
FLAVOR: a Formal Language for A posteriori Verification of Legal Rules

Romuald Thion
Université Lyon 1, LIRIS

F-69622, France
Email: Romuald.Thion@liris.cnrs.fr

Daniel Le Métayer
INRIA Grenoble – Rhône-Alpes

F-38334, France
Email: Daniel.Le-Metayer@inrialpes.fr

Abstract—Organizations have to comply with a growing
number of rules (legal, regulatory, contractual, etc.) and it
becomes more and more challenging for them to ensure that
they really meet all their obligations. IT systems, even if they
cannot provide the full answer to this complex issue, can
help organizations in the management and monitoring of their
obligations. In this paper, we derive a set of requirements
from representative examples of obligations and propose a
language providing essential features such as “contrary to
duty” obligations, obligations with deadlines and contextual
obligations. We define its semantics, suggest its implementation
as an audit mechanism, and show its application to the
definition of privacy policy rules.

Keywords-obligations; compliance; audit.

I. CONTEXT AND MOTIVATIONS

Organizations have to comply with a growing number of
legal rules stemming from law, regulations, corporate poli-
cies or contractual agreements. These rules have a potential
impact on all their activities and breaches may lead to dif-
ferent types of damages, including financial losses, lawsuits,
competitive disadvantages and disrepute. Organizations also
depend more and more on information technologies to
carry out all their production and management tasks. It is
thus of crucial importance for an organization that its IT
system can act as a facilitator rather than an obstacle in
its endeavour to ensure legal compliance. Indeed, manual
compliance verifications are error prone and tend to exceed
the capacity of most organizations. IT systems, even if they
cannot provide the full answer to this complex issue, can
help organizations in the management and monitoring of
their obligations.

Generally speaking, the actions to be monitored can be
checked either a priori or a posteriori. A priori checks are
stronger in the sense that they make it possible to ensure that
no breach will occur. However, they are too constraining, if
not unenforceable, in many situations. To start with, systems
may involve external agents, such as human users, whose
actions cannot be entirely controlled. Also, the modification
of a legacy system to introduce a priori checks may be dif-
ficult and these checks may result in unacceptable decrease
in performance of the system. Furthermore, even when they
could be implemented, a priori checks are not desirable
in situations in which it could be legitimate to bypass the

rules. For instance, it is necessary to provide emergency
procedures to access personal health records when human
lives are at stake, even if the medical practitioner on duty
does not have sufficient permissions [10]. A posteriori
checks are also advocated for social reasons, to avoid the
potentially oppressive atmosphere generated by systematic
a priori controls [13]. Indeed, as argued by several lawyers,
it is generally preferable to consider citizens as responsible
actors and to rely on a posteriori controls to encourage them
to behave well.

Technically speaking, a posteriori mechanisms make it
possible to deal with obligations (constraints to be satisfied
in the future) which are quite common in legal rules and are
more difficult to implement than access control rules. They
are also less intrusive than a priori mechanisms because
they can be added as independent components working on
the logs of the system to be monitored. Most systems already
record their histories of execution in logs (e.g., web servers,
operating systems, databases management systems), which
makes the deployment of a posteriori mechanisms easier
and less expensive.

The first task to design a “compliance system” is to
define a precise and non ambiguous language for the ex-
pression of the legal rules. In this paper, we derive a set
of requirements from representative examples of obligations
(Section II) and define a language called FLAVOR1 meeting
these requirements (Section III). The essential features pro-
vided by FLAVOR are the possibility to express “contrary
to duty” obligations (substitute obligations to be fulfilled
in case of breach of the primary obligation2), obligations
with deadlines and contextual obligations. We define a
strength ordering between obligations in Section IV and
illustrate the language with an excerpt of privacy policy
in Section V. In Section VI, we discuss related work and
show that the combination of the aforementioned features
has not been fully addressed in the literature so far. Finally,
Section VII concludes the paper and suggests avenues for
further research.

1Formal Language for A posteriori Verification Of legal Rules.
2Contrary-to-duty obligations are common in legal rules, for example in

contracts (penalty clauses) and criminal law [17].

Table I
EXCERPT OF BUSINESS AGREEMENT

1) Within two weeks after receipt of the Software, Customer
shall pay to Supplier the amount of twenty thousand Euros.

2) The payment of any additional service by Customer shall be
due within four weeks after receipt of a valid invoice for the
service.

3) In case of late payment, Customer shall pay, in addition to
the due amount, a penalty of 5% of this amount.

Table II
EXCERPT OF PRIVACY POLICY

1) The Controller must answer any access query from the
Subject within a delay specified by the Subject in the policy
associated with the personal data.

2) The Controller must delete the data within a delay specified
by the Subject in the policy associated with the data.

3) The Controller is allowed to transfer the personal data to
a third party only in the conditions set forth in the policy
associated with the data. The Subject can define one of the
following transfer policies:
• Any transfer is forbidden.
• The Controller must inform the Subject of any transfer.
• The Controller must receive the authorization of the

Subject prior to any transfer.

II. REQUIREMENTS

In order to identify the main features required for our
compliance language, we start with the analysis of some
examples of legal rules expressed in natural language. These
rules, which are listed in Table I and Table II, are represen-
tative of contractual as well as regulatory provisions [2],
[12], [15], [16].

For the sake of generality, we consider that the system
to be monitored is observable through a set of events.
These events are characterized by properties which are used
to define the rules. Traces, which are abstract versions of
execution logs, are finite sequences of events on which the
rules are evaluated.

In the remainder of this section, we analyze the examples
of Table I (excerpt of business agreement) and Table II
(excerpt of privacy policy) to identify the main requirements
for a compliance language.

A. Contrary to duty obligations

A contrary to duty obligation consists of a primary obli-
gation and an alternative obligation which becomes effective
when (and if) the primary obligation is breached. Contrary
to duty obligations are useful to express penalty clauses
in contracts as well as compensations and sanctions for
breaches of legal rules. They differ from the mere choice
between two alternative obligations because the fulfillment
of the alternative obligation before the breach of the primary
obligation does not amount to a fulfillment of the whole
obligation. As an illustration, Clause 1 and Clause 2 in Table
I are primary obligations while Clause 3 is a contrary to

duty obligation that will become effective in case of breach
of Clause 1 or Clause 2.

B. Temporal and deontic modalities

One of the most pervasive characteristics of legal rules
is the interaction between temporal (always, eventually) and
deontic (obligatory, prohibited) modalities. This interaction
clearly appears in constructions such as “shall . . . within
. . . days after . . . ”, “must . . . within . . . ” or “must . . . prior
to . . . ” in Table I and Table II. Indeed, most obligations
or prohibitions come with a deadline which may be de-
fined by a fixed date, by a delay or by an event. There
is a dual relationship between deontic modalities and the
corresponding deadline: an obligation to perform a given
action is of little practical significance without a deadline
whereas a prohibition without any deadline is very strong
since it applies forever.

C. Conditions and contexts

In essence, legal rules are expressed as abstract and
general statements intended to be applied in a variety of
circumstances. To reach this level of abstraction, the wording
of a legal rule generally distinguishes the effect of the rule
(action to be performed or prevented) and its context of
application. The context of application typically involves
conditions on the occurrence of an external event that we call
the “trigger” in the sequel. It may also define the term of the
obligation (termination date). Note that two kinds of triggers
appear in the above tables: some of them are implicitly one-
shot (single occurrence) while others are recurrent (multiple
occurrences). For example, in Table I, the first trigger is the
receipt of the software, which is a one-shot event. In contrast,
the second trigger, the receipt of invoices for additional
services, may occur several times (or never). In Table II, the
first trigger is implicitly the collection of data, which is a
recurrent trigger: the controller does not have any obligation
as long as he has not collected any personal data; he gets new
obligations each time he collects new data. Clause 1 defines
another recurrent trigger corresponding to the access queries
from the subject.

III. THE FLAVOR LANGUAGE

The first challenge in the design of a language meeting
the requirements of the previous section is to devise an
integration of the deontic and temporal modalities required
to express legal rules which avoids the paradoxes and
counter-intuitive meaning often arising in modal logics [18].
The second challenge is to provide a formal semantics with
intuitive understanding suitable for the implementation of an
auditing tool.

We assume a set K of keys and a set C of values. An event
e ∈ E is a function from keys into values E = K → C.
Keys are used to access the values of the different fields of
an event.

The language is interpreted over traces. A trace σ is a
finite sequence of events σ = e0e1e2 . . . en−1 ∈ E?. We
note σ(i) = ei, |σ| = n the length of a trace and · : E? ×
E? → E? the concatenation operator.

A. Syntax

We assume a set V of variables and define, for any set X ,
X⊥ as X ∪ {⊥} where ⊥ is the undefined value. The basic
building block of the language is the set of event properties.
An event property ρ ∈ P is a pair 〈b, γ〉 made of a list of
binders b and a condition γ:
• The list of binders b is a list [(k0 7→ x0), (k1 7→
x1), . . .] with ki ∈ K and xi ∈ V + C where + is
the disjoint set union. Each key and each variable can
appear at most once in a finite list of binders. Intuitively,
(k 7→ v) with v ∈ C defines a constraint on the value
of the field k of the event.

• The condition γ ∈ Γ is a conjunction of constraints
built from a set R of pre-defined predicates. We assume
arithmetic predicates here, but the language can include
any relevant domain specific predicate3. The language
of constraints Γ is defined by the following grammar,
where v ∈ V , c ∈ C, t1, t2 ∈ T and γ1, γ2 ∈ Γ:

T ::= v | c | (t1 + t2) | (t1 × t2)

R ::= ≤ | ≥ | =

Γ ::= γ1 ∧ γ2 | R(t1, t2) | tt | ff

An environment f is a mapping from variables to values:
f ∈ M = V → C⊥. An extension f ′ of an environment f
is such that dom(f) ⊆ dom(f ′) and ∀v ∈ dom(f), f ′(v) =
f(v). If ρ = (b, γ) is a property and f an environment, ρ[f]
(respectively b[f] and γ[f]) is the property ρ (respectively
the binder b and the condition γ) in which each variable v
is replaced by f(v) if f(v) 6= ⊥.

The pattern matching function match takes a property ρ,
an event e and an environment f and returns an extension
f ′ if the property and the event match and ⊥ otherwise:
match : P × E →M →M⊥
match (ρ, e) f = f ′ with
let ρ[f] = 〈b, γ〉 in

if ∃(k 7→ c) ∈ b s.t. c ∈ C and c 6= e(k)
then f ′ = ⊥
else let f ′′(x) = if ∃(k 7→ x) ∈ b s.t. x ∈ V

then e(k) else f(x)
in if γ[f ′′]⇔ ff then f ′ = ⊥ else f ′ = f ′′

As an illustration, let us consider a property ρ = ([k1 7→
a, k2 7→ t], t ≤ a + 10), an event e with e(k1) = 3 and
e(k2) = 8 and an environment f defined by f(a) = 3.
We have ρ[f] = ([k1 7→ 3, k2 7→ t], t ≤ 3 + 10) and

3For instance a binary relation Manager(x, y) for the hierarchy relation
between employees within an organization.

match (ρ, e) f successfully extends f to f ′ with f ′(t) = 8
and f ′(x) = f(x) for x 6= t.

We can now proceed with the definition of the FLAVOR
language itself.

Definition 1. Formal syntax
The syntax of the FLAVOR language is defined by the fol-

lowing grammar, where ψ and ϕ denote sentences (elements
of L), and ρ and δ denote event properties (members of P):

⊕〈ρ, δ〉 | 	〈ρ, δ〉 | 〈ρ, δ〉 ϕ | 〈ρ, δ〉 ̇ϕ | ψmϕ | ψ ∧ ϕ

A key design choice for the language is minimality: we
have chosen to introduce the minimal set of constructors
necessary to meet the requirements identified in Section II.

Contrary to duty obligations (Section II-A): these obli-
gations are captured by the constructor ψmϕ, where the left-
hand-side ψ is the primary obligation and the right-hand-side
ϕ is the subsidiary obligation. For example, the obligation
to pay invoices for additional services in Table I, is defined
as ⊕〈ρp, δp〉m⊕〈ρs,ff〉. Property ρp is the payment of the
invoice and property ρs is the payment of the initial amount
increased by five percent. As explained below, δp and ff
represent the deadlines for the corresponding events.

Temporal and deontic modalities (Section II-B): The
deontic block of the language is made of pairs of events
(ρ, δ) decorated with a modality � ∈ {⊕,	}. Property ρ de-
fines the event expected (⊕) or prohibited () and δ defines
the deadline. Continuing the above example, δp represents
any event with a timestamp greater than “Ti + 28” where
Ti is the timestamp of the invoice event (the unit of time is
supposed to be the calendar day). The intended meaning
of ⊕〈ρp, δp〉 is thus that an event satisfying property ρp
should occur before any event satisfying property δp. In the
expression ⊕〈ρs,ff〉 defining the contrary to duty obligation,
the deadline is ff , which means that no constraint is im-
posed on the occurrence of an event satisfying property ρs.
Depending on the situation, this may a deliberate omission
or an oversight that will be revealed by the expression of
the obligation in FLAVOR.

Conditions and contexts (Section II-C).: Application
contexts are expressed by the constructors 〈ρ, δ〉 ϕ and
〈ρ, δ〉 ̇ϕ, where ρ is the trigerring event and δ is the
event defining the termination of the rule. represents
multiple occurrence triggers and ̇ single occurrence trig-
gers. For instance, in Table I, Clause 1 can be defined as
〈ρd,ff〉 ̇⊕〈ρa, δa〉, where ρd represents the receipt of the
software at timestamp Td, ρa the payment of the amount
of twenty thousand Euros and δa the occurrence of an event
with a timestamp greater than Td+14. Clause 2 is expressed
by the obligation 〈ρi,ff〉 ⊕〈ρp, δp〉, where ρi represents
the receipt of a valid invoice and ρp the corresponding
payment. Again, ff denotes the absence of termination date
for the obligation.

Table III
DEFINITION OF u

(ff , i) u (ff , j) = (ff ,min(i, j))

(ff , i) u (tt, j) = (ff , i)

(ff , i) u ⊥ = (ff , i)

(tt, i) u (ff , j) = (ff , j)

⊥ u (ff , j) = (ff , j)

(tt, i) u (tt, j) = (tt,max(i, j))

otherwise = ⊥

B. Semantics

The formal semantics of FLAVOR is defined by the
function JϕKf which maps any term ϕ ∈ L and environment
f ∈ M into a function in (E? × N) → (B × N)⊥. Its
definition is given by structural induction on the syntax of
obligations. The complete definition is presented in Table IV.
We use an auxiliary function u which combines values of the
semantic domain (Table III). Intuitively, this function acts as
a three-valued conjunction, where breach takes precedence
over satisfaction. Basically, the semantics function walks
through the trace to find a testifier (fulfillment or breach)
of the obligation. For a given trace σ ∈ E? and index
i ∈ N, JϕKf (σ, i) returns (tt, j) (respectively (ff , j)) if the
obligation ϕ is fulfilled (respectively breached) by the suffix
of σ starting at position i and this fulfillment (respectively
breach) is detected at position j in σ. If the obligation ϕ is
neither fulfilled nor breached, then JϕKf returns ⊥.

The conditions in Table IV are evaluated in their order of
appearance. If the end of the trace is reached (|σ| < i), the
evaluation is inconclusive (⊥). For the atomic case ⊕〈ρ, δ〉
(resp. 	〈ρ, δ〉), the rule is breached (respectively satisfied)
as soon as an event matches δ. The rule is satisfied (resp.
breached) as soon as an event matches ρ and does not match
δ. The rule 〈ρ, δ〉 ϕ is satisfied if all its instantiations
are satisfied: when an event matching ρ is found, a new
obligation JϕKf ′ instanciated from the extended environment
f ′ has to be satisfied. The 〈ρ, δ〉 ̇ϕ rule is defined in the
same way but the associated obligation is triggered only once
(the original obligation formula is discarded). A contrary to
duty obligation ψmϕ is satisfied if ψ is satisfied or if ψ
is breached at some point j and ϕ is satisfied after this
point j. This definition formally captures the fact that the
penalty ϕ is an alternative way to satisfy the obligation if
ψ is breached.

We conclude this section with a definition of the breach
and satisfaction of a rule with respect to a trace.

Definition 2. The rule ϕ is said to be:

• satisfied by f, σ if ∃j such that JϕKf (σ, 0) = (tt, j)
• breached by f, σ if ∃j such that JϕKf (σ, 0) = (ff , j)
• pending for f at the end of σ if JϕKf (σ, 0) = ⊥

IV. PROPERTIES

In this section, we show that the semantics of FLAVOR
enjoys natural properties and provide a partial order on rules
which captures their relative strengths.

The stability property states that when a rule is breached
or satisfied at some point j of a trace, the trace can be
extended from this point j without any impact on the result
of the evaluation.

Property 1. Stability
If JϕKf (σ, i) = (b, j) then ∀σ′ ∈ E?, JϕKf (σ/j · σ′, i) =

(b, j) where (σ/j) is the prefix of σ of length j.

Proof: This property follows directly from the definition
of the semantics in Table IV and Table III since the seman-
tics function returns its result as soon as an index j where
the obligation is breached or satisfied is found (irrespective
of the suffix of the trace). The only interesting case is the
first line of Table III which returns the minimum of the
two indexes: the property follows from the examination of
the four following cases which show that the result of the
conjunction is actually independent of the value of the other
term when one term returns ff .

Definition 3. Obliviousness
If JϕKf (σ, i) = ⊥ then j is said to be an oblivious index

of (σ, i) for ϕ in f if i ≤ j ≤ |σ| and
∀σ′ ∈ E?, JϕKf (σ · σ′, i) = JϕKf (σ\j · σ′, 0) where
σ\j is the suffix of σ of length |σ| − j (σ without its first

j elements).

Obliviousness is a significant property in the context of a
posteriori analysis because it provides a justification for the
deletion (or storage in archive files) of a trace up to a given
point after an audit procedure. The definition guarantees that
future audits to check pending obligations can be safely
applied to the suffix of the trace up to the oblivious index.
In practice, an oblivious index derived from the semantics
of Table IV can be returned by the audit analyzer4.

We proceed now with the definition of two extreme
situations, respectively unbreachable and unsatisfiable obli-
gations.

Definition 4. Unbreachability and unsatisfiability
An obligation ϕ is unbreachable (resp. unsatisfiable) in

a given environment f if ∀σ ∈ E?,∀j ∈ N, JϕKf (σ, 0) 6=
(ff , j) (resp. 6= (tt, j)).

Property 2. If ∀e ∈ E,match (δ, e) f = ⊥, then:
• ⊕〈ρ, δ〉 is unbreachable in f .
• 	〈ρ, δ〉 is unsatisfiable in f .
• 〈ρ, δ〉 ϕ is unsatisfiable in f .

The property follows directly from the semantics by
induction on the length of the trace σ. Let us note that

4Space considerations prevent us from describing the computation of
oblivious indexes here.

Table IV
DEFINITION OF THE SEMANTICS FUNCTION JϕKf

JψKf (σ, i) = ⊥ if |σ| < i

J⊕〈ρ, δ〉Kf (σ, i) =


(ff , i) if match (δ, σ(i)) f 6= ⊥
(tt, i) if match (ρ, σ(i)) f 6= ⊥
J⊕〈ρ, δ〉Kf (σ, i+ 1) otherwise

J	〈ρ, δ〉Kf (σ, i) =


(tt, i) if match (δ, σ(i)) f 6= ⊥
(ff , i) if match (ρ, σ(i)) f 6= ⊥
J	〈ρ, δ〉Kf (σ, i+ 1) otherwise

J〈ρ, δ〉 ϕKf (σ, i) =


(tt, i) if match (δ, σ(i)) f 6= ⊥
JϕKf ′ (σ, i+ 1) u J〈ρ, δ〉 ϕKf (σ, i+ 1) if match (ρ, σ(i)) f = f ′

J〈ρ, δ〉 ϕKf (σ, i+ 1) otherwise

J〈ρ, δ〉 ̇ϕKf (σ, i) =


(tt, i) if match (δ, σ(i)) f 6= ⊥
JϕKf ′ (σ, i+ 1) if match (ρ, σ(i)) f = f ′

J〈ρ, δ〉 ̇ϕKf (σ, i+ 1) otherwise

JψmϕKf (σ, i) =


(tt, j) if JψKf (σ, i) = (tt, j)

JϕKf (σ, j) if JψKf (σ, i) = (ff , j)

⊥ otherwise

Jψ ∧ ϕKf (σ, i) = JψKf (σ, i) u JϕKf (σ, i)

unbreachable or unsatisfiable obligations are not necessarily
pathological: in some situations, it may be meaningful to
define prohibitions which must hold forever or obligations to
perform certain actions within unspecified deadlines. In any
case, it is interesting to be able to detect the occurrence of
such obligations to check that they reflect the real intention
of the actors.

In order to analyze obligations, it is also useful to be
able to reason about their relative strengths. Intuitively, a
rule ϕ1 is stronger than a rule ϕ2, written ϕ1 < ϕ2, if ϕ1

is breached by more traces and satisfied by less traces than
ϕ2. The following definition introduces an ordering between
obligations based on the possible results of the semantics
function.

Definition 5. Obligation ordering
ϕ1 < ϕ2 (ϕ1 is stronger than ϕ2) if and only if

∀f ∈M,∀σ ∈ E?,∀i ∈ N,
Jϕ1Kf (σ, i) ≥ Jϕ2Kf (σ, i)
with ∀i, j ∈ N, (ff , i) ≥ ⊥ ≥ (tt, j)

We can now establish some properties reflecting the
intuition of Section II on the relative strengths of obligations:

Property 3. Strength properties
For all ϕ,ψ ∈ L, for all ρ, δ ∈ P :

• ϕ ∧ ψ < ϕ
• ϕ ∧ ψ < ψ
• ϕ < (ϕmψ)
• 〈ρ, δ〉 ϕ < 〈ρ, δ〉 ̇ϕ

Property 4. Monotonicity
For all ψ,ϕ, ϕ1, ϕ2 ∈ L,
ϕ1 < ϕ2 ⇒ ψ[ϕ1/ϕ] < ψ[ϕ2/ϕ]
where ψ[ϕi/ϕ] denotes the obligation ψ in which the

occurrences of ϕ are replaced by ϕi.

The proofs of these properties follow directly from the
definition of the semantics function.

V. EXAMPLES

In this section, we come back to the examples of Section II
and show that FLAVOR, despite its minimal syntax, is
expressive enough to represent typical examples of legal
obligations. We also show that the formal semantics of the
language makes it possible to avoid ambiguities or oversights
in the original texts.

To describe the content of events in the trace, we use a
set of basic keys K = {type, time, sender, dest}. For the
sake of readability, an event of type E sent from S to D
at time T is written ET

S→D as a shorthand for [type 7→
E, time 7→ T, sender 7→ S, dest 7→ D]. Irrelevant
values are either written with the generic placeholder “x” or
omitted. To ensure a natural interpretation of traces as logs,
we assume that the timestamps of the events in the traces
are increasing: i ≤ j ≤ |σ|⇒σ(i)(time) ≤ σ(j)(time)

A. Business agreement

Table V presents the FLAVOR expression corresponding
to the excerpt of business agreement introduced in Table I.
We use the additional key {amount} as a parameter A

Table V
EXCERPT OF BUSINESS AGREEMENT OF TABLE I IN FLAVOR

〈softTd
S→C ,ff〉 ̇

[⊕〈pay(20, 000)C→S , x
Ta ∧ (Ta ≥ Td + 14)〉m

⊕〈pay(21, 000)C→S ,ff〉]
∧

〈inv(A)Ti
S→C ,ff〉

[⊕〈pay(A)C→S , x
Tp ∧ (Tp ≥ Ti + 28)〉m

⊕〈pay(A′)C→S ∧A′ = 1.05×A,ff〉]

in the expression E(A)TS→D to refer to invoice and pay-
ment amounts. In this example, the set of event types is
{soft(ware), inv(oice), pay(ment)}. Clause 1 of Table I is
a simple one-shot obligation, which is expressed in FLAVOR
using the (̇) constructor. The relation between the payment
(type pay) and the receipt of the software (type soft) is
established through the sharing of the variables S (the
supplier), C (the customer) and Td (the date when the
software is received). The deadline is missed by any event
with a timestamp Ta greater than or equal to Td + 14 days.

The fact that FLAVOR is endowed with a formal semantics
enables a formal analysis of the definition of Table V which
reveals that the agreement contains at least an implicit
reference and an ambiguity. In Table V, it is assumed
that Clause 2 is independent from Clause 1. This may be
discussed, as Clause 2 probably refers to additional services
related to the software of Clause 1. It is possible to express
this alternative interpretation by using the conjunction in
the right-hand side of ̇ rather than at the highest level.
Property 3 shows that an expression with a contrary to
duty obligation is more permissive than without. In the
present case, the lack of contrary to duty obligation is clearly
too permissive: since there is no deadline associated with
the penalty, from Property 2, we know that it cannot be
breached. A solution is to add an explicit deadline for the
penalty, for instance, half the delay of the original payment.

This example illustrates the benefits of including contexts
in a specification language for legal rules. For each invoice,
whatever the associated price is, a new obligation to pay is
triggered for this specific price, which cannot be captured
by a propositional language (or only at the price of a
heavy encoding). Note that contexts allow us to express
more complex penalty systems in FLAVOR. For example,
the wording “interest shall be charged at an annual rate of
10% applicable beyond the due date” can be expressed as:

pay(A′)
Tp

C→S ∧A
′ = A× (1 +

Tp − (Ti + 14)

365
× 10%)

B. Privacy policy

Table VI presents the definition of the privacy pol-
icy of Table II in FLAVOR. Basic set of keys K =
{type, time, sender, dest} is extended with keys for
collected data (about), deadline (delay), retention pe-
riod (expiration), transfer policy (policy) and third
party requesting for data transfer (party). With the con-
vention defined at the beginning of section V, pattern
pii(D, δd, δe, inform)Ti

S→C is read “any pii event from S to
C at time Ti, about data D, delay δd, retention period δe and
inform transfer policy”. Parameter X in ask events stands
for the party involved in transfer. Clause 1 (“answer queries
within δd”) of Table II is formalized into FLAVOR by rule
ϕ1. Clause 2 (“delete data within δe”) is formalized by rule
ϕ2. Third clause is divided into three cases: “transfer to third
party is forbidden” (value none), “controller must inform”
(value inform) and “controller cannot transfer without prior
authorization” (value auth). Each case is formalized by the
corresponding rules ϕn, ϕi and ϕa.

The need to record the preferences expressed by the
subject is a distinguishing feature of privacy policies: in
the sticky policy paradigm, personal data (variable D in
the example) and privacy preferences (variables δd and δe,
and policy’s value) are glued together (by pii events). The
system must record and update its set of pending obligations
whenever a piece of personal information is collected. These
obligations are used when new events related to the subject
have to be dealt with (e.g., request for transfer to third party).
This kind of example is another illustration of the benefit of
including contexts within the language.

The excerpt of privacy policy of Table II does not involve
contrary to duty obligations. Actually, this feature can be
used to overcome the limitations of existing privacy policy
languages which cannot express the fact that certain actions
may need to be taken in case of breach. As an illustration,
the new European ePrivacy Directive includes a data breach
notification obligation for telecom providers. Another exam-
ple is the definition of privacy policies for electronic health
record systems, where contrary to duty obligations can be
used to express the fact that any unauthorized access (e.g. in
case of emergency when the subject’s live is at risk) must be
followed by the registration of a record with a justification
for the breach.

VI. RELATED WORK

Several extensions of Standard Deontic Logic (SDL) have
been proposed to capture conditional activation, termination
and temporal features [6]. Contrary to duty obligations
have received considerable interest via defeasible and non-
monotonic reasoning [12] or enriched interpretation struc-
tures [11], [17]. A major limitation of these approaches
is that they inherently suffer from the paradoxes of the
standard deontic framework. Moreover, propositional modal
logics are not flexible enough to accommodate contexts and

Table VI
PRIVACY POLICY OF TABLE II IN FLAVOR

ϕ
def
= ϕ0 ∧ ϕn ∧ ϕi ∧ ϕa

ϕ0
def
= 〈pii(D, δd, δe)Ti

S→C ,ff〉 (ϕ1 ∧ ϕ2)

ϕ1
def
= 〈access(D)

Tq

S→C , delete(D)C→C〉 ⊕〈ans(D)C→S , x
Td ∧ (Td ≥ Tq + δd)〉

ϕ2
def
= ⊕〈delete(D)C→C , x

Tr ∧ (Tr ≥ Ti + δe)〉

ϕn
def
= 〈pii(D, δd, δe,none)Ti

S→C ,ff〉 	〈transfer(D)Tt
C→X , delete(D)C→C〉

ϕi
def
= 〈pii(D, δd, δe, inform)

Ti
S→C ,ff〉 〈transfer(D)Tt

C→X , delete(D)C→C〉 ⊕〈notice(D)C→S , x
T ∧ (T ≥ Tt + δd)〉

ϕa
def
= 〈pii(D, δd, δe, auth)Ti

S→C ,ff〉 〈collect(D)X→C , delete(D)C→C〉
⊕〈ask(D,X)C→S , transfer(D)Tt

C→X〉 ∧ 	〈transfer(D)Tt
C→X , auth(D,X)S→C)〉

instantiations of rules. This problem has received attention
with real-time temporal logics [1]. The use of variables
in FLAVOR is close to freeze-quantification, which extends
temporal logic with explicit references to timestamps of
events. However temporal logics do not cope with the
deontic modalities which are required to express legal rules.

A lot of work has been made by the business process
community on regulatory compliance in organizations. The
objective is to improve reliability and to minimize the risks
of process failures. Although the focus is generally put on a
priori verification techniques [3], [15], techniques for a pos-
teriori regulatory compliance on traces have been proposed.
For example, [9] defines a logic with deontic modalities
involving conditional obligations and permissions. Emphasis
is put on the ability to represent exceptions via references
among norms.

A very expressive language called CL is proposed in [18].
CL, which is based on the Propositional Dynamic Logic
(PDL) and deontic logic, makes it possible to define rules on
concurrent actions. Our approach clearly shares some of the
motivations and technical choices of this work such as the
restricted use of modalities. However, FLAVOR involves a
very different treatment of conditions and provides facilities
to define deadlines systematically. Technically, CL is a
propositional language and it is not clear how to extend it
to context dependent rules. Moreover, FLAVOR provides a
more flexible use of contrary to duty obligations: it is not
limited to atomic deontic formulae and can be applied to
non atomic rules.

The need for parametric obligations in privacy policies
and “on violation” statements has been identified in [7]
which proposes a scalable obligation management frame-
work able to deal with potentially large sets of personal data.
This project is complementary to the work presented here
which focuses on the formal definition of a general purpose
obligation language, as opposed to a dedicated privacy policy
language, and does not address scalability issues.

Strong arguments are put forward in [5] in favor of
abstraction in the definition of privacy languages. FLAVOR
shares this philosophy to some extent and does not define a
specific set of actions since the semantics of events remains
unspecified. In contrast with [5] however, FLAVOR involves
two concepts that were felt as essential in a general obli-
gation language : trigger and contrary to duty obligations.
Actually, the focus in [5] is put on the verification that the
privacy preferences defined by a subject are met by the
potential data collector whereas our objective is rather to
provide a formal framework for a posteriori verification of
obligations, for example in the context of an audit procedure.

The interest of a posteriori compliance control has been
strongly advocated in [8] and [10]. The audit logic proposed
in [8] forms the basis for a formal audit procedure for
a posteriori access control. In this framework, users may
be asked to prove that their actions have been executed
in compliance with discretionary access control policies.
In contrast with FLAVOR (and similarly to [5]), the policy
language makes it possible to express delegations through
a “says” modality. The notion of obligation in [8] is not as
general as obligations in FLAVOR however (action to be done
in the future, with potential deadlines) and the language,
which is dedicated to the management of data usage policies,
does not involve contrary to duty obligations. The APPLE
(A Posteriori PoLicy Enforcement) framework [10] is based
on the notion of sticky policies associated with electronic
documents and combines a logic for accountability with a
trust management system. Another model for the formal
definition of accountability and audit is proposed in [14]
based on communicating process calculus and discrete timed
process algebra. The main contribution of this work is the
formalization of the audit process itself, with its potential
limitations, and the study of its properties.

VII. CONCLUSION

The main challenge of the work described in this paper
was to propose a language which is (i) expressive enough

to represent typical policies that organizations have to abide
with, (ii) well-defined to avoid ambiguities and (iii) easy to
implement, in particular through a posteriori checks.

The formal semantics introduced in Section III has been
implemented in Haskell, a functional language based on
lazy evaluation which allows us to translate the definition of
Table IV in a rather direct and concise way (approximately
400 lines of code), thus minimizing the risks of discrepancy
between the formal semantics and the implementation of
the auditing tool. FLAVOR is embedded into Haskell as a
Domain Specific Language (DSL): the set L is represented
as a datatype and sentences are inhabitants of that type
defined as Haskell expressions. The translation of the seman-
tics definitions leads to an executable auditing tool for the
language: given a trace and a FLAVOR sentence, the auditing
tool returns the verdict “satisfied”, “breached” or “pending”.
In the last case, it can also return an oblivious index as
defined in Section IV to allow for incremental auditing. This
implementation strategy greatly enhances the usability of the
auditing tool as it can be easily instrumented and integrated
with other software components.

For the sake of conciseness, we have introduced the key
features of FLAVOR through simple examples in this paper.
An extended version of the language presented here makes it
possible to refer to previous violations in a chain of contrary
to duty obligations. This need may arise for example when
a more restrictive sanction is defined in case of a breach of
a first sanction. Another extension concerns the introduction
of a sequence operator l between obligations which allows
us to express the fact that an obligation ψ has to be triggered
after a first obligation ϕ is satisfied (rather than breached in
the case m).

It is well known that the definition of temporal logic
properties over finite traces involves some subtleties. The
challenge stems from the inconclusive case that does not
exist with infinite traces. Domains richer than {tt,ff} have
been proposed to deal with this issue in LTL [4]. These
extensions would make it possible to refine the inconclusive
case ⊥ of our semantics into two cases:
• not breached, when nothing bad has happened yet,
• not satisfied, when nothing good has happened yet.

ACKNOWLEDGMENT

This work has been funded by ANR (Agence Nationale de
la Recherche) under the grant ANR-07-SESU-005 (project
FLUOR).

REFERENCES

[1] Alur, R., Henzinger, T.A.: Logics and models of real time:
A survey. In: de Bakker, J.W., Huizing, C., de Roever, W.P.,
Rozenberg, G. (eds.) REX Workshop. LNCS, vol. 600, pp.
74–106. Springer (1991)

[2] Barth, A., Datta, A., Mitchell, J.C., Nissenbaum, H.: Privacy
and contextual integrity: Framework and applications. In:
Proceedings of the 2006 IEEE S&P. pp. 184–198 (2006)

[3] Barth, A., Mitchell, J., Datta, A., Sundaram, S.: Privacy
and utility in business processes. In: Computer Security
Foundations Symposium 07. pp. 279–294. IEEE Computer
Society, Washington, DC, USA (2007)

[4] Bauer, A., Leucker, M., Schallhart, C.: The good, the bad,
and the ugly, but how ugly is ugly? In: Runtime Verification
07. pp. 126–138. Springer-Verlag, Berlin, Heidelberg (2007)

[5] Becker, M., Malkis, A., Bussard, L.: A practical generic
privacy language. In: Jha, S., Mathuria, A. (eds.) Information
Systems Security. LNCS, vol. 6503, pp. 125–139. Springer
Berlin / Heidelberg (2011)

[6] Broersen, J., Dignum, F., Dignum, V., Meyer, J.J.C.: Design-
ing a deontic logic of deadlines. In: Lomuscio, A., Nute, D.
(eds.) DEON. Lecture Notes in Computer Science, vol. 3065,
pp. 43–56. Springer (2004)

[7] Casassa Mont, M., Beato, F.: On parametric obligation poli-
cies: Enabling privacy-aware information lifecycle manage-
ment in enterprises. In: Proceedings of the 8th IEEE POLICY.
pp. 51–55 (2007)

[8] Cederquist, J.G., Corin, R., Dekker, M.A.C., Etalle, S., den
Hartog, J.I., Lenzini, G.: Audit-based compliance control. Int.
J. Inf. Secur. 6(2), 133–151 (2007)

[9] Dinesh, N., Joshi, A.K., Lee, I., Sokolsky, O.: Checking traces
for regulatory conformance. In: Leucker, M. (ed.) Runtime
Verification 08. LNCS, vol. 5289, pp. 86–103. Springer
(2008)

[10] Etalle, S., Winsborough, W.: A posteriori compliance control.
In: SACMAT’07 (2007)

[11] Gabbay, D.M.: Reactive kripke models and contrary to duty
obligations. In: van der Meyden, R., van der Torre, L. (eds.)
DEON. LNCS, vol. 5076, pp. 155–173. Springer (2008)

[12] Governatori, G., Milosevic, Z.: Dealing with contract viola-
tions: formalism and domain specific language. In: EDOC.
pp. 46–57. IEEE Computer Society (2005)

[13] Jacobs, B.: Keeping our surveillance society non-totalitarian.
Amsterdam Law Forum 1(4) (2009), http://ojs.ubvu.vu.nl/alf/
article/view/91/156

[14] Jagadeesan, R., Jeffrey, A., Pitcher, C., Riely, J.: Towards a
theory of accountability and audit. In: Backes, M., Ning, P.
(eds.) ESORICS. LNCS, vol. 5789, pp. 152–167. Springer
(2009)

[15] Liu, Y., Müller, S., Xu, K.: A static compliance-checking
framework for business process models. IBM Systems Journal
46(2), 335–362 (2007)

[16] Pace, G.J., Schneider, G.: Challenges in the specification of
full contracts. In: Leuschel, M., Wehrheim, H. (eds.) IFM.
LNCS, vol. 5423, pp. 292–306. Springer (2009)

[17] Prakken, H., Sergot, M.J.: Contrary-to-duty obligations. Stu-
dia Logica 57(1), 91–115 (1996)

[18] Prisacariu, C., Schneider, G.: CL: An action-based logic
for reasoning about contracts. In: Ono, H., Kanazawa, M.,
de Queiroz, R.J.G.B. (eds.) WoLLIC. Lecture Notes in Com-
puter Science, vol. 5514, pp. 335–349. Springer (2009)

