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Université Lyon 1, LIRIS, UMR5205, F-69622, France
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1 Introduction

Graphs are used in many computer graphic applications to describe images
(see, for example, [CFSV07] for a review of graph-based methods for pattern
recognition and computer vision). In particular, Region Adjacency Graphs
(RAGs) [Ros74] model images by means of vertices —corresponding to max-
imal homogeneous sets of connected pixels— and edges —corresponding to
adjacency relationships. RAGs are used in many image processing applica-
tions like, for example, segmentation, object extraction or comparison, and
image analysis [SC84,JB93,Saa94,GMBM95,LMV01].

However, RAGs cannot model some important information contained in im-
ages. In particular, they cannot model the order in which neighbor regions
are encountered when turning around some given region, as the edges incident
to a vertex are not ordered. Also, RAGs cannot represent multi-adjacency.
Hence, two different images may be represented by the same RAG [Kov89].

To get round this default, the RAG model has been extended. For example,
[KM95] defines the dual graph structure, which is a pair of multi-graphs that
represent multi-adjacency relations, and [JB98] defines ordered graphs, such
that edges incident to a vertex are uniquely ordered.

Several works have proposed some solutions in 2D [Dom92,Fio96,Bru96,DBF04]
and in 3D [BDDW99,Dam08] based on combinatorial maps. Indeed, com-
binatorial maps [Lie91] have many advantages: they are defined in any di-
mension; they are based on a single element called dart ; they describe the
subdivision of objects in cells, and incidence and adjacency relations be-
tween cells; thus they describe the topology of objects. Actually, many works
have used combinatorial maps in 2D and 3D image processing algorithms
[BDB97,BDD01,DR02,DD08]. However, there is no algorithm for comparing
combinatorial maps, which is an important issue for image processing and
image analysis.

Contribution and outline of the paper

In this paper, we address two comparison problems, i.e., map isomorphism,
which involves deciding if two maps are equivalent, and submap isomorphism,
which involves deciding if a copy of a pattern map may be found in a target
map. We formally define these two problems for nD open combinatorial maps.
Then we develop polynomial time algorithms for solving them, and illustrate
their efficiency for searching patterns in 2D and 3D images.

Part of this work was published in [DDLHJ+09]. Nevertheless, our previous
results were limited in 2D; moreover, the material presented in Sections 4 and
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5 is totally new.

In Section 2, we recall basic definitions and notations for nD combinatorial
maps [Lie91], and from open combinatorial maps [PABL07] thus the paper is
self-contained. We use open maps to represent objects with boundaries, that
allow us to model images that have blurred or undefined regions, and to define
submap isomorphism problem.

In Section 3, we first extend the definition of map isomorphism of [Lie94] to
open combinatorial maps and give a polynomial time algorithm for solving
this problem. This algorithm is close to that of [Cor75], but we extend it
to nD open maps. Then we tackle the submap isomorphism problem and
again, we develop a polynomial time algorithm for nD open maps. We prove
the correctness and study the complexity of both algorithms. Note that from
a graph-theoretical perspective, these results imply that the subisomorphism
problem for plane graphs (that is, planar graphs that are embedded in a plane)
is solvable in polynomial time, whereas this problem is known intractable for
general graphs. However, our algorithms are restricted to connected maps,
such that there exists a path of sewn darts between every pair of darts.

In Section 4, we introduce planar maps, that are 2D maps embedded in a
plane. The goal is to design a model that is close to standard pictures: im-
ages are usually drawn on the plane, thus one region, called the external or
infinite region, is distinguished and should play a particular role. Comparing
planar maps ultimately returns to the problem of comparing 2D maps and
then checking whether the external regions are matched or not. Therefore, we
essentially use the algorithms developed in Section 3, adding new constraints.
However, the knowledge of external regions allows us to optimize the efficiency
of these algorithms in practice (although the worst-case complexity does not
change).

Finally, in Section 5, we describe a large experimental study that proves the
efficiency of our procedures in practice. We first show how to use submap
isomorphism for searching for a 2D subimage into a database of 2D images.
Then we tackle the searching of a 3D submesh into a database of 3D objects.
These results show the interest of having generic definitions and algorithms
based on nD open maps. Indeed, we use the same method and algorithm in
different types of applications, with different dimensions, the corresponding
maps being open or closed.

We conclude the paper on some related works and perspectives in Section 6.
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2 Combinatorial Maps

An nD cellular complex is the subdivision of an nD object into cells of di-
mensions at most n (0D corresponding to vertices, 1D to edges, 2D to faces,
3D to volumes, etc), plus incidence and adjacency relationships between cells.
Cellular complexes can be modeled with combinatorial maps, which provide a
generic definition based on a single basic element called dart. In Section 2.1,
we recall some definitions on combinatorial maps, and in Section 2.2, we give
the definition of open combinatorial maps and related notions that we use to
model cellular complexes with boundaries.

2.1 Recalls on combinatorial maps

Combinatorial maps were originally defined for 2D [Edm60,Tut63,Cor75], then
extended to 3D [AK89,Spe91] and finally to nD [Lie91]. Below, we briefly recall
the main definitions.

Definition 1 (Combinatorial map) An nD combinatorial map, (or n-map)
is a tuple M = (D, β1, . . . , βn) where

(1) D is a finite set of darts;
(2) β1 is a permutation 1 on D;
(3) ∀i : 2 ≤ i ≤ n, βi is an involution 2 on D with no fixed point 3 ;
(4) ∀i : 1 ≤ i ≤ n− 2, ∀j : i+ 2 ≤ j ≤ n, βi ◦ βj is an involution on D.

We note β0 for β−1
1 , and βij for βj ◦βi. Two darts d and d′ such that d = βi(d

′)
are said to be i-sewn. Let f be a function defined on a set E, and X ⊆ E, we
denote f(X) = {f(x)|x ∈ X}.

Examples of 2D and 3D combinatorial maps are provided in Fig. 1 and 2.

Intuitively, βi defines adjacency relationships between cells of dimension i (e.g.,
edges for β1, faces for β2, volumes for β3). β1 is a permutation (so that β1(d)
may be different from β−1

1 (d)) whereas all other βi are involutions. Indeed,
in 2D, a face is adjacent to at most one other face whereas an edge may be
adjacent to two edges of the same face: β1(d) is the dart that follows d whereas
β−1

1 (d) = β0(d) is the dart that precedes d. Note that β1 may contain fixed
points: in 2D, they correspond to loops, i.e. faces that are bordered by a single
dart.

1 A permutation on D is a one-to-one mapping from D to D.
2 An involution f on D is a one-to-one mapping from D to D such that f = f−1.
3 A fixed point of function f is an element e such that f(e) = e.
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D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

β1 2 3 4 5 6 7 1 9 10 11 8 13 14 15 12 17 18 16

β2 15 14 18 17 10 9 8 7 6 5 12 11 16 2 1 13 4 3

Fig. 1. An example of 2D combinatorial map. Darts are represented by black arrows.
Two 1-sewn darts are drawn consecutively, and two 2-sewn darts are concurrently
drawn, in reverse orientation, with little a grey segment between them.
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(b)

D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

β1 2 3 4 1 8 5 6 7 11 ... ... ... ... ... ... ...

β2 ... 10 ... ... ... 9 14 ... 6 2 ... ... ... 7 ... ...

β3 5 6 7 8 1 2 3 4 10 9 ... ... ... ... ... ...

Fig. 2. An example of a 3D combinatorial map. (a) A 3D object. (b) The corre-
sponding 3D combinatorial map (external volume on the left; interior on the middle
and the right). The graphical convention is the same as in 2D. β3 is not drawn, but
(partially) given in the array.

In combinatorial maps, cells are defined by means of orbits. Given a set E,
a set {p1, . . . , pj} of permutations on E and an element e ∈ E, the orbit
〈p1, . . . , pj〉(e) is the set of all elements of E that can be reached from e by
composing any p1, . . . , pj and their inverses p−1

1 , . . . , p−1
j .

The link between cells and orbits is given in Def. 2.

Definition 2 (i-cell) Let M be an n-map, and d a dart.

• The 0-cell incident to d is 〈β02, . . . , β0n〉(d);
• ∀i : 1 ≤ i ≤ n, the i-cell incident to d is 〈β1, . . . , βi−1, βi+1, . . . , βn〉(d).

Hence, a cell is a set of darts.

• A 0-cell corresponds to a vertex and is a set of darts that share a same origin.
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In 2D, a 0-cell is obtained by the orbit 〈β02〉 (e.g., 〈β02〉(8) = {1, 8, 12} in
Fig. 1). In 3D, it is obtained by the orbit 〈β02, β03〉 (e.g., 〈β02, β03〉(3) =
{3, 6, 10, 11, 12, 13, 14, 15, 16} in Fig. 2);
• A 1-cell corresponds to an edge and is a set of darts that share their end-

points. In 2D, it is obtained by the orbit 〈β2〉 (e.g., 〈β2〉(8) = {7, 8} in Fig. 1).
In 3D, it is obtained by the orbit 〈β2, β3〉 (e.g., 〈β2, β3〉(2) = {2, 6, 9, 10} in
Fig. 2);
• A 2-cell corresponds to a face. In 2D, it is obtained by the orbit 〈β1〉 (e.g.,
〈β1〉(8) = {8, 9, 10, 11} in Fig. 1). In 3D, it is obtained by the orbit 〈β1, β3〉
(e.g., 〈β1, β3〉(1) = {1, 2, 3, 4, 5, 6, 7, 8} in Fig. 2);
• A 3-cell corresponds to a volume and is obtained in 3D by the orbit 〈β1, β2〉

(e.g., 〈β1, β2〉(5) contains the 24 darts of the internal cube in Fig. 2).

We can define the incidence and adjacency relations between cells:

• Two cells are incident if their intersection is not empty. E.g., edge 〈β2〉(7) =
{7, 8} is incident to face 〈β1〉(8) = {8, 9, 10, 11} in Fig. 1.
• Two i-cells are adjacent if there is an (i − 1)-cell incident to both i-cells.

E.g., faces 〈β1〉(8) and 〈β1〉(15) are adjacent because they are both incident
to edge 〈β2〉(11) in Fig. 1.

2.2 Open combinatorial maps

In [Lie91], Lienhardt has defined generalized maps, which can be used to model
open or closed objects, thus allowing one to model objects with boundaries.
A preliminary report [PABL07] extended the definition of nD combinatorial
maps to open nD combinatorial maps.

Open maps may contain free darts, i.e., darts that are not linked with other
darts for some dimensions. In generalized maps [Lie91], a dart is i-free when-
ever it is i-sewn with itself (i.e., βi(d) = d). However, in combinatorial maps,
β1 may contain fixed points (in case of loops), thus such a trick is impossible
to re-use. Therefore, to denote that a dart is 1-free, a new element ε is consid-
ered in addition to the set of darts, and darts can be 1-sewn with ε. To make
things similar in every dimensions, we use the same principle for i-free darts,
with i > 1. Thus, a dart d is i-free, for i ∈ {0, . . . , n}, if βi(d) = ε.

However, if some darts are i-sewn with ε, then βi is no longer a permutation
or an involution on D, but a partial permutation or partial involution such
that only a subset X ⊆ D of darts is linked to another subset of darts of D
whereas other darts are i-free. We formally define a partial permutation as
well as its inverse as follows.

Definition 3 (Partial permutation) Let E be a set, X ⊆ E a subset of E,
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and f : X → E an injection. The partial permutation p on E induced by f is
defined by

(1) p(ε) = ε;
(2) ∀e ∈ E, if e ∈ X then p(e) = f(e), otherwise p(e) = ε.

The inverse p−1 of this partial permutation is also a partial permutation and
is defined by

(1) p−1(ε) = ε;
(2) ∀e ∈ E, if e ∈ f(X), then p−1(e) = f−1(e), otherwise p−1(e) = ε.

In other words, a partial permutation of E is a bijection between two subsets
F and G of E such that the elements of E that do not belong to F or G are
linked to ε.

A partial involution is a specific partial permutation, satisfying the condition
f(f(e)) = e for any element e such that f(e) = ε.

Definition 4 (Partial involution) A partial involution f on E is a partial
permutation on E such that: ∀e ∈ E, f(e) 6= ε⇒ f(f(e)) = e.

Since a partial involution f is a partial permutation (with an additional prop-
erty), its inverse is defined in Def. 3, and we have f−1 = f . Moreover, we
can verify that, given two partial permutations f and g, f ◦ g is a partial
permutation, and (f ◦ g)−1 = g−1 ◦ f−1.

We can now define open combinatorial maps.

Definition 5 (Open combinatorial map) An open nD combinatorial map
(or open n-map) is a tuple M = (D, β1, . . . , βn) where

(1) D is a finite set of darts;
(2) β1 is a partial permutation on D;
(3) ∀i : 2 ≤ i ≤ n, βi is a partial involution on D with no fixed point;
(4) ∀i : 0 ≤ i ≤ n− 2, ∀j : 3 ≤ j ≤ n, i+ 2 ≤ j, βij is a partial involution.

Open n-maps differ from n-maps on three points: (1) β1 is a partial permuta-
tion instead of a permutation; (2) other βi are partial involutions; (3) Condi-
tion 4 is modified such that βij is a partial involution, and this condition must
also be satisfied for i = 0. An example of open 2-map is represented in Fig. 3.

The first two differences directly come from the fact that we can have free
darts. For the third difference, we need to add the condition on β0j because β1j

is a partial involution does not imply that β0j is a partial involution (contrary
to the original definition of combinatorial maps where β1j is an involution
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β1 4 3 ε 6 ε 1 12 9 10 11 8 13 14 7

β2 ε 14 4 3 10 13 ε ε ε 5 12 11 6 2

Fig. 3. Open combinatorial map example. Darts 3 and 5 are 1-free, and darts 1, 7,
8 and 9 are 2-free.

implies that β0j is an involution).

A combinatorial map is said to be i-open (resp. i-closed), for i ∈ {1, . . . , n}, if
it contains at least one i-free dart (resp. no i-free dart). The map is said to be
open (resp. closed) if it is i-open for at least one i ∈ {1, . . . , n} (resp. i-closed
for all i ∈ {1, . . . , n}). When nothing is specified, a combinatorial map may
be either open or closed, and thus it is defined with respect to Def. 5.

From a mathematical standpoint, any combinatorial map denotes an nD cel-
lular quasi-manifold [Lie94]. As every combinatorial map can easily be con-
verted into a generalized map, this semantics still holds for our definition of
open combinatorial map.

Now let us tackle the definition of cells.

The definition of orbits given in Section 2.1 is still valid for open combinatorial
maps, since it uses “the set of all elements of E that can be reached. . . ”, which
avoid to have ε in any orbit (since ε /∈ E by partial permutation definition).
For this reason, the Def. 2 of i-cells given for closed maps, is still valid for
i > 1.

For instance, in the 2-map displayed in Fig. 3, the edge incident to dart 1
is 〈β2〉(1) = {1} (since dart 1 is 2-free) while the edge incident to dart 11 is
〈β2〉(11) = {11, 12}. The face incident to dart 2 is 〈β1〉(2) = {2, 3}.

However, we need to modify the definition of vertices (0-cells in Def. 6).

Definition 6 (0-cell) Let M = (D, β1, . . . , βn) be an n-map, and d ∈ D. The
0-cell incident to d is the set 〈β02, . . . , β0n, {βij|∀i, j : 2 ≤ i < j ≤ n}〉(b).

The difference with the previous definition of 0-cells is that we need to add βij
for all 2 ≤ i < j ≤ n in order not to miss some darts that cannot be reached
due to some free darts. Let us consider, for example, the 0-cell incident to 3 in
the closed 3-map of Fig. 2, that is, 〈β02, β03〉(3) = {3, 6, 10, 11, 12, 13, 14, 15, 16}.
Some darts in this orbit are reached from 3 by composing some permutations,
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e.g., β02(β03(3)) = 11. Let us now consider the 3-map obtained by removing
darts 2 and 4 (i.e., dart 3 is 0-free and 1-free). In this case, we have to use β23

and β−1
23 to reach other darts of the vertex incident to dart 3 (e.g., β23(3) = 11),

since β02(3) = β03(3) = β21(3) = β31(3) = ε.

In the example of the 2-map displayed in Fig. 3, the vertex incident to dart
12 is 〈β02〉(12) = {8, 12}.

3 Map and Submap Isomorphism

(Sub)map isomorphism allows one to compare maps. In Section 3.1, we define
map isomorphism —which allows one to decide the equivalence of two maps—
and give a polynomial time algorithm for solving this problem. In Section 3.2,
we consider submap isomorphism —which allows one to decide of the inclusion
of a pattern map into a target map— and propose a polynomial time algorithm
for solving this problem too.

In Sections 3.1 and 3.2, we only consider connected maps in which there exists
a path of sewn darts between every pair of darts. Formally:

Definition 7 (Path) Let M = (D, β1, . . . , βn) be a combinatorial map. A
sequence of darts (d1, . . . , dk) is a path between d1 and dk if
∀i : 1 ≤ i < k, ∃ji ∈ {0, 1, . . . , n}, di+1 = βji(di).

Definition 8 (Connected map) A combinatorial map M = (D, β1, . . . , βn)
is connected if ∀d ∈ D, ∀d′ ∈ D, there exists a path between d and d′.

3.1 Map isomorphism

Lienhardt [Lie94] has defined isomorphism between two closed combinatorial
maps. We extend this definition to open combinatorial maps as follows.

Definition 9 (Map isomorphism) Two n-maps M = (D, β1, . . . , βn) and
M ′ = (D′, β′1, . . . , β

′
n) are isomorphic if there exists a bijection f : D ∪ {ε} →

D′ ∪ {ε}, called isomorphism function, such that f(ε) = ε and ∀d ∈ D, ∀i :
1 ≤ i ≤ n, f(βi(d)) = β′i(f(d)).

The only difference with the definition of isomorphism between closed n-maps
is that we have added that f(ε) = ε. Indeed, if a dart is i-sewn with ε, then
the dart matched to it by f must also be i-sewn with ε.
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As already mentioned in [Cor75] for 2D maps, an algorithm for deciding of the
isomorphism of two connected maps can easily be derived from this definition.
Indeed, consider Algorithm 1. We first fix a dart d0 ∈ D and, for every dart
d′0 ∈ D′, we call Algorithm 2 to build a candidate matching function f and
then we check whether f actually is an isomorphism function. Algorithm 2
basically performs a traversal of M , starting from d0 and using the βi functions
to discover new darts from darts that have already been discovered: initially,
f [d0] is set to d′0 whereas f [d] is set to nil for all other darts, thus stating that
d has not yet been discovered; then, each time a dart d ∈ D is discovered,
from another dart dk ∈ D such that d is i-sewn with dk, then f [d] is set to the
dart d′ ∈ D′ which is i-sewn with f [dk].

Algorithm 1: checkIsomorphism(M,M ′)

Input: two connected maps M = (D, β1, . . . , βn) and M ′ = (D′, β′1, . . . , β
′
n)

Output: returns true iff M and M ′ are isomorphic
choose d0 ∈ D1

foreach d′0 ∈ D′ do2

f ← traverseAndBuildMatching(M,M ′, d0, d
′
0)3

if f is an isomorphism function then4

return True5

return False6

Algorithm 2: traverseAndBuildMatching(M,M ′, d0, d
′
0)

Input: two connected maps M = (D, β1, . . . , βn) and M ′ = (D′, β′1, . . . , β
′
n)

and an initial couple of darts (d0, d
′
0) ∈ D ×D′

Output: returns an array f : D ∪ {ε} → D′ ∪ {ε}
foreach d ∈ D do f [d]← nil1

f [d0]← d′02

let S be an empty stack; push d0 in S3

while S is not empty do4

pop a dart d from S5

foreach i ∈ {0, . . . , n} do6

if d is not i-free and f [βi(d)] = nil then7

f [βi(d)]← β′i(f [d])8

push βi(d) in S9

f [ε]← ε10

return f11

We get the following result:

Theorem 10 Two nD connected maps M and M ′ are isomorphic
iff checkIsomorphism(M,M ′) returns true.
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PROOF. This corresponds to proving that Algorithm 1 is correct.

(⇐) If checkIsomorphism(M,M ′) returns true, then M and M ′ are iso-
morphic since true is returned only if the test in line 4 succeeds.

(⇒) Let us suppose that M and M ′ are isomorphic, so that there exists an
isomorphism function ϕ : D → D′, and let us show that checkIsomor-
phism(M,M ′) returns true. Let d0 ∈ D be the dart chosen at line 1 of Algo-
rithm 1. As the loop lines 2-5 iterates on every dart d′0 ∈ D′, there exists an
iteration of this loop for which d′0 = ϕ(d0). Let us show that for this iteration
traverseAndBuildMatching(M,M ′, d0, d

′
0) returns the array f such that

∀d ∈ D, f [d] = ϕ(d) so that true is returned line 5 of Algorithm 1:

• Claim 1: When pushing a dart d in S, f [d] = ϕ(d). By induction. The claim
holds for the push of line 3 as f [d0] is set to d′0 = ϕ(d0) at line 2. The claim
also holds for the push at line 9 as (1) f [βi(d)] is set to β′i(f [d]) in line 8 and
(2) f [d] = ϕ(d) (by induction hypothesis) and (3) ϕ(d) = d′ ⇒ ϕ(βi(d)) =
β′i(d

′) (by definition of an isomorphism function).
• Claim 2: Every dart d ∈ D is pushed once in S. Indeed, M is connected,

so that there exists at least one path of sewn darts (d0, . . . , dn) such that
dn = d. Therefore, each time a dart di of this path is popped from S (line
5), di+1 is pushed in S (line 9) if it has not been pushed before (through
another path). 2

The time complexity of Algorithm 1 is O(n · |D| · |D′|)

Let us first show that the time complexity of Algorithm 2 is O(n · |D|). Indeed,
the for loop (lines 6-9) is iterated n times, and the while loop (lines 4-9) is
iterated |D| times as (1) exactly one dart d is removed from the stack S at
each iteration, and (2) each dart d ∈ D enters S at most once (it enters S
only if f [d] = nil, and before entering S, f [d] is set to a dart of D′). Let
us then note that the test from line 4 of Algorithm 1 may be performed in
O(n · |D|). As Algorithm 2 and the test of line 4 are performed at most |D′|
times (once for each dart of M ′), the overall time complexity of Algorithm 1
is O(n · |D| · |D′|).

Note that Algorithm 1 may be optimized, without changing its worst-case
complexity. In particular, we could detect failure while building matchings by
checking between lines 7 and 8 of Algorithm 2 that there does not exist a dart
dj ∈ D that has already been matched to β′i(f [d]): if this is the case, one can
stop the current traversal as f will not be a bijection.
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3.2 Submap isomorphism

We now tackle the problem of submap isomorphism, the goal of which is to
decide if there exists a copy of a pattern map in a target map.

Basically, a submap is obtained from a map by keeping only a subset X of its
darts, and updating βi functions so that every dart of X that is i-sewn with
a dart that does not belong to X becomes i-free.

Definition 11 (Submap) Given a combinatorial map M = (D, β1, . . . , βn)
and a subset of darts X ⊆ D, the submap of M induced by X, denoted M↓X
is the combinatorial map (X, γ1, . . . , γn) such that:
∀d ∈ X, ∀i : 1 ≤ i ≤ n, if βi(d) /∈ X then γi(d) = ε; else γi(d) = βi(d).

Note that, depending on X, the submap M↓X may not satisfy condition 4 of
Def. 5 so that it may not be a combinatorial map. Hence, we shall verify, when
using Def. 11, that the subset X is such that M↓X satisfies this condition.

We can now define submap isomorphism as follows.

Definition 12 (Submap isomorphism) Let M = (D, β1, . . . , βn) and M ′ =
(D′, β′1, . . . , β

′
n) be two n-maps. M is isomorphic to a submap of M ′ if there

exists a subset of darts X ⊆ D′ such that M ′
↓X is isomorphic to M .

The subsetX obviously satisfies condition 4 of Def. 5 since ifM ′
↓X is isomorphic

to M , as M is a valid combinatorial map, its darts satisfy this condition.

The existence of a submap isomorphism implies the existence of a subisomor-
phism function which matches every dart of the pattern map to a different
dart of the target map, so that pattern darts that are i-sewn are matched to
target darts that are also i-sewn, like an isomorphism function. However, when
a pattern dart d is i-free the target dart matched to d must be either i-free, or
it must be i-sewn with a target dart which is not matched to another pattern
dart (see example in Fig. 4). This is more formally stated in Theorem 13.

Theorem 13 M is isomorphic to a submap of M ′ iff there exists an injection
f : D ∪ {ε} → D′ ∪ {ε}, called a subisomorphism function, such that:

(1) f(ε) = ε and
(2) ∀d ∈ D, ∀i : 1 ≤ i ≤ n,
• if d is not i-free, then β′i(f(d)) = f(βi(d));
• otherwise, either f(d) is i-free, or ∀dk ∈ D, f(dk) 6= β′i(f(d))).

PROOF.

12
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Fig. 4. Submap isomorphism example. M is a submap of M ′ as it is obtained from
M ′ by deleting darts k to r. M ′′ is not isomorphic to a submap of M ′ as the injection
f : X → D that respectively matches darts 1 to 10 to darts a to j does not verify
Theorem 13: for example, dart 4 is 2-free and it is matched to dart d which is 2-sewn
with a dart (b) which is itself matched (i.e., f−1(b) = 2).

(⇒) If M is isomorphic to a submap of M ′, then there exists a subset X ⊆
D′ such that M is isomorphic to M ′

↓X . By Def. 9, there exists a bijection
f : D ∪ {ε} → X ∪ {ε} such that f(ε) = ε and ∀d ∈ D, ∀i : 1 ≤ i ≤
n, f(βi(d)) = β′i(f(d)). Let us define function g : D∪{ε} → D′∪{ε} such that
∀d ∈ D, g(d) = f(d) and g(ε) = ε, and let us show that g is a subisomorphism
function. Obviously, ∀i : 1 ≤ i ≤ n, if d is not i-free, then β′i(g(d)) = g(βi(d)).
The key point is to show that if d is i-free, then either g(d) is i-free or ∀dk ∈
D, f(dk) 6= β′i(f(d))). Let us suppose that g(d) is not i-free and there exists
dk ∈ D such that g(dk) = β′i(g(d)). As f is an isomorphism function and
g is the restriction of f to X, we have g(dk) = β′i(g(d)) = g(βi(d)) so that
dk = βi(d) which is in contradiction with the fact that d is i-free.

(⇐) Let us suppose that there exists a subisomorphism function f : D∪{ε} →
D′ ∪ {ε}. We must show that M is isomorphic to a submap of M ′, i.e., that
there exists a subset X ⊆ D such that M is isomorphic to M ′

↓X . Obviously,
we define X = {f(d)|d ∈ D} and function g : D → X such that g(ε) = ε and
∀d ∈ D, g(d) = f(d). 2

Algorithm 3 determines if there is a submap isomorphism between two con-
nected maps. It is based on the same principle as Algorithm 1; the only dif-
ference is the test of line 4, which succeeds if f is a subisomorphism function
instead of an isomorphism function.

Correctness proofs and evidences given for isomorphism are still valid: we solve
the submap isomorphism problem with the same method as before, except that
function f is now an injection instead of a bijection.

The time complexity of this algorithm is O(n · |D| · |D′|) as traverseAnd-
BuildMatching is called at most |D′| times and its complexity is O(n · |D|).
Note that the subisomorphism test may be done in linear time.

Also, one may optimize Algorithm 3 in a similar way as proposed for Al-
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Algorithm 3: checkSubIsomorphism(M,M ′)

Input: two connected maps M = (D, β1, . . . , βn) and M ′ = (D′, β′1, . . . , β
′
n)

Output: returns true iff M is isomorphic to a submap of M ′

choose d0 ∈ D1

foreach d′0 ∈ D′ do2

f ← traverseAndBuildMatching(M,M ′, d0, d
′
0)3

if f is a subisomorphism function then4

return True5

return False6

d

(a)

d

(b)

Fig. 5. Two maps that are isomorphic but not planar-isomorphic.

gorithm 1, without changing its worst-case complexity, by checking between
lines 7 and 8 of Algorithm 2 that there does not exist a dart dj ∈ D that has
already been matched to β′i(f [d]): if this is the case, one can stop the current
traversal as f will not be an injection.

4 Constrained Isomorphisms

In 2D image processing, the type of maps one wishes to consider have the
property that they are to be drawn on the plane, not on the sphere. We call
this type of map a planar combinatorial map. To understand this point, let
us consider the typical situation represented in Fig. 5. These two maps are
isomorphic on the sphere, which corresponds to the definitions introduced in
Section 3.1, but are not isomorphic in the plane. In other words, for these two
maps, Algorithm 3 returns true, but that is probably not what is intended in
an image processing task.

The property of being planar isomorphic is a geometrical property, i.e. it can-
not be characterized for maps without geometry. Indeed, two maps are planar
isomorphic when they are isomorphic and when the image of the exterior of
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Fig. 6. Isomorphisms of maps with undefined parts on a sphere versus in the plane:
on a sphere, (b) and (c) are isomorphic, and (a) is a submap of both (b) and (c).
However, in the plane (b) and (c) are not isomorphic, and (a) is a submap of (b)
but not of (c). Exterior darts are drawn in bold.

the first map is equal to the exterior of the second map.

Let us consider, for example, the two maps displayed in Fig. 6(b) and Fig. 6(c).
These maps are isomorphic but not planar isomorphic. Indeed, the image of the
exterior darts of the map in Fig. 6(b) are not exterior darts in Fig. 6(c). This
means that we have reversed the first map which is not a possible operation in
the plane. This is similar for planar submap isomorphism. In our example, the
map of Fig. 6(a) is a submap of the two maps of Fig. 6(b) and Fig. 6(c), but
it is only a planar submap of the map of Fig. 6(b) since only in this case, the
image of the exterior darts of Fig. 6(a) are still at the exterior of the second
map.

In Section 4.1, we formally define planar maps by introducing the notion of ex-
terior and infinite darts of a map. In Section 4.2, we extend (sub)map isomor-
phism to planar (sub)map isomorphism isomorphism by adding constraints on
exterior and infinite darts. In Section 4.3, we show how to compute exterior
and infinite darts in the case of 1-closed combinatorial maps (i.e. when all
faces are closed).

4.1 Planar maps

When considering a map drawn on the plane, a part of the plane corresponds
to the exterior of the modeled object. There are 3 cases to consider:

• If there exists an infinite (or unbounded) face, and if this infinite face is
closed, then the exterior is defined by the darts of this infinite face, as
displayed in Fig. 7(a).
• If there exists an infinite face, but this face is open, then the exterior is

defined by the darts of this open infinite face, plus the set of 2-free darts
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Fig. 7. Exteriors darts are drawn in bold, and infinite darts in dash. Darts in bold
and dash are both exterior and infinite. (a) A closed map: Inf = Ext = {a, b, c, d, e}.
(b) A map with an open infinite face: Inf = {a, b, d} and Ext = {a, b, c, d, e, f, g}.
(c) A map without infinite face: Inf = ∅ and Ext = {a, b, c, d, e}.

3

2

1

4

(a)

4

3

2

1

(b)

3

2

1

4

(c)

Fig. 8. Three maps which are isomorphic, but not planar isomorphic. (a) and (b)
are two maps with different orientations. (b) and (c) have the same orientation but
(b) has no infinite face while (c) has one.

that border the exterior, as displayed in Fig. 7(b);
• If there does not exist an infinite face, then the exterior is defined by the

set of 2-free darts that border the exterior, as displayed in Fig. 7(c).

Hence, a planar map is defined by a map, together with a set Ext of exterior
darts, and a set Inf ⊆ Ext of darts that belong to the infinite face (called
infinite darts).

The last consideration to take into account is face orientation. Indeed, there
are two possible orientations of each planar combinatorial map: by taking β1

such that faces are oriented clockwise (like Fig. 8(b)) or counterclockwise (like
Fig. 8(a)). Note that all the faces of a map have the same orientation, except
the infinite face which has a reversed orientation. This orientation is once
again a geometrical property, and it is required to use the same orientation
for all the considered planar maps. Thus, in this section, we suppose that the
same orientation is chosen for all the planar maps.
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Definition 14 (Planar map) A planar map is a triple PM = 〈M,Ext, Inf〉
such that (1) M = (D, β1, β2) is a combinatorial map drawn on the plane with
a given orientation; (2) Ext ⊆ D is the set of exterior darts; (3) Inf ⊆ Ext
is the set of infinite darts.

Note that since we only consider connected maps, there is at most one infinite
face. This is not the case for non-connected maps that may have several infinite
faces (at most one for each connected component).

4.2 Planar map isomorphism

When comparing two planar maps in order to decide if they are isomorphic,
one has to check that the isomorphism function actually matches exterior and
infinite darts, as stated in Def. 15.

Definition 15 (Planar map isomorphism) Two planar maps PM =
〈M,Ext, Inf〉 and PM ′ = 〈M ′, Ext′, Inf ′〉 are planar isomorphic if there
exists an isomorphism function f between M and M ′ such that f(Ext) = Ext′

and f(Inf) = Inf ′.

The test on exterior darts is not enough to process all the possible cases. Let
us consider for example the maps of Fig. 8(b) and Fig. 8(c). These two maps
are isomorphic and have the same set of exterior darts, but they are not planar
isomorphic since the first one represents a square face while the second one
represents the plane minus a square. The condition on the infinite face allows
to distinguish these two cases since Inf = ∅ in the first map, whereas Inf 6= ∅
in the second map.

The definition of a submap is also extended to planar maps as follows.

Definition 16 (Planar submap) Given a planar map PM = 〈M,Ext, Inf〉
with M = (D, β1, β2), and a subset of connected darts X ⊆ D. The planar
submap of PM induced by X is the planar map PM↓X = 〈M↓X , Ext′, Inf ′〉
such that M↓X is the submap of M induced by X, Ext′ is the set of exterior
darts of M↓X and Inf ′ is the set of infinite darts of M↓X .

The way to compute Ext′ and Inf ′ depends on how the combinatorial map is
linked with some geometrical elements. In particular, we show in Section 4.3
how these sets can be computed when combinatorial maps are 1-closed.

Planar submap isomorphism is now defined in a straightforward way with
respect to planar submap and planar map isomorphism.

Definition 17 (Planar submap isomorphism) A planar map PM is pla-
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nar submap isomorphic to a planar map PM ′ if there exists a planar submap
of PM ′ which is planar isomorphic to PM .

4.3 The case of 1-closed combinatorial maps

In the field of image processing, faces are either entirely represented or not
at all. Technically, this means that β1 should be a permutation and not a
partial permutation. We use this property in this section to simplify handling
of exterior and infinite darts, and to show how to compute Ext and Inf sets
for the planar submap definition.

If a map is 1-closed, we have only two cases to consider: the infinite face is
either present and closed or totally absent. Therefore, we have either Inf = ∅,
or Inf = Ext. Thus, we do not have to explicitly list the set of infinite darts
Inf , but we can simply use a boolean infinite which is true if the infinite
face is present and false otherwise.

For each of these two cases, the subset Ext may be defined by giving only one
dart dext of the set:

• When the infinite face is defined, given a dart dext belonging to this face, the
whole set of exterior darts corresponds to the orbit 〈β1〉(dext). For example,
in Fig. 7(a), Ext = 〈β1〉(a) = {a, b, c, d, e}.
• When the infinite face is not defined, the exterior darts correspond to the

set of 2-free darts that border the exterior of the map. In this case, given
a 2-free dart dext that borders the exterior of the map, the whole set of
exterior darts may be computed by Algorithm 4. For example, in Fig. 7(c),
Ext = buildExterior(M,a, false) = {a, b, c, d, e}.

Note that in both cases, there may exist 2-free darts that are not exterior
darts. These 2-free darts border undefined parts of the map. Let us consider,
for example, the map displayed in Fig. 6(a): the set of exterior darts is {d, g};
the other 2-free darts, i.e., {a, b, i, j} border an undefined part inside the map.

Theorem 18 Given (M,dext, infinite), buildExterior computes all the
exterior darts of M

PROOF. As the map is 1-closed, there are only two possible cases: the infinite
face is present and thus Ext = Inf = 〈β1〉(dext), or this face is not present
and in this case, the exterior darts can all be reached starting from dext, and
keeping all the 2-free darts that border the exterior of the map. For that, given
an exterior dart, we go to the next dart of the same face (by using β1(dcurr)),
then we jump over darts inside the map (i.e. which are not 2-free) by using

18



Algorithm 4: buildExterior(M,dext, infinite)

Input: a map M = (D, β1, β2), an initial exterior dart dext ∈ D, and a
boolean infinite which is true if dext belongs to the infinite face,
false otherwise

Output: the set of all exterior darts
if infinite is true then return 〈β1〉(dext)1

Ext← ∅; dcurr ← dext2

repeat3

Ext← Ext ∪ {dcurr}4

dcurr ← β1(dcurr)5

while dcur is not 2-free do6

dcurr ← β21(dcurr)7

until dcurr = dext ;8

return Ext9

β21(dcurr) as many time as necessary to reach a 2-free dart. We are sure that
such a dart exists because the map is connected and 1-closed. 2

This algorithm has a linear time complexity with respect to the number of
darts.

We can now simplify the notation of planar maps by PM = 〈M,dext, infinite〉
since we can retrieve Ext and Inf given dext and infinite, for 1-closed maps.

Note that two planar maps may be planar isomorphic only if the two sets
of exterior darts have the same cardinality and either both correspond to
an infinite face, or both correspond to a set of 2-free darts that border the
exterior of the maps. If this is not the case, one can trivially conclude that
the two planar maps are not isomorphic; otherwise, one has to search for an
isomorphism function that matches Ext and Ext′. In this later case, one may
use the fact that darts of Ext must be matched to darts of Ext′ to boost the
research, as described in Algorithm 5.

Theorem 19 checkPlanarIsomorphism(PM,PM ′) returns true iff PM
and PM ′ are planar isomorphic.

PROOF. First, if PM and PM ′ are planar isomorphic, there is an isomor-
phism function f such that f(Ext) = Ext′ and f(Inf) = Inf ′. Thus, we have
necessarily infinite = infinite′ and f(dext) = d′0 ∈ Ext′. By testing all the
darts d′0 ∈ Ext′, we are sure to find this case and thus the algorithm will return
true. Second, if our algorithm returns true, we have an isomorphism function
between M and M ′ such that infinite = infinite′ and f(dext) = d′0 ∈ Ext′.
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Algorithm 5: checkPlanarIsomorphism(PM,PM ′)

Input: two planar maps PM = 〈M,dext, infinite〉 and
PM ′ = 〈M ′, d′ext, infinite

′〉
Output: returns true if and only if the maps are planar-isomorphic
if infinite 6= infinite′ then return false1

Ext← buildExterior(M,dext, infinite)2

Ext′ ← buildExterior(M ′, d′ext, infinite
′)3

if |Ext| 6= |Ext′| then return false4

foreach d′0 ∈ Ext′ do5

f ← traverseAndBuildMatching(M,M ′, dext, d
′
0)6

if f is an isomorphism function between M and M ′ then7

return true8

return false9

Since we are in the case of 1-closed maps, this implies that f(Inf) = Inf ′

and f(Ext) = Ext′ and thus PM and PM ′ are planar isomorphic. 2

Remember that we are able to decide of the isomorphism of 2-maps in O(|D| ·
|D′|) time. Having an information about the set of exterior darts and an
efficient way to compute these darts allows us to reduce the complexity to
O(|Ext′| · |D|). In many cases, |Ext′| is significantly smaller than |D′|. Typi-

cally, |Ext′| = O(
√
|D′|) for the lattice Z2.

Now let us re-consider the planar submap problem. By using the fact that
maps are 1-closed, we are now able to compute combinatorially Ext′ and Inf ′

in the submap definition. First, we need to add a constraint in the submap
definition. Indeed, given a planar map PM = (M,Ext, Inf), the subset of
darts X ⊆ D must ensure that the submap PM↓X is always 1-closed. For this
reason, for each face f of the initial map, X must either contain all the darts
of f , or no dart of f , but it cannot contain only some darts of f , otherwise
some darts are 1-free.

If the submap is 1-closed, then the infinite face is either totally kept in the
submap, or totally removed. This allows us to compute simply the new boolean
infinite′ of the submap. Indeed, if infinite is false, the initial map M does not
have an infinite face, and thus the submap also. Otherwise, we have Ext = Inf
and thus dext ∈ Inf . Now there are again two cases: if dext ∈ X, then the
infinite face is totally selected and thus is present in the submap, otherwise
the infinite face is not selected and thus the submap does not have an infinite
face.

For d′ext, there are also two cases to consider. If dext ∈ X, then this dart is
present in the submap and thus it belongs to the exterior of the submap, so
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that d′ext = dext. Otherwise, we need to find a new exterior dart of the submap.
This can be achieved easily by searching a dart d ∈ X which can be reached
from dext by a path of darts that uses only darts that do not belong to X
(except d of course). Indeed, such a dart belongs necessarily to the exterior of
the submap induced from X due to the fact that maps are connected. Such a
path may be found by a simple traversal of the darts of D starting from dext
and avoiding darts of X. The key point is to ensure that we are always able to
compute the dart d′ext by using such a path. Suppose it is not the case, then
there is no path between dext and one dart of X and this implies that the map
is not connected.

More formally, we define planar submap for 1-closed maps as follows.

Definition 20 (1-closed planar submap) Given a 1-closed planar map
PM = 〈M,dext, infinite〉 with M = (D, β1, β2), and a subset of connected
darts X ⊆ D. The planar submap of PM induced by X is the planar map
PM↓X = 〈M↓X , dext′ , infinite′〉 such that M↓X is 1-closed, with:

• infinite′ = true if infinite = true and dext ∈ X;
infinite′ = false otherwise;
• d′ext = dext if dext ∈ X;
d′ext = d ∈ X with a path (dext, . . . , d) of darts /∈ X (except d) otherwise.

Algorithm 6: checkPlanarSubIsomorphism(PM,PM ′)

Input: two connected planar maps PM = 〈M,dext, inf〉 and
PM ′ = 〈M ′, d′ext, inf

′〉
Output: returns true iff PM is planar isomorphic to a submap of PM ′

foreach dart d′0 of M ′ do1

f ← traverseAndBuildMatching(M,M ′, dext, d
′
0)2

if f is a subisomorphism function then3

PM ′′ = PM ′
↓f(D)4

if checkPlanarIsomorphism(PM,PM ′′) then5

return True6

return False7

Algorithm 6 shows how to decide if a planar map is isomorphic to a submap of
another planar map. The basic idea is to compute subisomorphism functions
and check if they satisfy the additional planarity constraint. We may have to
compute several subisomorphism functions since it is possible that there are
different subisomorphisms, and that some of them are planar while others are
not.

Theorem 21 checkPlanarSubIsomorphism(PM,PM ′) returns true
iff PM is planar isomorphic to a submap of PM ′.
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PROOF. First, if PM is planar isomorphic to a submap of PM ′, as we com-
pute all the subisomorphism functions between M and M ′, we are sure to find
the one satisfying planarity constraints and thus the algorithm returns true.
Second, if our algorithm returns true, there is a subisomorphism satisfying
the planarity constraints and thus PM is planar isomorphic to a submap of
PM ′. 2

The complexity of the planar subisomorphism algorithm is O(|D|2 · |D′|).

One loop of this algorithm is done by using Algorithm 2, which complexity
(in 2D) is O(|D|). The complexity of planar submap computation is O(|D′|),
thanks to the efficient computation of infinite′′ and d′′ext. Finally the test of
planar isomorphism is achieved by using Algorithm 5, the complexity of which
isO(|Ext′′|·|D|). Since the number of darts in Ext′′ is smaller than the number
of darts in D′′, we can bound the overall complexity of one loop by O(|D|2)
since |D| = |D′′|.

5 Experiments

In this section, we carry out two experiments that show the effectiveness of
our algorithm to detect patterns in images. The first challenge consists in
searching for a sub-image into a database of 2D segmented images —a typical
“Where’s Wally” challenge. The second one aims at retrieving a sub-mesh
into a database of 3D objects. These experiments illustrate the interest of
generic algorithms for submap isomorphism. Indeed, the same procedure is
used whatever the dimension of the maps that model objects (2D, 3D or
more).

5.1 Description of the two databases

The 2D database has been generated from 224 images 4 (see examples in
Fig. 9). For each of these 224 images, we have computed a 2D-map by using
the algorithm of [DBF04], thus obtaining 224 target 2D-maps. For each of
these 224 target 2D-maps, we have randomly extracted one submap, thus
obtaining 224 pattern 2D-maps.

4 The database of free images for research purpose is available on Internet
http://www.cs.washington.edu/research/imagedatabase/
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(a) (b) (c)

(d) (e)

Fig. 9. Examples of 2D images. All images have the same size (756 × 504 pixels)
and belong to one of the five following classes: (a) arbogreens, (b) cherries,
(c) football, (d) greenlake and (e) swissmountains.

The 3D database has been generated from 800 objects 5 represented in 3D,
thus defining 800 target 3D-maps (see examples in Fig. 10). From these 800
3D-maps, we have randomly extracted 62 pattern 3D-maps.

As our submap algorithm cannot deal with non connected pattern maps, we
have only extracted connected pattern submaps both for the 2D and the 3D
databases. In most cases, the target maps are not connected, but Algorithm 3
is able to handle this case without any modification.

Table 11 summarizes the characteristics of our two databases.

5.2 Compared approaches

We compare our submap algorithm with algorithms for solving subgraph iso-
morphism problems. For each 2D or 3D map M , we have generated a graph
G = (V,E) such that V associates a vertex with every 0-cell of M and E
associates an edge with every 1-cell of M , as illustrated in Fig. 12.

To search for patterns, we consider the partial subgraph isomorphism prob-
lem. Indeed, a pattern graph associated with a pattern map is not necessarily
an induced subgraph of the target graph associated with the target map, as
illustrated in Fig. 12. Hence, in the 2D (resp. 3D) database, 71 patterns (resp.

5 These objects are available in the Shape Retrieval Contest web page
http://www.aimatshape.net/event/SHREC/
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(a) (b)

(c) (d)

Fig. 10. Examples of 3D objects.

# maps # darts # vertices # edges # faces

avg min max avg min max avg min max avg min max

2D targets 224 14509 1768 35896 4789 594 11811 7255 884 17948 2598 336 6231

2D patterns 224 2175 48 22338 718 16 7365 1088 24 11169 384 14 3950

3D targets 800 179540 672 1337652 10683 42 98256 24502 92 167219 14962 56 111471

3D patterns 62 23413 456 175584 1704 40 14848 5033 114 44119 3326 76 29264

Fig. 11. Characteristics of the two databases: the first two lines describe the 2D
database, the last two lines describe the 3D database. For each line, we first give
the number of maps and then the number of darts, vertices, edges and faces (average,
minimum and maximum values).

1) are not found in the corresponding target if we look for an induced subgraph
instead of a partial subgraph.

Looking for partial subgraph isomorphisms allows us to find all submap iso-
morphisms. However, some of the subgraph isomorphisms may not correspond
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Fig. 12. Example of graphs associated with 2D-maps: Gt (resp. Gp) is the graph
generated from Mt (resp. Mp). Mp is a submap of Mt. There is only one submap
isomorphism which matches faces A′, B′, and C ′ to faces A, B, and C respectively
(we cannot exchange faces B′ and C ′ without violating topological constraints). Gp
is a partial subgraph of Gt; it is not an induced subgraph as edge (b′, g′) does not
belong to Gp whereas edge (b, g) belongs to Gt. There are two partial subgraph
isomorphisms: the first one matches vertices a′, b′, d′, e′, f ′, and g′, to vertices
a, b, d, e, f , and g respectively; the second one is obtained from the first one by
exchanging a′ and b′ with f ′ and g′.

to submap isomorphisms as topological relationships are ignored, as illustrated
in Fig. 12.

We have considered three different algorithms for solving subgraph isomor-
phism problems, i.e., Vflib [CFSV01], ILF [ZDS10], and LAD [Sol10]. All
of them perform a systematic exploration of the search space composed of
all possible injective matchings from the set of pattern vertices to the set of
target vertices. To reduce the search space, this exhaustive exploration is com-
bined with filtering techniques that aim at removing candidate couples of non
matched pattern-target vertices. Vflib, ILF, and LAD consider different filter-
ing techniques, and we refer the reader to [Sol10] for a detailed comparison
of them. For Vflib, we have considered the Vflib2 variant, which obtained the
best results on our benchmarks. For ILF, we have set the k parameter to 1.

5.3 Experimental results

Experimental settings. All algorithms have been implemented in C or
C++. All our experiments were made on a PC with a 2.26 GHz Intel Xeon
E5520 processor. For each database, and for each pattern of the database,
we have searched for all occurrences of this pattern in all the targets of the
database. This corresponds to 224 × 224 + 62 × 800 = 99, 776 runs of Al-
gorithm 3. As the subgraph isomorphism problem is NP-complete, we have
limited the CPU time spent to search for all occurrences of a pattern in one
target graph to 1000 seconds. Hence, the search for all occurrences of a pat-
tern in all the targets of the database is limited to 224, 000 seconds for the 2D
database and 800, 000 seconds for the 3D database.
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2D database: 224 patterns/224 targets 3D database: 62 patterns/800 targets

Map ILF LAD Vflib Map ILF LAD Vflib

# fail 0 0 1 8 0 6 6 40

avg time 0.17 184.04 4,580.14 1,197.58 1.01 190.36 419.41 603.05

min time 0.00 29.40 99.05 64.50 0.00 32.34 9.38 175.87

max time 0.89 1,975.71 15,501.44 25,648.42 24.71 816.12 4,348.94 2,575.84
Table 1
Experimental results: for each database, the first column (Map) gives results ob-
tained with our submap isomorphism algorithm; the last three columns give results
obtained with the subgraph isomorphism algorithms ILF, LAD, and Vflib; the first
line (# fail) gives the number of patterns for which the CPU time limit of 1000
seconds has been exceeded for at least one target of the database; the last three
lines give the average, minimum and maximum number of seconds spent to find all
occurrences of a pattern in all the targets (only for the patterns for which the CPU
time limit has not been exceeded).

Comparison of CPU times. Table 1 gives the CPU time spent to find
all occurrences of a pattern in all the targets of the considered database. Our
submap algorithm is very effective: it is able to find all occurrences of a pattern
in the 224 (resp. 800) targets in 0.17 (resp. 1.01) seconds for the 2D (resp.
3D) database. Actually, the number of darts visited during the search process
is usually far below the theoretical bound: in the 2D (resp. 3D) database,
the average number of darts visited to find all occurrences of a pattern in a
target is xxx (resp. yyy) whereas a pattern has 2175 (resp. 23413) darts on
average and a target has 14509 (resp. 179540) darts on average. This comes
from the fact that we consider an optimized version of the algorithm which
checks that the matching f is an injection during the traversal, and which
stops the traversal as soon as two different pattern darts are matched to a
same target dart.

Table 1 also gives results for subgraph isomorphism. For the 2D database, our
submap algorithm is more than 1000 times as fast as ILF, which is the fastest
of the three considered subgraph isomorphism algorithms. Moreover, if ILF has
never exceeded the CPU time limit of 1000 seconds for a pattern/target couple,
LAD and Vflib have exceeded this limit for 1 and 8 patterns respectively. For
the 3D database, our submap algorithm is 188 times as fast as ILF, and ILF,
LAD, and Vflib have exceeded the CPU time limit for 6, 6, and 40 patterns
respectively.

Of course, our submap algorithm does not solve the same problem: It exploits
the topology to search for patterns in polynomial time. When ignoring this
topology, the problem becomes NP-complete, and it is worth outlining here
the rather good performances of the three subgraph isomorphism algorithms
with regard to the fact that they have exponential time complexities in the
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worst case together with the fact that graphs have thousands of vertices.

Comparison of the solutions found. For all 2D patterns and for all 3D
patterns but 5, our submap algorithm has found only one solution, correspond-
ing to the target from which it has been extracted. However, 5 3D-patterns
have been found in more than one image: These patterns are classical patterns
(such as spheres) which are building components of many meshes.

Subgraph isomorphism has always found at least as much solutions as submap
isomorphism. However, as pointed out in section 5.2, subgraph isomorphism
may found more solutions than submap isomorphism as it ignores the topology.
Hence, in the 2D (resp. 3D) database, 148 (resp. 10) patterns are found more
than once in the corresponding targets due to automorphisms. Like for submap
isomorphism, 5 3D patterns have been found in more than one target. However,
if submap isomorphism never found a same 2D pattern in more than one
target, subgraph isomorphism has found 2 2D patterns in more than one
target.

6 Discussion

This paper is a first contribution to the problem of comparing combinatorial
maps. It defines the map and submap isomorphism problems, which may be
used to decide if two maps are equivalent, or if a copy of a map is included in
another map, and it describes polynomial algorithms for solving these prob-
lems. The proposed definitions and algorithms are generic and hold for any
open nD combinatorial maps, that may be used to model nD objects with
boundaries. We also introduce planar combinatorial maps, which may be used
to model 2D objects that are embedded on a plane such as, for example, im-
ages, and we show how to extend our algorithms to decide if two planar maps
are isomorphic. Experiments show that this work may be used to search for
patterns in 2D images or 3D meshes with very challenging CPU times.

The problem of finding a pattern in an image is an important issue that has of-
ten been tackled by modeling images with graphs such as, for example, RAGs.
If there exist rather efficient heuristics for solving the graph isomorphism prob-
lem 6 [McK81,SS08], this is not the case for the subgraph isomorphism problem
which is computationally intractable in the general case (NP-complete), and
therefore practically unsolvable for some instances. Hence, if subgraph iso-
morphism algorithms have been able to solve many instances with reasonable

6 The theoretical complexity of graph isomorphism is an open question: If it clearly
belongs to NP, it has not been proven to be NP-complete.
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CPU times, they spend much longer times than submap isomorphism and, for
some instances, they have not been able to find solutions within a reasonable
amount of time.

Interestingly, using combinatorial maps to model images allows us to have
more relevant results —as combinatorial maps model information that can-
not be modelled with classical RAGs such as multi-adjacency or the order of
neighbor regions around a region— and these results are computed much more
quickly —as the subisomorphism problem becomes polynomial.

Some polynomial algorithms have been proposed to solve particular cases of
the subgraph isomorphism problem. In particular, Jiang and Bunke have pro-
posed polynomial algorithms for deciding of the isomorphism [JB99] and subi-
somorphism [JB98] of ordered graphs, i.e., graphs such that, for each vertex,
the edges incident to this vertex have a unique order. These algorithms are
based on graph traversals and our algorithms for (sub)map isomorphism may
be viewed as a generalization of this work to nD open combinatorial maps.

A number of perspectives are being looked into. In particular, (sub)map iso-
morphism is an exact decision problem which allows us to search for a pattern
in a map. We plan to develop error-tolerant methods, that are able to quan-
tify the similarity of two maps by means of the size of their largest common
submap, or by means of the cost to transform a map into another by us-
ing the edit operations defined in [DL03,BADSM08]. We also plan to use our
(sub)isomorphism algorithms to search for patterns that occur frequently in
a database of images modelled by combinatorial maps, thus characterizing
classes of images. We have proposed in [GDS09] a signature of combinatorial
maps which is based on a map traversal similar to the one used in our isomor-
phism algorithm. This map signature may be used to decide in linear time if
a new combinatorial map already belongs to a database of map signatures.
We now plan to use this map signature and our submap algorithm in order to
find frequent patterns in a database of maps.
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