
Adapting LESCOT Data-Analysis Tools to PATH Data
Format: A First Step for Further Collaboration

Benoît Mathern1,2, Alain Mille2, Thierry Bellet1,
Steve Shladover3, Christopher Nowakowski3

1 IFSTTAR, LESCOT, France
2 Université de Lyon, CNRS

Université Lyon 1, LIRIS, France
3 PATH, UC Berkeley, USA

October 2010 – January 2011

Abstract

The Explo’RA Doc grant from French Région Rhône-Alpes made possible for Benoît
Mathern, doctoral student at IFSTTAR to stay 4 months at PATH for embodying the
collaboration between PATH and the LESCOT laboratory of IFSTTAR. The goal of
this collaboration was to see how LESCOT tools and methodologies could be used on
PATH data sets. We show how we adapted those tools to support the data format used
at PATH. Then we’ll present a first proof of concept of the possible analysis, on the
example of the PATH CACC experimental data.

Contents

Introduction 3

1 Context 4
1.1 PATH–LESCOT collaboration . 5
1.2 The current context . 5

1.2.1 PATH and CACC experiment 5
1.2.2 LESCOT and tools development 6
1.2.3 Benoît Mathern’s PhD and work 7

1.3 Goals of this collaboration . 7
1.3.1 Goals for PATH and LESCOT 8
1.3.2 Goals for Benoît Mathern 8

2 Organisation of the Work 9
2.1 Meetings and Organisation . 9
2.2 Licenses and Data-Privacy Issues . 10

2.2.1 Issues . 10
2.2.2 Technical Workarounds . 11

3 Adapting LESCOT’s Tools to CACC data: Technical Aspects 14
3.1 Converting to BIND-Trip Format . 14

3.1.1 PATH-Trip Format . 15
3.1.2 BIND-Trip Format . 15
3.1.3 Trip-Format Comparison . 17
3.1.4 Converting the Data . 17
3.1.5 Converting the Videos . 18

3.2 Post-Processing Data in BIND . 19
3.2.1 Post-processing . 19
3.2.2 Export . 20

3.3 Multiple Trips with BIND and ABSTRACT 20
3.4 What about Future Sets of Data? . 21

4 How Can LESCOT Tools Help to Analyse CACC Data? 23
4.1 BIND . 23

4.1.1 BIND as a data-processing framework 23

1

4.1.2 BIND as a data-visualization framework 24
4.2 ABSTRACT . 25

4.2.1 ABSTRACT visualization . 25
4.2.2 ABSTRACT combined with Google Earth 28

4.3 A Chain of Tools as an Interactive Framework 29
4.4 What about Future Sets of Data? . 30

5 Future Collaboration 32
5.1 Achievements . 32
5.2 Conclusions for future collaboration 33

Conclusion 35

Appendix 36

A Tutorials 37
A.1 “dirs.mat” file format . 37

A.1.1 How to create the “dirs.mat” file? 37
A.2 Tutorial: How to convert PATH trips to BIND-trips? 38

A.2.1 Prerequisite . 38
A.2.2 Execution of the script . 38
A.2.3 Actions of the script . 38
A.2.4 Log file . 39
A.2.5 Execution time . 39
A.2.6 Reusability . 39

A.3 Tutorial: How to post-process BIND-trips and export files to ABSTRACT? 40
A.3.1 Prerequisite . 40
A.3.2 Execution of the script . 40
A.3.3 Actions of the script . 40
A.3.4 Log file . 40
A.3.5 Execution time . 41
A.3.6 Reusability . 41

A.4 Tutorial: How to use BIND-visualization plugins? 41
A.4.1 Prerequisite . 41
A.4.2 Execution of the program . 41

2

Introduction

The work presented on this report is the fruit of the collaboration of PATH and LESCOT
laboratories during the 4 months stay at PATH of Benoît Mathern, a Ph.D. student from
LESCOT.

PATH and LESCOT laboratories has already been in contact for several years. This
exchange has been the occasion for a closer collaboration. The goal was to investigate
how far it would be possible for PATH and LESCOT to produce a joint data analysis.

This exchange shows that it is possible for PATH and LESCOT to work together on
a same data set and to share tools and methods for data analysis.

This report first presents in chapter 1 the context of this collaboration between
PATH and LESCOT. Then some organisational aspects are presented in chapter 2. The
technical developments making it possible to load PATH’s data into LESCOT’s tools
are introduced in chapter 3. The analysis aspect are developed in chapter 4. Finally,
the chapter 5 discusses the different aspects of this collaboration and descibes how we
can prepare a longer-term collaboration.

3

Chapter 1

Context

We introduce the context of PATH-LESCOT collaboration. First, we present a brief
history of previous collaboration. Then we explains the context of current collabora-
tion, both from PATH and LESCOT point of view.

About PATH
California Partners for Advanced Transit and Highways (PATH) is administered by
the Institute of Transportation Studies (ITS) at the University of California, Berkeley,
in collaboration with California Department of Transportation (Caltrans). PATH is a
multi-disciplinary program with staff, faculty, and students from universities statewide,
and cooperative projects with private industry, state and local agencies, and non-profit
institutions.

About LESCOT
LESCOT (Laboratoire Ergonomie et Sciences COgnitives pour les Transports)1 is ad-
ministered by IFSTTAR (Institut Français des Sciences et Technologies des Transports,
de l’Aménagement et des Réseaux)2. IFSTTAR is the new institute resulting from the
merge of INRETS (Institut National de Recherche sur les Transports et leur Sécurité)3

and LCPC (Laboratoire Central des Ponts et Chaussées). LESCOT is located in ré-
gion Rhône-Alpes, near Lyon. Its team gathers researchers and engineers and students
mainly in the field of cognitive science, and a technical team developing and maintain-
ing experimental devices.

1Laboratory of Ergonomics and Cognitive Science for Transportation.
2The French Institute of Science and Technologies for Transport, Development and Networks.
3The French National Institute for Transport and Safety Research

4

1.1 PATH–LESCOT collaboration
California PATH laboratory and French LESCOT laboratory have been developing col-
laboration for many years. Both laboratories develop an interest in taking into account
the human factor for designing better intelligent transportation systems.

Based on experimental data collected on driving simulators or instrumented ve-
hicles, LESCOT laboratory wants to understand the driving activity and the driver’s
cognition. Understanding driver’s cognition is a key issue for understanding critical
situations and driving errors. It is also essential to understand the driver perception
of the car and its driving assistance systems in order to design better and ‘ìntelligent”
driving assistance systems. In this context, LESCOT has been developing tools and
methods for analysing and understanding the driver’s behavior.

The first collaboration between LESCOT and PATH started back from 1999 to
2002, on the question of driver modeling. Further, from 2007 to 2009, an other signifi-
cant collaboration took place in the context of CalFrance project. Two workshops were
held, one in California, at PATH headquarter in February 2008, one in France in April
2008. This workshops made it possible for researchers of both laboratories to meet,
and more importantly to investigate the possibilities for long-term collaboration.

During CalFrance project, both laboratories agreed that long-term collaboration
would be of great interest. Further collaboration should start with the question of shar-
ing tools, data and methods. Such exchange could be achieved by collaborating on
current projects of one another laboratory in the first place, and then on finding found-
ing for common projects. The CACC4 experiment, held at PATH was already identified
as a potential project for collaborating.

1.2 The current context
From the end of CalFrance project in 2009 until the beginning of this new exchange,
the global landscape of possible collaboration has not changed, but new elements had to
be taken into account. On one hand, at PATH the CACC experiment has been finished.
On the other hand, at LESCOT new tools has been developed. And more importantly,
a source of funding made it possible for a LESCOT PhD student to collaborate with
PATH during his 4 months stay in California.

1.2.1 PATH and CACC experiment
The CACC, Cooperative Adaptive Cruise Control, is a new kind of driving assistance
system allowing to maintain shorter gaps while driving on highways. The CACC
project was funded by the Federal Highway Administration’s Exploratory Advanced
Research Program and Caltrans, with technical cooperation provided by Nissan. The
aim of the project was to prototype this new piece of technology. The project focused
on all the aspects from the hardware development of a prototype, to testing the limita-
tions of the system on tracks, and finally to the test of acceptability of the system on

4Cooperative Adaptative Cruise Control

5

open road with 16 drivers. It is this last aspect, the actual test with drivers from the
general public, which is relevant for the collaboration with LESCOT.

The CACC acceptability experiment started in 2008. The data collection took over
one year, from October 2008 to November 2009.

The funding for the CACC stopped in 2010, before LESCOT could actually collab-
orate with PATH on the CACC data analysis. Fortunately, after the completion of the
work, Nissan provided some funding for supplementary analyses of the data. Nissan
was interested in the further analysis of the data collected during the CACC acceptabil-
ity experiment. This deeper analysis matches perfectly to the timing and interest of this
PATH–LESCOT collaboration.

1.2.2 LESCOT and tools development
As PATH does, LESCOT laboratory also collect and analyze car-driving data. Actu-
ally, as LESCOT is a laboratory studying ergonomics and cognitive psychology, the
experiments designed by LESCOT are focused on learning about human behavior and
cognition. In this context LESCOT has been developing data analysis tools to support
the researchers, cognitive psychologist, to understand human behavior.

The first key point for studying human behavior is to know about the context of
a particular situation. That’s why the first tools focused on visualizing the video, and
then on synchronizing the video to a visual representation of data. A first tool has been
developed for several years.

In 2008, in order to improve the software and give it new and desirable function-
alities a research engineer in computer science has been hired. Based on LESCOT’s
previous experience, a new tool has been specified, conceived and developed. This
tool, called BIND, is a framework for manipulating car-driving data. This framework
has two main purposes. For an engineer, willing to process the collected data, it allows
to easily access and process the data. For an analyst, that is to say a cognitive scientist,
the framework allows to build interfaces for easily visualizing data synchronized with
video and manual coding.

BIND framework is extendable, which means new functionalities can be added to
support the engineer in processing the data, and new interfaces can be added to support
the analyst to understand the data.

The second key point for studying human behavior is to describe accurately the
situations, the actions and the possible mental states of the subject. For this, cogni-
tive science uses words. Words must be selected carefully, as they have to describe
rigourously the situation and what is happening. Being careful about the meaning of
words is just about guaranteeing the rigour of the scientific analysis.

In this context, the ABSTRACT approach and tool have been developed. ABSTRACT
is the result of a collaboration between LESCOT and LIRIS5 laboratories. LIRIS is a
computer science laboratory, with a lot of experience on data handling and analysis.

The idea of ABSTRACT is to associate a name to a certain pattern in the data.
Each type of pattern can be described precisely with a unique name. Therefore the
chosen name for a pattern precisely describes the underlying meaning, or concept of

5Laboratoire d’InfoRmatique en Image et Systèmes d’information

6

the pattern. Those names–we can call them concepts–are stored and organised in an
ontology.

The ABSTRACT tool allows to easily associate the concepts, defined in an ontology,
to the actual data set. In other words, it helps to reformulate the data, by associating a
name to the patterns found in the data. Then, from this reformulation of what happened,
one can either refine the definition of the existing patterns, or one can build new and
more complex patterns on top of the previous ones.

BIND and ABSTRACT have been designed to be compatible. Actually, they both
participate in the same chain of analysis. BIND framework allows to easily process data
and achieve low level analysis6. Then, with BIND visualization interfaces, it is easy for
an analyst to grasp what is happening, and then give a meaning to the patterns seen in
the data. Last, with ABSTRACT the analyst can actually and rigorously associate the
patterns with their meaning and do further analysis.

Finally, LESCOT has also been developing specific ad hoc tools for visualizing
navigation or GPS data. Both BIND and ABSTRACT allow to easily visualize this kind
of data with Google Earth. And the development of new tools and approaches keeps
interesting LESCOT, as Benoît Mathern has been starting a PhD on this topic in 2008.

1.2.3 Benoît Mathern’s PhD and work
Benoît Mathern has been working at LESCOT since 2006. First as an engineer in com-
puter science, he conceived and developed ABSTRACT software. Later he contributed
to the specification of BIND. He started his PhD work in 2008 in Knowledge Engineer-
ing. He studies ways to help experts, here experts about the driving activity, to discover
knowledge out of a set of data. In order to achieve this, he adapts current mining tech-
niques in order to integrate the expert’s knowledge as soon as possible, in an iterative
and interactive loop of data mining and data visualisation. He has developed a tool
called AUTOMATA demonstrating this concept.

Benoît Mathern works on the questions of Knowledge Discovery with LIRIS lab-
oratory, where he is supervised by the computer scientist Professor Alain Mille. His
work is applied to the analysis of car-driving data at LESCOT, where he is supervised
by the cognitive psychologist Doctor Thierry Bellet. His work is funded by the Region
Rhône-Alpes, through the “Transport, Territories and Society” Cluster. He received
another grant from Region Rhône-Alpes, called Explo’RA Doc, that allowed him to
stay four months at PATH.

This last grant was the source of funding allowing us to actually realise this collab-
oration between PATH and LESCOT.

1.3 Goals of this collaboration
The goals for this collaboration are multiple, with different points of view. There are
short-term and long-term goals for both laboratories PATH and LESCOT. At the indi-
vidual level, for Benoît Mathern, the purpose is both about applying his work on an
actual set of data and developing international experience.

6By low level, we mean, analysis based on raw data.

7

1.3.1 Goals for PATH and LESCOT
For PATH and LESCOT, the goal of this collaboration is to tighten the current links
between both laboratories. The long-term goal, kept in mind by both laboratories,
is to work together on common projects. This requires submitting common project
proposals, which in turn means both laboratories have to know each other well.

This leads to the mid-term goal: getting to know the each others’ work, objectives
and the actual way of collaborating together.

The work described in this report support this aspects, as it focuses on the short-
term objective of sharing data, tools and developing a joint analysis on a set of data.

In a nutshell, the main goal of this work for PATH and LESCOT is to start sharing
data, tools, and look for ways of jointly analyzing the data.The goal is to build solid
foundations for future, long-term collaboration on joint projects.

1.3.2 Goals for Benoît Mathern
This collaboration takes place as part of the PhD work of Benoît Mathern. The goal
here is not to develop new concepts or techniques for analysing the data. The goal is to
actually apply the tools and methods, already developed in the context of his PhD. This
applied work, can be compared to what has been already done at LESCOT. This will
both help to validate Benoît Mathern’s work and to highlight the limits or difficulties
of using the tools in another context of use.

In addition, this four month stay of Benoît Mathern at PATH is also an opportunity
for him, as part of the training of a PhD work, to develop a better understanding of re-
search throughout the world. He has the opportunity to learn about cultural differences
with the US. This training will help him understanding how international collaboration
works, which is a precious skill for his future career.

8

Chapter 2

Organisation of the Work

2.1 Meetings and Organisation
The stay of Benoît Mathern at PATH has been organised with several milestones. His
stay at PATH started from the beginning of October 2010 until the end of January 2011.

Before the trip, all the actors of the collaboration interacted by emails and phone
calls. This has made it possible to specify the main aspects of the collaboration.

At the very beginning of his stay, Benoît Mathern worked on solving some admin-
istrative issues. Then, during the first two weeks of he learned about PATH and about
the CACC experiment. On October 15, 2010 Benoît Mathern presented LESCOT’s
tools and LESCOT’s approach to analyse data to PATH. This presentation was entitled
“Using Knowledge Engineering for modeling human activity: an approach, a set of
tools and a project with PATH”. Unfortunately only Steve Shladover and Christopher
Nowakowski could attend to this presentation.

Then Benoît Mathern focused on understanding previous results from the CACC
study and then focused on the technical aspects. He developed scripts to import and
post-process the data and made sure that LESCOT’s tools could be used on PATH’s
data.

In parallel to this technical work, regular meetings were scheduled during the whole
stay with Christopher Nowakowski and Steve Shladover. Every week, Benoît Mathern
also had a phone meeting (with Skype software) with Prof. Alain Mille, his Ph.D.
director.

Three other relevant dates are worth to mention. On November 17, 2010, Benoît
Mathern participated in the CCSIP1 workshop. This was an opportunity for him to learn
about other aspects of PATH’s research and to see demonstrations of several prototypes
of automated vehicles developed at PATH. It was especially the occasion to see an
actual demonstration of the CACC vehicle.

On December 13, 2010, Benoît Mathern attended to the seminar presenting the
merging of PATH and CCIT laboratories and the plans for the future.

1Canada–California Strategic Innovation Partnership

9

On January 13, 2011, Benoît Mathern was invited as well to a seminar presenting
an innovative panoramic vision system.

2.2 Licenses and Data-Privacy Issues
The first step for investigating joint data analysis is to share data and tools. However,
both sharing data and sharing tools raise issues relative to licenses and to data-privacy.
In the absence of any institutional agreement between PATH and LESCOT, we had to
deal with those issues and find technical workarounds.

2.2.1 Issues
Data-Privacy

We focused on analysing CACC data. CACC data set contains information about 2
weeks of driving for each of the 16 drivers who took part in the experiment. This
data contains some private information, such as video records where the driver can be
identified, or the GPS information, for the driver’s commute trips, from his home to his
work and back to her home.

Such information is sensitive and cannot be spread out. According to the privacy
requirements, imposed by the University’s Office for the Protection of Human Subjects
(OPHS), the protocol of the experiment makes sure this sensitive data are used wisely
and kept safe.

The consequence is that no sensible data can be transfered to a computer outside
PATH. All the data has to be kept under PATH control. This would not have been an
issue by itself without another issue: licenses.

Matlab license

PATH’s tools for handling data, as well as BIND framework are based on Matlab soft-
ware. Matlab software requires a license to be run. And therefore PATH tools as well
as BIND needs a Matlab license to be used.

PATH didn’t have any license of Matlab available for Benoît Mathern during his
stay. And buying one is time consuming and cumbersome. However, LESCOT did
have a licenses of Matlab available. Benoît Mathern therefore installed Matlab on the
laptop computer he brought from France.

At this point, we can see the outline of the issue. Benoît Mathern had access to
the tools on his personal computer and can’t install them on any other computer at
PATH. And he had access to the data at PATH, but can’t upload them on his computer
according to data-privacy issues. But we needed to have the tools and the data on the
same computer to make it work.2

2As we’ll see in the description of the workarounds, one simple solution could have been to access the
data from the network, without uploading them on Benoît Mathern’s computer, but for technical reasons, due
to the quantity of data and the heavy processing needs, this solution has been rejected.

10

BIND license

Another solution would have been to install BIND framework on one of the PATH’s
computer running Matlab. Such solution, would not be optimal as it means that this
computer should be shared by several users. However, an other issues came here: BIND
has not been released yet by INRETS–IFSTTAR. INRETS has studied the possibility
to release BIND under a free license–which would have solved this particular problem–
but finally decided not to release the software yet.

Without license for BIND or intellectual property agreement between PATH and
IFSTTAR, this solution could not be explored.

No Intellectual Property Agreement

Both this licenses and data-privacy issues are recurrent when several institutions need
to share data and software. One of the difficulties of this collaboration is that no agree-
ment has been previously defined between PATH and LESCOT. An agreement between
IFSTTAR and the University of California, Berkeley is being written for future collab-
orations.

2.2.2 Technical Workarounds
CACC data were secure on PATH computer. BIND software and LESCOT’s license of
Matlab were secure on Benoît Mathern’s laptop.

Possible solutions

One could think that the tools could be used remotely on the data, via the network,
without any need to have the data and tools on the same computer. This could have
been a solution if the quantity of data was not so big (tens of gigabytes of data for
each driver) and if the amount of processing was not so huge (hours of processing for
a single trip).

Accessing the data through the network would have strongly increased the process-
ing time. At the same time, it would have used a lot of processing ressources on Benoît
Mathern’s computer, which would have make his computer hardly usable.3

The solution we choose allowed us to dedicate one of PATH’s computers on pro-
cessing the data, without need of a Matlab license or of disclosing BIND source code.

Matlab Compiler

Matlab Compiler is a product of the Matlab suite. It allows to package a program
or a script based on Matlab, and produces a program that can be run without installing
Matlab. This way, a program written with Matlab can be used on any computer, without
any need for a Matlab license.

3We want to highlight here that some features of BIND framework runs only on Windows platforms, but
the laptop used was an Apple Macbook running Mac OS. This issue was solved by installing Matlab and
BIND in a virtual machine (via Parallels software).

11

LESCOT owns a license of Matlab Compiler, which is installed on a dedicated
computer at IFSTTAR.

We could therefore develop and test programs using BIND on some test data. Then
compile those programs with Matlab Compiler and finally actually test and run the
programs on the actual data set.

Description of the workflow

Figure 2.1: The 3 steps of the workflow solving data privacy, licenses and technical
constraints: 1. develop and test programs on test data, 2. compile the programs with
Matlab Compiler, 3. test and run on the real data set.

The actual workflow for using BIND framework on PATH’s data were in 3 steps (as
described in 2.1.

1. Develop and test programs on test data. First, we needed to develop some
programs with BIND (for converting PATH’s data to BIND format, or for post-
processing data, etc.). For this purpose, we worked with the license of Matlab
installed in Benoît Mathern’s laptop computer. We could test the program on test
data.

2. Compile the programs. Once the program was working on test data, we sent4

the source code of the program through the Internet to the computer at LESCOT
on which Matlab Compiler is installed.

3. Test and run on the real data set. We installed the compiled version of the
script on a dedicated computer at PATH. On this computer, we uploaded as well
a copy of the driver’s data we wanted to analyse.

4We used the Subversion code-versioning system.

12

Then we could run the programs on the actual data set. Some problems were
likely to occur (the actual data set contains a broad variety of strange situations
that could not be tested with the test data). In order to solve the problems, we
would come back to the script on the laptop computer running Matlab, change
the program and run the whole workflow again.

Obviously, the workflow would have been much easier if we could have developed,
tested and run the programs on only one computer. This solution came out to work
and solve the issues of licenses and data privacy. Without these issues, there would
have been only one step for doing all instead of three and we would have been more
efficient.

It is good to know that such solutions exist. However, for future collaboration,
we could be much more efficient with an agreement between PATH and LESCOT for
sharing the tools and sharing the data.

13

Chapter 3

Adapting LESCOT’s Tools to
CACC data: Technical Aspects

The first step to share data and tools is to make sure that the data format is compat-
ible with the tools. This chapter is about this aspect of the work, and explains what
technically had to be done to load the CACC data in LESCOT’s tools.

The entry point of LESCOT’s tool is BIND. Therefore, CACC data have to be first
converted into BIND-Trip format. This will be explained in section 3.1.

Then, because of the different way the post-processing of data is organised in PATH
tools and in BIND (the first ones exports and save data in separate files, the second one
save the post-processing into the same database as the raw data), the post-processing
had to be reprocessed with BIND. We will also explain how to export data from BIND
to ABSTRACT. All these post-processing issues will be adressed in section 3.2.

Then for the necessity of the CACC study, where multiple trips had to be compared,
and considering the fact that ABSTRACT and BIND are currently more focused on
single-trip analysis, we will show in section 3.3 how to use BIND and ABSTRACT in a
way that allows multiple-trip analysis and trip comparisons.

Last, we will see in section 3.4 how this whole process can be generalized to future
and yet unknown sets of data.

3.1 Converting to BIND-Trip Format
At PATH as well as at LESCOT, the car-driving data is based on the concept of trip.
One trip is a set of data with a beginning and an end in which the driver was driving
from point A to point B. One trip contains continuous or asynchronous data, videos,
and meta-information about the data. What we call continuous data is a set of data
that is collected throughout the whole trip, at a certain frequency. What we call asyn-
chronous data is a set of data that is collected on an asynchronous basis, in other words,
triggered by some external events. Meta-information is information about the trip itself
or information about the way the data is storred. For example, it contains the name of

14

the experiment, the id of the trip, information about the experimental conditions, as
well as the organisation and the type of data that are stored in the trip.

Both PATH and LESCOT use this same high level logic to describe the data. How-
ever, differences appear on a technical level. Both PATH and LESCOT use home made
tools to access the data. PATH uses Matlab scripts to load and post process the data,
while LESCOT uses a framework, BIND-framework, which is also based on Matlab.
A first proof of concept of data conversion from PATH format to BIND-trip format had
been realised in 2009 at INRETS by Damien Sornette and Arnaud Bonnard. This proof
of concept allowed us to make sure the two data format were compatible.

We will now see in detail the way data is stored at PATH and the way data is stored
in BIND format. Then we’ll explain how we convert the data files from PATH-trip
format to BIND-trip format. Last, we’ll see how to convert the video files to make
them compatible with the way videos are stored in BIND-trip format.

For a description of how to use the data-conversion script, please refer to the annex
A.2.

3.1.1 PATH-Trip Format
During this work, we only used CACC data. However, the other experiments done at
PATH follow the same logic. We will therefore talk about PATH-format as long as
we can generalise. When the format is specific to CACC data, we will refer to it as
CACC-format.

Trip files are stored in a structured directory. Each trip has its own directory. And
each directory is divided in a number of directories representing each a 2 minutes
portion of data. These 2 minutes portions of data are stored in several 2-minutes-
length data files and 2-minutes-length video files. In the CACC experiment, for each 2
minutes, 3 data files and 2 video files were created. This describes the way the data is
actually stored, but not the way the data is logically accessed. Christopher Nowakowski
wrote a Matlab software that take care of loading, and pre-processing a whole trip in a
more convenient way.

This software (the load_trip() function) loads the full set of continuous and
asynchronous data in Matlab. It organises this data and builds relevant meta-data in
the form of a Matlab structure. This structure has one “meta” field, containing meta-
information about the trip (name of the study, driver id, date, trip id, etc.). The other
fields contain the collected data. In Matlab, structures are self describing containers of
data. Therefore, the organisation of the Matlab structure reflects the organisation of the
data (see Table 3.1).

There is no software provided by PATH to visualize the videos. They are just stored
as 2-minute length video files.

3.1.2 BIND-Trip Format
At LESCOT, the data are stored in BIND-trips. A BIND-trip is stored as a database in
a SQLite file. SQLite format allows to have a SQL database stored in a file without the
difficulty of installing a database server.

15

Table 3.1: A description of the Matlab structure used by PATH to describe a CACC
trip.

Field Description
meta meta-informations on the trip

ts data about the timestamp
veh data about the vehicle
gps data about the gps
acc data about the ACC

comm data about the communication

Table 3.2: A description of the tables of a BIND-trip database (case of the CACC data).
The tables with the prefix “Meta” are always present in a BIND-trip. The tables with
the prefix “data_”, “event_” or “situation_” are specific to the experiment. Here, the
raw CACC data only have “data_” tables.

Table name Description
MetaDataVariables Variables stored in the data tables

MetaDatas Data tables
MetaEventVariables Variables stored in the event tables

MetaEvents Event tables
MetaParticipantDatas Informations about the subject

MetaSituationVariables Variables stored in the situation tables
MetaSituations Situation tables
MetaTripDatas Informations about the trip
MetaTripVideos Information about the video files

data_ts data about the timestamp
data_veh data about the vehicle
data_gps data about the gps
data_acc data about the ACC

data_comm data about the communication

16

BIND-trips have a generic set of tables containing the meta-information, and de-
scribing the structure of the database (tables with the prefix “Meta”). Another set of
specific tables (with the prefix “data_”, “event_” or “situation_”), contains the actual
data collected or post-processed (see Table 3.2). The structure of these tables depends
on the experiment.

In BIND-format, a strong semantic has been defined for differentiating the different
types of data. Continuous data (data collected throughout the whole trip, at a certain
frequency) is referred in BIND as “data”. Asynchronous data (data that are collected
on an asynchronous basis, triggered by some external events) are referred in BIND as
“events” or “situations”. An event occurs at a certain time stamp. Situations have a
duration, represented by a beginning and an end.

A BIND-trip contains a link to the different video files of the experiment. The
information about the offset between the video and the data is saved in the BIND-trip.
BIND can handle any number of video. Logically, one view is represented by one
video file for the whole trip. As a consequence, in the case of CACC data, there are
two videos: one for the front view and one for the quadravision.

3.1.3 Trip-Format Comparison
Table 3.3 shows a comparison of PATH-trip format and BIND-trip format.

PATH-format uses flat files to store data, every time data needs to be loaded, all the
flat files have to be read in order to build the Matlab trip structure in memory. Then the
data can be processed and the results are exported in a separate flat file. PATH-format
doesn’t handle videos.

BIND-format uses a SQLite database to store the data. Therefore, accessing the
data does not require to load all the files, you can just directly access the data you need.
When data is processed, the results can be stored in the database, that is to say in the
same SQLite file, which make them available for later access or reuse.

3.1.4 Converting the Data
The logical structure of the data in PATH-trips and BIND-trip is similar on most aspects.
Both PATH tools and BIND use Matlab. The data conversion is quite straightforward.

We use PATH script to load the logical structure of the PATH-trip in Matlab. Then,
we parse the trip structure loaded in memory to build the equivalent BIND structures:

1. Parse the “meta” field of the PATH-trip to fill the “MetaParticipantDatas” and
“MetaTripDatas” tables of the BIND-trip.

2. Parse the other fields of the PATH-trip to:

• create the corresponding “data_” tables, and fill the “MetaDatas” and “Meta-
DataVariables” tables;

• fill the “data_” tables with the corresponding data of the trip.

3. Create links to the video files and calculate the offset between the data and the
video.

17

Table 3.3: Comparison of the PATH-trip format and the BIND-trip format.

PATH-trip BIND-trip
Storage flat files database in a SQLite file

Querying langage Matlab Matlab, through BIND frame-
work

Data access loads everything in memory fetch what is needed on demand
Data representation continuous data continuous data, referred as

data, asynchronous data, re-
ferred as events or situations.

Data types numeric or text numeric or text
Videos 2-min length video files for

each view
one video file for the whole trip
for each view

Meta-information defined in the “meta field” defined in the “MetaPartic-
ipantDatas” and “MetaTrip-
Datas” tables.

Structure implicitly defined with the
name of the field

explicitly defined (in the meta
tables: “MetaDatas”, “Meta-
DataVariables”. . .)

The conversion script is generic. As long as the Matlab structure produced by
PATH’s scripts has the same structure, the conversion should work with very little
modification:

• A modification of the meta field structure needs to be taken into account in the
conversion script

• The conversion script assumes that all the data are numeric (except from one field
corresponding to the timecode). Therefore a modification of the script would be
needed to deal with textual data.

3.1.5 Converting the Videos
The videos have to be converted as PATH stores them as 2-minutes-length files and
BIND requires to have whole-trip-length videos1. As a result, the 2-minutes-lengths
videos related to one view have to be merged together in order to build one video file.

This problem was more difficult to handle than expected: some video files would
have less frames (missing images), some video files would have too many frames (im-
ages which were also recorded in the next video file), some video files would be cor-
rupted (unable to be read), some video files would be missing.

Based on the previous proof of concept made by Arnaud Bonnard and Damien
Sornette, we loaded the information about every single 2-minutes-length video file.
Then, if the file had too many frames, overlapping frames were removed. Then if there

1It is technically possible to load as many 2-minutes-length video files as you want in BIND (with as
many corresponding offset). But it would not make much sense from a user’s point of view. One video file
in BIND logically refer to one view (that is to say one camera, or quadravision system).

18

were missing frames, additional blank frames were added. If the file was missing or
corrupted, a 2-minutes-length blank video would replace it.

Then, from this temporary set of clean 2-minutes-length video files, we merge all
the files in one. Last, we compress the resulting video file with a compression setting
that is compatible with BIND video access.

Once the trip is converted into the BIND-trip format, we can use BIND to visualize
the data, as we will explain in chapter 4. We can also use BIND, as a data-analysis
framework to post-process the data and export subsets of the data for other tools.

3.2 Post-Processing Data in BIND

Once the data is available in the BIND-trip format, we use BIND as a framework for
preparing and post-processing the data.

Typically, in the CACC data set, we want to know when the driver activates or de-
activates the system. And when the driver deactivates the system, we want to know
how the driver actually deactivated the system (by turning it off, by pressing the brake
pedal, etc.). This information is not available directly in the data and we have to com-
bine information from different fields of the BIND-trip.

Then, we want to export part of the data available to other programs. In our context,
we want to make the data available for ABSTRACT.

For a description of how to use the post-processing and export script, please refer
to the annex A.3.

3.2.1 Post-processing
With BIND, post-processing is meant to be stored into the BIND-trip in a new field or
table. BIND, as a framework, offers methods to assist the developer to create those new
fields or tables. The result of the post-processing is then easily accessible afterwards.

The structure of the post-processing script will be the same from one experiment
to another: 1) create the meta-information corresponding to the new fields, 2) do the
post-processing calculation. But the post-processing itself will always be something
specific to an experiment (if not, it might be something that should be during the phase
of importation of the data). In our case, we wanted to create new fields of data to give
an easy access to relevant situations (when the driver activates, deactivates, changes the
settings of the CACC).

The post-processing is computed by the function caccCreateEventsOnTrip()

Creating the Meta-Information We use BIND framework to create the new meta-
information that are needed. For example, we create an event table named “ACC_events”
with 4 fields: “event”, “timestamp”, “gap setting” and “speed setting”. A “timecode”
field will always be created as well.2

2In this example, the “timestamp” does not refer to the timecode field. It is an additional field refering to
the GMT timestamp. We needed this additionnal information to compare the timecode of the data and the
frame of the video (where this GMT timestamp is displayed).

19

From the meta-information, BIND creates the corresponding structures (tables,
fields) that will contain the data.

Post-processing calculation When the structure that will contain the result of the
post-processing is created, we can focus on the post-processing work. BIND offers
functions to facilitate the post-processing. In our case, we create BIND-events from
continuous data. The processing classes of BIND called EventDiscoverers are meant to
produce events from continuous data.

We use several EventDiscoverers to extract several type of information. For ex-
ample, with a threshold, we extract when the system is activated or deactivated. Then
when the event is found, we know its timecode and we can extract more information
to know the way the system is deactivated. We save all these events discovered from
the data (basically, we create a record of the event with the “timecode” and “event”
fields filled). Then we complete the additional fields (“timestamp”, “gap setting” and
“speed setting”) with the values we get from the data. Theoretically and technically, it
is not necessary to add those fields, as they can be fetched on the fly whenever needed.
But it makes sense to save in an event table all the information relevant to this event.
It duplicates some information, but it makes it easier to reuse the information. All the
relevant information about the “ACC_events” are stored in the same table.

In our case, the post-processing was mainly about translating some data into BIND-
events. In general, post-processing can also involve signal processing calculations or
complex data aggregation. BIND offers facilitators for the signal-processing as well.

3.2.2 Export
BIND is meant to visualize and post-process the data collected during an experiment.
For some specific data analysis, we want to export the data into another software. For
example, we want to export some data for statistical analysis. In our case, we want
to export data to get a further analysis using the knowledge engineering tool called
ABSTRACT.

The export is computed in the function called exportSituationsAndEvents2CSV().
It takes several arguments to create a CSV file that can be read by many tools (including
Excel or ABSTRACT). We specify what are the events or situations to export and if any
additional information has to be added. In our example, we add some GPS information
that can be used by ABSTRACT.

Then the CSV file is created and can be imported into ABSTRACT.

3.3 Multiple Trips with BIND and ABSTRACT

BIND and ABSTRACT focus on a single trip analysis. With the CACC data, we want to
compare multiple trips together.

BIND For this purpose, we created a function in order to be able to work in a batch
mode for the BIND conversion, post-processing and export processes. A first script
called mainBerkeley() does the conversion, given a list of trips to convert. A

20

second script, called mainBerkeleyCaccAnalysis() does the post-processing
and export the CSV files to be used in ABSTRACT. Those scripts have been developed
specifically for this work, but can be easily adapted and reused. They also contain
exception handling and display a summary of the processing. This way, it is easy to
know if an error occurred and what trips are affected.

Those scripts has been compiled in order to be used on computers where Matlab is
not installed. A description of how to use the compiled version of those scripts is given
in annex A.2 and A.3.

ABSTRACT In ABSTRACT, we reused previous scripts for importing multiple trips
(called “traces” in ABSTRACT). We created specifically for this data analysis a new
way to handle a set of traces. This ad hoc structure was then used to make some
features of ABSTRACT available for a set of traces: the visualization of a trace over
time, the transformation of a trace into another trace (based on rules) and the export of
specific data in Google Earth.

3.4 What about Future Sets of Data?
We have made specific scripts to make sure that PATH data can be analysed with
LESCOT tools. On one hand, these scripts contain some code which is specific to
the data set we were working on. Typically, the post-processing and the name of the
fields we export to ABSTRACT are specific to this experiment. On the other hand part
of this work is generic and can be easily reused in the future.

Conversion scripts For future set of data, the conversion script can be easily reused.
The function load_trip() provided by PATH has to be updated to match the new
data set, but the conversion script would remain the same and work without any change.
The only exception would be if some text data are stored in addition to numerical data.
The current script does not automatically detect the type of the data and assumes all
the data are numeric (with the only exception of the timestamp in GMT format).

Post-processing scripts As for the post-processing, the structure of the script can be
reused, but obviously, the semantic of a post-processing is specific to an experiment.
The actual post-processing has to be redefined for each experiment, but the current
scripts can be used as a tutorial, to understand how to do it.

Multi-trip modifications The batch scripts are generic and can be reused without
modification.

For convenience the data to be exported has been defined in the export script (in
mainBerkeleyCaccAnalysis()), so this data definition has to be modified in
this specific script.

The modification to handle multiple trips in ABSTRACT has been made generic.
The only work to do to use this multiple-trips function on new data sets is to define the
new set of traces. The set of traces is defined in the “traceSets.php” file as a PHP array.

21

We used the Unix sed command to automatically process the list of the trips from the
triplist file.

Conclusion Basically, if the structure of the data built by the load_trip() func-
tion remains the same, any further set of data can be loaded with a minimum cost into
LESCOT tools.

Part of the work, typically the analysis, is specific to an experiment, which means
it is only relevant to keep the structure of the script, not its content.

For future data collection, it would be interesting to directly convert the data into
BIND-trip format at the acquisition. It would make sense if PATH wants to use a
database format to store the experimental data.

It would also be really interesting to change the way the video is collected. Video
conversion is a very time-consuming process and dealing with 2-minute video files is
not convenient during the analysis phase.

22

Chapter 4

How Can LESCOT Tools Help
to Analyse CACC Data?

We have shown in the previous chapter how we made the data available in LESCOT
tools (BIND and ABSTRACT). In this chapter, we will show how we can use these tools
to analyse the CACC data.

LESCOT tools are designed to support an analysis of the driving activity. It means
they are particularly suited to case study and on making it possible to understand the
activity in its context. That’s why BIND makes it possible to visualize and synchro-
nise all the data and videos. ABSTRACT focuses more on the semantics of the activity.
ABSTRACT is meant to understand the driving activity by translating low level infor-
mation into more abstract information. This higher level information focuses on what
is interesting to the analyst. ABSTRACT can be synchronised with BIND as well.

4.1 BIND

BIND is a framework which can be used by a developer to produce data-processing or
data-analysis scripts, or to produce end-user applications for data-visualization.

We’ll see how both aspects can be used to support the data analysis.

4.1.1 BIND as a data-processing framework
In the previous chapter, we have seen the technical aspects of how BIND can be used
as a data-processing framework.

The goal of the analysis specifies what type of data-processing is needed on the
data. Then a developer can use BIND to make scripts for data-processing. In our case,
we focused on the detection of (C)ACC events. The post-processing needed to identify
the different types of deactivation events has been specified by PATH, but the result
of the post-processing was stored in separate files which were not easy to import. We
used this specification to define the (C)ACC events with BIND.

23

4.1.2 BIND as a data-visualization framework
BIND is also meant to support the development of data-visualization tools. In this re-
port, we will not focus on the technical aspects of how to create such a data-visualization
tool with BIND. Instead, we will only focus on one software developed with BIND, that
gives an overview of what it is possible to do with BIND. We call this software BIND-
distrib in this report.

A software like BIND-distrib is intended to be used by the analyst, that is to say a
psychologist or an ergonomist trying to understand the driving activity in its context.
Figure 4.1 shows the interface of BIND-distrib. BIND-distrib makes it possible to vi-
sualize the videos, a custom display of curves and events from the trip. Everything is
synchronized.

This visualization is very interesting for an analyst as it makes it possible to have
easy access to the curves without programming, and more important see the context of
what is happening with the videos.

It is also possible to click on an event to go directly to the corresponding timecode
on the videos and see the context of the event.

Figure 4.1: An exemple of a synchronised visualisation possible with BIND. From
left to right and top to bottom: a controller, the front video, the quadravision video, a
display of curves and a list of events. Everything is synchronised.

24

4.2 ABSTRACT

In order to go further in the understanding of the driving activity, LESCOT has de-
veloped the ABSTRACT software. ABSTRACT can display events over time, export
a subset of events into Google Earth for a spatial display of the events, and translate
patterns of event into other events with rules. ABSTRACT is intended to be used by
the analyst (a psychologist or ergonomist), with some help from a developer for imple-
menting transformation rules.

4.2.1 ABSTRACT visualization
ABSTRACT is a Knowledge Engineering tool. In ABSTRACT, you can display any set
of events. Each event is characterised with a type, defining its semantic. The semantic
is organised in an ontology. With ABSTRACT, the analyst customizes the way he or she
wants to display the events, depending on their type in the ontology. This feature makes
it easy for the analyst to display the information he or she needs the way that makes
the most sense to him or her. This is very important as it make it possible to grasp the
meaning of the data more easily. Figure 4.2 shows a screenshot of ABSTRACT. Figure
4.3 shows a screenshot of the ontology. We use Protégé software to edit the ontology.

Figure 4.2: A visualization of all the events in a trip. The analyst configures how to
display each type of event. When clicking on an event, ABSTRACT displays all the
information available about this particular event (type, timecode and any other field
related to this event). It is also possible to visualize this particular event on a map with
Google Earth (as long as the GPS coordinates are available). The exclamation marks
correspond to warnings. A triangle corresponds to an activation or deactivation of the
system. A dot, depending on its colors, corresponds to a change in gap setting or speed
setting.

We have adapted ABSTRACT software to make it possible to visualize a set of trips.
For example, we can visualize all the morning commutes of driver 03 in Figure 4.4.

With ABSTRACT it is also possible to define patterns and create new events when
this pattern is found. This way, it is possible to translate a sequence of event with a low

25

Figure 4.3: Screenshot of the ontology in Protégé software.

26

Figure 4.4: We made it possible to visualize a set of trips in parallel with ABSTRACT.
Here we can see the morning commutes of the driver 03. Each timeline represents a dif-
ferent trip. The name of the trip is displayed on the top right corner of the timeline. On
this screenshot, we can see the timelines of the “CACC-03-Silver-081107-0243” and
“CACC-03-Silver-081110-0252” trips and the top of the timeline of the “CACC-03-
Silver-081112-0260” trip. Each timeline displays points related to the corresponding
trip. Each timeline displays the whole trip. The scale of the timeline is the percentage
of time of the trip, that is to say the far left represents the beginning of the trip (0% of
the time of the trip) and the far right represents the end of the trip (100% of the time of
the trip). The scale is therefore relative to each trip.

27

A C C _ e v e n t s _ d e a c t i v a t e _ L a s t D e a c t i v a t i o n
T h i s t r a n s f o r m a t i o n f i n d s t h e l a s t d e a c t i v a t i o n e v e n t o f t h e t r i p

PREFIX myfn : < j a v a : com . l d o d d s . s p a r q l . >
PREFIX kb : < h t t p : / / p r o t e g e . s t a n f o r d . edu / kb#>
PREFIX r d f : < h t t p : / / www. w3 . org /1999/02/22− r d f−syn t ax−ns #>
PREFIX xs : < h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#>
PREFIX fn : < h t t p : / / www. w3 . org / 2 0 0 5 / xpa th−f u n c t i o n s #>

CONSTRUCT {

#Add a new o b s e r v e l i n k e d t o n p r e v i o u s o b s e r v e s and ha v i ng n new p r o p e r t i e s
? r1 kb : i n f e r r e d _ : a .
_ : a a kb : A C C _ e v e n t s _ d e a c t i v a t e _ L a s t D e a c t i v a t i o n ;

kb : d a t e ? d1 ;
kb : l a t i t u d e ? l a t i t u d e ;
kb : l o n g i t u d e ? l o n g i t u d e ;
kb : t imes t amp ? t imes t amp ;
kb : g a p _ s e t t i n g ? g a p _ s e t t i n g ;
kb : s p e e d _ s e t t i n g ? s p e e d _ s e t t i n g

}
WHERE {

#Obs . i s n o t f o l l o w e d by an Obs o f t y p e kb : t y p e over a c e r t a i n t i m e
? r1 a kb : A C C _ e v e n t s _ d e a c t i v a t e ;

kb : d a t e ? d1 ;
kb : l a t i t u d e ? l a t i t u d e ;
kb : l o n g i t u d e ? l o n g i t u d e ;
kb : t imes t amp ? t imes t amp ;
kb : g a p _ s e t t i n g ? g a p _ s e t t i n g ;
kb : s p e e d _ s e t t i n g ? s p e e d _ s e t t i n g .

OPTIONAL {
? r2 a kb : A C C _ e v e n t s _ d e a c t i v a t e ;

kb : d a t e ? d2 .
FILTER (xs : do ub l e (? d1) < xs : d oub l e (? d2))

} .
FILTER (! bound (? r2))

}

Figure 4.5: Example of a SPARQL rule used in ABSTRACT.

level semantic into a more abstract sequence of event. ABSTRACT uses the ontology to
specify the semantics and keep the track of the transformations. The transformations
are defined as rules. The transformation is defined in SPARQL language. Figure 4.5
shows an example of a SPARQL rule defined for the CACC experiment.

4.2.2 ABSTRACT combined with Google Earth
ABSTRACT itself focus on the visualization of events over the time. When GPS in-
formation is available, we can export the information to display the events on Google
Earth. It makes it possible to visualize the events in their geographical context, which
is particularly interesting to see if there is some regularity in the spatial distribution
of events. For example, we want to know where the driver deactivates the (C)ACC
system.

ABSTRACT offers a feature to easily export, without programming, any set of
events (see figure 4.6). Indeed, you can select a type of event and export all events

28

of this type or any of its subtypes to Google Earth.

Figure 4.6: With ABSTRACT, it is easy to export all events of one type to Google Earth
in order to display their geographical position. No coding skill is needed as the export
is automated. The hierarchy of types is the same as in the ontology.

The user can interactively focus on more specific types of events or broader types
of events. This same feature, that was initially available for a single trip has been
extended for a set of trips. In figure 4.7, we can see a visualization of a set of events
of type “ACC_events_deactivate_LastDeactivation” for all the morning commutes of
driver 03.

4.3 A Chain of Tools as an Interactive Framework
The ABSTRACT tool was developed in collaboration between LESCOT and LIRIS lab-
oratories. LIRIS is a laboratory in computer science with expertise in knowledge en-
gineering aspects. ABSTRACT supports a knowledge discovery approach as described
by Fayyad et al. (1996) in figure 4.8.

Actually, the whole approach of Knowledge Discovery is being adapted to the ac-
tivity analysis. LESCOT and LIRIS propose to modify the classical knowledge dis-
covery approach to make it more interactive. The goal is to integrate the knowledge of
the analyst as soon as possible in the knowledge discovery process. For this purpose,
the knowledge is made explicit into ABSTRACT, during the equivalent “preprocessing”
and “transformation” phases. And at each step, the analyst can use his or her current

29

Figure 4.7: Visualization on Google Earth of all the events of type
“ACC_events_deactivate_LastDeactivation” for all the morning commutes of
driver 03.

knowledge to tune the previous step. This leads to a very iterative approach with much
more interaction between the analyst and the system.

ABSTRACT and BIND support this interactive cycle we are developing. BIND is
meant to select and process the data, while ABSTRACT is meant to transform the data.
Figure 4.9 shows how this Interactive Knowledge Discovery approach is supported by
LESCOT’s tools.

4.4 What about Future Sets of Data?
Each analysis is unique. The content of the analysis will always be different. However,
the tools and the method we propose are suited for any analysis focusing on under-
standing the driving activity.

The methods described in this chapter can therefore be reused. The tools can be
reused. The post-processing has to be redefined according to the new set of data. The
ontology, which contains the semantics of the data analysed has to be redefined or
adapted to the new goals of the analysis. New transformation rules will be created
according to the needs of reformulation of the analysis.

30

Figure 4.8: Standard Knowledge Discovery approach, from Fayyad et al. (1996).
Knowledge Discovery is a succesion of several steps, from the selection, preprocessing
and transformation of the data, to the data-mining, to the interpretation, by a human ex-
pert, of discovered patterns. The interpretation of these patterns builds new knowledge
and helps the expert to tune the previous steps of the knowledge discovery process.

Figure 4.9: LESCOT’s tools support the Interactive Knowledge Discovery approach
proposed by LIRIS and LESCOT laboratories. BIND is suited for the preprocessing of
the data. ABSTRACT makes it possible to transform the data and identify interesting
patterns. AUTOMATA is a mining algorithm allowing to find models of the activity with
an automaton formalism.

31

Chapter 5

Future Collaboration

The goal of this work was to tighten the current links between the PATH and LESCOT
laboratories. The long-term goal is to work together on common projects. In order to
support this long term objective, we have learned about each others’ approaches and
we have shared data, tools and ways of analyzing data.

5.1 Achievements
The realizations of this work shows LESCOT tools can be used to analyse PATH data.
This work has led to:

• Develop conversion scripts to read PATH data in BIND;

• Actually convert PATH data into BIND-trip format for driver 03;

• Develop post-processing scripts in BIND to analyze CACC data;

• Actually apply this post-processing on driver 03 data;

• Visualize (C)ACC data and videos simultaneously with BIND;

• Export data for ABSTRACT from BIND;

• Develop an ontology defining a semantic for (C)ACC events;

• Actually import the trips from driver 03 in ABSTRACT;

• Visualize the (C)ACC events in ABSTRACT for the trips of driver 03;

• Define rules in ABSTRACT to identify some patterns in the (C)ACC data;

• Export interactively (with a user interface, no programming) the (C)ACC events
from ABSTRACT to Google Earth.

From a more qualitative point of view, this collaboration has led to:

32

• Find workarounds to licences and data privacy issues to make this work possible;

• Share PATH data;

• Share the tools we use to analyse data;

• Share the methods we use to analyse data;

• Understand the differences and similarities in PATH’s and LESCOT’s approaches
to analyse data.

This collaboration has revealed that PATH’s and LESCOT’s tools and approaches
for analysing car-driving data are compatible. We have shown that PATH data can be
analysed with LESCOT’s tools, BIND and ABSTRACT. All the technical issues have
been solved. The conversion scripts are generic enough to allow the future import of
new PATH data into LESCOT’s tools, with only minor changes.

This work has been the occasion to demonstrate from the very beginning (importing
the data) to the end (analysing data into ABSTRACT) how PATH data could be analysed
with LESCOT’s tools.

PATH’s and LESCOT’s approaches have a lot in common. We post-process the
data. We visualize the data. We iteratively modify the post-processing and the visual-
ization to produce a deeper analysis. We visualize data on a map to understand their
relation to the geographical context.

However, on one hand PATH goes deeper in the comparison of several trips. LESCOT’s
tools focus more on a single-trip analysis, while PATH’s tools focus more a multi-trip
analysis. On the other hand, LESCOT tools are more interactive and help an ana-
lyst to visualize the context of the data (with video or interactive visualization tools).
LESCOT’s tools are meant to explicitly describe the knowledge discovered in the data
by an analyst (typically with the ontology and the SPARQL rules in ABSTRACT), while
PATH’s scripts implicitly contain this knowledge in the source code of the scripts.
LESCOT’s and PATH’s tools both need the intervention of a developer. However,
PATH’s tools are entirely developed in Matlab, with very little user interfaces, which
makes it difficult to use for people without an engineering background. LESCOT’s
tools on the other hand have much more user interfaces, in order to make the tools
accessible to psychologists or ergonomists. With LESCOT’s tools, a developer should
work with the analyst to translate specific needs in post-processing or pattern identifi-
cation into actual code.

In a nutshell, PATH’s and LESCOT’s approaches are complementary. PATH’s
scripts are designed for human factor engineers while LESCOT’s tools are designed
for psychologists and ergonomists.

5.2 Conclusions for future collaboration
First, for future collaboration, it will be absolutely necessary to solve the data-privacy
and licensing issues. A common agreement between PATH and LESCOT has to be
defined, making sure to clarify what data can be shared, what tools can be shared, and
what use of the tools and of the data is acceptable.

33

Without any frame, we had to find technical workarounds in order to make sure
LESCOT’s tools remained on LESCOT’s computers and PATH’s data remained on
PATH’s computers, which made the collaboration less efficient.

Now that we have shown that we can share data and tools, it would be interesting
to start a joint analysis of the same set of data. PATH would produce a human factor
analysis while LESCOT would produce an activity analysis in cognitive psychology.
This joint analysis would highlight the complementarity of both approaches.

Even more interesting, we could merge both analyses. For example, PATH could
use LESCOT’s results in the activity analysis to refine their human factor analysis. Or
LESCOT could use PATH’s results in the human factor analysis to get a global view of
the situations that are worth studying.

A nice way to make this future collaboration effective would be to submit a joint
project. The distance, the different sources of funding from one country to another and
the data-privacy issues make such a collaboration difficult. But it is still possible and
worthwhile.

In a short term period, PATH and LESCOT should write a common publication to
make this collaboration visible to the scientific community.

This collaboration should not be taken for granted. There is a risk for it to fade away,
for a human ressource reason. At PATH, the human factor or human activity analy-
sis is a minor aspect of the laboratory research. At the moment Steve Shladover and
Christopher Nowakowski are the two only following this collaboration. At LESCOT,
several tools and methods for the data analysis are developed and maintained by non-
permanent people. Their expertise might not be available at LESCOT in several years.

In order to prepare the future, PATH and LESCOT should maintain the contact,
start preparing a legal agreement and write a joint publication. And then, when the
opportunity of proposing a joint project will occur, both PATH and LESCOT will be
ready to work together.

34

Conclusion

This work has been the occasion for PATH and LESCOT to share data and tools and to
see how PATH’s CACC data could actually be analysed using LESCOT’s tools.

Some data-privacy and licensing issues have been raised but were solved with tech-
nical workarounds. Then, the technical issues of data-conversion and data-processing
issues were solved. Data could be imported and processed in LESCOT’s tools, BIND
and ABSTRACT. The concept of the data analysis with BIND and ABSTRACT has been
demonstrated. This made it possible to highlight the similarities and the differences
between PATH and LESCOT approaches to analyse the data.

PATH approach focus on the human factor analysis while LESCOT approach focus
on the activity analysis, from a cognitive science standpoint. Both approaches are com-
plementary and this collaboration shows us how interesting it would be to go further.

In the future, PATH and LESCOT should maintain the contact and prepare a legal
agreement between both laboratories. In parallel to this background work, the next step
would be to propose a joint data-analysis project.

35

Acknowledgments.

This work was supported by Région Rhône-Alpes through the Explo’RA Doc grant
and the “Transport, Territories and Society” Cluster.

36

Appendix A

Tutorials

A.1 “dirs.mat” file format
The “dirs.mat” file describes a list of trips. This file is used as a (default) parameter in
two scripts that was developed for PATH: the data conversion script from PATH-trip to
BIND-trip and the post-processing script. The “dirs.mat” file stores a Matlab variable
containing a list of input and output directories, this way scripts can be run on batch
mode on this selection of directories.

The “dirs.mat” file stores the dirs Matlab variable. The dirs variable is a 2× n
cell-array of input and output directories (absolute path to the directories).

A.1.1 How to create the “dirs.mat” file?
Simple example of a dirs variable with only one trip:

% initialize the dirs variable
dirs = cell(2,1);
% input directory
dirs{1,1} = ’C:\CACC\Driver03\Silver\Date081106\Trip0241\’;
% output directory
dirs{2,1} = ’C:\CACC\Driver03\Silver\Date081106\Trip0241\’;
% save to the dirs.mat file
save(’dirs’,’dirs’);

Note that the output directory can be the same as the input directory, which means
you’ll save the output of the script in the same directory.

You can generalise the first example to any number of trips:

% initialize the dirs variable
dirs = cell(2,number_of_trips);
% for each trip...

% input directory #i
dirs{1,i} = path_to_input_direcory[i];
% output directory #i
dirs{2,i} = path_to_output_direcory[i];

% save to the dirs.mat file
save(’dirs’,’dirs’);

37

A.2 Tutorial: How to convert PATH trips to BIND-trips?

A.2.1 Prerequisite
1. Install the Matlab Compiler Runtime (execute the “MCRInstaller.exe” file).

2. Copy the “Cacc2SQLiteTrip.exe” file on your hard drive. The log files gener-
ated by the execution of the script will be stored in the same directory as this
executable file.

3. Install video codecs for reading the original video files and compressing the out-
put video files (DivX codec for the conversion in BIND format). For an easy
setup, you can install Windows Essentials Media Codec Pack and the DivX com-
pression codec.

4. Install Virtual Dub on the folder “C:\”. The “Cacc2SQLiteTrip.exe” script will
expect to find the program at the path: “C:\vdub\vdub.exe”.1

A.2.2 Execution of the script
Run the “Cacc2SQLiteTrip.exe” file. If a “dirs.mat” file is found in the working direc-
tory, this file will be used as a parameter to run the script in batch mode on all the trips
in the dirs variable. Otherwise, a browser will appear to select the path to one trip to
convert (in this case, the output directory, where the BIND-trip file will be stored is the
trip directory).

All the defined trips will be processed. A “Cacc2SQLiteTrip.log” file will be cre-
ated, reporting what happened during the whole conversion process.

A.2.3 Actions of the script
For each input directory (corresponding to a PATH-trip), this script:

• loads the data, converts it into a BIND-trip and save the resulting “.trip” file in
the corresponding output directory.

• loads the 2 minutes-length video files, merges them and compress the result to
produce two video file for the whole trip: one for the front view, one for the
quadravision. The two “.avi” files are saved in the corresponding output direc-
tory.

Note that the naming of the “.trip” and “.avi” files follows this convention: “CACC-
dd-Vehicle-YYMMDD-TTTT”, where “dd” is the number of the driver, “Vehicle” is
the name of the vehicle, either “Copper” or “Silver”, “YYMMDD” is the date of the
trip with two digits for the year followed by two digits for the month and two digits
for the day, and “TTTT” is the number of the trip. For example, for the trip 320 of
driver 03, the files would be named: “CACC-03-Copper-081118-0320.trip” for the trip

1The path to Virtual Dub is specified in hard in the Matlab function berkeleyVideoConversion()
(line 4).

38

file, “CACC-03-Copper-081118-0320-front.avi” for the front video and “CACC-03-
Copper-081118-0320-quadra.avi” for the quadravision video.

A.2.4 Log file
The “Cacc2SQLiteTrip.log” file will show information about the sequence of events
of the execution of the script. The log file will be saved in the same directory as the
“Cacc2SQLiteTrip.exe” file2. At the end of the log, two summaries are presented.
A detailed summary shows significant information about each single trip conversion
(execution time and if errors occurred). A global summary shows the global conversion
time, the number of trips converted and if errors have occurred. This way, with a quick
glance at the summary, you can get relevant information about what happened during
the execution of the script.

A.2.5 Execution time
On the CACC experiment, for the 36 trips of the driver 03, the execution time of the
conversion script took about 6.25 days3. This corresponds to an average of 4.2 hours
per trip. About half of this time is used for the data conversion from PATH-trip to
BIND-trip format and half for the video conversion.

Note that we encountered once a problem with virtualdub program during the con-
version. A pop-up of virtualdub waiting for the user to intervene had blocked the
conversion process for about 80 hours (during a week-end). It is recommended that
somebody check regularly the conversion process. Errors in Matlab would not stop the
conversion process, but errors outside Matlab (that is to say in virtualdub) can block
the conversion.

A.2.6 Reusability
This script can be reused quite easily. On a new data set, or if PATH scripts for load-
ing data changes, an update of the script should be produced (just updating with new
PATH-scripts).
The script is generic and take advantage of the structure format of PATH-trips to make
the conversion. There will only be an issue if the type of some data loaded is not
numeric (in the CACC data, only one field was not numeric–one of the timestamp
fields–, this issue was solved specifically for this particular field). The solution would
be to make the conversion function (berkeleyFolder2sqlite()) more generic
so that it can directly handle different data-types.
As for the video conversion scripts, they are specific to the way video is handled in the
CACC experiment. Some coding would be necessary to adapt this part of the script to
another set of videos or an other slicing principle (functions berkeleyVideoConversion(),
genereScriptAppend(), genereScriptStrip() and videoList()).

2Any older log file will be overwritten. If you want to keep a track of what happened in your previous
conversion, you should make sure that you backup the log files.

3The conversion time from the log was about 9.5 days (228 hours and 24 minutes), but it was due to a
blocking pop-up windows which occurred during a week-end, blocking the process for about 80 hours.

39

A.3 Tutorial: How to post-process BIND-trips and ex-
port files to ABSTRACT?

A.3.1 Prerequisite
1. Install the Matlab Compiler Runtime (execute the “MCRInstaller.exe” file).

2. Copy the “CaccAnalysis.exe” file on your hard drive. The log files generated by
the execution of the script will be stored in the same directory as this executable
file.

A.3.2 Execution of the script
Run the “CaccAnalysis.exe” file. A “dirs.mat” file has to be present in the working
directory, this file is used as a parameter to run the script on all the trips in the dirs
variable.

All the defined trips will be processed. A “CaccAnalysis.log” file will be created,
reporting what happened during the whole conversion process.

A.3.3 Actions of the script
For each output directory of the “dirs.mat” file (corresponding to a BIND-trip), this
script:

• processes data in the BIND-trip to create new events and situations,

• processes a specific set of events and situation and exports them in a CSV file (in
the same output directory as the “.trip” file) that can be imported in ABSTRACT
software.

Note that the script will look for trip files respecting the naming convention used by
the “Cacc2SQLiteTrip.exe” script. The naming of the output CSV file will be the
name of the trip file extended with the string “4ABSTRACT.csv”. For example, for
the trip 320 of driver 03, the CSV file would be named “CACC-03-Copper-081118-
0320.trip4ABSTRACT.csv”.

A.3.4 Log file
The “CaccAnalysis.log” file will show information about the sequence of events of
the execution of the script. The log file will be saved in the same directory as the
“CaccAnalysis.exe” file4. At the end of the log, a global summary is presented. It
shows the global post-processing time and if errors have occurred. This way, with a
quick glance at the summary, you can get relevant information about what happened
during the execution of the script.

4Any older log file will be overwritten. If you want to keep a track of what happened in your previous
conversion, you should make sure that you backup the log files.

40

A.3.5 Execution time
On the CACC experiment, for the 36 trips of the driver 03, the execution time of the
post-processing script took about 2.5 hours (148min). This corresponds to an average
of 4.11 minutes per trip.

A.3.6 Reusability
This script focus on specific analysis. Therefore, the structure of the script can be kept
for some other analysis, but it does not make any sense to keep the specific calculation
relative to CACC data. The specific calculation is being made in the caccCreateEventsOnTrip()
function. As this function computes specific information relevant to CACC data, much
of this function have to be rewritten. The other functions are generic and can be reused.

A.4 Tutorial: How to use BIND-visualization plugins?

A.4.1 Prerequisite
1. Install the Matlab Compiler Runtime (execute the “MCRInstaller.exe” file).

2. Copy the “distribution.exe” file on your hard drive. The log files generated by
the execution of the script will be stored in the same directory as this executable
file.

3. Install video codecs for reading the original video files. For an easy setup, you
can install Windows Essentials Media Codec Pack and the DivX codec.

A.4.2 Execution of the program
Run the “distribution.exe” file. This will load a user interface in which you can load
BIND-trips, select visualization plugins. Then, you can visualize the data and the
videos synchronously and have an easy control to move in the video/data.

41

	Introduction
	Context
	PATH–LESCOT collaboration
	The current context
	PATH and CACC experiment
	LESCOT and tools development
	Benoît Mathern's PhD and work

	Goals of this collaboration
	Goals for PATH and LESCOT
	Goals for Benoît Mathern

	Organisation of the Work
	Meetings and Organisation
	Licenses and Data-Privacy Issues
	Issues
	Technical Workarounds

	Adapting LESCOT's Tools to CACC data: Technical Aspects
	Converting to Bind-Trip Format
	PATH-Trip Format
	Bind-Trip Format
	Trip-Format Comparison
	Converting the Data
	Converting the Videos

	Post-Processing Data in Bind
	Post-processing
	Export

	Multiple Trips with Bind and Abstract
	What about Future Sets of Data?

	How Can LESCOT Tools Help to Analyse CACC Data?
	Bind
	Bind as a data-processing framework
	Bind as a data-visualization framework

	Abstract
	Abstract visualization
	Abstract combined with Google Earth

	A Chain of Tools as an Interactive Framework
	What about Future Sets of Data?

	Future Collaboration
	Achievements
	Conclusions for future collaboration

	Conclusion
	Appendix
	Tutorials
	``dirs.mat'' file format
	How to create the ``dirs.mat'' file?

	Tutorial: How to convert PATH trips to Bind-trips?
	Prerequisite
	Execution of the script
	Actions of the script
	Log file
	Execution time
	Reusability

	Tutorial: How to post-process Bind-trips and export files to Abstract?
	Prerequisite
	Execution of the script
	Actions of the script
	Log file
	Execution time
	Reusability

	Tutorial: How to use Bind-visualization plugins?
	Prerequisite
	Execution of the program

