. In this context, ensuring security at the materialized
view level is as important as ensuring security on database
tables.
Based on our previous work [9], we propose a novel approach
that facilitate the administration of the access control rules
to ensure the confidentiality of data at the level of mate-
rialized views. We compute new rules based on predefined
access control rules defined over base relations.
In our approach, we consider fine-grained authorization poli-
cies that are defined and enforced in the database through
authorization views [12]. Authorization views specify the
accessible data, by projecting out of specific columns in ad-
dition to selecting rows. This framework allows fine-grained
authorization at the cell level.
The rest of the paper is organized as follows: section 2 de-
fines the problem. Section 3 discusses authorization views.
Section 4 presents our approach. Section 5 presents the re-
lated work. We conclude in section 6.

2. PROBLEM STATEMENT AND MOTIVA-
TION

The problem of access control to data has been investigated
by the data management community. As a consequence, sev-
eral techniques and models have been proposed to improve
data security and ensure confidentiality [12][8][10][2].
Large systems like Data Warehouses or Distributed Database
Systems use tables to store and manage their information
and very often they resort to materialized views. In many
settings, the views are materialized in order to optimize ac-
cess. For instance, in Data Warehouses, they can be used
to precompute and store complex aggregated data. In dis-
tributed computing, materialized views are used to replicate
data at distributed sites and synchronize updates done at
several sites. In these cases, the use of materialized view is
as important as using a database. The question is then how
to ensure data security at the level of a materialized view?
So far, access control rules on materialized views are defined
manually by an administrator by trying to comply with the

basic access control rules, i.e., the administrator builds new
access control rules on a materialized view by taking into
account those defined on base tables that are used to define
the materialized view. In a system containing tens or hun-
dreds of tables managed by hundreds of access control rules,
it becomes impossible for administrators to deal with such
huge number of rules and consider all the relevant ones. To
cope with this problem, we propose to automatically gen-
erate a set of access control rules on the materialized view.
Figure 1 summarizes our approach. The idea is the follow-
ing: Given a set of base relations (with access control rules
over those relations) and a view definition, synthesize a set of
access control rules that will be attached to the view, such that
querying the materialized view through those rules does not
give more information than querying the database through
the original access control rules.

Figure 1: Which subset of access control rules on DB
can ensure confidentiality at the materialized view
level in such a way that, when a user requests the
materialized view (s)he will not get more informa-
tion than if (s)he requests the base relations

3. DATALOG FOR AUTHORIZATION
Note that we are not designing a new security model. We
make use of existing rule-based access control models. We
need a method that takes a set of access control rules, and
computes exactly the data that is accessible by the user. For
this purpose, we use authorization views.
Authorization views are a well known database techniques
that provides fine-grained access control. They are imple-
mented as part of a database management system. Autho-
rization views are logical tables that specify exactly the ac-
cessible data, either drawn from a single table or from mul-
tiple tables. For each access control rule, an authorization
view that stores the accessible data corresponding to the
rule is defined.
In [19], the authors use the authorization views in order to
test if a query posed on a database is valid by determining
whether it can be completely rewritten using the authoriza-
tion views. In our proposal, we use the authorization views
in a different way. Indeed, the user has only right to query
the authorization views. Hence, the aim of our work is to
automatically generate a new set of authorization views to

ensure confidentiality of data stored at the materialized view
level based on the basic authorization views.
An authorization view can be a traditional relational view
or a parameterized view [10][12]. A parameterized autho-
rization view is a SQL view definition which makes use of
parameters like user-id, time, user-location etc. These views
provide a rule-based framework, where one view definition
applies across several users. This allows the administrator
to avoid encoding the same policies for each user.
In this paper, we consider two types of access control rules
that might exist to support data access at the level of tables:
authorizations views defined on a single table and those de-
fined on multiple tables.
We propose the use of Datalog as a formal framework for
expressing the access control rules [1].
We assume the existence of three types of symbols: vari-
ables, constants and predicates names. p(t1, ..., tn) is a lit-
eral where p is a predicate name with arity n and each ti for
1 ≤ i ≤n is either a constant or a variable. We call the se-
quence (t1, ..., tn) a tuple with arity n. A rule is a statement
of the form p(u) ← q1(u1), ..., qn(un), where p and each qi
for 1 ≤ i ≤n are relation names and u1, ..., un are tuples
of appropriate arities. Each variable occurring in u must
occur in at least one of u1, ..., un. We call p(u) the head
of the rule, and q1(u1), ..., qn(un) sub-goals in the body of
the rule. Rules may also contain sub-goals whose predicates
are arithmetic comparisons <,≤,=. In this case, we require
that if a variable x appears in a sub-goal of a comparison
predicate, then x must also appear in an ordinary sub-goal.
A Datalog program is a finite set of Datalog rules[1].
The logical sentence associated with the Datalog rule
p(u)← q1(u1), ..., qn(un) is:

∀x1...xn(p(u1)← q1(u1) ∧ ... ∧ qn(un)).

where x1...xn are the variables occurring in the rule and the
symbol ← is the standard logical implication.
Now, we recall the notion of deductive database. We limit
our discussion to facts and deductive rules. The fact that a
tuple (t1, ..., tn) is a member of the relation R is expressed
by the literal R(t1, ..., tn). Such facts define the extensional
database, EDB, and such a relation R is called an exten-
sional (stored) relation. The intentional database, IDB,
contains deductive rules. Relations defined by deductive
rules are called intentional relations [5] [1]. For example,

Info-Doc (Id-D, Dname, Dfname, Dspecialty) ←
doctor (Id-D, Dname, Dfname, Dadr, Dphone, Dspecialty, Dsalary)

is a rule that defines the (intentional) Info-Doc relation in
terms of the (extensional) doctor relation.
In general, a rule S ← R1, ..., Rn defines a relation S in
terms of the relation R1, ..., Rn. In relational database ter-
minology, view definitions are expressed as deductive rules.
The schema of a program Datalog P , denoted sch(P), is the
union of edb(P) and idb(P). The semantics of a Datalog
program P is defined in [1].

Example: The following rules define a hospital database
(extensional relations) and the authorizations views (inten-
tional relations).

Hospital database:
service (Snum, Sname, Hospital, Dept, Director).

doctor (IdD, Dname, Dfname, Dadr, Dphone, Dspecialty, Dsalary).

nurse (IdI, Snum, Nname, Nfname, Nadr, Nphone, Nsalary).

patient (IdP, Snum, Pname, Pfname, Disease).

care (IdD, idP).

Authorization views:
av1 (IdD, Dname, Dfname, Dspecialty)←
doctor (IdD, Dname, Dfname, Dadr, Dphone, Dspecialty, Dsalary).

av2 (IdI, Snum, Nname, Nfname) ←
nurse (IdI, Snum, Nname, Nfname, Nadr, Nphone, Nsalary).

av3 (IdP, Snum, Pname, Pfname, Disease)←
patient (IdP, Snum, Pname, Pfname, Disease), care (IdD, IdP),

IdD = User.

We allow all users to view the last name, the first name
and the speciality of doctors in the hospital, but not per-
sonal and salary information. In the same manner, we do
not allow users to view the salary information of nurses.
This is accomplished by defining the two first rules in the
example. We also allow all doctors to view information of
their patients. This is accomplished by defining the third
rule. In this rule, we define a parameterized authorization
view which makes use of the parameter user-id.

Formally, we describe our problem as follows. Let R be
a set of extensional1 relations and AVR be a set of inten-
tional relations defined in terms of the extensional relations
R. AVR represents the set of authorization views, that is,
tuples that are members of AVR are tuples that are allowed
to be accessed by users issuing queries over extensional re-
lations R.
Now, suppose we have new intentional relations MV (de-
fined in terms of the extensional relations R). The user
queryingMV relations may get additional tuples than when
(s)he queries the AVR relations. The aim of our work is to
define a set of intentional relations AVMV defined in terms
of the intentional relations MV. AVMV represents the set
of authorization views such that for each intentional relation
Q defined in terms of AVMV , there exists an intentional re-
lation Q′ defined in terms ofMV and an intentional relation
Q′′ defined in terms of AVAV
such that Q v Q′ and Q v Q′′. In other words, for any
database instance I, I(Q) is a subset of I(Q′) and a subset
of I(Q′′).

4. CONTRIBUTION
The aim of our work is to facilitate the specification and
derivation of access control rules that should be attached to
materialized views. We mainly consider conjunctive queries
in the preliminary work.

For each (intentional) relation mv in MV, the first step
is about authorization views selection. The access control
rules involving data that are present in mv are considered
relevant, hence, they are selected. The aim of the first step
is to determine what data are accessible in the mv relation.
i.e. rewrite the query using only the set of authorization
views AVR.

1Note that our proposal can easily be extended to allow the
use of intentional relations in R.

In order to implement the first step, we build on the Bucket
algorithm [11] for query rewriting algorithms in data integra-
tion. This algorithm assumes that all views to be considered
to rewrite the query can be reduced consistently, if we handle
each sub-goal (relations used to define the query) separately.
We make use of this idea in our rewriting framework.
The first step of the traditional bucket algorithm consists of
creating a bucket for each sub-goal except the sub-goal of a
comparison predicate in the query. Each entry of the bucket
is the head of a view (in our case, the view represents the
authorization view). Each entry must satisfy the following
conditions:

(a) one of the sub-goal of the view must be mapped to a
sub-goal of the query.

(b) If a head variable of the query appears in the query sub-
goal, it must also appear in the head of the view.

(c) If the query has a comparison predicate sub-goal , then
any view with a comparison predicate with the same vari-
able is acceptable if its comparison predicate is consistent
with the comparison predicate of the query.

(d) If a sub-goal of the query is mapped to more than one
sub-goal of a particular view, then the head of this rule ap-
pears multiple times in the bucket of that sub-goal.

For each sub-goal (here an extensional relation) of mv , the
algorithm determines the views that are attached to it. For
this, we modify the conditions mentioned above. We do not
take into account the condition (b). Indeed, this condition
removes some relevant authorization views. For example,
assume the query (1) shown below (materialized view defi-
nition). It makes a copy of table r. The rule (2) states an
authorization view, which says that the user accessing tu-
ples in mv has right to access only values of x, y attributes:

mv(x,y,z)←r(x,y,z) (1)

av(x,y)←r(x,y,z) (2)

If we apply the original bucket algorithm, the authorization
view will be considered as irrelevant. Indeed, the attribute
’z’ appears in the sub-goal of the query and it is also in the
head of the query, then it must also be in the head of the
view. This is not the case. If we do not take it as relevant,
this means that the user has no rights to access to any tu-
ple in mv. It is too strict, since one can project out ’z’ by
generating the appropriate authorization view on mv. In
contrast, if we take it as relevant, this means that the user
has only access to values of x,y attributes of the materialized
view; which corresponds to the basic conditions for access.
After the selection step, the algorithm generates a set of
query rewritings RW by combining the selected authoriza-
tions views, one from each sub-goal. These rewritings rep-
resent data that are accessible in mv .

The second step of our algorithm is to define AVMV . We
recall that the purpose of our work is to define the set of
AVMV , authorization views defined in terms of MV rela-
tions. Users wishing to query MV relations, are allowed
only to query AVMV . For this, we re-apply the original
query rewriting algorithm on the computedRW in first step.
i.e. rewrite each rw in RW using only the set of MV re-
lations. This step is important, because if we apply only
the first step, we will have a set of rewritings that represent
(certainly) the accessible data but if the user wants access

to tuples in MV relations, (s)he must use the basic autho-
rization views. This is not our goal. By applying the second
step, we compute the set of authorization views defined in
terms of MV relations. Hence, access to the MV relations
no longer need access to AVR and R relations.

The idea behind using the bucket algorithm is that it ex-
ploits the predicates in the query to significantly prune the
number of candidate conjunctive rewritings that need to
be considered. Other query rewriting algorithms were pro-
posed. For example, the MiniCon algorithm [11] allows to ef-
ficiently perform selection of relevant views in the first step.
Nevertheless, we decided to make use of the Bucket algo-
rithm for its simplicity and we will consider the use of the
MiniCon algorithm in future works.
To give an intuitive idea about the approach, let us consider
two examples.

Case 1: authorization views defined on a single
table
Consider the following schema r(a, b, c), s(d, e), p(f) and the
corresponding set of authorization views:

av1(a,b,c)← r(a,b,c), Cond(c)
av2(d)← s(d,e)
av3(f)← p(f), Cond(f)
av4(b,c)← r(a,b,c)

The set of authorization views represents access control rules
defined on a single table. Cond(x) is a condition constrain-
ing the attribute x.
Assume the following intentional relation mv1 (materialized
view definition):

mv1(z) ← r(x,y,z), s(x,w)

In the first step, the algorithm selects the authorization
views that are attached to the relations involved in mv1.
For this, the algorithm creates a bucket for each sub-goal g
in mv1. The bucket for a sub-goal g contains the views that
include sub-goals that can be mapped to g in a rewriting [11].

r(x, y, z) s(x,w)
av1(x, y, z) av2(x,w)
av4(y, z)

In the second step of the query rewriting algorithm, the
bucket algorithm considers conjunctive query rewritings, each
one consisting of one conjunct from each relation. In the ex-
ample, the combination of av4 and av2 fails. Indeed, if we
use av4, it will be not possible to apply the join between
r(x, y, z) and s(x,w): av4 projects out of the join attribute
x. In this example, there is only one possible rewriting. It
corresponds to the accessible data by the user that comply
with the base rules.

rw1(x,y,z,w) ← av1(x,y,z), av2(x,w)

The second step of our algorithm is to compute the new au-
thorization view based on the rewriting rw1 by applying the
rewriting query algorithm. i.e. rewrite rw1 in terms of mv1.
For this, we first must expand rw1. The expansion consists
in replacing the authorization views by their definitions:

rw1(x,y,z,w)← r(x,y,z), s(x,w),Cond(z).

The new authorization view is a relation defined in terms of
mv1 and has the following definition:

avmv(z) ← mv1(z), Cond(z)

Case 2: authorization views defined over sev-
eral tables
Continuing with our example, assuming we have, in addi-
tion, the following authorization view defined over two ta-
bles:

av5(d) ← s(d,e), p(e)

After applying the first step, i.e. rewrite mv2 in terms of avi
we have in addition to the rewriting rw1, a second rewriting:

rw2(x,y,z) ← av1(x,y,z), av5(x).

when applying the second step, i.e. rewriting rw2 in terms
of mv1, at the creation of buckets for each sub-goal in rw2,
there is no sub-goal in mv1 that can be unified with p(e).
Indeed, after applying expansion, one obtains:

rw2(x,y,z)← r(x,y,z),s(x,w),p(w),Cond(z).

In this example, there is only one intentional relation: mv1
inMV. In other words, to ensure the confidentiality of mv1
data we must access to the relation p and make a join. This
is possible only if there is another intentional relation mvi
in MV that contains p in its definition. If the relation is
not accessible or the access to the relation is very expensive;
then we cannot apply the access control rule.

5. RELATED WORK
Rosenthal and Sciore [13][14] have considered the problem
of how to automatically coordinate the access rights of the
warehouse with those of sources. The authors proposed a
theory that allows automated inference of many permissions
for the warehouse by a natural extension of the standard
SQL grant/revoke model, to systems with redundant and de-
rived data. They split the notion of ’access permission’ on a
table into two issues [13]: information permissions, specify-
ing who is allowed to access what information, and physical
permissions which specify who is allowed to access which
physical tables. The second contribution of the authors is
about providing an inference mechanism based on witness
notion. Informally, a subject should have permission to ex-
ecute a query if and only if the query can be expressed in
terms of tables (base or view) for which the user has explicit
permission.
The authors also defined an extension of the witness notion
by including the use of views. In other words, the user can
accesses only to a part of a table represented by a view;
Hence, the user has clearance to view the values of T that
contribute to the view (information permission) and (s)he
is allowed to execute a query that physically accesses T ,
but only for the purpose of computing the view (physical
permission). For instance, to define access permission to a
materialized view MV , the inference mechanism for permis-
sions tries to derive a query Q and views Vi equivalent to
MV , such that for each table ti mentioned in Q, either

• the permission to access to ti has been explicitly granted,
or

• the user has access to values in ti that contribute to
Vi, where Q is equivalent to Vi.

Note that the notion of equivalence is very important in
that paper. Suppose now, we define a materialized view
mv1 based on the join of two tables t1 and t2. We also de-
fine two views v1, v2 defining what tuples the user has right
to access in t1 and t2 respectively. To determine if the user
has right to access mv1, we must find an equivalent query Q
to mv1 that uses only t1 and t2 that contributes to v1 and
v2 respectively. The proposed framework will conclude that
the user has not right to access mv1 if the inference mecha-
nism does not find an equivalent query even if the user has
right to access a part of mv1. However, in our approach, we
propose a more flexible model. Indeed, by inferring the set
of authorizations views to control access to the materialized
view, we allow users to access even a part of the materialized
view.
To summarize, the framework proposed by the authors de-
termine only if a user has right to access a derived table
(based on explicit permission) but our proposal goes further
by determining which part the user has right to access in
the derived table.
Note also that the authors stated the inference rules at a
high level. The properties of this inference system and the
efficient evaluation algorithm were not investigated and re-
main an open research issue.
In [7], the authors have built on [9] to provide a way to se-
lect access control rules to be attached to materialized view
definitions based on access control rules over base relations.
They resort to the basic form of the bucket algorithm which
does not allow to derive all relevant access control rules. An-
other limitation of this work is that since they only deal with
selection of rules, the framework remains strongly dependent
of the base relations. That is, the body of the derived rules
involves base relations only. In our work, we synthesize new
rules from existing rules where the body of the new rules
makes reference to materialized views.

6. CONCLUSION
In the case of large organizations, the management of thou-
sands of datasets is very common. Ensuring data confiden-
tiality in the presence of materialized views is also impor-
tant. In this work, we discussed ingredients for an auto-
mated method to derive access control rules for material-
ized views by selecting the appropriate access control rules
that are attached to underlying base tables. We adapted the
bucket query rewriting algorithm.
An algorithm that enforces fine-grained access control poli-
cies on MV should be [17]:

• Sound: Generated views should returns only correct
information. Let R(MV) the result of answering the
query Q when there are no access control rules. Be-
cause the set of access control rules restricts access
to MV , RAV (MV) (the result of answering the query
when there are access control rules) may returns less
information than R(MV) does, but it should not re-
turn wrong information.

• Secure: It requires that the returned answer does not
leak information not allowed by the policy. Let RAV (T)
the result of answering the query Q on original tables
when there are access control rules. If a tuple is in
RAV (MV) then it should be in RAV (T).

• Maximum: Generated views should returns as much
information as possible, while satisfying the first two
properties.

Hence, we are investigating the soundness, security and max-
imality of our algorithm. To do this, we are working on the
proprieties of the query rewriting algorithm.
As mentioned above, we have discussed only conjunctive
queries. In large systems, (e.g., data warehouses), material-
ized views can be used to precompute and store aggregated
data (e.g., sum of sales). This framework should also be ex-
tended to accommodate materialized views with aggregate
functions. For this purpose, we will consider algorithms for
rewriting aggregate queries using views [15].
For this preliminary investigation, we illustrated the ap-
proach by resorting to the bucket algorithm as a query rewrit-
ing algorithm. However, it has some limits; after the cre-
ation of buckets, the algorithm considers conjunctive rewrit-
ing for each element of the Cartesian product of the buckets,
and checks whether it is contained or can be made to be con-
tained in the query. The checking is done by looking for a
containment mapping between the query and the rewriting,
which is an NP-complete problem [4]. We also plan to study
other query rewriting algorithms that can be more efficient
than the bucket algorithm. For instance, the MiniCon al-
gorithm [11] considers the join predicates in the query to
construct a MiniCon Despcription (MCD). Because of the
way MCD works, the MiniCon algorithm does not require
containment checks in the second phase, giving it an addi-
tional speed-up compared to the bucket algorithm. Future
work includes also implementing and testing the proposed
approach.

Acknowledgments
This work is partially supported by the Rhône-Alpes Region,
Cluster ISLE (Informatique, Signal, Logiciel Embarqué).

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] M. M. Astrahan, H. W. Blasgen, D. D. Chamberlin,
K. P. Eswaran, J. N. Gray, P. P. Griffiths, W. F. King,
R. A. Lorie, J. W. Mehl, G. R. Putzolu, I. L. Traiger,
B. W. Wade, and V. Watson. System r: Relational
approach to database management. ACM
Transactions on Database Systems, 1:97–137, 1976.

[3] E. Bertino and R. Sandhu. Database
security-concepts, approaches, and challenges. IEEE
Trans. Dependable Secur. Comput., 2(1):2–19, 2005.

[4] D. Calvanese, D. Lembo, and M. Lenzerini. Survey on
methods for query rewriting and query answering
using views, 2001.

[5] U. S. Chakravarthy, J. Grant, and J. Minker.
Logic-based approach to semantic query optimization.
ACM Trans. Database Syst., 15(2):162–207, 1990.

[6] L. W. F. Chaves, E. Buchmann, F. Hueske, and
K. Böhm. Towards materialized view selection for
distributed databases. In EDBT ’09: Proceedings of
the 12th International Conference on Extending
Database Technology, pages 1088–1099, New York,
NY, USA, 2009. ACM.

[7] A. Cuzzocrea, M.-S. Hacid, and N. Grillo. Effectively
and efficiently selecting access control rules on
materialized views over relational databases. In
Proceedings of the Fourteenth International Database
Engineering & Applications Symposium, IDEAS
’10, pages 225–235, New York, NY, USA, 2010. ACM.

[8] A. Motro. An access authorization model for relational
databases based on algebraic manipulation of view
definitions. In Proceedings of the Fifth International
Conference on Data Engineering, pages 339–347,
Washington, DC, USA, 1989. IEEE Computer Society.

[9] S. Nait-Bahloul. Inference of security policies on
materialized views. rapport de master 2 recherche.
http://liris.cnrs.fr/∼snaitbah/wiki, 2009.

[10] L. E. Olson, C. A. Gunter, and P. Madhusudan. A
formal framework for reflective database access control
policies. In CCS ’08: Proceedings of the 15th ACM
conference on Computer and communications security,
pages 289–298, New York, NY, USA, 2008. ACM.

[11] R. Pottinger and A. Y. Levy. A scalable algorithm for
answering queries using views. In VLDB ’00:
Proceedings of the 26th International Conference on
Very Large Data Bases, pages 484–495, San Francisco,
CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[12] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy.
Extending query rewriting techniques for fine-grained
access control. In SIGMOD ’04: Proceedings of the
2004 ACM SIGMOD international conference on
Management of data, pages 551–562, New York, NY,
USA, 2004. ACM.

[13] A. Rosenthal and E. Sciore. View security as the basis
for data warehouse security. In CAiSE Workshop on
Design and Management of Data Warehouses, pages
5–6, 2000.

[14] A. Rosenthal and E. Sciore. Administering permissions
for distributed data: Factoring and automated
inference. In In Proc. of IFIP WG11.3 Conf, 2001.

[15] D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy.
Answering queries with aggregation using views. In
VLDB ’96: Proceedings of the 22th International
Conference on Very Large Data Bases, pages 318–329,
San Francisco, CA, USA, 1996. Morgan Kaufmann
Publishers Inc.

[16] D. Theodoratos and T. Sellis. Dynamic data
warehouse design. In 1st Int. Conf. on DaWak ’99,
pages 1–10. Springer-Verlag, 1999.

[17] Q. Wang, T. Yu, N. Li, J. Lobo, E. Bertino, K. Irwin,
and J.-W. Byun. On the correctness criteria of
fine-grained access control in relational databases. In
VLDB ’07: Proceedings of the 33rd international
conference on Very large data bases, pages 555–566.
VLDB Endowment, 2007.

[18] J. Yang, K. Karlapalem, and Q. Li. Algorithms for
materialized view design in data warehousing
environment. In M. Jarke, M. J. Carey, K. R. Dittrich,
F. H. Lochovsky, P. Loucopoulos, and M. A. Jeusfeld,
editors, VLDB’97, Proceedings of 23rd International
Conference on Very Large Data Bases, August 25-29,
1997, Athens, Greece, pages 136–145. Morgan
Kaufmann, 1997.

[19] Z. Zhang and A. O. Mendelzon. Authorization views
and conditional query containment. In In Database

Theory - ICDT 2005, 10th International Conference,
pages 259–273, 2005.

