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Chapter 5

Data Mining Techniques for 
Communities’ Detection in 
Dynamic Social Networks

Céline Robardet
Université de Lyon, France

ABSTRACT

Social network analysis studies relationships between individuals and aims at identifying interesting 
substructures such as communities. This type of network structure is intuitively defined as a subset of 
nodes more densely linked, when compared with the rest of the network. Such dense subgraphs gather 
individuals sharing similar property depending on the type of relation encoded in the graph. In this 
chapter we tackle the problem of identifying communities in dynamic networks where relationships 
among entities evolve over time. Meaningful patterns in such structured data must capture the strong 
interactions between individuals but also their temporal relationships. We propose a pattern discovery 
method to identify evolving patterns defined by constraints. In this paradigm, constraints are parameter-
ized by the user to drive the discovery process towards potentially interesting patterns, with the positive 
side effect of achieving a more efficient computation. In the proposed approach, dense and isolated 
subgraphs, defined by two user-parameterized constraints, are first computed in the dynamic network 
restricted at a given time stamp. Second, the temporal evolution of such patterns is captured by associ-
ating a temporal event types to each subgraph. We consider five basic temporal events: the formation, 
dissolution, growth, diminution and stability of subgraphs from one time stamp to the next one. We 
propose an algorithm that finds such subgraphs in a time series of graphs processed incrementally. The 
extraction is feasible thanks to efficient pruning patterns strategies. Experimental results on real-world 
data confirm the practical feasibility of our approach. We evaluate the added-value of the method, both 
in terms of the relevancy of the extracted evolving patterns and in terms of scalability, on two dynamic 
sensor networks and on a dynamic mobility network.
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INTRODUCTION

Social network analysis conceives social relation-
ships in terms of graphs of interactions whose 
nodes represent individual actors within the net-
works and links social interactions such as ideas, 
friendship, collaboration, trade, etc. Virtual com-
munities, and particularly online communities, 
are peculiar social networks whose analysis is 
facilitated by the fact that the network is in some 
sense monitored continuously. Social networks 
have attracted a large amount of attention from 
epidemiologists, sociologists, biologists and com-
puter scientists that have shown the ubiquitous role 
played by social networks in determining the way 
problems are solved or organizations are run. The 
study of such networks has attracted much atten-
tion in the recent years and has proceeded along 
two main tracks: the analysis of graph properties, 
such as degree distribution, diameter or simple 
graph patterns such as cliques (Scherrer et al., 
2008, Leskovec et al., 2005), and the identifica-
tion of communities, which are loosely defined as 
collections of individuals who interact unusually 
frequently (Newmann, 2004, Palla et al., 2005). 
Communities reveal properties shared by related 
individuals. However, most of the interesting 
real-world social networks that have attracted the 
attention of researchers in the last few years are 
intrinsically time dependent and tend to change 
dynamically. As new nodes and edges appear 
while some others disappear over time, it seems 
decisive to analyze deeply the evolution of such 
dynamic graphs. Furthermore, there is a crucial 
need for incremental methods that enable to find 
groups of associated nodes and detect how these 
structures change over time.

Communities are loosely defined as highly 
connected subgraphs that are also isolated from the 
rest of the graph. Such properties can be captured 
by measures such as modularity (Newman, 2004) 
used to find disjoint communities forming a parti-
tion. The modularity of a given partition of nodes 
is the number of edges inside clusters (as opposed 

to crossing between clusters), minus the expected 
number of such edges if the graph was random 
conditioned on its degree distribution. Commu-
nity structures often maximize the modularity 
measure. However, this measure has an intrinsic 
resolution scale, and can therefore fail to detect 
communities smaller than that scale and favor in 
general communities of similar size (Fortunato et 
al., 2007). Moreover, it has been shown (Brandes 
et al., 2008) that finding the community structure 
of maximum modularity for a given graph is NP-
complete and thus heuristics have been proposed 
that approximate this optimization problem.

Instead of directly looking for a global structure 
of the graph, such as a partition of the vertices, 
it can be more efficient to proceed in two steps. 
One might first compute subgraphs that capture 
locally strong associations between vertices and 
then use these local patterns to construct a global 
model of the graph’s dynamics. Such a frame-
work provides more interesting patterns when 
the analyst can specify his inclination by means 
of constraints. Many pattern mining under local 
constraints techniques (e.g., looking for frequent 
patterns, data dependencies) have been studied 
extensively the last decade (Morik et al., 2005). 
One crucial characteristic of local pattern mining 
approaches is that the interestingness of a pat-
tern can be computed independently of the other 
patterns. Such framework enables the analyst to 
specify a priori relevancy of pattern by means of 
constraints. The constraints have been identified 
as a key issue to achieve the tractability of many 
data mining tasks: useful constraints can be deeply 
pushed into the extraction process such that it is 
possible to get complete (every pattern which 
satisfies the user-defined constraint is computed) 
though efficient algorithms.

Specific subgraphs defined by constraints have 
already been examined. Fully connected sub-
graphs, also called cliques, are a local pattern type 
that has been considered as communities. Palla et 
al. (2005) consider that communities rely on sev-
eral complete (fully connected) subgraphs of size 
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k that share k-1 of their nodes. Such structures can 
be explored systematically with a deterministic al-
gorithm. Although clique is a popular pattern type 
that captures dense subgraphs, it fails in properly 
handling experimental data that are intrinsically 
noisy. Indeed, in such data, some links may be 
missing even in dense substructures. To cope with 
this problem, a relaxed definition of cliques has 
been proposed. Pseudo cliques are natural exten-
sion of cliques which are subgraphs obtained by 
removing a small number of edges from cliques, 
expressed as a proportion compared to the number 
of links the subgraph would contained if it was a 
clique. Thus, pseudo cliques are subgraphs with 
a density higher than a given threshold and recent 
research results have shown that the constraints 
defining pseudo cliques can be efficiently used 
in a mining algorithm (Uno, 2007). We extend 
this result to derive a new algorithm that extracts 
isolated pseudo-cliques and their evolution in time. 
We consider five basic temporal event types that 
are associated to the computed subgraphs: the 
formation, dissolution, growth, diminution and 
stability of such patterns. Such evolving patterns 
make possible to describe the processes by which 
communities come together, attract new members, 
and develop over time. We propose an algorithm 
that mines such evolving patterns. The use of 
complete solvers allows us to answer constraint 
user queries without uncertainty. Algorithmic 
technical details can be found in (Robardet, 2009). 
In this chapter, we provide much more details and 
examples on how the proposed method identifies 
communities.

This chapter is organized as follows. The 
next section is dedicated to related work on the 
subject. It is followed by the presentation of the 
constraints that define the pattern types extracted 
in static graph. Then, the evolving pattern types 
are introduced. An algorithm that mines them is 
presented. Some experimental results are thus 
reported. Finally, some conclusions and future 
work close this chapter.

RELATED WORK

There is an increasing interest in mining dynamic 
graphs. Earlier work studied the properties of the 
time evolution of real graphs such as densification 
laws and shrinking diameters (Leskovec et al., 
2005), and the evolution of known communities 
over time (Backstrom et al., 2006). Other papers 
have focused on community extraction thanks to 
constrained optimization (Chi et al., 2007), low-
rank matrix approximation approaches (Tong et 
al., 2008), information theoretic principles (Sun et 
al., 2007) or combinatorial optimization problems 
(Tantipathananandh et al., 2007).

Another body of work considers constrained-
based mining approaches to extract knowledge 
from static graphs. Efficient algorithms that com-
pute maximal cliques have been proposed (Makino 
et al., 2004). Many papers propose to relax the 
clique property by allowing the absence of some 
links. Strongly self-referring subgraphs are defined 
in (Hamalainen et al., 2004) as a set of nodes S 
whose nodes are connected to at least a given 
proportion of nodes of S. Zhu et al. (2007) give 
a comprehensive study on the pruning properties 
of constraints on graphs. They study the pruning 
properties for involved structural constraints 
in graph mining which achieve pruning on the 
pattern search space and data space. A general 
mining framework is proposed that incorporates 
these pruning properties.

Pseudo clique mining, defined as the search 
for subgraphs having a density greater than a user-
defined threshold, was first studied in (Pei et al., 
2004), but the complete exploitation of the loose 
anti-monotonicity property of the pseudo clique 
constraint was only achieved in (Uno et al., 2007) 
where a polynomial delay algorithm that extracts 
all pseudo cliques is proposed.

Considering the extraction of patterns in dy-
namic graphs, Borgwardt et al. (2006) propose 
to apply frequent subgraph mining algorithms to 
time series of graphs to extract subgraphs that are 
frequent within the set of graphs. The extraction of 
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periodic or near periodic subgraphs is considered 
in (Lahiri et al., 2008) where the problem is shown 
to be polynomial. Finally, the so-called change 
mining framework is proposed in (Böttcher et 
al., 2008) as an abstract knowledge discovery 
process based on models and patterns learned 
from a non-stationary population. Its objective 
is to detect and analyze when and how changes 
occur, including the quantification, interpretation 
and prediction of changes.

IDENTIFYING DENSE AND ISOLATED 
SUBGRAPHS IN A STATIC GRAPH

Let us first present the static pattern type we are 
interested in. Let G=(V,E) be a simple undirected 
graph with a vertex set V and an edge set E. The 
subgraph induced by a subset of vertices S is the 
graph GS=(S,ES) where Es={{u,v}∈ E and u,v 
∈ S2}. The degree, degs(u), of a vertex u on the 
subgraph induced by S is the number of vertices 
of S adjacent to u, i.e., degS(u)=|{v ∈ S such that 
{u,v}∈ E}|.

Subgraphs of interest are usually those made 
of vertices that have a high density of edges. If 
any pair of vertices in a subgraph is connected 
by an edge, the subgraph is called a clique. Such 
subgraphs have a density of 1, where density is 
the number of edges in the subgraph divided by 
the maximal number of possible edges. To relax 

this strong property, we can consider subgraphs 
with density higher than a user-defined threshold. 
Such subgraphs are usually called pseudo cliques 
or quasi cliques. Given a user-defined threshold σ∈ 
[0,1] and a set of nodes S of size n, the subgraph 
GS=(S,ES) induced by S is a pseudo clique if and 
only if it is connected and 2|ES|/(n(n-1))>σ.

Constraint-based mining algorithms require 
taking advantage of the constraints to prune huge 
parts of the search space which can not contain 
valid patterns. Pruning based on monotonic or 
anti-monotonic constraints has been proved ef-
ficient on hard problems since when a candidate 
does not satisfy the constraint then none of its 
generalizations or specializations can satisfy it 
as well.

Let us first remark that pseudo clique con-
straint is not anti-monotonic with respect to the 
enumeration of induced subgraphs based on the 
set inclusion of their vertices set: expanding a set 
of nodes S could make 2|ES|/(n(n-1)) increase or 
decrease. However, this constraint is loose anti-
monotonic, that is to say, pseudo cliques can always 
be grown from a smaller pseudo cliques with one 
vertex less (Zhu et al., 2007, Bonchi et al., 2007). 
Zhu et al. have shown that if S is a valid pseudo 
clique, thus the set obtained by removing from S 
a vertex having the smallest degree on S is also a 
pseudo clique. Figure 1 illustrates this property: 
S={1,2,3,4,5} is a pseudo-clique with σ=2/3. If 
we remove node 2 that has the smallest degree 

Figure 1. Illustration of the loose anti-monotonicity of pseudo-cliques
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on S, the resulting subgraph {1,3,4,5} is a also a 
valid pseudo-clique.

To be efficient, the pseudo cliques enumeration 
process must tap the pruning power from the loose 
anti-monotonicity of pseudo clique. It is clear that 
adding to a current pseudo clique S the node v 
that satisfies

deg v = m in deg uS v u S v S vÈ{ } Î È{ } È{ }( ) ( ) (1)

leads to a pseudo clique, unless none of the su-
persets of S is a pseudo clique. Thus, an efficient 
algorithm would enumerate recursively nodes 
by finding at each iteration the node v that satis-
fies (Equation 1) and stop the enumeration if the 
obtained subgraph is not a valid pseudo clique. 
Note that if several nodes satisfy (Equation 1), 
the one of smallest index is taken. This leads to 
a polynomial delay time algorithm, that is to say 
the time needed to generate each single pseudo 
clique is bounded by a polynomial in the size of 
the input graph. Uno 2007 proposes an algorithm 
that checks if a subgraph is dense in constant 
time and finds the next vertex to be enumerated 
in O(maxv∈VdegS(v)).

Pseudo cliques are local patterns that capture 
strong while not perfect associations in a graph. 
But, not all the pseudo cliques of a graph are of 
importance: some of them have many links to 

outside vertices, others are redundant. Figure 2 
(left) illustrates this phenomenon. 9 pseudo cliques 
have been extracted (σ=0.7) in the graph. These 
pseudo cliques are highly redundant.

To select the most useful pseudo cliques, we 
consider two other constraints that coerce the 
patterns to be isolated and maximal. To pick out 
pseudo cliques S with few links to nodes outside 
S, we constrain the average number of outside 
links per vertex. This constraint is similar to the 
isolated constraints defined for formal concepts 
and their generalization in (Cerf et al., 2008). 
Given a user defined threshold α∈R, a subgraph 
S is isolated iff

deg u deg u

S
V Så ( )- ( )
( ( £ ±  

Figure 2 (right) shows that, with a=1, a single 
isolated and maximal pseudo clique is extracted 
in the graph example. Such a pseudo clique has 
an average number of outside links per vertex 
lower or equal to 1.

Even though this constraint is also loose anti-
monotonic, its combination with the high density 
constraint is not loose anti-monotonic constraint. 
The two constraints cannot be ensured at the same 
time by an algorithm that exploits both loose 
anti-monotonic constraints. Hence, we propose 

Figure 2. Pseudo cliques with σ=0.7 (left), and pseudo cliques (σ=0.7) that are isolated (a=1) and 
maximal (right)
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to ensure the new constraint in a post-processing 
of the previously computed pseudo cliques.

Extracting maximal patterns is even more dif-
ficult, since this constraint is global and requires 
enumerating supersets of a candidate to check 
whether it is maximal. A practical approach 
consists in extracting locally maximal isolated 
pseudo cliques. A subgraph S of size n is a local 
maximal isolated pseudo clique if it satisfies the 
two constraints and no supersets of S of size n+1 
satisfies these two properties. With this constraint, 
the very large majority of non-maximal isolated 
pseudo cliques are removed, whereas the time 
complexity of the extraction remains the same.

MINING EVOLVING SUBGRAPHS

Local pattern mining algorithms provide a fre-
quently large and unstructured set of patterns 
that cannot be readily interpreted or exploited 
by the users (De Raedt et al., 2007). We propose 
to complement the first phase where potentially 
interesting subgraphs are mined in static graphs, 
with a second phase, in which sets of pattern are 
post-processed to answer temporal queries on 
dynamic graphs.

We consider a dynamic graph Ĝ = ( )G , ,G T1 ...
which is a time-series of T graphs, where Gt=(Vt,Et) 
is the graph with edges Et observed at time t, 
among the vertices of Vt.

The typical questions we want to consider are:

• Do the strong interactions observed at time 
t grow, diminish or remain the same over 
time?

• When do these subgraphs appear and 
disappear?

The objective here is to identify the temporal 
relationships that may occur between valid (i.e., 
locally maximal isolated) pseudo cliques. We 
denote by Ct the set of subgraphs of Gt that satisfy 

the constraints. We consider five basic temporal 
relationships between couples of subgraphs from 
consecutive time stamps:

Stability: S is said to stay the same at time t if it is 
a valid pseudo clique at time t and t-1: S∈Ct∧S∈Ct-1

• Growth: a subgraph S enlarges at time t if 
S is a valid pseudo clique at time t and a 
subpart of it forms a valid pseudo clique at 
time t-1: 
S C R,R S such that R Ct tÎ Ù $ Ì Î -   1

• Diminution: a subgraph S shrinks at time t 
if S is a valid pseudo clique at time t and is 
a subpart of a larger valid pseudo clique of 
time t-1: 
S C R,S R such that R Ct tÎ Ù $ Ì Î -   1

• Extinction: a subgraph S disappears at 
time t if it is a valid pseudo clique at time 
t-1 and if it is not involved in any previ-
ously defined pattern at time t: 
S C R such that R S,
R C R such that S R,R C

t

t t

Î Ù " Í
Ï Ù " Í Ï

-1    
   

• Emergence: a subgraph S emerges at time 
t if it is a valid pseudo clique in Gt and if 
none of its subsets or supersets are valid 
pseudo cliques in Gt-1: 
S C R such that R S,
R C R such that S R,R C

t

t t

Î Ù " Í
Ï Ù " Í Ï- -

   
   1 1

Those temporal relationships correspond to 
global constraints used to identify the dynamics 
of strong associations in graphs. We now pres-
ent an incremental algorithm that processes each 
static graph sequentially. Inspired by the Trie-
based Apriori implementation (Bodon, 2005), 
we propose to use a trie data structure (prefix 
tree) to store valid pseudo-cliques. Indeed, find-
ing evolving patterns requires the evaluation of 
subset queries over valid pseudo-cliques. Such 
queries are computationally consuming and re-
quire special attention.

Suppose that pseudo-cliques of Ct-1 are stored in 
a trie T. Each node of T consists of the set S of all 
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the vertices of the pseudo-clique, a list of temporal 
states, a list of pointers to other trie nodes and a list 
of time stamps. When a new valid pseudo-clique 
of Gt is computed, its vertex set S is inserted in 
T recursively. Figure 3 illustrates this process. 
Figure 3-A corresponds to the trie that contains 
the 4 pseudo cliques of time stamp t-1: {1,9,13}, 
{2,6,7,10}, {3,4,7,11} and {5,8,12}. Figure 3-B 
corresponds to the insertion of the valid pseudo-
clique {1,9,13} of time stamp t: starting from the 
root node, we first go to the child corresponding 
to the first vertex of S ({1}) and process the re-
mainder of S ({9,13}) recursively for that child. 
The recursion stops on a node whose vertex set 
is either S, or a prefix of S:

1.  In the first case, the temporal label “Stability” 
is pushed back in the temporal label list of 
the node and its time stamp is set to t.

2.  In the latter case, the node gets a new son 
with vertex set S, time stamp t and temporal 
label “Emergent” (see Figure 3-C where the 
pseudo-clique {2,6,10} is inserted and Figure 
3-D where {3,4,5,7,8,11,12} is inserted).

Then we look whether S is involved in a 
growing evolving pattern. To do so, we have to 
retrieve all the subsets of S from T by means of 
the following doubly recursive procedure: We first 
go to the child corresponding to the first vertex 
of S and process the remainder of S recursively 
for that child and second discard the first vertex 
of S and process it recursively for the node itself. 
If there exists subsets of S that belongs to T with 
time stamp label t-1, then the temporal state asso-
ciated to S is changed into “Growth” (see Figure 
3-E) and pointers to the corresponding subsets are 
stored in the list associated to the node. Those 
nodes are also tagged to avoid their consideration 
in the following step.

Now, we need to check whether the pseudo-
cliques of time stamp t-1 have shrunk (“Diminu-
tion”) or completely disappeared (“Extinction”). 
As tries are more effective to find subsets than 
to find supersets, a second traversal of the trie is 
performed when all pseudo cliques of Ct have been 
processed. For all the nodes with time stamp t-1 
that are not involved in “Stability” or “Growth” 
pattern, the function that searches subsets is trig-
gered. If there exists a subset that belongs to Ct, 
the state of the first node is set to “Diminution” 
and pointers to the corresponding subsets are 
stored in the node list, otherwise the state is set to 
“Extinction”, the pattern is output and the node is 
removed from the trie. For example, Figure 3-C 
illustrates the insertion of the pseudo-clique {2 6 
10} whose temporal label is “Emergent”. When 
all the pseudo-cliques of time stamp t are inserted, 
the second traversal of the trie is performed and 
the label of this node is set to “Diminution” (see 
Figure 3-F).

Figure 3. Evolving subgraphs construction
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EXPERIMENTATION

We evaluate the added-value of Evolving-Sub-
graphs and the general characteristics of evolving 
patterns subgraphs on three real-world dynamic 
networks: two dynamic sensor networks, imote 
and mit, and a dynamic mobility network velov, 
the shared bicycle system of Lyon. The main 
characteristics of these datasets are presented on 
Table 1. All experiments were done on a Pentium 
3 with 2 Giga of memory running on Linux.

Dynamic Sensor Networks

The two studied mobility networks used are based 
on sensor measurements. The imote (Chaintreau 
et al., 2005) data set has been collected during the 
Infocom 2005 conference. Bluetooth sensors have 
been distributed to a set of participants who were 
asked to keep the sensors with them continuously. 
These sensors were able to detect and record the 
presence of other Bluetooth devices inside their 
radio-range neighborhood. The available data 
concern 41 sensors over a period of nearly 3 days 
which represent 254151 seconds. The mit or Real-
ity Mining (Eagle et al., 2006) experimental data 
set constitutes of records from Bluetooth contacts 
for a group of cell-phones distributed to 100 mit 
students during

9 months. Each cellular phone conducts a 
Bluetooth device discovery scan and records the 
identities of all devices present in its neighborhood 
at a sampling period of 300 seconds. For both data 
sets, the Bluetooth devices may discover any kind 
of Bluetooth objects in its neighborhood. We have 
restricted our analysis to internal contacts only. 

Note also that the sensors had no localization ca-
pability. Therefore we do not have information on 
the actual movements of individuals carrying the 
sensors or on the proximity of two given sensors.

We study the imote dataset over a typical day 
and the mit data over a typical week. The number 
of edges and the average degree of those graphs are 
reported in Figure 4. We have carefully checked 
that the results obtained on these durations were 
similar for other periods. Both imote and mit 
graphs are sparse (the number of edges is low) 
and the number of edges and the average degree 
exhibit large variations during daytime.

To densify the graphs and cope with the flick-
ering edge problem that may append with ex-
perimental data, we aggregate the graphs over a 
period of 15 minutes for imote and 1 hour for mit: 
in both dynamic graphs, an edge exists if it ap-
pears at least once during the considered period. 
The resulting dynamic graphs have a maximum 
degree of 25 for imote and 22 for mit.

We extract evolving subgraphs with several 
density σ values, α being equal to 4.5 (average 
number of out-subgraph links per vertex) and the 
minimal size of the extracted locally maximal 
isolated pseudo cliques set to 4 for imote and to 
3 for mit. The total runtimes and number of com-
puted patterns are presented on Figure 5. These 
figures show that Evolving-Subgraphs is tractable 
in terms of execution time since it succeeds to 
extract the patterns in less than 20 minutes for 
different σ values varying between 1 and 0.6. The 
computational time is proportional to the number 
of output patterns what was expected according to 
the theoretical study of the time complexity of the 
pseudo clique mining algorithm. The time required 

Table 1. Dataset characteristics 

Dataset Nb Edges Nb timesteps Avg. Density

Imote 11785 282 0.025

Mit 107770 11763 0.001

Velov 279208 930 0.003
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to compute evolving patterns generally decreases 
with σ as well as the number of extracted patterns.

The numbers of evolving patterns of each type 
are shown on Figure 6. As the number of emergent 
patterns scales differently from other pattern types, 
their quantity is shown on the right ordinate axe, 
whereas the number of growth, stability and 
diminution patterns are plotted using the left or-
dinate axe. Even though the number of patterns 
decreases with the density threshold, we can 

observe that the number of each type of patterns 
varies irregularly.

Figure 7 shows the number of each pattern 
type at each time step. We can observe that the 
evolutions of these quantities are strongly cor-
related with the graph dynamic as depicted on 
Figure 4. The number of growth patterns is par-
ticularly correlated with the number of edges of 
the graph whereas the number of emergent pat-
terns is more regular across the time.

Figure 4. Statistics of graph properties, displayed as a function of time (imote on the left and mit on 
the right)

Figure 5. Runtime and number of extracted patterns (logarithmic scales) for imote (left) and mit (right) 
dynamic graphs for different density threshold σ
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Figure 8 shows the output of our method: nodes 
represent valid pseudo-cliques and the numbers 
they contain are vertices identifiers, solid arrows 
show evolving patterns and dashed arrows are 
drawn between following subgraphs that intersect. 
We can identify three main groups of people. The 
first one is composed of individuals 9, 15, 31, 34 
and 37. This group appears at time stamp 71, splits 
around time stamp 73 into two groups that then 
merge and integrate an additional vertex 5. The 

second group is made up of individuals 0, 4, 29 
and 35. Individuals 1 and 33 are nearby. This 
group is stable since it remains unchanged during 
two consecutive time stamps. The third group 
contains individuals 2, 14, 19 and 25 and is also 
stable.

Figure 6. Number of patterns of each type for imote (left) and mit (right) dynamic graphs for different 
density threshold σ

Figure 7. Number of patterns of each type at each time step for mit dynamic graph (σ=0.65)
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Shared Bicycle System VELOV

We analyze Lyon’s shared bicycling system VE-
LOV on the basis of the data provided by JCDe-
caux, promotor and operator of the program. The 
dataset contains all the bicycle trips that occurred 
between the 25th of May 2005 and the 12th of 
December 2007. Each record is anonymized and 
is made of the information about the date and 
time of the beginning of the trip, and of its end 
and the IDs of the departure and arrival stations 
(their geographical location being known). Dur-
ing this period, there were more than 13 million 
hired bicycle trips.

To analyze the velov dataset, we first ag-
gregate the number of rentals for every days of 
the week and every hour over the two and a half 
years period of observation. We thus obtain 168 
time stamps. Then to leverage the most important 
links, we remove the edges that had less than 50 
rentals over this period.

Figure 9 (left) shows the total number of ex-
tracted evolving patterns and Evolving-Subgraphs 
runtime for several σ values. α being set to 5 and 
the minimum subgraph size is equal to 3. Here 
again, we can observe that the number of extracted 
patterns increases with σ. Figure 9 (right) shows 

the repartition of the patterns among the different 
types of evolving patterns. The majority of the 
extracted patterns are emergent. The number of 
identical patterns can increase or decrease with σ: 
when a stable pattern disappears, usually a growth 
or diminution pattern appears.

Figure 10 displays the main patterns output 
by Evolving-Subgraphs when applied on velov 
dataset for time stamp between Monday 6 PM 
and Tuesday 7 AM. The analysis of the output 
evolving patterns brings interesting pieces of 
information: for example, around Monday mid-
night, the identified patterns gather stations that 
are nearby to each other. Subgraph 58, 78, 115 is 
made of stations located on the largest campus of 
Lyon and shows that there are many tips between 
these stations. Such pattern grows at 1 AM, with 
the addition of a neighboring station. Stations 
187, 71 and 90 are around the main Park of Lyon, 
also located in this area. Another important group 
of stations is the one made of stations 55, 84, 92 
and 99 that are all located in the 7th district of the 
city where many student rooms are.

Figure 8. Display of the evolving patterns for imote with σ=0.8, α=3 and the minimum subgraph size 
equals 4 that occur in the morning
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CONCLUSION

This chapter bridges the gap between constraint-
based mining techniques and dynamic graphs 
analysis. We have considered the evolving-pattern 
mining problem in dynamic graph. We introduced 
five new pattern types which rely on the extraction 
of dense subgraphs and the identification of their 

evolution. We formalized this task into a local-to-
global framework: Local patterns are first mined 
in a static graph; then they are combined with 
the ones extracted in the previous graph to form 
evolving patterns. These patterns are defined by 
means of constraints that are used to efficiently 
mine the evolving patterns. Our experiments on 
real life datasets show that our approach produces 

Figure 9. Runtime and number of extracted patterns for velov dynamic networks for different density 
threshold σ (left), number of patterns of each type (right)

Figure 10. Example of interesting subgraphs for velov network
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high quality patterns that are useful to understand 
the graph dynamics.

This technique can be of great interest for 
mining patterns of interactions in online commu-
nities, i.e. identifying groups of people that have 
strong social interactions and share some interest. 
Two main characteristics of our method make it 
a valuable tool for analysis online communities. 
First, whereas most of existing methods propose to 
identify group of interacting persons from a static 
point of view, here we propose to disclose how 
such groups emerge, attract new persons, or split, 
and disappear over time. This enables to analyze 
the temporal evolution of the online communities’ 
structure and keep track of the changes in the 
interests of the communities’ members. Second, 
the proposed method is incremental: For example, 
the graph of community member interactions can 
be updated everyday; Valid pseudo-cliques are 
thus extracted from it and then combined with 
the evolving patterns computed on the previous 
graphs. The global picture of the online commu-
nities is therefore maintained up to date without 
considering all the previous time steps (which 
would quickly becomes intractable) but just the 
previous time step graph. This is an important 
feature of the method which makes it usable on 
very long time periods.
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