
Treefic: bridging the gap between XML and

plain text

Olivier Aubert <olivier.aubert@liris.cnrs.fr>

Université de Lyon, CNRS

Université Lyon 1, LIRIS, UMR5205, F-69622, France

Pierre-Antoine Champin <pierre-antoine.champin@liris.cnrs.fr>

Université de Lyon, CNRS

Université Lyon 1, LIRIS, UMR5205, F-69622, France

Abstract

XML has become a de facto industry standard for exchanging and

managing structured documents and data. As a conceptual model, XML

is the core of a set of standard and widely available technologies. As a

syntax, on the other hand, XML is not suitable for all applications, being

considered too generic or too verbose. In this paper, we propose the use of

specialized textual syntaxes as a valid alterative, in some contexts, to the

XML syntax. With our implemented approach Treefic, we show that those

syntaxes can be straighforwardly mapped to an XML tree. By bridging

that gap, we aim at both advocating textual syntaxes to XML supporters,

and promoting XML technologies to its detractors.

1 Introduction

For more than a decade, XML has provided a unifying set of concepts and tools
for exchanging, transforming, storing and querying documents and data [10, 16,
13, 28, 6]. Being based on lessons learned from earlier web technologies (such
as HTML) and mature standards for document representation (SGML), it has
very naturally become an industry standard.

However XML also has its detractors; the main concern raised every now
and then is about its verbosity, making it hard to read or edit manually. This
verbosity is sometimes simply due to bad design of XML vocabulary [2]. But
it is also inherently due to XML aiming at a high level of genericity, and some
degree of self-containment (well-formed-ness can be checked without any knowl-
edge of the DTD or schema). These properties may not be critically needed in
some contexts, and so there are cases where those criticisms are well founded.
Despite this fact, XML is often used in situations where alternatives are not
even considered, or hastily dismissed under the assumption (sometimes akin to
superstition) that XML is intrinsically better than other solutions.

1

In this work, we advocate the use of specialised textual syntaxes (STS) as
a valid and viable alternative to XML in many situations, including industrial-
grade or high-profile applications. Our argument is that such syntaxes can be
parsed as XML trees, allowing to benefit from most of the advantages of XML,
while eschewing its flaws. We named our approach Treefic, because it aims at
making a tree (“treefication”) out of any text.

In the next section we motivate this work by analysing the benefits of using
XML, and surveying a number of cases where an alternative syntax was suc-
cessfully used. Section 3 then describes the core principles of our approach. In
Section 4, we extend those principles into the specifications of an implementa-
tion presented in Section 5. The next section is dedicated to comparing ours to
similar approaches, then we conclude and discuss future work in Section 7.

2 Motivation and case studies

2.1 What XML is and is not

Although it is usually presented as a syntax, XML is a two-sided coins: a syn-
tax and a conceptual model. Historically, the abbreviation XML described the
syntax [10] while the conceptual model was first introduced as the Document
Object Model (DOM) [35]. Other variants of the model underlying XML doc-
uments were then proposed in XPath [13], the XML Information Set [16] and
the XQuery/XPath data model [21]. This lack of unique reference for the con-
ceptual model may account for the fact that, even nowadays, what people recall
from XML is primarily its syntax and the famous angle bracket.

We argue that this is a misconception and that the most important fea-
ture of XML is the tree-shaped structure it imposes on documents, rather than
the way this structure is serialised into a character string. Indeed, most XML
technologies are described as operating at the conceptual level (as defined by
one of the documents cited above), independently of the bracket-based syntax:
XML-namespaces allow to unambiguously name nodes in the tree [28]; XML-
Schemas restrict the shape of the structure for a class of documents [20]; XSL-T
specifies how to transform a tree into another tree [28]. Canonical XML [8]
distinguishes “logical equivalence” of XML documents which may differ in their
“physical representations”. The very notion of “physical representation” is a clear
sign that the syntax is secondary, while the conceptual structure of the tree is
what matters.

Finally, the fact that now and then, alternative syntaxes for XML have been
proposed, both outside [5, 32] and inside the W3C [34], confirms our point:
XML is not defined by its syntax, but rather by the tree structure encoded by
that syntax —or others.

2

2.2 Succesful non-XML syntaxes

There are a number of examples of popular languages eschewing XML-based
syntaxes. The Relax-NG compact syntax [12] is a text-based syntax for repre-
senting schemas constraining XML documents. Despite the attempt of the W3C
to deprecate SGML-based HTML in favour of XML-based XHTML, HTML 5 [24]
has been advocated by a number of web companies, arguing against the ver-
bosity brought by XML-compliance. Even HTML has sometimes been often
considered too complicated to be edited by hand, leading to wiki syntaxes [31]
and other simplified syntaxes [23, 19]. In the realm of data exchange, JSON [18]
has largely dethroned XML in many Web 2.0 applications.

Even some W3C-recommended languages have a text-based alternative syn-
tax: the abstract syntax of OWL [25], the presentation syntax of RIF [7], or the
N3 syntax for RDF [3]. Except for the latter, those syntaxes are not considered
as exchange syntaxes to be used by machines, but merely for human consump-
tion. It is especially clear in the case of RIF, where the presentation syntax is
described both in mathematical English and with a formal grammar, but only
the former is normative.

It is interesting to notice that, for all of these languages but JSON, the
underlying model either is an XML tree (HTML and wiki syntaxes) or has a
standard XML serialisation (RDF, RIF, Relax NG...). This demonstrates that
text-based syntax and XML-based syntax can be used in a complementary way,
when both considered as the expression of a common model.

2.3 When text matters

When raising the issue of the complexity of XML-based syntaxes, one is often
retorted with the “GUI argument”: XML-based syntaxes are not meant to be
directly visualised or edited by the end-user, but rather hidden behind a spe-
cialised and friendly graphical user interface (GUI). Of course this argument
holds in a number of situations —think for example of a graphical editor for
SVG. However, there is some value in allowing end-users to handle the data
directly, and making it easy for them to read and edit it.

In [33], Eric Raymond points out the importance of text-based syntaxes
in UNIX history. Text can easily be handled through versatile tools (in the
command line) or components (in a graphical environment), which require no
further training for the user, and are usually robust and mature. A specialised
editor, on the other hand, requires specific coding, debugging and learning.
Problems can arise not only in the programm processing the data, but also
in the editor or at the interface between them. Readable text-based syntaxes
therefore increase transparency of how a processing program works, and make
it easy for users (and obviously developers as well) to detect and fix errors. This
also fosters adoption and reuse of that program.

In the domain of personal information management [4], knowledge acqui-
sition [29] and querying [14], the importance of controlled languages has also
been emphasised. They are usually considered as a good tradeoff towards nat-

3

ural language interfaces, which are still an open challenge for computer science.
Furthermore, text-based interfaces are more suited when the environment is
constrained, either by device limitations (e.g. mobile devices) or by users’ dis-
abilities (e.g. screen readers or braille displays).

In fact, the simplification advocated by the GUI argument can as well be ap-
plied to the syntax itself. In all the scenarios presented above, one can consider
that the specialised textual syntax is a user-friendly interface to the underlying
model.

2.4 How we managed before XML

Specifying the structure of textual (or non-textual) data has been done long
before XML was here. XML is itself a descendant of SGML [22], but the seminal
work in that domain is that of Noam Chomsky on generative grammars [11].
Chomsky proposed the notion of grammar to capture the structural constraints
of a particular language. A grammar is described as a set of production rules.
Depending on the kind of rules one is allowed to write, Chomsky distinguished
four types of grammars of decreasing complexity, from type 0 (unconstrained) to
type 3 (regular grammar). While type 0 and type 1 grammars need a full-fledged
Turing machine to be checked, type 2 or context free grammars (CFG) only
need a stack machine, and type 3 or regular grammars only need a finite state
automaton. The last two are interesting from a computer science perspective,
as they require less complex algorithms.

Regular grammars have been popularised by regular expressions which are
character strings representing a regular grammar in a very compact way. They
have been normalised by POSIX, but extensions introduced by the Perl pro-
gramming language have now become a de facto standard. Note that some of
these extensions bring features from contextual (type 1) grammars (a feature
that we will use in Section 3). Because of their compact syntax, regular expres-
sions are not well suited to describe complex formats, but are rather used to
check the structure of relatively short strings or mine into textual data.

For describing more complex formats, context-free grammars (CFG) have
also been widely used in the pre-XML era (and after). They offer a good trade-
off, being at the same time quite expressive, (relatively) unexpensive to parse,
and (relatively) easy to implement. They have been especially used under the
Backus-Naur Form (BNF), proposed by those authors in [1], or one of its vari-
ants, e.g. [17, 26]. Another popular use of CFG is fostered by tools like yacc [27]
and its successors. Those tools are meant to ease the programming of parsers.
They provide high-level programming constructs allowing to express the rules of
the grammar in an abstract way, and automatically convert them to operational
code.

4

3 Core principles of Treefic

Following a long tradition (see Section 2.4), we propose to use context-free
grammars to describe the structure of an specialised textual syntaxes. Such a
grammar is defined as a set of production rules. The body of a rule is a sequence
of symbols, which can be terminal (i.e. symbols appearing in the text) or non-
terminal. Each non-terminal symbol appears as the head of one or several rules,
and one of them (usually the head of the first rule) is the initial symbol. A text
matches the CFG if and only if, starting with the initial symbol and recursively
replacing (deriving) non-terminal symbols with the body of one of their rules,
one can build a sequence of terminal symbols that equals the text. Another
way to look at it is that the text can be abstracted to the initial symbol by
recursively replacing a part of the text matching the body of a rule by the head
of that rule, until one gets the initial symbol only.

Parsing a text according to a CFG amounts to building an ordered parse

tree, where leaves are labelled with a terminal symbol, intermediate nodes are
labelled with a non-terminal symbol and the root is labelled with the initial
symbol. For each node with children, the children’s labels correspond to one of
the rules having the parent node’s label as its head.

The idea of Treefic originated with the observation that such a parse tree
can be straightforwardly represented as an XML tree. Indeed, only a subset
of XML is needed: element nodes (to represent intermediate nodes, labelled
with non-terminal symbols), and text nodes (to represent leaves, labelled with
terminal symbols). See for example Figure 1.

Figure 1: A typical parse-tree (a) and its straightforward XML representa-
tion (b)

So the minimal work flow bridging the gap between XML and specialised
textual syntaxes is the one described in Figure 2. Provided with a document as
text and a CFG, it produces the parse tree of the document as an XML tree.

5

Once this is done, standard XML tools can be used to process it: transform it,
check it against a schema, query it... Transforming it back to the text-based
syntax is one of the many applications offered by XSL-T stylesheets.

Figure 2: The core work flow of the Treefic approach

Of course, one needs to be able to describe the CFG. For this, we propose an
XML-based syntax described by a Relax-NG schema1. This follows our philos-
ophy of relying on standard XML technologies: a CFG expressed in our syntax
can easily be checked against the schema, parsed with off-the-shelf libraries, etc.

It is worth mentioning that our language for describing CFG is not limited to
the minimal construct described above. Following the BNF and its variant, we
provide syntactic sugar as additional constructs that do not extend the expres-
sive power of the grammars but make them easier to write and read: alternative,
repetitions and optional elements.

Terminal symbols in our language are unicode strings or regular expressions.
The use of unicode is a must-have to be able to handle international textual
syntaxes. The use of regular expressions, however, deserves some explanation,
as they could in principle be expressed by a set of rules in the CFG (recall
that regular grammars are a subset of context-free grammars). First, doing so
would make the grammar much more complicated, and may introduce additional
non-terminal symbols, while regular expressions represent a more compact and
widely known alternative. Second, it is common to distinguish two levels in a
CFG: the lexical level (describing the “words”), and the syntactical level (de-
scribing the “sentences”). The former most often relies on regular grammars,
while context-free features are usually required by the latter. Thus, by embed-

1 available at http://liris.cnrs.fr/silex/2010/treefic

6

http://liris.cnrs.fr/silex/2010/treefic

ding the lexical “rules” inside regular expressions, the author of a grammar can
clearly distinguish both levels. Third, regular expression engines implement lim-
ited support for contextual features (look-ahead and look-behind expressions).
Those features therefore extend (locally) the expressive power of our grammars,
making regular expression slightly more than syntactic sugar.

We illustrate this principles with a simple grammar for attribute-value pairs.
An example document is given in Figure 3. The CFG is given in Figure 4. The
resulting XML tree is given in Figure 5.

name =Doe

first -name =John

email =john@doe.org

address =123 Second Street

Figure 3: Example document containing attribute-value pairs

<?xml version ="1.0" encoding ="utf -8"?>

<grammar

xmlns="http :// liris.cnrs.fr/silex /2010/ treefic#">

<rule name="av -pairs">

<repetition min="0">

<rule ref="pair"/></repetition ></rule >

<rule name="pair">

<sequence >

<rule ref="_"/>

<rule ref="key"/>

<rule ref=" equal"/>

<rule ref=" value"/>

<rule ref="eol"/></sequence ></rule >

<rule name="key">

<regexp flags="i">[a-z_][a-z0 -9_.-]*</regexp ></rule >

<rule name=" equal">

<sequence >

<rule ref="_"/>

<terminal >=</terminal >

<rule ref="_"/></sequence ></rule >

<rule name=" value">

<regexp flags ="" >[^\n]*</regexp ></rule >

<rule name="_">

<regexp flags ="">[\t]*</regexp ></rule >

<rule name="eol">

<regexp flags ="">\n+</regexp ></rule >

</grammar >

Figure 4: A CFG for attribute-value pairs

7

<av-pairs ><pair ><_/><key >name </key >

<equal ><_> </_>=<_/></equal >

<value >Doe </value ><eol >

</eol ></pair >

<pair ><_/><key >first -name </key >

<equal ><_> </_>=<_/></equal >

<value >John </value ><eol >

</eol ></pair >

<pair ><_/><key >email </key >

<equal ><_> </_>=<_/></equal >

<value >john@doe.org </value ><eol >

</eol ></pair >

<pair ><_/><key >address </key >

<equal ><_> </_>=<_/></equal >

<value >123 Second Street </value ><eol >

</eol ></pair ></av -pairs >

Figure 5: The XML tree generated for the example of Figure 3 with the CFG
in Figure 4 (indentation added for readability). This is a straightforward dump
of the raw parse tree.

4 Advanced principles of Treefic

4.1 Textual grammars

Of course, while we argued about the interest to map our CFG to the conceptual
model of XML, we would also like to be able to represent them in a more textual
and compact way, in the fashion of BNF or its variants. Fortunately, the core
approach described in the previous section provides the only building block
we need to achieve that. All we need is to provide a meta-grammar describing
how the textual representation of the CFG can be mapped to the standard XML
representation expected by the core parser. This meta-grammar is nothing more
than a specific CFG described using the same XML-based syntax. This leads
us to the extended work flow described in Figure 6.

8

Figure 6: The extended workflow of the Treefic approach

The immediate benefit, as advocated in Section 2, is that CFG are much
easier to read and write. As an illustration, Figure 7 is the textual version of
the CFG given in Figure 4. But besides convenience, this extended framework
allows to immediately “treefy” any text whose structure is described by a CFG.
The only requirement is a meta-grammar for the BNF variant used to specify
that CFG, which is a reasonable requirement as only a few of those variants are
commonly used.

av -pairs ::= pair*

pair ::= _ key equal value eol

key ::= /[a-z_][a-z0 -9_.-]*/i

equal ::= _ "=" _

value ::= /[^\n]*/

_ ::= /[\t]*/

eol ::= /\n+/

Figure 7: The textual version of the CFG given in Figure 4

4.2 Decorators

Once textual data has been “lifted” into an XML tree, one can use standard XML
technologies to process it. Such processing will typically include a transforma-
tion from the structure induced by the CFG parse tree into a more common
schema. Indeed, the structure of the XML tree in Figure 5 is not exactly how

9

one would naturally represent attribute-value pairs in XML. One would rather
expect representation like the one in Figure 9.

In principle, that transformation can of course be performed with XSL-T.
But in practice, we found it tedious to use an XSL stylesheet for the sole purpose
of cleaning the parse tree into a more usable XML tree. One ends up copying
and adapting the same XSL-T rules, as the number of operations required for
the cleaning is relatively limited, like:

∙ ignoring some terminal symbols only used as delimiters (as the equal sym-
bol in our attribute-value pairs);

∙ considering a non-terminal node as an attribute rather than an element
(e.g. the key part of a pair becoming an attribute of the parent pair

element);

∙ collapsing a node with its parent (e.g. the text of value node becoming
the text of the pair element);

∙ renaming a node (useful when the target XML structure uses the same
name in different contexts, requiring different non-terminal symbols in a
context-free grammar);

∙ adding an attribute with a fixed value (useful when the target XML struc-
ture uses an attribute rather than an element name to distinguish between
different cases; e.g. the version attribute of the av-pairs element);

∙ changing the namespace of all or one node(s).

As those operations apply to specific non-terminal symbols, and as they
are tightly linked to the rule corresponding to that symbol, it seemed a bet-
ter practice to specify the cleaning operation side-to-side with the rule itself.
We therefore extended our CFG language with the notion of decorator. Dec-
orators specify a special processing for the nodes generated by the decorated
non-terminal symbol (rule decorator), or for all nodes (grammar decorator).
Figure 8 gives the decorated version of the CFG in Figure 7, which results in
the XML tree of Figure 9. Note that rule decorators start with @ and appear
before the decorated rule; grammar decorators start with @@ and appear at
the beginning of the grammar. Of course, our XML syntax has corresponding
constructs.

It is important to understand that decorators are in no way meant to provide
a general purpose transformation language. This would contradict our goal to
rely as much as possible on standard technologies. They are designed as a light-
weight convenience for cleaning the parse tree into a more useful XML tree, and
as such are kept limited to the small set of operations listed above. The only
drawback, compared to the use of XSL-T or another existing transformation
language, is that the raw parse tree can not be generated anymore (as the
cleaning instructions are integrated into the grammar). However, if the parse
tree is valuable in itself, then it needs no cleaning, and then the grammar should
not be decorated (but an external stylesheet should be used instead).

10

@@xmlns=http :// example.com/ns

@add -attribute version ="1.0"

av -pairs ::= pair*

pair ::= _ key equal value eol

@as -attribute

key ::= /[a-z_][a-z0 -9_.-]*/i

@prune

equal ::= _ "=" _

@no -tag

value ::= /[^\n]*/

@prune

_ ::= /[\t]*/

@prune

eol ::= /\n+/

Figure 8: A decorated CFG for attribute-value pairs

<av-pairs version ="1.0"

xmlns="http :// example.com/ns">

<pair key="name">Doe </pair >

<pair key="first -name">John </pair >

<pair key="email">john@doe.org </pair >

<pair key=" address ">123 Second Street </pair >

</av-pairs >

Figure 9: The clean XML tree generated for the example of Figure 3 with the
decorated CFG in Figure 8 (indentation added for readability)

5 Implementation

Treefic has been implemented as an open-source python library and command
line tool2. When used as a library, it produces an element-tree, a standard data
structure used in python to represent XML trees. When used on the command
line, it writes the resulting XML on its standard output, making it easy to
combine with other XML tools such as an XSL-T processor.

2 http://liris.cnrs.fr/~pchampin/treefic/

11

http://liris.cnrs.fr/~pchampin/treefic/

The command line tool tries to automatically guess whether the grammar is
expressed using our XML language (parsed directly as in Figure 2) or a textual
syntax (parsed using a meta-grammar as in Figure 6). It is currently shipped
with only one meta-grammar. Although it would be useful in the future, as
suggested in Section 4.1, to provide meta-grammars for different variants of
BNF such as [17, 26], we started with a different approach. The main rationale
was that we needed specific features (regular expressions, decorators) that none
of these variants provided.

The textual CFG syntax supported by the current implementation aims to
support as much as possible of the features of the most common BNF variants.
For example, the separator between the head and the body of a rule can be
“::=”, “:=”, “=”, “->” or “→”. The operator for alternative can be either “|” or
“!”. Element in a sequence can be separated by “,” or simply juxtaposed. As
some variants have mutually incompatible features, it is not possible to have a
syntax which would be a strict superset of all of them. However, only a few
modifications are required to convert existing BNF to our expressive syntax.
We have successfully experimented this with the ABNF of [18]; the resulting

decorating CFG is available at the Treefic website2.

6 Related work

We have presented in Section 2 a number of work pursuing a goal similar to
ours. Alternative syntaxes for XML [5, 32] are significantly different, however,
as they try to be as generic as the original XML syntax. Even if they manage
to be less verbose (for example by not repeating the name of a tag when closing
it), they are still not as flexible as the specialised textual syntaxes (STS) that
we advocate.

We also mentioned a number of existing STS in Section 2.2. Those syntaxes
usually rely on ad-hoc implementations to be converted to the corresponding
XML tree. Since they are typically specified by a BNF variant, they could
benefit from Treefic: the conversion process can be described in a declarative
way, either by decorating the grammar (see Section 4.2) or by specifying an
XSL-T transformation from their parse tree to the target XML tree.

A hybrid approach is taken by the Regular Fragmentation [30] project. This
project uses XML syntaxes, but uses regular expressions to describe the hidden
structure of textual contents (for example a date). This allows a parser to “see”
a subtree of elements while the user would only see text. However, the user still
has to edit that text inside an XML document.

The work most similar to ours is XSugar3, described in [9]. The goal of this
approach is to provide XML syntaxes with an alternative STS; the main focus
of the authors is to guarantee the reversibility of the transformation between
the two syntaxes. To achieve this, they propose a specific language describing
at the same time the CFG, the structure of the XML tree, and the equivalence
relations between them. This complex specification relies on a new underlying
model (the unifying syntax tree), which enables the translation between the two

12

syntaxes.
XSugar is theoretically more advanced than Treefic, as it guarantees that

the the XML and textual syntaxes can unambiguously be converted to each
other. On the other hand, it relies on a more complex language, playing alto-
gether the role of an XML schema, a decorated CFG, and XSL-T stylesheet for
transforming both ways. We believe that, by relying on existing technologies,
and allowing to reuse existing BNF grammars rather than having to specify
them from scratch, Treefic is prone to wider adoption, even if it provides less
theoretical guarantees.

7 Conclusion and perspectives

In this paper, we advocated for the use of specialised textual syntaxes as a
valid alternative to XML-based syntaxes. We furthermore proposed that those
syntaxes can be considered as expressions of XML trees, and can as such benefit
from standard XML technologies.

We presented the Treefic approach, consisting of the following contributions:

∙ an XML-based syntax for representing context-free grammars (CFG);

∙ an implemented processor for converting the parse tree of a CFG to an
XML tree, optionally using decorators in the CFG to clean the generated
tree;

∙ a meta-grammar allowing to use BNF-like grammars instead of their XML
counterpart.

There are several perspectives opened by this work. We are currently work-
ing on providing stylesheets to automatically generate the RelaxNG schema
corresponding to a decorated CFG. It would also be interesting to generate the
XSL stylesheet transforming the XML tree back to the textual syntax; since it
may not exist for every CFG, we need to investigate the theoretical work of [9].

As we already mentionned, we consider providing additional meta-grammars
corresponding exactly to existing BNF variants. This would make it even easier
to use existing STS with Treefic, but with limitations as those syntaxes do not
support all the specific features offered by Treefic. A way to circumvent those
limitations would be to hide Treefic features (such as decorator) inside comments
in the host syntax.

Another interesting perspective would be to integrate Treefic with GRDDL [15].
The goal of GRDDL is to glean semantic descriptions from HTML and XML-
based languages. With Treefic, the scope of GRDDL could be enlarged to other
syntaxes, and the Semantic Web in general could benefit from information cur-
rently buried in textual syntaxes.

3 http://www.brics.dk/xsugar/

13

http://www.brics.dk/xsugar/

References

[1] J. W. Backus. The syntax and semantics of the proposed international
algebraic language of the zurich ACM-GAMM conference. page pp. 125–
132. UNESCO, 1959.

[2] R. Berjon. Designing XML/Web languages: A review of common mistakes.
Prague, CZ, Mar. 2009.

[3] T. Berners-Lee. Notation3 (N3) a readable RDF syntax.
http://www.w3.org/DesignIssues/Notation3, Mar. 2006.

[4] M. Bernstein, M. V. Kleek, M. Schraefel, and D. R. Krager. Evolution and
evaluation of an information scrap manager. Florence, Italy, Apr. 2008.

[5] V. Birk. YML - why a markup language?! http://fdik.org/yml/, Aug.
2010.

[6] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and
J. Siméon. XQuery 1.0: An XML query language. W3C recommendation,
W3C, Jan. 2007.

[7] H. Boley, G. Hallmark, M. Kifer, A. Paschke, A. Polleres, and D. Reynolds.
RIF core dialect. W3C proposed recommendation, W3C, Oct. 2009.
http://www.w3.org/TR/rif-core/.

[8] J. Boyer. Canonical XML version 1.0. W3C recommendation, W3C, Mar.
2001.

[9] C. Brabrand, A. M\oller, and M. I. Schwartzbach. Dual syntax for XML
languages. Information Systems, 33(4-5):385–406, 2008.

[10] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible markup language (XML) 1.0. W3C recommendation, W3C,
Feb. 1998.

[11] N. Chomsky. Three models for the description of language. IRE Transac-

tions on Information Theory, 2:113–124, 1956.

[12] J. Clark. RELAX NG compact syntax. OASIS committee specification,
OASIS, Nov. 2002.

[13] J. Clark and S. DeRose. XML path language (XPath). W3C recommen-
dation, W3C, Nov. 1999.

[14] C. Comparot, O. Haemmerlé, and N. Hernandez. An easy way of expressing
conceptual graph queries from keywords and query patterns. In Concep-

tual Structures: From Information to Intelligence, pages 84–96, Kuching,
Sarawak, Malaysia, July 2010.

14

[15] D. Connolly. Gleaning resource descriptions from dialects of languages
(GRDDL). W3C recommendation, W3C, Sept. 2007.

[16] J. Cowan and R. Tobin. XML information set (Second edition). W3C
recommendation, W3C, Feb. 2004.

[17] D. Crocker and P. Overell. Augmented BNF for syntax specifications:
ABNF. RFC 5234, IETF, Jan. 2008.

[18] D. Crockford. The application/json media type for JavaScript object no-
tation (JSON). RFC 4627, IETF, July 2006.

[19] Docutils. reStructuredText. http://docutils.sourceforge.net/rst.html, Sept.
2010.

[20] D. C. Fallside and P. Walmsley. XML schema part 0: Primer second edition.
W3C recommendation, W3C, Oct. 2004.

[21] M. Fernández, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery
1.0 and XPath 2.0 data model (XDM). W3C recommendation, W3C, Jan.
2007.

[22] C. F. Goldfarb and Y. Rubinsky. The SGML handbook. Oxford University
Press, USA, 1990.

[23] J. Gruber. Markdown. http://daringfireball.net/projects/markdown/,
2010.

[24] I. Hickson. HTML5: a vocabulary and associated APIs for HTML and
XHTML. W3C working draft, W3C, Oct. 2010.

[25] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph.
OWL 2 web ontology language primer. W3C recommendation, W3C, Oct.
2009.

[26] ISO. Information technology - syntactic metalanguage - extended BNF.
International Standard 14977, ISO, Dec. 1996.

[27] S. C. Johnson. YACC: yet another Compiler-Compiler. In Unix Program-

mer’s Manual, volume 2b. 1979.

[28] M. Kay. XSL transformations (XSLT) version 2.0. W3C recommendation,
W3C, Jan. 2007.

[29] T. Kuhn. AceWiki: a natural and expressive semantic wiki. In Proceedings

of Semantic Web User Interaction at CHI 2008: Exploring HCI Challenges.
CEUR Workshop Proceedings, 2008.

[30] S. S. Laurent. Regular fragmentations.
http://simonstl.com/projects/fragment/, 2001.

15

[31] B. Leuf and W. Cunningham. The Wiki Way: Collaboration and Sharing

on the Internet. Addison-Wesley Professional, Apr. 2001.

[32] S. McGrath. Pyxie, Mar. 2000.

[33] E. S. Raymond. The art of unix programming. Pearson Education, 2003.

[34] J. Schneider and T. Kamiya. Efficient XML interchange (EXI) format 1.0.
W3C candidate recommendation, W3C, Dec. 2009.

[35] L. Wood. Document object model (DOM) level 1 specification. W3C
recommendation, W3C, Oct. 1998.

16

	Introduction
	Motivation and case studies
	What XML is and is not
	Succesful non-XML syntaxes
	When text matters
	How we managed before XML

	Core principles of Treefic
	Advanced principles of Treefic
	Textual grammars
	Decorators

	Implementation
	Related work
	Conclusion and perspectives

