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Abstract 

 
This paper proposes a novel biological vision-based fa-

cial description, namely Perceived Facial Images (PFIs), 
aiming to highlight intra-class and inter-class variations of 
both facial range and texture images for textured 3D face 
recognition. These generated PFIs simulate the response of 
complex neurons to gradient information within a certain 
neighborhood and possess the properties of being highly 
distinctive and robust to affine illumination and geometric 
transformation. Based on such an intermediate facial re-
presentation, SIFT-based matching is further carried out to 
calculate similarity scores between a given probe face and 
the gallery ones. Because the facial description generates a 
PFI for each quantized gradient orientation of range and 
texture faces, we then propose a score level fusion strategy 
which optimizes the weights using a genetic algorithm in a 
learning step. Evaluated on the entire FRGC v2.0 database, 
the rank-one recognition rate using only 3D or 2D modality 
is 95.5% and 95.9%, respectively; while fusing both mod-
alities, i.e. range and texture-based PFIs, the final accu-
racy is 98.0%, demonstrating the effectiveness of the pro-
posed biological vision-based facial description and the 
optimized weighted sum fusion. 
 

1. Introduction 
Face is one of the best biometrics for person identifica-

tion and verification related applications, since it is socially 
well accepted, non-intrusive and contactless. Unfortunately, 
all human faces are similar and thereby offer low distinc-
tiveness as compared with other biometrics, e.g., fingerprint 
and iris [1]. Moreover, when utilizing facial texture images, 
intra-class variations, due to factors as diverse as illumina-
tion and pose changes are often greater than inter-class ones, 
making 2D face recognition far from reliable in real condi-
tions [2]. 

In recent years, 3D face recognition methods have been 

extensively investigated by the research community to deal 
the unsolved issues in 2D face recognition, i.e., illumination 
and pose changes [3] [4]. However, even if 3D face data are 
theoretically insensitive to illumination variations, they still 
need to be registered before matching step. Furthermore, the 
challenge of facial expression changes is even more difficult 
than in 2D modality, as 3D face models provide exact shape 
information of facial surfaces. 

Since most of the current 3D imaging systems deliver 3D 
face models along with their aligned texture counterpart, a 
major trend in the literature of face recognition is to adopt 
both the 3D shape and 2D texture based modalities, arguing 
that the joint use of these two clues can generally achieves 
more accurate and robust accuracy than using only either of 
the single modality [5]-[13]. 

Most techniques in the literature for face recognition do 
not operate directly on original input facial images because 
faces are all similar and undergo the changes of illumination 
and pose. Instead, they try to look for an intermediate facial 
representation, for instance, eigenface [14], fisher face [15], 
LBP face [16] etc., aiming to highlight intra-class similarity 
and inter-class dissimilarity. 

In this paper, we propose a novel biological vision-based 
facial description, namely Perceived Facial Images (PFIs), 
applied to both facial range and texture images for textured 
3D face recognition. These PFIs simulate the response of 
complex neurons to gradient information in a neighborhood 
and own properties of being highly distinctive and robust to 
affine lighting and geometric transformations. Based on this 
intermediate facial representation, SIFT-based local feature 
matching is then used to calculate similarity scores between 
probe and gallery faces. Because the facial representation 
generates a PFI for each of quantized orientations of facial 
range and texture images, we further propose a score level 
fusion scheme that optimizes weights by a genetic algorithm 
in a learning step. Evaluated on the complete FRGC v2.0 
dataset, the rank-one recognition rate using only 3D or 2D 
modality is 95.5% and 95.9% respectively; while combin-
ing these two modalities, i.e. range- and texture-based PFIs, 
the final accuracy is 98.0%, demonstrating the effectiveness 
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of the proposed biological vision-inspired facial description 
and the optimized weighted sum fusion. 

The remainder of this paper is organized as: Section 2 
introduces the biological vision-based facial representation 
that is applied on both facial range and texture images. The 
following SIFT-based local feature matching step is shown 
in section 3. Section 4 presents a weighted sum rule based 
score fusion method optimized by a genetic algorithm from 
a learning database. Section 5 analyzes and discusses these 
experimental accuracies achieved on the FRGC 2.0 dataset. 
Section 6 concludes the paper. 

2. Biological Vision-based Facial Description 
In order to improve the distinctiveness of the human faces 

and offering certain tolerance to lighting and pose changes, 
in this section, we introduce a novel biological vision-based 
facial description which can be applied to both facial range 
and texture images. 

The proposed facial description is inspired by the study 
of Edelman et al. [17], who proposed a representation of 
complex neurons in primary visual cortex. These complex 
neurons respond to a gradient at a particular orientation and 
spatial frequency, but the location of gradient is allowed to 
shift over a small receptive field rather than being precisely 
localized. Our facial representation implements this idea. 

2.1. Description of the complex neuron response 
The proposed description aims at simulating the response 

of complex neurons, based on a convolution of gradients in 
specific orientations in a pre-defined circular neighborhood. 
The radius value can be varied experimentally for different 
applications. 

Specifically, given an input image I, a certain number of 
gradient maps L1, L2,…, Lo, one for each quantized direction 
o, are first computed. They are defined as: 

                                    
o

IL
o

                               (1) 

The ‘+’ means that only positive values are kept to preserve 
the polarity of the intensity changes. 

Each gradient map describes gradient norms of the input 
original image in an orientation o at every pixel. We then 
simulate the response of complex neurons by convolving its 
gradient maps with a Gaussian kernel G, and the standard 
deviation of G is proportional to the value of radius of the 
given neighborhood area, R, as in (2). 

  *R
o R oG L                                (2) 

The purpose of the convolution with Gaussian kernels is 
to allow the gradients to shift within a neighborhood without 
abrupt changes. 

At a given pixel location (x, y), we collect all the values of 
the convolved gradient maps at that location and form the 
vector R(x, y), and it thus has a response value of complex 
neurons for each orientation o. 

             1( , ) ( , ), , ( , )
tR R R

Ox y x y x y(R
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This vector, R(x, y), is further normalized to unit norm 
vector, which is called response vector and denoted by R in 
the following parts of this paper. 

2.2. Facial description by response vectors 
Now facial range and texture images can be represented 

by their perceived values of complex neurons according to 
their response vectors. Specifically, given a facial range or 
texture image I, we generate a new Perceived Facial Image 
(PFI) Jo using complex neurons for each orientation o de-
fined as: 

                      ( , ) ( , )R
o o

J x y x y                          (4) 

Fig. 1 shows such a process. In our work, we generate 8 
PFIs for 8 quantized directions respectively. Instead of the 
original facial range and texture images, the PFIs are further 
fed to SIFT-based local feature matching for face recogni-
tion. 

 
 
Figure 1: An illustration of the perceived facial images for each of 
the quantized orientations o. 

2.3. The properties of distinctness and invariance 
The generated PFIs potentially offer high distinctiveness 

because they highlight the details of local shape and texture 
variations. Meanwhile, they also have the property of being 
robust to affine lighting and geometric transformations. 

As applied to 2D facial texture images, the PFIs offer the 
property of being robust to affine lighting transformations. 
Indeed, a PFI, Jo, is simply the normalized convolved facial 
gradient map at orientation o according to (4), while affine 



3 

lighting variations usually add a constant intensity value on 
images, so it does not affect the computation of gradients. 
On the other hand, a change of image contrast in which the 
intensities of all the pixels are multiplied by a constant will 
result in the multiplication of gradient calculation; however, 
this contrast change will be cancelled by the normalization 
of the response vector. 

Similarly, the PFIs of facial range images which contain 
3D shape information are also invariant to affine geometric 
transformation leading to certain tolerance to pose changes. 

The proposed PFIs can be made even rotation invariant if 
we choose to quantize directions starting from the principal 
direction of all gradients in the neighborhood. Nevertheless, 
we do not perform such a rotation normalization step to save 
computational cost, since 3D face models are generally in 
an upright frontal position in user cooperative applications. 

3. SIFT based Local Feature Matching 
Once PFIs of all quantized orientations are achieved from 

both range and texture face images, a local feature matching 
step is carried out on these widely-used SIFT based features 
[18] extracted from PFIs for similarity score calculation. It 
is well known that local feature based matching scheme is 
generally more robust to occlusion and pose changes. 

 
Figure 2: Extrema (maxima or minima) of difference-of-Gaussian 
images are detected by comparing a pixel (marked with X) to its 
26 neighbors in 3 3 regions at the current and adjacent scales 
[18]. 
 

SIFT uses scale-space Difference-of-Gaussian (DOG) to 
detect keypoints in 2D images. The raw image is repeatedly 
convolved with Gaussians of different scales separated by a 
constant factor k to produce an octave in scale space. As for 
an input image, I(x, y), its scale space is defined as a func-
tion, L(x, y, σ), produced by convolution of a variable scale 
Gaussian G(x, y, σ) with I, and the DOG function D(x, y, σ) 
thus can be computed from the difference of two nearby 
scales: 

( , , ) ( ( , , ) ( , , ))* ( , )
( , , ) ( , , )

D x y G x y k G x y I x y
L x y k L x y

    

 (5) 

The extrema of D(x, y, σ) can be detected by comparing 

each pixel value with those of its 26 neighbors within a 3×3 
area at current and adjacent scales, and an illustration can be 
found in Figure 2. At each scale, gradient magnitude, m(x, 
y), and orientation, θ(x, y), is computed by using pixel dif-
ferences in (6) and (7). 
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For each detected keypoints, a feature vector is extracted 
as a descriptor from the gradients of sampling points within 
its neighborhood. See Figure 3 for more details. To achieve 
the orientation invariance, coordinates and gradient orien-
tations of sampling points in the neighborhood are rotated 
relative to the keypoint orientation. Then a Gaussian func-
tion is used to assign a weight to the gradient magnitude of 
each point. The points close to the keypoint are given more 
emphasis than the ones far from it (see [18] for more details 
of SIFT parameters). Orientation histograms of 4×4 sam-
pling areas are computed, each with 8 bins. Therefore a final 
feature vector with a dimension of 128 (4 4 8) is pro-
duced. 

 
 

Figure 3: Computation of the keypoint descriptor [18]. 
 

SIFT operates on each PFI separately. As PFIs highlight 
local texture and shape changes of generally smooth facial 
images, many more keypoints can be detected than the ones 
if we directly apply SIFT on the original facial range and 
texture images. On the FRGC v2.0 database, it shows that 
the average number of keypoint detected on original facial 
range and texture images are only 41 and 67 respectively; 
while using PFIs for keypoint detection, the average num-
bers rise up to 116 and 304. Figure 4 shows an example of 
SIFT-based keypoint detection. 

Given local features extracted from each corresponding 
PFI pair in the gallery and probe set respectively, two sets of 
facial keypoint sets can be matched. Matching one point to 
another is accepted only if the matching distance between 
them is less than a pre-defined threshold t times the distance 
to the second closest match. In this work, t is empirically set 
to 0.6 as used in [18]. Here, NR(R, o) and NT(R, o) denote the 
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number of matched keypoints of perceived range and tex-
ture image pair generated by the former biological vision 
inspired representation from corresponding facial range and 
texture images at orientation o within the neighborhood area 
radius R,  respectively. 
 

 
 
Figure 4: SIFT-based keypoint detection. The upper row lists an 
original range face and its perceived facial range images for the 
first four orientations; while the bottom one displays an original 
texture face and its first four perceived facial texture images. 
 

The similarity measure, NR(R, o) or NT(R, o), is with a posi-
tive polarity (a bigger value means a better matching). 

4. Optimized Weighted Score Sum Fusion 
Given a textured 3D face model as a probe, the previous 

SIFT-based matching produces a similarity measure in each 
orientation of both facial texture and range images in the 
gallery. These similarity scores need to be further fused to 
deliver a final similarity score. In this paper, we develop a 
fusion scheme by using a weighted sum rule, as score level 
fusion has been extensively used in the literature of 2D/3D 
face recognition and has proved its efficiency in a number of 
non-trivial pattern recognition problems [19]. 

Formally, a weighted sum rule is defined as: 

                        
1

*
N

i i
i

S w S                                  (8) 

where Si is a similarity score; wi is its corresponding weight; 
N is the number of modalities used for generating similarity 
scores. A bigger weight value indicates a higher importance; 
and a smaller one indicates a lower importance.  

Our weighting scheme is learning-based, using a genetic 
algorithm [20] seeking an optimal set of weights through 
applications of selection, mutation, and recombination of a 
population. 

Figure 5 shows the process of learning optimal weighting. 
First, a population is created by randomly generating indi-
vidual ‘chromosomes’. The chromosome length is the same 
with the number of variables (weights) corresponding to the 
number of similarity matrices. Given N similarity measure 
matrices generated by the SIFT-based matching on different 
PFIs, each of chromosomes thus possesses N gene positions 

representing N different weights. At each iteration, a nor-
malization process is first carried out to keep the sum of all 
the weights as one. 

The chromosomes are used to encode trial solutions in a 
genetic algorithm. Iterative selection, crossover, and muta-
tion are then exploited to make evolution of the population. 
At each generation, a new set of chromosomes is generated 
based on the fittest genes of previous generation to achieve 
a better solution. This fitness is calculated according to the 
produced similarity measure matrix in terms of recognition 
accuracy. Stochastic Universal Sampling [21] is applied to 
select chromosomes and to generate offspring. The opera-
tion of crossover leads to generate better offspring by ex-
changing characteristics of their parents. It enables the most 
efficient characteristics to be concentrated in an individual. 
The mutation randomly varies the genetic representation of 
an individual by adding a random value and tends to inhibit 
the possibility of converging to a local optimum, rather than 
the global one. The evolution is carried out until a desired 
solution is achieved, or a pre-specified number of iterations 
are ended. The final solution with a higher fitness represents 
the best vector of weights. 
 
 

 
Figure 5: The process of the proposed learning strategy for op-
timized weighting 

5. Experimental Results 
The experiments were evaluated on FRGC v2.0 [22], one 

of the most comprehensive and popular databases. It con-
tains 4007 textured 3D face models of 466 different subjects. 
One facial range image and its 2D texture counterpart were 
extracted from each of 3D face models. For 3D face data, a 
preprocessing step was introduced to remove spikes with a 
median filter and fill holes by using cubic interpolation. For 
2D facial texture images, histogram equalization was used 
to reduce influence caused by non-affine lighting variations. 
Due to the properties of the PFIs and the use of local fea-
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ture-based matching, we did not perform any registration on 
3D face models. It is different from the work in [23] which 
also used both facial range and texture data. The faces were 
cropped by using a basic bounding box based on the mask 
provided by a 3D scanner indicating if the point is valid or 
not in that position. Cropped faces thus have pose, lighting 
and expression changes as well as occlusions caused by hair. 
The FRGC v1.0 database consisting of 943 neutral expres-
sion face models was adopted by our adaptive fusion ap-
proach for training optimized weights which were then used 
for test stage. 

In the experiments, we adopted the same protocol of the 
state of the art for the purpose of comparison. The first 3D 
face model with a neutral expression of each subject makes 
up a gallery set of 466 subjects. The remaining face models 
(4007-466=3541) were treated as probes, as in [23]-[25]. 

We designed three experiments: the first is to discuss the 
impact of the neighborhood area radius R on the final per-
formance; the second is to test the proposed method on face 
recognition and verification compared with the state of the 
art; the last one is to evaluate the robustness of the proposed 
approach to facial expression variations. 

5.1. Radius analysis of neighborhood area 
Recall that complex neurons respond to gradient infor-

mation within a neighborhood which is defined as a circular 
region in our implementation. In our experiments, we tested 
different values of radius R and study its impact on final 
performance of both facial texture and range images. Table 
1 summarizes the results with different radii applied to PFIs 
in eight orientations: (a) on texture faces; (b) on range faces. 
Fusion I lists the results with the weighted sum rule as in 
[24]; while Fusion II gives performance using the proposed 
optimized weighted sum fusion strategy. 

As we can see in Table 1, the neighborhood area with a 
smaller radius achieves a better result for range face images; 
while for texture faces, the best result is obtained when R = 
1.5. Compared with the approach in Fusion I, the optimized 
fusion (Fusion II) method always performs slightly better. 
 
Table 1: Results when using different neighborhood area radius R 
on: (a) texture faces; (b) range faces. 
 

 (a) 
Texture R=1.0 R=1.5 R=2.0 R=2.5 R=3.0 R=3.5 

PFI1 0.7800 0.8142  0.8260  0.8323  0.8356  0.8320  
PFI2 0.8308  0.8469  0.8619  0.8531  0.8461  0.8351  
PFI3 0.8517  0.8718  0.8749  0.8797  0.8763  0.8709  
PFI4 0.8622  0.8749  0.8862  0.8777  0.8749  0.8633  
PFI5 0.8006  0.8190  0.8365  0.8243  0.8215  0.8066  
PFI6 0.8074  0.8297  0.8489  0.8602  0.8577  0.8503  
PFI7 0.8444  0.8602  0.8526  0.8563  0.8467  0.8201  
PFI8 0.8419  0.8563  0.8639  0.8746  0.8664  0.8599  

Fusion I 0.9531 0.9574 0.9551 0.9551 0.9554 0.9438 
Fusion II 0.9545 0.9585 0.9554 0.9571 0.9576 0.9478 

 
 (b) 

Range R=1.0 R=1.5 R=2.0 R=2.5 R=3.0 R=3.5 
PFI1 0.7995  0.8054  0.8068  0.7896  0.7676  0.7410  
PFI2 0.8433  0.8359  0.8291  0.8130  0.7868  0.7667  
PFI3 0.8904  0.8884  0.8797  0.8701  0.8537  0.8416  
PFI4 0.8509  0.8543  0.8371  0.8210  0.7970  0.7817  
PFI5 0.8291  0.8339  0.8258  0.8105  0.7862  0.7628  
PFI6 0.8924  0.8893  0.8718  0.8543  0.8396  0.8215  
PFI7 0.8475  0.8424  0.8201  0.7953  0.7673  0.7283  
PFI8 0.8820  0.8868  0.8690  0.8565  0.8407  0.8173  

Fusion I 0.9514  0.9455  0.9367  0.9226  0.9110  0.9006  
Fusion II 0.9548 0.9494 0.9407 0.9254 0.9167 0.9043 
 

5.2. Comparison with the state of the art 
In the literature, many tasks addressed the problem of 2D 

or 3D face recognition and used the FRGC v2.0 dataset for 
evaluation. Table 2 (a) lists performance comparisons be-
tween the proposed approach and several existing features 
only utilizing 2D texture images for face recognition; while 
Table 2 (b) lists a comparison between our method and the 
state of the art results only using facial range images or 3D 
face models for the same task. 
 
Table 2: Comparisons with the state-of-the-art using only 2D or 
3D face data. 
 

             (a) 
2D Approaches Rank-one RR 

Eigenface [28] 0.498 
LBP Histogram [28] 0.718 
Gabor [28] 0.779 
Original Texture + SIFT 0.793 
Texture LBP Face + SIFT 0.448 
Texture PFIs + SIFT 0.959 

 
             (b) 

3D Approaches Rank-one RR 
Chang et al. [29] 0.919 
Mian et al. [24] 0.935 
Mian et al. [23] 0.962 
Huang et al [30] 0.938 
Kakadiaris et al. 0.970 
Huang et al [31] 0.972 
Original Range + SIFT NA 
Range LBP Face + SIFT 0.801 
Range PFIs + SIFT 0.955 

 
It should be noted that in Table 2 (a), results based on 

eigenface, LBP histogram, and gabor are directly cited from 
[28], because the same experimental protocol was adopted, 
and these results were achieved based on optimized para-
meters and a Sparse Representation Classifier (SRC). When 
SIFT-based matching was directly applied on original tex-
ture images, the accuracy is 79.3%, while if we exploited the 
proposed PFI instead, the accuracy was improved to 95.9%, 
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which highlights its effectiveness to describe local texture 
changes. We also investigated LBP face (8 sampling points 
and the same radius value as PFIs) in the same framework, 
but it only achieved a recognition rate of 44.8%. 

On the other hand, Table 2 (b) compares our method with 
several existing systems for 3D face recognition. Similarly, 
we also operated SIFT-based matching on raw range faces, 
but it did not achieve a reasonable performance, because the 
detected keypoints on original range images are too limited, 
and usually located on the face border as shown in Figure 4. 
While, in this case, LBP face enhances the distinctiveness of 
facial range image, and improves the accuracy to 80.1%. As 
we can see in Table 2 (b), our performance is comparable to 
the state of the arts on 3D face recognition. 

Both the sub-tables of Table 2 illustrate that the proposed 
PFIs enhanced local texture and shape variations leading to 
satisfying recognition results. 

Table 3 compares the proposed approach with the state of 
the art on both face recognition and verification tasks using 
textured 3D face models. In recognition, the rank-one rec-
ognition rate of the proposed approach outperforms all the 
others, while in verification, our verification rate at FAR = 
0.1% is only slightly weaker than that in [23]. However, in 
this work, we did not perform costly 3D face registration in 
the preprocessing step while an ICP based fine registration 
was applied in [23]. 
 
Table 3: Comparison with the state-of-the-arts using textured 3D 
face data. 
 

Systems Rank-one RR VR@FAR=0.1% 
Mian et al. [24] 0.961 0.986 
Mian et al. [23] 0.974 0.993 
Gokberk et al [25] 0.955 NA 
Xu et al. [26] NA 0.975 
Maurer et al. [13] NA 0.958 
Husken et al. [11] NA 0.973 
Ben Soltana et al. [28] 0.955 0.970 
Texture PFI + SIFT 0.959 0.973 
Range PFI + SIFT 0.955 0.971 
Multi-Modal PFI +SIFT 0.980 0.989 
 

5.3. Robustness to facial expression variations 
In this experiment, the probe face scans were divided into 

two subsets according to their expression labels to evaluate 
its insensitiveness to facial expression variations. The first 
subset contains face scans with the neutral expression; while 
the other with face scans possessing non-neutral expressions. 
As a result, besides the experiment of Neutral vs. All, two 
additional experiments of Neutral vs. Neutral and Neutral vs. 
Non-Neutral were also carried out. In the Neutral vs. Neu-
tral and Neutral vs. Non-Neutral experiment, only the neu-
tral and non-neutral probe subsets were used, respectively. 

Using the same experimental protocol, we also compared 

the performance of the proposed method in face recognition 
with the one by Mian et al. [24] and Ben Soltana et al. [28] 
for robustness analysis on facial expression variations (see 
Table 4). The results of our approach are 99.6% and 96.0% 
for Neutral vs. Neutral and Neutral vs. Non-Neutral expe-
riment, respectively. The recognition rate on the first subset 
is comparable to the state-of-the-art, while we make great 
progress on the second subset, displaying a 96.0% rank-one 
recognition rate. The degradation when non-neutral facial 
expression faces are included drops by 3.6%, which is much 
lower than 7.3% in [24] and 7.9% in [28] as both shape and 
texture clues are combined. These results suggest that our 
method tends to be insensitive to facial expression changes. 
Table 5 lists the robustness comparison in face verification 
task, similar conclusions can be drawn. 

Meanwhile, the results of 2D modality are always slightly 
better than those of 3D based one. Figure 6 indicates veri-
fication rates by the ROC curves in these three experiments 
in Table 5. 
 
Table 4: Rank-one results using expression protocol on the FRGC 
v2.0 dataset. 
 
 Subset I Subset II Degradation 

Mian et al. [24] 99.4% 92.1% 7.3% 
Ben Soltana et al. [28] 98.6% 90.7% 7.9% 
Texture PFI + SIFT 98.8% 92.1% 6.7% 
Range PFI + SIFT 98.5% 91.7% 6.8% 
Multi-Modal PFI +SIFT 99.6% 96.0% 3.6% 
Subset I: Neutral vs. Neutral 
Subset II: Neutral vs. Non-Neutral 
 
Table 5: Comparison of verification rates at 0.001 FAR using the 
expression protocol on the FRGC v2.0 dataset. 
 
 VR I VR II VR III 

Mian et al. [24] 97.4% 99.9% 92.7% 
Texture PFI + SIFT 97.3% 99.7% 93.7% 
Range PFI + SIFT 97.1% 99.4% 93.5% 
Multi-Modal PFI +SIFT 98.9% 99.9% 97.1% 
VR I: Neutral vs. All 
VR II: Neutral vs. Neutral 
VR III: Neutral vs. Non-Neutral 
 

6. Conclusions 
Biological vision is the basis of many local descriptors in 

the literature, e.g. SIFT [18], and probably the more recent 
DAISY [27].  This paper proposed a novel biological vi-
sion-inspired facial representation, namely Perceived Facial 
Images (PFIs), and we applied it to both facial texture and 
range images for the issue of textured 3D face recognition. 
As compared with other intermediate facial representations, 
e.g. Eigenface or Fischer face, these proposed PFIs simulate 
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the response of complex neurons to gradient information in 
different orientations within a given neighborhood, thereby 
highlighting local details of range and texture face images 
and increasing their distinctiveness. As compared with LBP 
faces that also encode the difference between a central pixel 
and its neighbors, the PFIs are more informative as they take 
into account gradient information in several directions. PFIs 
are also likely less sensitive to noises than LBP faces be-
cause gradient information is summarized within a neigh-
borhood convolved by a Gaussian kernel. Finally, PFIs also 
possess the properties of being robust to affine illumination 
and geometric transformations. Additionally, the designed 
score level fusion strategy further improved the final result 
when combining the results of PFIs of different orientations 
as well as fusing the accuracies of these two modalities. The 
experiments carried out on the FRGC v2.0 database showed 
the efficiency of the proposed method. 

 
(a) 

 

(b) 

 

(c) 
 
Figure 6: ROC curves using texture PFIs, range PFIs, and Mul-
ti-Modal PFIs respectively in the experiments with neutral faces 
enrolled: (a) Neutral vs. All. (b) Neutral vs. Neutral. (c) Neutral vs. 
Non-neutral. 
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