
Disclosure Detection over Data Streams
in Database Publishing

Deming Dou
Université de Lyon, CNRS

INSA-Lyon,LIRIS,UMR5205
F-69621, Villeurbanne, France
deming.dou@liris.cnrs.fr

Advisor: Asst. Prof. Dr. Stéphane Coulondre

ABSTRACT
As huge amount of personal data collected into databases of
service providers increase, so does the risk of private infor-
mation disclosure. Recently, a number of privacy-preserving
techniques have been proposed, however, they are either pre-
controls or post-controls and limited in protection of privacy
without information loss or distortion, quite a few techniques
can be seen among literatures for detecting information dis-
closure in the process of data transmission. In this paper,
we focus on disclosure detection related to database pub-
lishing, and present a novel approach of detecting privacy
leakages over data streams on querying databases by using
dynamic pattern matching and data stream processing tech-
niques. Experimental results via Cayuga system verified the
feasibility of our proposal.

Categories and Subject Descriptors
H.2.7 [Database Management]: Security, Integrity, and
Protection

General Terms
Security, Algorithms, Verification

Keywords
Privacy preservation, Disclosure detection, Data stream, Con-
tinuous query, Pattern matching, Cayuga system

1. INTRODUCTION
In today’s world of universal data exchange, as the dan-
ger of privacy leakage increases, the data publishers have
to face trade-offs between publishing highly valuable data
for better service and protecting sensitive information from
unsolicited and unsanctioned disclosure. This undertaking
is called Privacy-preserving data publishing (PPDP). Solu-
tions to this problem cannot be achieved by any physical
protection mechanism, such as access controls, audit trails

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT PhD 2011, 21-MAR-2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0696-6/11/03 ...$10.00.

and firewalls. In the past decade, PPDP has received con-
siderable attention and many effective approaches have been
proposed for publishing useful information while limiting
privacy breaches.

However, most of the previous work fall into the pre-control
category. De-identification based methods [11] which strip
away the explicit identifier from data records cannot pro-
vide protection against linking attacks [12]. Anonymization-
based methods which transform a dataset to meet some pri-
vacy principle using techniques like generalization or sup-
pression so that linking attacks can be completely eradi-
cated. Perturbation-based methods which perturb individ-
ual data values or results of queries by swapping, adding
noise or condensation. To some extent these solutions un-
avoidably introduce information loss or data distortion. We
refer readers to the survey [6] for further details. Recently,
some researchers extended these models to privacy preser-
vation over data streams [14, 9, 3, 15] and developed some
efficient algorithms. But none of them is easily applicable to
detect and prevent privacy leakages in the process of data
transmission for two main reasons. First, the transmitting
data are under the form of streaming data, they are con-
tinuous, transient and usually unbounded flows of ordered
tuple pairs 〈tuple, timestamp〉. Second, they do not support
time constraints unless we add manually timestamps to data
tables or views.

A theoretical study similar to our research is the query-
view security problem. In 2004, Miklau et al. [10] proposed
the concept of perfect-security and presented a information-
theoretic stantard for query-view security which can be used
to provide precise analyses of information disclosure between
relational views and queries, although this definition can
capture very subtle disclosure, but sometimes too strict.
The issue of relaxing it was later investigated in [4]. Ac-
cordingly, Stefan et al. [2] detected privacy violations in
sensitive XML databases and proposed an algorithm which
identifies a set of suspicious XPath queries with respect to an
audit XPath query. Goyal et al. [7] proposed an algorithm
for rewriting of queries of a specified malafide intension to
detect the privacy disclosure through either explicit accesses
or inferencing by functional dependencies. Millist et al. [13]
proposed a method of detecting possible privacy violations
using disjoint queries, based on determining if a secret query
and a published view can return tuples in common.

8

In this paper, we focused on disclosure detection with re-
spect to database publishing and proposed a process detec-
tion method over relational data streams using dynamic pat-
tern matching and data stream processing techniques. We
treated each privacy leakage as an event, and we aimed to
detect these events “on the fly”, this can be seemed as some
kind of “process monitoring”. To the best of our knowledge,
this research direction has never been followed before.

2. CONCEPTS AND NOTATIONS
In contrast to macro-data, many situations call today for
the release of entity-data, while this has led to concerns that
some personal data may be abused or privacy may be acci-
dentally disclosed. When a data publisher releases some
person-specific information or when users submit queries
containing sensitive attributes to a database, the best way
to prevent privacy from disclosure is detecting all the leak-
ing channels and then blocking them in the process of data
transmission, we can regard such a procedure as some kind
of process-controls. In this section, we present some correl-
ative background knowledges and notations.

2.1 Microdata and Privacy Violation
Typically, a private table T has the most basic form:

D(Aei, Aqi, As, Ans)

where Aei denotes Explicit Identifier which is a set of at-
tributes, such as name and social security number(SSN),
containing information that explicitly identifies record own-
ers; Aqi denotes Quasi-Identifier which is a minimal set of
attributes that can be joined with external datasets to re-
identify individual records (with sufficiently high probabil-
ity); As denotes Sensitive attributes which consist of sensi-
tive person-specific information such as disease, salary, and
disability status; and Ans denotes Non-sensitive attributes
which cover all attributes that do not fall into the previous
three categories.

Let Td a release candidate of T produced by de-identification
mechanism:

Td = (A1, A2, . . . , An) = T − {
Aei

}

It is obvious that Td itself can guarantee limits on privacy
breaches as a result of the suppression of Aei. But, suppose
there is another internal or external available table Te:

Te = (B1, B2, . . . , Bm)

if Aqi ∈ Td∩Te and
{
Aei

}∩Te �= ∅ , then an adversary may
obtain some sensitive attributes by joining Td and Te.

Example 1. Given two tables: table Td=(zipcode, date of
birth, sex, disease) is to be published, and each tuple in
Td is about an individual; table Te=(name, zipcode, date of
birth, sex) are publicly available. If an adversary knows that

Aei=(SSN, name) and Aqi = (zipcode, date of birth, sex),
according to the principles described above, the adversary
can easily infer that some individual named name has an
illness disease by linking Td and Te together through Aqi,
here privacy breach occurs even though Aei attributes in Td

are removed before being published.

In real world, the data are usually distributed to different
websites and applications, the adversaries can track multiple
datasources and mine meaningful, secret or sensitive infor-
mation. In this paper, we pay only attention to the detection
of privacy breaches in the process of data transmission from
a single relational database to its applications.

2.2 Relational Data Streams
Instead of conducting the research on various database mod-
els, such as relational or XML, we build data streams di-
rectly on top of a relational database. Traditionally, in
PPDP, most of person-specific data sets are collected and
stored in a relational database, at a certain moment, it stores
sets of relatively static records, with insertions, updates, and
deletions executed less frequently than queries.

Datatable 1

Datatable 2

Datatable n

Dataview 1

Dataview 2

Dataview m

dataset

database

Data provider

Connection

Command

Data reader D
at
a
A
da
pt
er

dataview

D
at
a
R
el
at
io
n

Query Processor

Query Repository

D
at
ab
as
e
In
te
rfa
ce

C
lie
nt
A
pp
lic
at
io
nUser

User

User

Queries

...

... ...

ries

Results

Query Results

… ...

attribute1 attribute2 attribute3 …
… ... … ... … ... … ...

Figure 1: Data flow in a relational database

As shown in Figure 1., when users perform some browsing or
searching operations, the client application will fire one-time
queries over the database via database interface, over data
tables or data views, to be exact, after a series of internal
treatment, the records of query results will be transmitted
to the client application and displayed to different users.
In this process, because of the dynamics of query plans and
scheduling policies, it is not a one-to-one correspondence be-
tween the order of results and that of queries. Therefore, to
analyse the data transmission in terms of query statements
is unpractical. Here, we introduce data stream conception.

A data stream is either a sequence of records that log inter-
actions between entities or that monitor evolution of entity
states. A typical data stream is made up of two elements:
the data itself, which includes a series of data tuples and a
timestamp which denotes the logical arrival time of a tuple,
not system or wall-clock time. The timestamp is part of the
schema of a data stream, and there could be multiple data
tuples with the same timestamp.

Definition 1. (Data stream) A data stream S is an or-
dered spatio-temporal sequence of records with the tag of
timestamps: {(s[0], t0), (s[1], t1), ...}, where s[i] can be a z-
tuple containing attributes a[0], ..., a[z − 1].

9

For an database application registered by millions of end-
users, it’s common that a large number of queries are sub-
mitted in a relatively short time interval, although a con-
ventional database query executes once and returns a small
set of records, the execution of multiple concurrent queries
may introduce a large quantity of relational tuples in a time
dependent manner which make up the full pieces of informa-
tion of data transmission (see Figure 1.), and therefore data
elements are continuous and unbounded, to some extent,
several macroscopic “data streams” are generated.

Definition 2. (Relational data stream) Let V1,V2, . . . ,Vm

a set of views, respectively with schema R1,R2, . . . ,Rm, as-
sume that A1,A2, . . . ,An is a set of answer records corre-
sponding to queries Q1,Q2, . . . ,Qn, according to the schema
of each Ai, we can dynamically divided them into k ordered
groups S1, S2, . . . , Sk, and each group Si is a relational data
stream and has its own schema, each tuple s[j] ∈ Si has a
timestamp t[j]. This can be seen as an operator which takes
a relation as an input and produce a stream as an output.

In this definition, every two relational data streams do not
have the same relational schema, but their original data
sources may be the same tables or views. With the new
submission of queries, new tuples may be added into exist-
ing data streams or new data streams may be generated.

3. PROBLEM DEFINITION
In contrast to the problem of finding frequent itemsets in
data streams, the privacy breach is relatively a small prob-
ability event. In this section, we discuss the problem of de-
tecting information disclosure on the context of data streams.

Definition 3. (Time interval) Let t[i] and t[j] denote
the timestamps of tuple s[i] and s[j] where s[i] ∈ Sa and
s[j] ∈ Sb s.t. a �= b, if t[i] �= t[j], then Tint = |t[j]− t[i]|
indicates the time interval of two tuples belonging to two
different data streams respectively.

if Tint > 0 then the logical arrival time of t[j] is prior to
that of t[i], conversely, t[i] comes logically into data stream
before t[j]. Then the problem can be specified in Figure 2.

s1

s2

s3

(ti,47677,09/09/80,F,OC)

(tj,Alice,47677,09/09/80, F)

(tk,Bob,47693, 24/05/87,F,HD)

Figure 2: Relational data streams

Let S1, S2, S3 be three data streams in which each tuple
comes with a timestamp at a rapid rate. Assume an interval

constant Tc gives the range of data for discovering privacy
breaches. For linking attack, the two tuples showed in S1

and S2 have the same value in three common attributes, if
their combination is a quasi-identifier and |t[j]− t[i]| < Tc,
then information disclosure occurs, we can infer that Alice
has the disease OC. Another kind of disclosure can be found
in S3, here the tuple itself contains both an Aei attributeBob
and an As attribute HD, this is a so-called total disclosure.

In order to detect such kind of leaking channels, we should to
real-timely monitor masses of continuous data streams, the
most effective way is to deploy long running queries which
are called continuous queries. Relational data streams feed
raw data to them, they filter and output detected results.

Definition 4. (Continuous query) A continuous query
operates either on relational data streams or on a combi-
nation of data streams and relations, and meanwhile pro-
duces results continuously, each of its results is also a new
data stream. We issue it once and it monitors and processes
streaming data efficiently, continuously and real-timely along
with the arrival of new tuples.

First, let us consider the simplest scenario, suppose we have
a single data stream S and a continuous query Q (can be
considered as a “secret query” [10]), we are interested in the
exact answer to Q (as opposed to an approximation) over S.

Example 2. Let (SSN, Name, Zipcode, date of birth, Sex,
Disease) the schema of the data stream S, SSN and Name
are Explicit Identifier attributes, Disease is a Sensitive at-
tribute. The objective of the continuous query Q is to find
out all the tuples with the concurrence of the value of Ex-
plicit Identifier and Sensitive attributes as new tuples arrive.

However, in real-life world, distributed databases and ap-
plications and users make the scenario much more com-
plicated, and in most cases we have to deal with multiple
data streams together to discover our interesting informa-
tion, meanwhile, the number of continuous queries could be
larger than 1. As shown in Figure 3., a series of continu-
ous queries operate over a number of incoming data streams
Stream 1, Stream 2, . . . Stream n and output the answer
streams Stream 1, Stream 2, . . . Stream m. In order to de-
tect some specific privacy breaches, joining or merging two
or more data streams is also needed.

Q

Stream 1

Stream 2

Stream n

…
...

Stream 1

Stream 2

Stream m

…
...

Figure 3: Continuous queries over data streams.

4. PROPOSED STRATEGIES
In our research, we treat each information disclosure as an
event, directly or indirectly, totally or partially. In advance,
we translate continuous queries to specific event patterns,

10

and then, we combine event pattern matching techniques
with data stream processing techniques to check the pres-
ence of the constituents of a specific pattern. Event pat-
terns match whenever an event satisfies the definition of
the pre-determined pattern. Sometimes, in pattern match-
ing, we need to join or merge event streams, and to feed
pattern match results from one event stream to subsequent
statements for further analysis and processing. Moreover,
we need to integrate database functionality by integrating
streaming operations with a specific query language and reg-
ister long-running pattern matching queries to derive and ag-
gregate interesting information from one or multiple streams
of events by comparison to a standard of some kind.

Definition 5. (Stream pattern) In the operational se-
mantics, a stream pattern P is a combination of a set of
constraint matching rules: Rule[0], Rule[1], . . . which must
be satisfied by discrete records of relational data streams.

Consider a simple example, assume a stock ticker stream
with the schema Stock(Name, Price, V olume), if a pattern
is to find a monotonically increasing run of prices for all
companies, where the run lasts for at least 10 stock quotes,
and the first quote has a volume greater than 10000. The
rules of this pattern can be followings:

Rule[0]: Company s.t. all companies
Rule[1]: Price s.t. monotonically increasing
Rule[2]: T ime interval s.t. 10 stock quotes
Rule[3]: First quote s.t. greater than 10000

In these rules, Company, Price, T ime and First quote can
be considered as attributes of a data table, each of them has
their own attribute domain or constraint conditions. Along
with the increase of the number of the rules, the pattern
will be more complex, and so will the difficulty of pattern
matchings over data streams.

Pattern-matching developed for string matching that deals
with equality and inequality between characters can be ex-
tended to data streams that require more complex relational
comparison among their attributes [8]. Patterns match-
ing for detecting events (e.g. privacy breaches) over data
streams can involve unbounded looping operations, and pat-
tern changes has been largely human-driven and infrequent.

Definition 6. (Pattern matching) Over data streams,
pattern matching is an act of checking the satisfaction of
rules Rule[0], Rule[1], . . . which compose a stream pattern
P , and the matching results are exact and accurate.

Recall that pattern matching over two views. Assume a re-
lational schema is Employee(Name,Department, Phone),
denoted as Emp(n, d, p), let V1(n, d) : −Emp(n, d, p) and
V2(d, p) : −Emp(n, d, p), if a pattern P is a secret query ex-
pressed as S(n, p) : −Emp(n, d, p) which means that phone
must not be inferred with regard to name. For the first step,
two views should be joined V 1 ��θ V 2, returns the set of all

pairs 〈r1, r2〉, where r1 ∈ V 1, r2 ∈ V 2, and if join condition
θ(r1, r2) is true, that means r1.d = r2.d, then the pattern
P can be satisfied. A straightforward extension of pattern
matching to streams gives the following semantics: within
any time interval Tint > 0, the set of output tuples generated
thus far by the pattern matching over two streams S1 and
S2 should be the same as the result of the relational (non-
streaming) pattern matching over the sets of input tuples
that have arrived thus far in S1 and S2. The only difference
between them is the time interval Tint.

Definition 7. (Complex event processing) Complex
Event Processing, or CEP, is a technology to process events
and detect both opportunities and threats, to discover com-
plex patterns among multiple streams of event data.

Complex event processings enable organizations to real-timely
monitor, analyze high-speed and continuous information,
and enable data managers to make real-time calculations
of and take action on disclosures. Amongst some types of
CEP, detection-oriented CEP and operations-oriented CEP
can be integrated within the research of privacy preservation
over data streams. Detection-oriented CEP is used for data
analysis and is driven by a need to detect faster instead of
more accurate the possible risks. Operation-oriented CEP is
driven by a need to make reaction faster instead of better to
the risks. Of course, these two CEPs are closely and insep-
arably related. For example, if our interest is: “Notify me
when there is a direct information disclosure or some linking
attack”. We should firstly detect if the disclosure exist and
then send a notification to database administrators.

Algorithm 1: Disclosure Detection Over Data Streams

Input: two input data streams: S1 and S2.
Output: output data streams T
1: set quasi-identifier Aqi and time interval Tc

2: for ∀a ∈ S1.Aei,∀b ∈ S1.As do
3: if a �= NULL ∧ b �= NULL then
4: output (a, b) as T1

5: else
6: for ∀c ∈ S2.Aei,∀d ∈ S2.As do
7: if c �= NULL ∧ d �= NULL then
8: output (c, d) as T1

9: else
10: if |t[a]− t[b]| < Tc then
11: if

(a �= NULL∧d �= NULL)∪(Aqi ∈ (S1∩S2))
then

12: output (a, d) as T2

13: else
14: if (b �= NULL ∧ c �= NULL) ∪ (Aqi ∈

(S1 ∩ S2)) then
15: output (c, b) as T2

16: end if
17: end if
18: end if
19: end if
20: end for
21: end if
22: end for

11

Here, we adopt the disclosure classification in [10], total,
partial and minute disclosure. Assume the same relational
schema Employee(Name,Department, Phone), for an ex-
ample of total disclosure, given a view-query pair V1(n, d) :
−Emp(n, d, p) and S1(d) : −Emp(n, d, p), obviously S1 is
answerable using V1; for partial disclosure, if we connect two

views V2(n, d) : −Emp(n, d, p) and V
′
2 (d, p) : −Emp(n, d, p)

together, then the query S2(n, p) : −Emp(n, d, p) can be

contained rewritten using V2 and V
′
2 , this can be also consid-

ered as some kind of linking disclosure; for minute disclosure,
assume we publish a view V3(n) : −Emp(n, d, p), and sub-
mit a query S3(p) : −Emp(n, d, p) over V3, seemingly there
is no disclosure, but the view does can reveal something like
the size of the Employee relation and contains some small
amount of information about the omitted column.

In this paper, we aim only to detect the total and par-
tial information disclosure over data streams through pat-
tern matching techniques, among continuously arriving data
streams, we match them by pairs in random to check the
existence of these two disclosures, the detection algorithm
is shown in Algorithm 1. In this algorithm, we take only
two input data streams S1 and S2 into account, for the rest
situations of multiple data streams, this algorithm is also ap-
plicable. We assume that we know the quasi-identifier Aqi

beforehand, and then we set the time interval constant Tc

by requirements. For each explicit identifier attribute a in
S1 and c in S2, as well as each sensitive attribute b in S1 and
d in S2, after we carry out the dynamic pattern matching of
these two streams, we can get the final output data stream
T containing total or partial disclosed information.

5. FEASIBILITY VERIFICATION
To verify our proposals, we conducted experiments on rela-
tional data streams with sensitive attributes. We want to
examine whether our proposals can deal with the detection
of privacy disclosure with high data arrival rates. The ex-
periments are preceded by the following two steps. First, we
chose and configured Cayuga System which is designed to
monitor streams of events. After that, we specified the data
source of input data streams. Finally, we defined our con-
tinuous queries to state which situations should be detected.

5.1 Cayuga System
Cayuga [5] is a scalable event processing system with a query
language based on Cayuga Algebra for naturally expressing
complex event patterns.

Input
 streams

Continuous Queries

Detected
streams

…
 ...

…
 ...

Figure 4: Cayuga system

As shown in Figure 4., input data streams are received by
Cayuga Event receivers (ERs), and then passed to other
components, output event streams will not be generated
until Cayuga query engine executes continuous queries ex-
pressed by Cayuga event language (CEL).

5.2 Input Data Streams
The input data streams are generated from the answer of
user queries, consider a relational data table with the schema:

Patient(SSN, Name, Zipcode, DOB, Sex, Disease)

we have two published views representing two subsets of a
data table under this schema are as follows:

(a) View 1

SSN Zipcode DOB Sex Disease
387-399 47677 09/09/80 F OC
387-200 47602 24/05/87 F OC
387-486 47678 08/11/82 M PC
387-756 47905 27/08/66 M Flu
387-665 47909 04/10/57 F HD
387-588 47906 10/10/62 M HD

...
...

...
...

...

(b) View 2

Name Zipcode DOB Sex
Alice 47677 09/09/80 F
Bob 47983 24/05/87 M
Carol 47677 08/11/82 F
Dan 47532 27/08/66 M
Ellen 47789 04/10/57 F
Jack 47487 08/05/84 M
...

...
...

...

Table 1: Two relational views

If users submit two queries to view 1 and view 2 seperately,
and each of them does not breach the privacy violation:

Q(Zipcode, DOB, Sex, Disease) : −V iew 1
Q(Name, Zipcode, DOB, Sex) : −V iew 2

when the query answers are transmitted to them, two rela-
tional data streams could be generated, however, because
of the special requirements of Cayuga System in stream
schema, here we assumed that all the data streams consist
of a special single relation - universal relational assumption
[1], see Table 2.

SSN Name Zipcode DOB Sex Disease SNo TStamp
47677 09/09/80 F OC S1 (1,1)
47602 24/05/87 F OC S1 (2,2)
47678 08/11/82 M PC S1 (3,3)
47905 27/08/66 M Flu S1 (4,4)
47909 04/10/57 F HD S1 (5,5)
47906 10/10/62 M HD S1 (6,6)

...
...

...
...

...
...

Alice 47677 09/09/80 F S2 (4,4)
Bob 47983 24/05/87 M S2 (5,5)
Carol 47677 08/11/82 F S2 (6,6)
Dan 47532 27/08/66 M S2 (7,7)
Ellen 47789 04/10/57 F S2 (8,8)

...
...

...
...

...
...

Table 2: Input data streams

5.3 Continuous Queries
In our example, SSN and Name are two explicit identifier
attributes, {Zipcode, DOB, Sex} is a quasi-identifier. As
stated before, we want to detect total and partial disclosure,

12

if we set the time interval constant Tc as 5 time units, we
can give out continuous queries expressed in CEL easily.
However, using query language, in order to detect a very
simple disclosure, we must write lots of sub-queries, and the
more the data streams, the explicit identifier attributes and
the sensitive attributes are, the more the query number is.
For two data streams here, the continuous queries and the
processing flow is shown in Figure 5.

Query0: $2.ZipCode=$1.ZipCode AND $2.DOB=$1.DOB AND $2.Sex=$1.Sex
Query1: SSN_1!=’’ and Disease!=’’
Query2: Name_1!=’’ and Disease!=’’
Query3: SSN!=’’ and Disease_1!=’’
Query4: Name!=’’ and Disease_1!=’’
Query5: DUR<5

Query6: SSN!=’’ and Disease!=’’
Query7: Name!=’’ and Disease!=’’

S2

T4

T1 T2

S1

Query0

Query6
Query7

Query1
Query2

Query3
Query4

T3Query5

S1, S2 ---- input streams
T1, T2 ---- middle streams
T3, T4 ---- final output streams

Figure 5: Continuous queries and processing flow

through the process of continuous queries in Cayuga query
engine, the number of output results is bigger than 0, see Ta-
ble 3, that means that some disclosures occur, as an example,
we can inference that Alice suffers from the OC disease:

SSN Name Zipcode DOB Sex Disease
Alice 47677 09/09/80 F OC
...

...
...

...
...

Table 3: Output results

6. CONCLUSION AND FUTURE WORK
In this paper, we tackled the problem of detecting total and
partial information disclosure over relational data streams.
We adopted pattern matching and event processing tech-
niques to detect these leaking channels, and then verified
the feasibility of our proposals via an open source CEP soft-
ware Cayuga system. To the best of our knowledge, our
research has led to a new interesting point of view of disclo-
sure detection with respect to query-view security.

However, to recognize automatically the schema of data
streams, to develop efficient algorithms for finding quasi-
identifiers, to find a“sweet spot”between expressiveness and
performances in stream processing, and to define a prohib-
ited correlation expression model for relational data express-
ing what data must not be inferred are still great challenges.

7. REFERENCES
[1] C. Beeri, P. A. Bernstein, and N. Goodman. A

sophisticate’s introduction to database normalization
theory. In Proceedings of the fourth international
conference on Very Large Data Bases - Volume 4,
VLDB’1978, pages 113–124. VLDB Endowment, 1978.

[2] S. Bttcher and R. Steinmetz. Detecting privacy
violations in sensitive xml databases. In W. Jonker
and M. Petkovic, editors, Secure Data
Management-SDM 2005, 2nd VLDB Workshop on
Secure Data Management, volume 3674 of Lecture
Notes in Computer Science, pages 143–154. Springer
Berlin / Heidelberg, 2005.

[3] J. Cao, B. Carminati, E. Ferrari, and K.-L. Tan.
Castle: A delay-constrained scheme for
ks-anonymizing data streams. In ICDE, pages
1376–1378, 2008.

[4] N. Dalvi, G. Miklau, and D. Suciu. Asymptotic
conditional probabilities for conjunctive queries. In
ICDT, 2005.

[5] A. Demers, J. Gehrke, and B. P. Cayuga: A general
purpose event monitoring system. In In CIDR, pages
412–422, 2007.

[6] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu.
Privacy-preserving data publishing: A survey of recent
developments. ACM Comput. Surv., 42(4):1–53, 2010.

[7] V. Goyal, S. K. Gupta, and S. Saxena. Query
rewriting for detection of privacy violation through
inferencing. In PST ’06: Proceedings of the 2006
International Conference on Privacy, Security and
Trust, pages 1–11, New York, NY, USA, 2006. ACM.

[8] L. Harada. Pattern matching over multi-attribute data
streams. In Proceedings of the 9th International
Symposium on String Processing and Information
Retrieval, SPIRE 2002, pages 187–193, London, UK,
2002. Springer-Verlag.

[9] L. Jianzhong, O. B. Chin, and W. Weiping.
Anonymizing streaming data for privacy protection. In
ICDE ’08: Proceedings of the 2008 IEEE 24th
International Conference on Data Engineering, pages
1367–1369, Washington, DC, USA, 2008. IEEE
Computer Society.

[10] G. Miklau and D. Suciu. A formal analysis of
information disclosure in data exchange. In SIGMOD
’04: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data,
pages 575–586, New York, NY, USA, 2004. ACM.

[11] A. M. Snyder and A. C. Weaver. Health insurance
portability and accountability act in 1996.

[12] L. Sweeney. Achieving k-anonymity privacy protection
using generalization and suppression. International
Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5):571–588, 2002.

[13] M. W. Vincent, M. Mohania, and M. Iwaihara.
Detecting privacy violations in database publishing
using disjoint queries. In EDBT ’09: Proceedings of
the 12th International Conference on Extending
Database Technology, pages 252–262, New York, NY,
USA, 2009. ACM.

[14] W. Wang, J. Li, C. Ai, and Y. Li. Privacy protection
on sliding window of data streams. In COLCOM ’07:
Proceedings of the 2007 International Conference on
Collaborative Computing: Networking, Applications
and Worksharing, pages 213–221, Washington, DC,
USA, 2007. IEEE Computer Society.

[15] B. Zhou, Y. Han, J. Pei, B. Jiang, Y. Tao, and Y. Jia.
Continuous privacy preserving publishing of data
streams. In EDBT ’09: Proceedings of the 12th
International Conference on Extending Database
Technology, pages 648–659, New York, NY, USA,
2009. ACM.

13

