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Abstract

Popular data mining methods support knowledge dis-
covery from patterns that hold in binary relations.
We study the generalization of association rule mining
within arbitrary n-ary relations and thus Boolean ten-
sors instead of Boolean matrices. Indeed, many datasets
of interest correspond to relations whose number of di-
mensions is greater or equal to 3. However, just a few
proposals deal with rule discovery when both the head
and the body can involve subsets of any dimensions. A
challenging problem is to provide a semantics to such
generalized rules by means of objective interestingness
measures that have to be carefully designed. There-
fore, we discuss the need for different generalizations of
the classical confidence measure. We also present the
first algorithm that computes, in such a general frame-
work, every rule that satisfies both a minimal frequency
constraint and minimal confidence constraints. The ap-
proach is tested on real datasets (ternary and 4-ary re-
lations). We report on a case study that deals with
analyzing a dynamic graph thanks to rules.

1 Introduction.

Mining binary relations often encoded as Boolean matri-
ces has been extensively studied. For instance, a pop-
ular application domain deals with basket data anal-
ysis, i. e., mining Transactions × Products relations.
Many (local) pattern discovery techniques from poten-
tially large relations have been proposed. Pattern types
can be frequent itemsets (see, e. g., [1, 19]), closed item-
sets and formal concepts (see, e. g., [23, 4]), association
rules (see, e. g., [1]) or their generalizations towards, for
instance, the use of negated items (see, e. g., [19, 2]) or
a multi-relational setting (see, e. g., [7, 8, 15]). Thanks
to decades of research, many efficient algorithms have
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†Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205,
F-69621, France

‡Department of Computer Science, Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil
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been designed for large binary relation analysis.
It is however clear that many datasets correspond

to n-ary relations where n > 2 and thus Boolean tensor
analysis. For example, in the general setting where we
have Properties that describe Objects, we may also know
when (Dates) and where (Places) this holds. In other
terms, we would like to discover patterns in subsets of
Objects × Properties × Dates × Places (i. e., 4-ary rela-
tions) instead of losing information because of enforced
projections or aggregations. A quite interesting special
case of Boolean tensor corresponds to dynamic directed
graph encoding where two dimensions denote the ver-
tices (input and output ones) while other dimensions
are used to introduce temporal dimensions (see the case
study in Sect. 5).

Our goal is to generalize the association rule min-
ing task [1] within a Boolean tensor setting. This is
however surprisingly difficult. The two main subprob-
lems to address are (a) the semantic specification of the
patterns of interest, and (b) their efficient computation.
The point (a) is about defining the pattern language and
the measures of their objective interestingness. When
generalized to n-ary relations, association rules may in-
volve subsets of several of the n dimensions. In this
context, what does it mean for a rule to be frequent or
to have enough confidence? How to generalize other rel-
evancy concepts such as, for example, non redundancy?
Once these declarative issues revisited in the context of
n-ary relations, (b) scalable methods must be designed
to extract the patterns that satisfy the specification.
When possible, correct and complete algorithms remain
preferable. By definition, such methods list all solu-
tion patterns and only them. Performance issues are
important: a good algorithm must scale in the number
of dimensions, in the size (number of values) of each of
these dimensions, and in the number of tuples in the
relation (true values in the associated tensor).

Our contribution is threefolds. First, defining the
semantics of the new type of rules in arbitrary n-ary
relations has been much harder than expected. The
previous work (see Sect. 6) on multidimensional associ-
ation rules severely constrain the form of the rules. For
instance, several approaches only consider rules involv-
ing at most one element per dimension. To the best
of our knowledge, this proposal currently is the most



general extension of association rule mining [1] towards
multidimensional contexts. To design the objective in-
terestingness measures, a difficulty arises when both the
body and the head can involve subsets of any dimen-
sions. A key contribution is the proposal of the so-
called natural and exclusive confidence measures. Their
relevance is empirically validated, i. e., minimal thresh-
olds on these measures support the discovery of inter-
esting patterns in real datasets. Our second contribu-
tion concerns the design and the implementation of the
first complete algorithm, namely Pinard1, that exhaus-
tively lists a priori interesting rules. Its enumeration
principles, inspired by the closed pattern mining algo-
rithm from [6], provide an excellent scalability. Finally,
beside the empirical validation on a typical basket-like
real dataset derived from the DistroWatch Web site2,
we report a case study on a dynamic graph analysis
thanks to our multidimensional rules. This appears as
a promising application domain for pattern discovery
from large Boolean tensors.

Section 2 provides the formalization of our new rule
pattern domain. Section 3 introduces the first algorithm
that computes a priori interesting rules. Section 4
provides experimental results on a real-life ternary
relation. Section 5 reports on the analysis of a real
dynamic graph thanks to discovered rules. Section 6
discusses the related work. Section 7 briefly concludes.

2 Specifying a New Rule Pattern Domain.

2.1 Preliminary Definitions. The semantics of our
patterns applies to arbitrary n-ary relations (or Boolean
tensor). For instance, the arity, n, can be five and none
of the dimensions has to be specific (e. g., temporal).
These dimensions simply are n finite and disjoint sets
{D1, . . . , Dn} = D and R ⊆ D1 × · · · ×Dn denotes the
relation in which rules are to be discovered.

The definitions are illustrated on a toy ternary
relation RE (see Table 1). It relates products in
D1 = {p1, p2, p3, p4} bought along seasons in D2 =
{s1, s2, s3, s4} by customers in D3 = {c1, c2, c3, c4, c5}.
Every ’1’, in Table 1, is at the intersection of three
elements (pi, sj , ck) ∈ D1 × D2 × D3, which form a 3-
tuple present in RE . For instance, p1 is bought during
s1 by c1 and bought by c4 during s4 only. The patterns
of interest only involve some of the attribute domains
D′ ⊆ D. E. g., given RE , the analyst may want to
focus on patterns involving products and seasons in
which case D′ = {D1, D2}. Without loss of generality,
the dimensions are assumed ordered such that D′ =
{D1, . . . , D|D′|}.

1Pinard Is N-ary Association Rule Discovery.
2http://www.distrowatch.com

Table 1: RE ⊆ {p1, p2, p3, p4} × {s1, s2, s3, s4} ×
{c1, c2, c3, c4, c5}

p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4
c1 1 1 1 1 1 1 1 1 1 1 1
c2 1 1 1 1 1 1 1 1 1 1
c3 1 1 1 1 1 1 1 1
c4 1 1 1 1 1 1 1 1
c5 1 1

s1 s2 s3 s4

Definition 2.1. (Association)
∀D′ = {D1, . . . , D|D′|} ⊆ D, ×i=1..|D′|X

i is an associa-
tion on D′ iff ∀i = 1..|D′|, Xi 6= ∅ ∧Xi ⊆ Di.

By convention, the only association on an empty set
(i. e., D′ = ∅) is denoted ∅. Given an arbitrary
association on D′, ×Di∈D\D′Di is its support domain,
hence generalizing the “classical” binary case. Indeed,
in a Transactions × Products setting, the support
domain of an association rule involving products is the
set of transactions [1]. In our running example, D3 is
the support domain of every association on {D1, D2}.
The support of an association is a subset of the support
domain. Its definition uses concatenation denoted as ’·’.
For instance, (p2, s1) · (c2) = (p2, s1, c2).

Definition 2.2. (Support)
∀D′ ⊆ D, let X be an association on D′. Its support is
s(X) = {t ∈ ×Di∈D\D′Di | ∀x ∈ X, x · t ∈ R}.

Let us mention some special cases. An association
involving the n domains (D′ = D) is either true (every
n-tuple it contains is in R), or false (at least one n-tuple
it contains is absent from R). By using the convention
×Di∈∅D

i = {ǫ} (where ǫ is the empty word), Def. 2.2
reflects that: every association on D either has zero or
one element, ǫ, in its support. The opposite extreme
case is the support of the empty association, s(∅), which
is R. The support of an association generalizes that of
an itemset in a binary relation (i. e., when n = 2 and
D′ = {D1}). The cardinality of the support quantifies
the frequency of an association, like it does for itemsets.

Let us now provide some useful definitions to design
our rule pattern domain.

Definition 2.3. (Projection π)
∀D′ = {D1, . . . , D|D′|} ⊆ D, let X = X1 × · · · ×X |D′|

be an association on D′. ∀Di ∈ D, πDi(X) is Xi if
Di ∈ D′, ∅ otherwise.

Definition 2.4. (Union ⊔)
∀DX ⊆ D and ∀DY ⊆ D, let X (resp. Y ) be an
association on DX (resp. on DY ). X ⊔ Y is the
association on DX ∪ DY for which ∀Di ∈ D, πDi(X ⊔
Y ) = πDi(X) ∪ πDi(Y ).



Definition 2.5. (Complement \)
∀DX ⊆ D and ∀DY ⊆ D, let X (resp. Y ) be an
association on DX (resp. on DY ). Y \ X is the
association on {Di ∈ DY |πDi(Y ) 6⊆ πDi(X)} for which
∀Di ∈ D, πDi(Y \X) = πDi(Y ) \ πDi(X).

Definition 2.6. (Inclusion ⊑)
∀DX ⊆ D and ∀DY ⊆ D, let X (resp. Y ) be an
association on DX (resp. on DY ). X is included in
Y , denoted X ⊑ Y , iff ∀Di ∈ D, πDi(X) ⊆ πDi(Y ).

With this straightforward generalization of the inclu-
sion, the anti-monotonicity of the frequency (i. e., of
the support cardinality), that is well known in itemset
mining, still holds with associations. The proof is given
in annex.

Theorem 2.1. (Frequency anti-monotonicity)
∀DX ⊆ D and ∀DY ⊆ D, let X (resp. Y ) be an associ-
ation on DX (resp. on DY ), X ⊑ Y ⇒ |s(X)| ≥ |s(Y )|.

In RE , {p1, p2} × {s1} and {p1, p2} × {s1, s2} are
two associations on {D1, D2}, whereas {p1, p2} is an
association on {D1} (πD2({p1, p2}) = ∅). We have:

• s({p1, p2} × {s1}) = {c1, c2, c3};

• s({p1, p2} × {s1, s2}) = {c1, c2};

• s({p1, p2}) = {(s1, c1), (s1, c2), (s1, c3), (s2, c1),
(s2, c2), (s4, c1), (s4, c4)}.

Because {p1, p2} ⊑ {p1, p2}×{s1} ⊑ {p1, p2}×{s1, s2},
Th. 2.1 holds. Indeed, |s({p1, p2})| ≥ |s({p1, p2} ×
{s1})| ≥ |s({p1, p2} × {s1, s2})|.

2.2 Multidimensional Association Rules. Given
an n-ary relation R on D and the user-defined domains
of interest D′ ⊆ D, a multidimensional association rule
on D′ is a couple of associations whose union is an
association on D′. It is simply called a rule when it
is clear from the context.

Definition 2.7. (Rule)
∀D′ ⊆ D, X → Y is a multidimensional association
rule on D′ iff X ⊔ Y is an association on D′.

In RE , {p1, p2} → {s1, s2} and {p4} × {s3, s4} →
{p3} are two rules on {D1, D2}. {p1} → {p2} is not a
rule on {D1, D2} because no element in D2 appears in
its body (the association on the left hand side of ’→’)
or in its head (the association on the right hand side of
’→’). It is a rule on {D1}.

In the binary case (i. e., n = 2), the classical
semantics of association rules is based on two measures:
a frequency and a confidence. A priori interesting
rules are defined as those whose both measures exceed

user-specified thresholds [1]. A rule is frequent if it is
supported by enough objects. A rule can be trusted,
i. e., the analysts can be confident in it, if there is a
high enough conditional probability to observe the head
when the body holds.

In the context of n-ary relations, it turns out that
a natural definition of rule frequency exists. On the
contrary, it is hard to define a confidence measure for
general rules. More precisely, the difficulty arises for
any rule whose head involves some dimension that is
not in its body.

2.3 Rule Frequency. The (relative) frequency of
an association rule is a proportion of elements in the
support domain of the union of its body and its head.

Definition 2.8. (Frequency)
∀D′ ⊆ D, let X → Y a rule on D′. Its frequency is:

f(X → Y ) =
|s(X ⊔ Y )|

| ×Di∈D\D′ Di|
.

In RE , we have:

• f({p1, p2} → {s1, s2}) =
|s({p1,p2}×{s1,s2})|

|D3|

= |{c1,c2}|
|{c1,c2,c3,c4,c5}|

= 2
5 ;

• f({p4}×{s3, s4} → {p3}) =
|s({p3,p4}×{s3,s4})|

|D3| = 2
5 .

2.4 Rule Confidence.

2.4.1 The Problem. Is it possible and useful to
directly generalize the confidence measure of association
rules in binary relations to n-ary relations? Doing so,

the confidence of a rule X → Y would be |s(X⊔Y )|
|s(X)| . If

X and X ⊔ Y are associations on the same domain(s)
(they have the same support domain), this definition
is intuitive: the confidence is a proportion of elements
in a same support domain. For instance, in RE ,
the confidence of {p4} × {s3, s4} → {p3} would be:
|s({p3,p4}×{s3,s4})|
|s({p4}×{s3,s4})|

= |{c2,c3}|
|{c2,c3,c5}|

= 2
3 . It is a proportion

of customers and it means that the customers who buy
p4 during both s3 and s4 also tend to buy p3 during
these seasons.

Nevertheless, this semantics is not satisfactory for
any rule whose head involves some dimension that is
not in its body. Indeed, in this case, s(X ⊔Y ) and s(X)
are incomparable sets and the ratio of their cardinalities
does not make any sense. For instance, in RE , consider
the rule {p1, p2} → {s1, s2}. s({p1, p2} × {s1, s2}) =
{c1, c2} is a set of customers, whereas s({p1, p2}) is not.
It contains couples such as (s1, c1) or (s2, c1). As a
result, there is a need for a new confidence measure that
would make sense for any multidimensional association



rule X → Y . This measure should be equal to |s(X⊔Y )|
|s(X)|

when X and X ⊔ Y are defined on the same domain(s).

2.4.2 Exclusive Confidence. Computing the con-
fidence of a rule X → Y on D′ is problematic if X is
defined on a set DX strictly included in D′. However,
it is possible to introduce a factor such that |s(X)| and
|s(X ⊔ Y )| become comparable. The idea is to multiply
|s(X ⊔ Y )| by the cardinalities of its projections in the
domains that are absent from DX .

Definition 2.9. (Exclusive Confidence)
∀D′ ⊆ D, let X → Y a rule on D′ and DX the domains
on which X is defined. Its exclusive confidence is:

cexclusive(X → Y ) =
|s(X ⊔ Y )| × | ×Di∈D′\DX

πDi(Y )|

|s(X)|
.

Roughly speaking, the remedial factor | ×Di∈D′\DX

πDi(Y )|, applied to |s(X ⊔ Y )|, allows to count the
elements at the numerator of the fraction “in the same
way” as those at the denominator. As desired (see
Sect. 2.4.1), if X is an association on D′, the exclusive

confidence of X → Y is |s(X⊔Y )|
|s(X)| under the convention

×Di∈∅πDi(Y ) = {ǫ}.
For example, consider the rule {p1, p2} → {s1, s2}

in RE and let us name transaction a customer’s pur-
chase during a specific season. There are two customers,
c1 and c2, who buy both products p1 and p2 during both
seasons s1 and s2, i. e., we have |{c1, c2}|×|{s1, s2}| = 4
transactions. Consider now the body of the rule, i. e.,
{p1, p2}. Seven transactions, (s1, c1), (s1, c2), (s1, c3),
(s2, c1), (s2, c2), (s4, c1) and (s4, c4), involve both p1
and p2. Thus, cexclusive({p1, p2} → {s1, s2}) is:

|s({p1, p2} × {s1, s2})| × |{s1, s2}|

|s({p1, p2})|
=

4

7

The customer c3 buys both products p1 and p2 during
the season s1, whereas he/she does not buy them to-
gether during the season s2. This actually lowers the
confidence in the fact that customers like buying both
products during the seasons s1 and s2. Notice also that
the customer c1 buying these two products during sea-
son s4 lowers the confidence as well. In fact, the exclu-
sive confidence cexclusive({p1, p2} → {s1, s2}) indicates
to what extent the products p1 and p2 are bought to-
gether during the seasons s1 and s2 only. This exclu-
sivity explains the chosen name. If cexclusive({p1, p2} →
{s1, s2}) was 1, every customer who buys p1 and p2 to-
gether would always do so during both seasons s1 and
s2 (and never during another season).

This exclusivity aspect makes sense for the discov-
ery of interesting association rules. Indeed, it penalizes

the rules with “non-maximal” heads. For instance, the
rule {p1, p2} → {s2} is supported by the customers c1
and c2, who also buy the product p1 and p2 during sea-
son s1. That is why the exclusive confidence of this rule,
2
7 , is lower than that of {p1, p2} → {s1, s2},

4
7 . The dif-

ference of two transactions at the numerator directly
relates with the two customers c1 and c2, who also buy
the products p1 and p2 during season s1.

Unfortunately, this exclusivity also makes the func-
tion X 7→ cexclusive(X → Y \ X) (with X ⊑ Y ) not
increase w.r.t. ⊑. For example, consider the rules
{s3} → {p2, p3, p4} and {s3} × {p3} → {p2, p4} in
RE . We observe that {s3} ⊑ {s3} × {p3}, however
cexclusive({s3} × {p3} → {p2, p4}) < cexclusive({s3} →
{p2, p3, p4}) ( 24 < 6

10 ). This absence of property pre-
vents the sound use of anti-monotonic pruning to ef-
ficiently list every rule having an exclusive confidence
greater than a user-defined threshold. Let us now con-
sider an alternative definition for the confidence.

2.4.3 Natural Confidence. To define the confi-
dence of X → Y , a straightforward generalization of the
binary case is problematic when the support domain of
X is different from that of X⊔Y . “Forcing” the support
of X to be a subset of the support domain ×Di∈D\D′Di

of X ⊔ Y allows to define a confidence measure that is
a natural proportion, i. e., a proportion of elements in a
same support domain. The cost of such a natural con-
fidence is the need for a new definition of the support
when applied to rule bodies.

Definition 2.10. (Natural support of bodies)
∀D′ ⊆ D, let X → Y be a rule on D′. The natural
support of X is:

sD\D′(X) = {t ∈ ×Di∈D\D′Di | ∃u ∈ ×Di∈D′\DX
Di

such that ∀x ∈ X, x · u · t ∈ R} ,

where DX is the set of domains on which X is defined.
For x · u · t to possibly be in R, the domains in DX

must appear first, i. e., the domain index may have to
be changed.

Definition 2.11. (Natural confidence)
∀D′ ⊆ D, let X → Y be a rule on D′. Its natural
confidence is:

cnatural(X → Y ) =
|s(X ⊔ Y )|

|sD\D′(X)|
.

As desired (see Sect. 2.4.1), if X is an association on D′,

the natural confidence of X → Y is |s(X⊔Y )|
|s(X)| under the

convention ×Di∈∅D
i = {ǫ}.

Once again, consider the rule {p1, p2} → {s1, s2} in
RE . The customers who buy the products p1 and p2



together (during at least one season) are c1, c2, c3, and
c4. Among them, only c1 and c2 buy p1 and p2 during
both seasons s1 and s2. Thus, the natural confidence
cnatural({p1, p2} → {s1, s2}) is:

|s({p1, p2} × {s1, s2})|

|s{D3}({p1, p2})|
=

|{c1, c2}|

|{c1, c2, c3, c4}|
=

2

4
.

It means that half of the customers buying both p1 and
p2 during a same season do so during both seasons s1
and s2. Now, the customers who support the rule can
buy both p1 and p2 during another season and that
does not “lower” the natural confidence, whereas it does
lower the exclusive one (see Sect. 2.4.2). Moreover, the
natural confidence can give rise to pruning during the
rule enumeration process.

Theorem 2.2. (Pruning criterion) Let X → Y \X
and X ′ → Y \ X ′ be two rules on D′, we have: X ⊑
X ′ ⊑ Y ⇒ cnatural(X → Y \X) ≤ cnatural(X

′ → Y \X ′).

The proof is given in the technical annex. In RE ,
{p1, p2} → {s1, s2} and {p1, p2} × {s1} → {s2} are two
rules on {D1, D2}. The natural confidence of the first
rule is 2

4 (see above). The natural confidence of the

second one is |s({p1,p2}×{s1,s2})|
|s

D3 ({p1,p2}×{s1})|
= |{c1,c2}|

|{c1,c2,c3}|
= 2

3 . It

illustrates Th. 2.2. Indeed, {p1, p2} ⊑ {p1, p2}× {s1} ⊑
{p1, p2} × {s1, s2} and cnatural({p1, p2} → {s1, s2}) ≤
cnatural({p1, p2}×{s1} → {s2}). In Sect. 3, this theorem
is used to prune the search space where no rule can
satisfy a minimal natural confidence constraint.

2.5 Canonical Rules.

Definition 2.12. (Syntactic Equivalence)
∀D′ ⊆ D, the rules X → Y and X → Z on D′ are
syntactically equivalent iff X ⊔ Y = X ⊔ Z.

Proving the following lemma is straightforward.

Lemma 2.1. Syntactically equivalent rules have the
same frequency, the same exclusive confidence and the
same natural confidence.

Definition 2.13. (Canonical Rule)
∀D′ ⊆ D, a rule X → Y on D′ is canonical iff ∀Di ∈ D,
πDi(X) ∩ πDi(Y ) = ∅.

Any complete collection of rules satisfying con-
straints of frequency and/or confidences can be con-
densed, without any loss of information, into its canoni-
cal rules only. Indeed, given a canonical association rule
X → Y in the collection, Lemma 2.1 entails that all syn-
tactically equivalent rules necessary are in the collection
as well. Moreover constructing them is easy: they are
the association rules X → Y ⊔ Z with Z ⊑ X.

3 Computing Rules.

Given an n-ary relation R ⊆ ×Di∈DD
i, every a priori

interesting canonical association rule is to be listed.
These rules are defined on a chosen subset D′ ( D,
have their frequencies beyond µ ∈ [0; 1], their exclusive
confidences beyond βexclusive ∈ [0; 1], and their natural
confidences beyond βnatural ∈ [0; 1]. In other terms, the
algorithm Pinard computes:

{X → Y on D′ |



















X → Y is canonical

f(X → Y ) ≥ µ

cexclusive(X → Y ) ≥ βexclusive

cnatural(X → Y ) ≥ βnatural

} .

Pinard first constructs a new relation RT from R.
The support domain of any association rule on D′ is
Dsupp = ×Di∈D\D′Di. Let DT = D′ ∪ Dsupp. The
relation RT on DT is defined as follows:

(e1, e2, . . . , e|D′|, e|D′|+1, . . . , en) ∈ R
⇔ (e1, e2, . . . , e|D′|, (e|D′|+1, . . . , en)) ∈ RT .

The next step is to compute the frequent associa-
tions from which the a priori interesting rules will be
derived. This can be formalized as the search for ev-
ery association T on DT that satisfies the four following
constraints:

• Cconnected(T ) ≡ T ⊆ RT ;

• Con-D′(T ) ≡ ∀Di ∈ D′, πDi(T ) 6= ∅;

• Centire-supp(T ) ≡ πDsupp(T ) = s(T \ πDsupp(T ));

• Cfreq(T ) ≡
|πDsupp (T )|

|Dsupp| ≥ µ.

The first and the second constraints relate to the
definition of an association: T must cover only tuples
present in RT and T \πDsupp(T ) must be an association
on D′. The third constraint enforces a “closed” support.
Indeed, by definition of the support (Def. 2.2), adding
an element f ∈ Dsupp \ πDsupp(T ) to T necessarily
violates Cconnected. Thus, Centire-supp(T ) is equivalent to
∀f ∈ Dsupp\πDsupp(T ), (T \πDsupp(T ))⊔{f} 6⊆ RT . The
last constraint guarantees that the frequency of every
association rule involving all elements in ∪Di∈D′πDi(T )
is greater or equal to µ.

Constraint-based mining of closed associations has
been recently studied [6, 14, 16]. It has given rise
to an extremely efficient enumeration strategy imple-
mented in the state-of-the-art algorithm Data-Peeler
[6]. Furthermore this extractor can handle a very broad
class of constraints including the four above. Building
upon these enumeration principles actually motivated



U

V

U

V \ {e}

U ⊔ {e}

(V \ {e}) \ {v ∈ ∪
Di∈DT

π
Di (V ) | U ⊔ {e} ⊔ {v} 6⊆ RT }

Figure 1: Enumerating the element e ∈ ∪Di∈DT
πDi(V ).

the constraint-based formalization of our problem. Nev-
ertheless, we do not exactly want the closed associations
on DT . Indeed, a frequent association is only closed on
the support dimension, Dsupp, whereas a closed associ-
ation (called a closed n-set in [6]) is closed on all the
dimensions in DT . Therefore, we adapt the algorithm
from [6] to the discovery of every frequent association in
RT . Here we present an abstract view of this process.
Technical details can be found in [6].

Pinard recursively partitions the search space into
two complementary parts (“divide and conquer”). In
this way, a binary tree can represent the search space
traversal. At every node of this tree, two associations,
namely U and V , are updated. U is, according to
⊑, the smallest association that may be discovered
from the node, whereas U ⊔ V is the largest. That
is why Pinard is initially called with U = ∅ and
V = ×Di∈DT

Di. In an enumeration sub-tree rooted
by a left child, an arbitrary element e ∈ ∪Di∈DT

πDi(V )
is absent from every U association (e is “removed” from
V ). In the enumeration sub-tree rooted by its sibling
node (right child), the same element e is present in
every U association (e is “moved” from V to U). Right
after an element e is “moved” to U (right child), the
constraint Cconnected is enforced. It removes from V

every element v ∈ ∪Di∈DT
πDi(V ) that would violate

Cconnected if added to (U⊔{e}), i. e., U⊔{e}⊔{v} 6⊆ RT .
Figure 1 sums up this enumeration process. A left child
is traversed first unless the enumerated element is in
Dsupp. This design grants better performance when
generating the rules. This is explained later.

An enumeration sub-tree is not explored if at least
one of the other three constraints (Con-D′ , Centire-supp
or Cfreq) is guaranteed to be violated by every U

association in it. This guarantee is easily checked at
the root of the sub-tree thanks to a generalized anti-
monotone property all three constraints satisfy, i. e., if
an association violates one of them then every smaller
association (w.r.t. ⊑) violates it as well. Thus, if U ⊔V
(the largest association in the sub-tree) violates one
of these constraints, the guarantee holds and Pinard
aborts the exploration of the related part of the search
space. Other anti-monotone constraints can be enforced
to enhance the relevance of the associations and provide

faster extractions. E. g., minimal numbers of elements
can be specified for every dimension of the rule:

C(αi)i=1..|D′|-sizes
(T ) ≡ ∀Di ∈ D′, |πDi(T )| ≥ αi .

The only other reason for an enumeration node to
be a leaf, despite its satisfaction of the constraints, is the
actual discovery of a frequent association. It happens
when V = ∅, i. e., when there is no more element to
enumerate. Algorithm 3.1 sums up the extraction of
every frequent association.

Algorithm 3.1. Pinard

Input: (U, V )
Output: Every a priori interesting association rule
involving every element in ∪Di∈D′πDi(U) and possi-
bly some elements in ∪Di∈D′πDi(V )
if Con-DT

(U ⊔ V ) ∧ Centire-supp(U ⊔ V ) ∧ Cfreq(U ⊔ V )
then

if V = ∅ then
Rules(U \ πDsupp(U), ∅)

else

Choose e ∈ ∪Di∈DT
πDi(V )

if e ∈ Dsupp then

Pinard(U ⊔ {e}, (V \ {e}) \ {v ∈
∪Di∈DT

πDi(V ) | U ⊔ {e} ⊔ {v} 6⊆ RT })
Pinard(U , V \ {e})

else

Pinard(U , V \ {e})
Pinard(U ⊔ {e}, (V \ {e}) \ {v ∈
∪Di∈DT

πDi(V ) | U ⊔ {e} ⊔ {v} 6⊆ RT })
end if

end if

end if

Rules (Alg. 3.2) computes a priori interesting
rules, of the form B → H, whenever a frequent
association A (= U \πDsupp(U) in Alg. 3.1) is discovered.
It splits all elements in ∪Di∈D′πDi(A) between the body
B and the head H, i. e., B⊔H = A. The candidate rules
are, again, structured in a tree. By only looking at the
heads, H, of the rules (A and H being given, the body,
B, is A \ H), this tree actually is that of APriori [1].
Nevertheless, Rules traverses it depth-first. The root of
the tree is A→ ∅. At every level, H grows by an element
which is removed from B. An arbitrary total order ≺
is chosen for the elements in ∪Di∈D′πDi(A). At every
node, the singletons that are allowed to augment (via
⊔) the head are those greater than any element in the
current head (i. e., greater than max≺(H) and under the
convention specifying that max≺(∅) is smaller than any
other element). The pruning criterion is the minimal
natural confidence constraint. According to Th. 2.2,
this pruning is safe, i. e., no rule, with a high enough



natural confidence, is missed. As shown in Sect. 2.4.2,
the exclusive confidence is not always decreasing along
an enumeration branch. That is why it is computed just
before a rule is possibly output. The rule is eventually
output if this confidence is greater than βexclusive.

Algorithm 3.2. Rules

Input: (B,H)
Output: Every canonical association rule with all
elements in ∪Di∈D′πDi(B⊔H), a body smaller than B

(according to ⊑), a head larger than H (according to
⊑) and satisfying the minimal confidence constraints
for all e ≻ max≺(H) do
(B′, H ′)← (B \ {e}, H ⊔ {e})
if cnatural(B

′ → H ′) ≥ βnatural then

if cexclusive(B
′ → H ′) ≥ βexclusive then

Output B′ → H ′

end if

Rules(B′, H ′)
end if

end for

By storing, in an associative array, the frequency of
every frequent association discovered so far, the cost of
computing the denominators of the confidence measures
can be reduced (at the numerator, s(B ⊔H) = s(A) is
constant all along Rules’s computation). Indeed, when
a rule B → H is derived from a frequent association
A, B ⊑ A may have already been discovered and its
frequency |s(B)| is retrieved without accessing RT . To
profit as much as possible from this, Rules had better
been initially called on increasingly larger (w.r.t. ⊑)
associations on D′. This actually is, in Alg. 3.1, the
reason for reversing the two Pinard sub-calls depending
on the condition “if e ∈ Dsupp”: it first explores
the association search space where the enumerated
element is absent unless this element is in the support
dimension. In this way, and according to Th. 2.1 (larger
associations have decreasing supports), when Rules is
initially called on A, all associations A′ ⊑ A on D′

have been discovered, and treated, earlier. WhenRules
actually needs to access RT for the computation of s(B)
(this may only happen if B is not an association on
D′) or sD\D′(B), their cardinalities are also stored in
associative arrays to, again, potentially reduce the cost
of computing the confidences of the rules that remained
to be discovered.

To enhance the quality of the computed rules, we
can enforce other user-defined constraints. For example,
non redundancy can be specified. A rule X → Y is
said redundant iff it exists another rule X ′ → Y ′ such
that (X ′ ⊔ Y ′ = X ⊔ Y ) ∧ (X ′

⊏ X) ∧ (cnatural(X
′ →

Y ′) ≥ cnatural(X → Y )) ∧ (cexclusive(X
′ → Y ′) ≥

cexclusive(X → Y )).

4 Empirical Validation.

To analyze the behavior of Pinard, we conducted
experiments on a real-world dataset. Every experi-
ment has been performed on a GNU/LinuxTM system
equipped with an Intel R© CoreTM2 Duo CPU E7300 at
2.66 GHz and 3 GB of RAM. Pinard was implemented
in C++ and compiled with GCC 4.2.4.

DistroWatch3 is a Web site gathering a comprehen-
sive information about GNU/LinuxTM, BSD and Solaris
operating systems. Every distribution is described on a
separate page. When a visitor loads a page, his/her
country is known from the IP address. The logs of the
Web server are easily converted into a three dimensional
tensor that gives for any time period (13 semesters from
early 2004 to early 2010) the number of visits from any
country on any page (describing 655 distributions). The
countries associated with 2,000 or more consultations
in at least one semester were kept. Those are the 96
“most active” countries. Then, the numerical data are
normalized so that every couple (semester,country) has
the same weight. Finally, a procedure, inspired by the
computation of a p value, locally chooses the relevant
3-tuples: for every distribution (hence, “locally”), the
3-tuples associated with the greatest normalized val-
ued are kept until their sum reaches 20% of the sum
of all normalized values involving the distribution. In
this way, a 3-tuple (c, d, s) belongs to the resulting re-
lation, RDistroWatch, when a significant amount of users
from country c have been visiting the description of the
distribution d during semester s. RDistroWatch contains
21,033 3-tuples, hence a 21,033

96×655×13 = 2.6% density.
We analyze the results of the experiments with

regard to the following questions: (a) Do the discovered
rules make sense? (b) What do the different confidence
definitions capture?, and (c) How does the algorithm
Pinard behave with respect to parameter settings?

Let us first discuss a qualitative study where we look
for rules that involve countries and distributions. These
two dimensions form the set D′. With the thresholds
µ = 0.75, βexclusive = 0.6 and βnatural = 0.8, Pinard
computes 58 canonical rules. Here as some of them:

• {Taiwan} × {Fedora} → {B2D}
(f : 0.846, cnatural : 0.917, cexclusive : 0.917);

• {Japan} × {CentOS} → {Ecuador}
(f : 0.769, cnatural : 0.909, cexclusive : 0.909);

• {Berry, Plamo} → {Japan}
(f : 0.923, cnatural : 1, cexclusive : 0.75);

• {Berry, Momonga, Plamo} → {Japan}
(f : 0.769, cnatural : 1, cexclusive : 1);

3http://www.distrowatch.com



• {Caixa Mágica} → {Portugal}
(f : 0.846, cnatural : 1, cexclusive : 1).

The first rule listed above indicates that when
(i. e., the semesters during which) the Taiwanese visitors
of DistroWatch show interest in Fedora then they
usually show interest in B2D too (cnatural = cexclusive =
0.917). The probability that Ecuadorian people consult
CentOS, during the semesters Japanese do so, is greater
than 90% (the second rule having 0.909 for confidences).
Japan is the origin country of Berry and Plamo, i. e.,
these distributions are developed by Japanese people.
That certainly explains why the visits on the related
Web pages almost exclusively come from Japan. Indeed,
the natural confidence of the third rule is 1, i. e.,
whenever (i. e., all semesters during which) both the
Berry and the Plamo pages are loaded, the Japanese
people do so. The high exclusive confidence of this rule
(0.75) also indicates that visitors from other countries
rarely have this behavior. Since the fourth rule adds
a third Japanese-developed distribution, Momonga, at
the body, the resulting exclusive confidence is even
higher. It is 1, i. e., outside Japan, no other country
frequently consults those three distributions at the same
semester. The same interpretation holds for the last
rule, i. e., Caixa Mágica being developed by and for
people in Portugal, it is only visited by them (cnatural =
cexclusive = 1).

In fact, most of the discovered rules of the form
distributions → countries involve countries where the
distributions are developed. These rules clearly make
sense and validate our semantics. Indeed, distributions
that are specifically developed by and for a country
(with, often, language specifics taken into account)
mainly attract users from this country. The proportion
of such rules (among those of the same form) is:

q =

|{D → P |

{

D ⊆ Ddistributions ∧ P ⊆ Dcountries

∀p ∈ P, ∃d ∈ D | origin(d) = p
}|

|{D → P |D ⊆ Ddistributions ∧ P ⊆ Dcountries}|

where origin(d) is the origin country of the distribution
d. Given our background knowledge, more relevant
collections of rules should have higher q values.

Thus, to test whether higher minimal thresholds on
the designed measures (i. e., the frequency and the con-
fidences) actually capture more relevant patterns, Fig. 2
plots q in function of these thresholds. We observe that
q actually increases w.r.t. every minimal threshold and
this empirically corroborates the relevance of our se-
mantics. The measure q increases more quickly with
βexclusive than with βnatural. This makes sense: a con-
junction of distributions that exclusively interests visi-
tors from a given country usually involves at least one
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Figure 3: Pruning effectiveness.

distribution developed by and for people in this coun-
try. Finally, it is interesting to understand that, under a
given minimal frequency constraint µ, the collections of
rules computed with βnatural ≤ µ (βexclusive remaining
constant) are the same, hence the steps in Fig. 2b. In-
deed, the natural confidence is a proportion of elements
in the support domain of the rule and the frequency
constraint forces the rule to match at least a proportion
µ of elements in this domain. As a consequence, no rule
can have a natural confidence beneath µ.

We now report a performance study for the ex-
traction of rules involving countries and distributions,
i. e., D′ = {Countries, Distributions}. When the min-
imal frequency threshold increases, both the number
of frequent rules and the running time decrease (see
Fig. 3a obtained with βnatural = βexclusive = 0). Indeed,
Pinard prunes large areas of the search space where
every association violates the constraint Cfreq. Theo-
rem 2.2 allows to prune the search space too. Indeed,
the Rules algorithm does not develop the enumera-
tion sub-trees that only contain rules with too small
natural confidences. That is why both the number of
rules and the time it takes to extract them decrease
when the minimum natural confidence threshold in-
creases (see Fig. 3b). This experiment was performed
with βexclusive = 0, µ = 0.3, and βnatural varying be-
tween 0 and 1.

Pinard’s scalability was tested on the extraction of
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these rules with µ = 0.75 and βnatural = βexclusive = 0.
RDistroWatch was replicated up to 10 times w.r.t. the
timestamps. It turns out that the algorithm scales
linearly. More precisely, a linear regression of R 7→ TR

T1

(where R is the replication factor; TR the running time
on this replicated dataset) gives y = 2.27x − 2.91 with
0.96 as a determination coefficient.

5 A Case Study on Dynamic Graphs.

To illustrate the genericity of our approach, we consider
the analysis of a real-life dynamic graph as a case study.

5.1 Dynamic Graphs as n-Ary Relations. Let us
investigate rule discovery from dynamic directed graphs,
i. e., from collections of static directed graphs that all
share the same set of uniquely identified vertices. For
instance, Fig. 4 depicts a dynamic directed graph in-
volving four nodes. Four snapshots of this graph are
available. The dynamic graph can be represented as
the sequence of its adjacency matrices underneath. It
describes the relationship between the tail vertices in
D1 = {d1, d2, d3, d4} and the head vertices in D2 =
{a1, a2, a3, a4} at the timestamps in D3 = {t1, t2, t3, t4}.
Every ’1’, in the adjacency matrices, is at the intersec-
tion of three elements (di, aj , tk) ∈ D1×D2×D3, which
indicate a directed edge from di to aj at time tk. For
instance, the edge from Node 3 to Node 2 at the first
timestamp is encoded by the tuple (d3, a2, t1) in RG.
In this way, three dimensions are necessary to encode
a dynamic graph, which can then be seen as a ternary
relation (e. g., RG in Fig. 4). However, more dimen-
sions may be useful to encode, for instance, labels on
the edges and/or different time granularities.

5.2 Mining the Vélo’v Dynamic Network.

Vélo’v4 is a bicycle rental service run by the urban
community of Lyon, France. 327 Vélo’v stations are
spread over Lyon and its surrounding area. At any of
these stations, the users can take a bicycle and bring it

4http://www.velov.grandlyon.com/

to any other station. Whenever a bicycle is rented or re-
turned, this event is logged. We were granted the access
to such a log listing more than 13.1 million rides along
30 months. Those data can be seen as a dynamic di-
rected graph evolving along the 7 days of the week and
the 24 one-hour periods in a day, i. e., a collection of
graphs timestamped with labels from both time scales.
These two temporal dimensions and the (departure and
arrival) stations make the four domains of a relation
we call RVélov’v. (ds, as, d, h) belongs to RVélov’v (i. e.,
there is an edge from ds to as in the graph timestamped
with (d, h)) when a significant amount of bicycles (local
test inspired by the computation of a p-value) are rented
at the (departure) station ds on day d (e. g., Monday)
at hour h (e. g., from 1pm to 2pm) and returned at the
(arrival) station as. RVélov’v contains 117, 411 4-tuples,
hence a 117,411

327×327×7×24 = 0.7% density.
The temporal dimension(s) of such a dynamic net-

work can either appear in the rules (i. e., in D′) or be
used to compute the frequency and the confidences of
the rules (i. e., in the support domain). A trivial mod-
ification of Rules can additionally force some of the
dimensions to only appear at the bodies (resp. at the
heads) of the rules. These different rule templates sup-
port the analysis of different questions. Here are some
examples.

Given a frequent sub-network (i. e., a sub-network
that is often observed), is it enlargeable with a strong
enough confidence? To answer this question, the rules
must involve departure and arrival stations, i. e., D′ =
{Departure,Arrival}. The support domain of these
rules is the Cartesian product of the 7 days and the
24 hours. The constraint C(2,2)-sizes (see Sect. 3) is
additionally enforced so that every rule involves at least
two departure and two arrival stations. Moreover we
constrain the body of every rule to be a graph with
at least an edge, i. e., it must involve at least one
departure station and one arrival station. Redundant
rules are removed. In this way, Pinard discovers the
minimal sub-networks (at bodies of the rules) that can
be confidently enlarged (with the stations at the heads).
With µ = 0.2 and βnatural = βexclusive = 0.7, 84 rules are
discovered. Some are reported in Fig. 5. The enlarged
sub-networks can contain more nodes (see Rules 5b
and 5c) or only more edges (see Rule 5a). These
rules suggest diverse phenomena like “auto-regulation”
(Rules 5b and 5a) or convergence (Rules 5a and 5c).
They can potentially be used to anticipate the effect of
a breakdown. For example, if station 1021 fails then
station 1002 may soon be saturated since bicycles from
stations 2001 and 2024 will converge to the operational
station. Notice, however, that the extracted rules are
only descriptive (and not predictive). Using them to



support link prediction is an interesting perspective.
Are stations that emit, at given periods of time,

bicycles toward many other stations, typical of some
days of the week? To answer this question, the rules
must involve time periods and departure stations at
their bodies; day information at their heads. With
the minimum thresholds µ = 0.08, βnatural = 0.7, and
βexclusive = 0.6, 33 such rules are discovered. Fig. 6
reports two of them. The rule in Fig. 6a indicates that
most of the departures from station 6002 and between
11am and 12am occur on Sundays (cexclusive = 0.71).
This makes sense: this station is at the main entrance
of the most popular park, where people like to walk
on Sundays and come back home by bicycle, hence the
high frequency in terms of number of arrival stations.
The rule in Fig. 6b means that we have rare departures
from station 1002 between 1am and 3am except on
Sundays (cexclusive = 0.62). This makes sense too: this
station is located in a district with many pubs, where
people like to party at nights between Saturdays and
Sundays. Since the public transportation services stop
at midnight, Vélo’v is a popular way to come back
home.

Do some stations exchange many bicycles at favored
hours everyday? To answer this question, the mined
rules have time periods and departure stations at their
bodies; arrival stations at their heads. To discover rules
that hold everyday, the minimal frequency threshold
is set to 1. With βnatural = 1 and βexclusive = 0.8,
Pinard returns 40 rules involving at least one time
period, two departure stations and two arrival stations.
Fig. 7 depicts one of them. Such rules are valuable for
the data owner, who discovers what arrival stations may
be impacted by a shortage of bicycles at the stations in
the body.

Let us finally provide a performance study of
Pinard mining RVélo’v for rules such as those depicted
in Fig. 5. As expected, Fig. 8 shows that the number of
rules and the running time decrease when the minimal
frequency threshold (resp. minimal natural confidence
threshold) increases. As in Sect. 4, RVélov’v was repli-
cated up to ten times w.r.t. its temporal dimensions.
With µ = 0.1 and βnatural = βexclusive = 0, a linear re-
gression of R 7→ TR

T1
(where R is the replication factor

and TR the running time on the replicated dataset) gives
y = 0.51x+0.5 with 0.97 as a determination coefficient.
This low slope highlights the effectiveness of Pinard.

6 Related Work.

Since the seminal paper [1], the discovery, in binary re-
lations, of association rules with high enough supports
and confidences has been extensively studied. Many
works deal with the generalization of this task towards
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Figure 5: Example of rules of the form
“min. sub-network”→ “larger sub-network”
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Figure 6: Example of rules of the form departures ×
hours → days.
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Figure 7: A rule of the form hours × departures →
arrivals.
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Figure 8: Pruning effectiveness.

n-ary relations. The rules discovered by these propos-
als can be classified into three types: intra-dimensional,
inter-dimensional and hybrid. In an intra-dimensional
rule, all the elements belong to a single dimension. This
case has been extremely well studied for binary rela-
tions. In [22], the authors propose to discover intra-
dimensional association rules in n-ary relations where
n ≥ 2. For each dimension, association rules between
its elements are discovered. The Cartesian product of
the n− 1 other dimensions constitutes the support do-
main. Inter-dimensional association rules were proposed
for the discovery of co-occurrences between elements in
different dimensions [17, 10, 20]. Their expressiveness
is however limited: two elements in the same dimension
cannot appear together in a rule. The search for inter-
dimensional association rules is guided by a metarule,
which contains distinct predicates and enforces a user-
defined rule template. The problem of defining the sup-
port/frequency out of the transactional framework has
also been addressed within a relational database set-
ting, i. e., a multi-relational perspective. [8] proposes
the Warmr algorithm that discovers rules over a lim-
ited type of Datalog queries. The support of a query is
the number of databases for which it gives a non empty
answer. In the same way, [11] has recently introduced a
support measure based on the key dependencies. Other
authors have proposed ad-hoc algorithms to extract hy-
brid rules in which the repetition of a few dimensions
is possible [12, 9, 24]. Given the ability of dynamic
graphs to represent real-world phenomena, several re-
searchers have focused on the discovery of association
rules in such particular ternary relations (see Sect. 5).
With the increasing availability of network data (e. g.,
social network), it has even become a hot topic in the
data mining community. Several works aim at mining
local patterns in dynamic graphs [5, 13, 18, 21]. In par-
ticular, [18] introduces the periodic subgraph mining
problem, i. e., identifying every frequent closed periodic
subgraph. The interest and the efficiency of this pro-
posal are empirically demonstrated on several real-world

dynamic social networks. A few works tackle the prob-
lem of discovering rules from these patterns. [25] and
[3] propose to discover descriptive rules to qualify the
dynamics of the networks. [25] studies how a graph is
structurally transformed through time. The proposed
method computes graph rewriting rules that describe
the evolution between consecutive graphs. These rules
are then abstracted into patterns representing the dy-
namics of a sequence of graphs. In [3], the authors in-
troduce graph-evolution rules that describe the frequent
local changes occurring in a dynamic graph. They dis-
cuss what a rule could be in a dynamic graph and how
to define its support and the confidence. However, the
form of the considered rules is severely restricted. The
multi-dimensional association rules we propose in this
paper do not suffer from such restrictions. They can in-
volve as many dimensions as desired and each of these
dimensions can provide one or more elements to the
discovered rules. Furthermore, the repartition of ele-
ments between the body and the head of the rules is
not constrained. This work is applicable to particular
n-ary relations such as dynamic graphs or cross-graph
datasets.

7 Conclusion.

Designing new methods to discover patterns in arbi-
trary n-ary relations (or Boolean tensors) is a timely
challenge. Recently, such methods were proposed for
the extraction of closed patterns [16, 14, 6] and multi-
dimensional rules were defined in more or less restricted
ways. This paper generalizes the popular association
rule mining task. Contrary to the related work, our
rules do not suffer from severe form constraints: any
subsets of any dimensions can appear at their heads
and/or their bodies. First, we have defined relevant
objective interestingness measures and thus given a se-
mantics to the rules. Then, we have designed and im-
plemented a complete though scalable algorithm that
computes them. We have used real-life datasets (a 3-
ary relation and a 4-ary relation encoding a dynamic
graph) in which truly relevant rules have been discov-
ered. Generalizing important properties of “classical”
association rules (e. g., non redundancy) to our frame-
work is an interesting topic we may soon tackle.
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Appendix

Proof. [Theorem 2.1 ] According to Def. 2.6 and 2.2:

• X ⊑ Y ⇒

{

DX ⊆ DY

∀Di ∈ D, πDi(X) ⊆ πDi(Y )
;

• s(Y ) = {t ∈ ×Di∈D\DY
Di | ∀y ∈ Y , y · t ∈ R};

• s(X) = {w ∈ ×Di∈D\DX
Di | ∀x ∈ X, x · w ∈ R}

= {u · t |u ∈ ×Di∈DY \DX
Di, t ∈ ×Di∈D\DY

Di

and ∀x ∈ X, x · u · t ∈ R}.

Let πD\DY
s(X) = {t ∈ ×Di∈D\DY

Di | ∃u ∈
×Di∈DY \DX

Di such that ∀x ∈ X, x · u · t ∈ R}.

Then,

{

s(Y ) ⊆ πD\DY
s(X)

|πD\DY
s(X)| ≤ |s(X)|

,

and |s(Y )| ≤ |πD\DY
s(X)| ≤ |s(X)|.

Proof. [Theorem 2.2] Using Def. 2.10, we have X ⊑
X ′ ⇒ sD\D′(X ′) ⊆ sD\D′(X).

Because X ⊑ X ′ ⊑ Y , according to Definition 2.11:
{

cnatural(X → Y \X) = |s(Y )|
|sD\D′ (X)|

cnatural(X
′ → Y \X ′) = |s(Y )|

|sD\D′ (X′)|

⇒ cnatural(X → Y \X) ≤ cnatural(X
′ → Y \X ′) .


