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Abstract

Image registration is the process of transforming different image data sets of an object into the same coordinate
system. This is a relevant task in the field of medical imaging; one of its objectives is to combine information
from different imaging modalities. The main goal of this study is the registration of renal SPECT (Single Photon
Emission Computerized Tomography) images and a sparse set of ultrasound slices (2.5D US), combining functional
and anatomical information. Registration is performed after kidney segmentation in both image types. The SPECT
segmentation is achieved using a deformable model based on a simplex mesh. The 2.5D US image segmentation is
carried out in each of the 2D slices employing a deformable contour and Gabor filters to capture multi-scale image
features. Moreover, a renal medulla detection method was developed to improve the US segmentation. A nonlinear
optimization algorithm is used for the registration. In this process, movements caused by patient breathing during US
image acquisition are also corrected. Only a few reports describe registration between SPECT images and a sparse set
of US slices of the kidney, and they usually employ an optical localizer, unlike our method, that performs movement
correction using information only from the SPECT and US images. Moreover, it does not require simultaneous
acquisition of both image types. The registration method and both segmentations were evaluated separately. The
SPECT segmentation was evaluated qualitatively by medical experts, obtaining a score of 5 over a scale from 1 to 5,
where 5 represent a perfect segmentation. The 2.5D US segmentation was evaluated quantitatively, by comparing our
method with an expert manual segmentation, and obtaining an average error of 3.3mm. The registration was evaluated
quantitatively and qualitatively. Quantitatively the distance between the manual segmentation of the US images and
the model extracted from the SPECT image was measured, obtaining an average distance of 1.07 pixels on 7 exams.
The qualitative evaluation was carried out by a group of physicians who assessed the perceived clinical usefulness
of the image registration, rating each registration on a scale from 1 to 5. The average score obtained was 4.1, i.e.
relevantly useful for medical purposes.
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1. Introduction

The use of medical imaging for diagnosis, treatment
planning and evaluation is crucial in current clinical pro-
cedures. The data provided about the organs by images
can be classified as functional or anatomical. One of
the medical imaging modalities that provide 3D func-
tional information is the SPECT (Single Photon Emis-
sion Computerized Tomography), which uses radioac-
tive tracers, i.e., substances that are introduced into the
body and tend to accumulate in specific organs, without
modifying their normal function [1]. Particularly, ap-
plied to the kidney, the radiopharmaceuticals employed

in SPECT are absorbed by functioning tubular cells of
the renal cortex, allowing to quantify the perfusion and
renal functional mass. Moreover, this application can be
used to detect cortical alterations related to urinary tract
infections, and acute or chronic lesions in the renal cor-
tex [2]. However, uncertainty in the anatomic definition
of the SPECT image may limit its usefulness. Often,
there is not enough anatomical detail to determine the
exact position of a lesion or to compare the renal func-
tional mass with the total organ size. A way to over-
come this problem is to integrate SPECT images with
anatomical images of the kidneys. One of the most used
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images for this integration are the US (Ultrasound) im-
ages, because of their relatively low cost, innocuousness
(no ionizing radiation) and easy acquisition [3]. Since
the SPECT is a 3D image, it is more adequate to use
US images with spatial information. A good option is
to use 2D freehand US images with associated spatial
coordinates (2.5D US). To integrate both, a registration
between SPECT and US images is necessary.

Image registration is the process of transforming dif-
ferent images into the same coordinate system [4]. Im-
ages to be registered may be of the same modality
(monomodal registration) or different modalities (multi-
modal registration). In multimodal registration, the data
obtained from the same organ of a patient by different
imaging modalities is transformed into a single coordi-
nate space to compare or integrate. There are different
approaches to carry out image registration. One option
is to use extrinsic methods based on positioning a for-
eign object introduced into the image, such as a stereo-
tactic frame [5], screw-mounted markers [6] or markers
glued to the skin [7]. Although efficient, these are in-
vasive approaches. Another possibility is to base the
registration on a previous spatial calibration of the coor-
dinate systems associated with the scanners [8]. To use
this approach, the imaging systems must be in the same
room and the patient must remain in the same position
for both image acquisitions. Another alternative is to
use intrinsic methods, i.e., register with the information
contained in the images. Examples of this approach are
methods based on features identified manually [9], sta-
tistical measures [10, 11] or image segmentation [12] or
.

In our literature review we found only a few papers
on registration between SPECT images and a sparse set
of US slices. In [13] they use a method based on MI
(Mutual Information) for the registration of cardiac im-
ages. Particularly for kidney images, two studies use an
optical localizer [14, 15].

However, there are other examples of image registra-
tion between a sparse set of 2D images and a 3D image,
not necessarily a SPECT volume and a set of 2D US im-
ages. A study that uses US and CT (Computer Tomog-
raphy) images of kidneys is described in [16], where
the registration is carried out by minimizing a corre-
lation ratio (CR) between the images pre-processed to
remove noise and enhance edges. There are also reg-
istrations that use US and CT images in different or-
gans, such as in [17], where images of head and neck
are registered using a multi-component similarity mea-
sure involving weighted MI, intensities and edge maps.
Another example using CT images is [18], in which US
images of liver and kidney are registered with CT by

a method that simulates US images using the CT data,
and then registers the US image applying a similarity
measure between it and the simulation. A US simu-
lation is also used in [19] for a biomechanically con-
strained registration of lumbar spine CT and US im-
ages. In [20] prostate phantom CT and US images are
registered using an ICP (Iterative Closest Point) algo-
rithm and a semi-manual urethral surface segmentation.
Another study using prostate phantom CT and US im-
ages is [21], where the images are registered employ-
ing MI in a user-defined bounding box within the im-
ages. A study using a MI technique to register beating
heart CT and 2D US images is [22]. Other studies have
used MRI (Magnetic Resonance Imaging), such as [23]
where US and MRI head images are registered using
intensity and gradient information. 3D US and MRI im-
ages of the heart are registered in [24] using MI, normal-
ized cross-correlation, and a threshold to emphasize the
most apparent anatomical features. Also MRI and 3D
US images are register in [25], but using female pelvic
floor images and manually identified points as fiducial
marks. The vessels have also been used as references
to registration. In [26], the vessels are segmented using
Doppler images to register abdominal MRI and 3D US
images. In [27] liver models from MRI and CT images
are registered with US images using the center lines of
vessels. The probability of existence of vessels has been
used as reference in [28] to register US and MRI liver
images, minimizing the cross-correlation of these prob-
abilities between both images. In an extension of that
work [29], the probability of presence of bone edges
was used in a similar way to register US and CT cadaver
images of femur and pelvis.

There are also publications on monomodal registra-
tion between US images, as in [30], where a correla-
tion measure is used together with a mechanical elastic
regularization on preoperative 3D US and intraoperative
freehand 2D US images of prostate, or in [31], where MI
is used on 3D US cardiac images. A study [32] shows
registration between 3D statistical shape models and 2D
US images of cadavers, by minimizing the distance be-
tween the model surfaces and US-derived bone surface
points. In our literature review, we found that most stud-
ies use MRI or CT images for image registration with
US slices. The lack of structural information in SPECT
images together with the intrinsic low quality of US im-
ages are the main problems inherent to SPECT-US reg-
istration. The aim of our work is to overcome these reg-
istration problems using only information contained in
the images (intrinsic methods).

Our method is based on the segmentation of both
SPECT and US images, as the first step. Then this
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segmentation is used to drive the registration. Patient
movement during kidney image acquisition, caused pri-
marily by breathing, is a relevant problem for the regis-
tration task [16]. Breathing movement has been quanti-
fied to be up to 40mm [33], causing kidneys to appear
in different positions along the acquisition of the 2.5D
US slices. These position inconsistencies also happen
in the image acquisition of other organs located in the
abdomen. For example, the same problem is addressed
in [34] for liver images, using a single-parameter respi-
ratory motion model for the registration between preop-
erative MRI and intraoperative US images. We tackle
this problem using specific registrations to locally cor-
rect the position of each slice of the 2.5D US image.
First, the 2.5D US image is registered using a similar-
ity transformation over the entire image, and when the
slices are close enough to their correct registered posi-
tions, local registrations are used to correct each slice
individually. Subsequently, the global registration can
be improved and the specific position of each slice can
be re-corrected again.

2. Methods

The renal SPECT and US images we used in this
work are normally employed for medical diagnosis after
being acquired separately. Therefore, our registration is
carried out after both images are acquired. This is differ-
ent from related works found in the literature [14, 15],
which use an optical localizer to perform an online reg-
istration (we used a localizer but only during the im-
age acquisition to know the relative spatial position
among the 2D US images that constitute the 2.5D US
image). Our method involves segmenting the 2.5D US
and SPECT images first, and then carry out the regis-
tration by finding the transformation that matches the
edges found in both segmentations. Fig. 1 shows a flow
diagram of the proposal registration process.

To segment the SPECT images we use a deformable
model [35]. Two types of forces to control the model,
based on gradient and on voxels intensity respectively,
were tested to establish which of these two segmenta-
tion types would be better for registration. To segment
the US images we use a deformable contour method.
The deformable contours are controlled by a field of
forces derived from multi-scale image features obtained
by Gabor filters. To obtain a smooth field of forces with-
out undesired local minima, the Gradient Vector Flow
(GVF) algorithm [36] was used. Active contours and
the GVF algorithm, have been successfully applied in
other works of US image segmentation as [37, 38]. Ad-
ditionally, we developed a method to detect the renal
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Figure 1: Flow diagram of our image registration algorithm. 1) Ac-
quisition of SPECT image (sec. 2.1). 2) Automatic segmentation of
SPECT image based on deformable models (sec. 2.1.1). 2.a) The re-
sult of the segmentation is a mesh that represents the kidney borders.
3) Acquisition of 2.5D US image (sec. 2.2). 4) Manual initialization
of 2.5D US image segmentation, based on fitting an ellipsoid to the
kidney by the identification of the kidney main axes (sec. 2.2.1). 5)
2.5D US image segmentation based on deformable models and Ga-
bor filters (sec. 2.2.1). 5.a) The segmentation gives a set of contour
points (dark dots) for every slice (dark lines) of the 2.5D image. 6)
Global registration using the segmentation of both images. The regis-
tration deforms the 2.5D image using a similarity transformation over
the whole image (sec. 2.3). 6.a) After registration, the edges found
in both images are closer, but there are still slices out of registered
due to inconsistencies in the 2.5D US image caused by patient mo-
tion during acquisition. 7) A local registration is performed to correct
the out of registered US slices (sec. 2.3). 7.a) After the local regis-
tration, the misregistered slices are corrected. 8) If the movement of
the slices in the local registration was over a threshold, another global
registration is performed, if not, the registration is finished. 9) After
the process, both images are registered and the movements during the
2.5 US image acquisition are corrected.

medulla. This detection was needed to avoid forces cre-
ated at the medulla borders from interfering in the seg-
mentation of the outer edges of the kidney.

2.1. The SPECT Modality

First we explain the kidneys segmentation in the
SPECT image. The radioactive isotope used in these
images is transported by the blood flow and fixed in
the renal cortex, thus exhibiting kidneys perfusion and
function. The images are acquired using a gamma cam-
era that captures projections of the radiation at different
angles. Next, an algorithm of tomographic reconstruc-
tion is used to obtain the 3D image with these projec-
tions.
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2.1.1. SPECT Segmentation

The kidneys on the SPECT image were segmented
using a deformable model method because of its ro-
bustness and high noise immunity [35]. A simplex
mesh [39] iteratively adjusted to the shape of the kid-
ney was used for the segmentation. The simplex meshes
have been successfully applied elsewhere, e.g., to the
segmentation of cardiac SPECT images [40] and in our
preliminary work on renal segmentation [41] and regis-
tration [42].

First, we introduce a general description of the sim-
plex meshes.

A k-simplex is the convex hull of k+1 independent
points e.g. a segment is a 1-simplex, a triangle is a
2-simplex and a tetrahedron is a 3-simplex. By def-
inition a k-simplex mesh has a (k+1)-simplex in each
vertex. For example, a 1-simplex mesh is a contour in
which each vertex and its two neighbors define a trian-
gle. This property defines the connectivity of the mesh,
i.e. the vertices of a k-simplex mesh have k+1 neigh-
bors. The type of objects that these meshes can repre-
sent depends on this connectivity e.g. a k-simplex with
k=1 can represent a curve, k=2 a surface, k=3 a vol-
ume. Since we want to segment the kidney surface, we
use 2-simplex meshes. Each vertex of these meshes has
three neighbors, and these four points define a tetrahe-
dron (Fig. 2(b): Pi, PN1(i), PN2(i), PN3(i)). An interesting
feature of 2-simplex meshes is that they are topologi-
cally dual of triangulations (meshes of triangles); this
allows to obtain a 2-simplex mesh by applying a dual
operation to a triangulation, and vice versa (Fig. 2(a)).
This property is useful because it is more convenient to
represent a surface with a triangulation for some tasks,
e.g. rendering, calculation of intersections or the con-
struction of volumetric meshes. From now on we will
refer to 2-simplex meshes simply as simplex meshes.

Now, we give a brief explanation of the simplex mesh
local geometry.

As mentioned above, each vertex of a simplex mesh
positioned at Pi has three neighbors, positioned at
PN1(i), PN2(i), PN3(i). The vertex and its neighbors form a
tetrahedron (see Fig. 2(b)). We can calculate the sphere
with center Oi and radius Ri defined by these four points
(the circumscribed sphere of the tetrahedron), and the
circle of center Ci and radius ri defined by the three
neighbors. The three neighbors also define a plane with
normal

−→
Ni, which includes the circle with center Ci.

With these geometric entities, the simplex angle ρi can

(a)

(b) (c)

Figure 2: (a) 2-simplex mesh (dark dots) and its dual triangulation
(white dots). (b) Local geometry of a 2-simplex mesh. The tetrahe-
dron formed by a vertex Pi and its 3 neighbors PN1(i), PN2(i), PN3(i)
is showed. These four points (vertex Pi and its neighbors) define the
circumscribed sphere of the tetrahedron, with center Oi and radius Ri.
Also, the three neighbors define the circle of center Ci and radius ri.
(c) Simplex angle ρi shown in a cut passing through the vertex Pi and
the axis of the sphere

−−−→
OiCi.

be defined (see Fig. 2(c)):

ρi ∈ [−π, π]

sin(ρi) =
ri

Ri
sgn

(
−−−−−−→
PiPN1(i) ·

−→
Ni

)
or

cos(ρi) =
‖OiCi‖

Ri
sgn

(
−−−→
OiCi ·

−→
Ni

)
(1)

where sgn is the sign function and (·) is the dot product.
So, the simplex angle ρi is defined in every vertex Pi by
means of its neighbors PN1(i), PN2(i), PN3(i), and it does
not depend on the position of the neighbors within the
circle they define. The simplex angle and the height L
(Fig. 2(b)) of Pi over the plane defined by its neighbors
are related by:

L(ri, di, ρi) =
(r2

i − d2
i ) tan(ρi)

χ
√

r2
i + (r2

i − d2
i ) tan2(ρi) + ri

χ =

 1 if |ρi| < π/2
−1 if |ρi| > π/2

(2)

where di =
∥∥∥CiP⊥i

∥∥∥, and P⊥i is the projection of Pi over
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the plane defined by its neighbors. Since the simplex
angle is scale-invariant, it can be considered a local and
scale-invariant measure of the height L of Pi over the
plane defined by its neighbors. Moreover, the simplex
angle is related with the surface curvature at Pi. We can
approximate the curvature at Pi by the curvature of the
sphere that best fit the surface in a neighborhood around
Pi. If we consider the neighbors PN1(i), PN2(i), PN3(i) of
Pi, this sphere is the circumscribed sphere of the tetrahe-
dron formed by the four points (Fig. 2(b)), and its mean
curvature is Hi = 1/Ri. This mean curvature at point
Pi can be expressed in terms of the simplex angle [39]
using the equation (1): Hi =

sin(ρi)
ri

.
Other important geometric entities of the simplex

meshes are the metric parameters ε1i, ε2i, ε3i. These pa-
rameters are the barycentric coordinates of the projec-
tion P⊥i of the vertex Pi on the triangle defined by its
neighbors (Fig. 2(b)):

P⊥i = ε1iPN1(i) + ε2iPN2(i) + ε3iPN3(i)

ε1i + ε2i + ε3i = 1 (3)

We know the position of a vertex projection on the
plane defined by its neighbors by equation (3), and the
height of the vertex over this plane by equation (2).
Therefore, the metric parameters and the simplex an-
gle completely determine the position of the vertex as
follows:

Pi = ε1iPN1(i) + ε2iPN2(i) + ε3iPN3(i) + L(ri, di, ρi)
−→
Ni (4)

The deformation of a simplex mesh can be controlled
by internal and external forces. The external forces are
computed from the image, and push the mesh to the de-
sired borders; the internal forces are computed from the
mesh, caring for a smooth deformation and keeping the
mesh regularity.

Now, we describe how the mesh can be deformed.
The dynamic of the model is controlled by means of a
Newtonian law of motion:

m
∂2Pi

∂t2 = −γ
∂Pi

∂t
+
−−→
Finti +

−−−→
Fexti , (5)

where m is the mass unit of a vertex (usually 1), γ is a
damping factor, Pi is the position of vertex i, Finti repre-
sents the internal force at vertex i, and Fexti represent the
the external force. Considering discrete time and using
finite differences we obtain:

Pt+1
i = Pt

i + (1 − γ)
(
Pt

i − Pt−1
i

)
+
−−→
Finti +

−−−→
Fexti (6)

The internal force of a simplex mesh can be locally
determined by the simplex angle ρi and the metric pa-
rameters ε1i, ε2i, ε3i. The internal force is derived from

the minimization of a local energy S i = λ
2
−−−→
PiP∗i

2
, where

P∗i is the position the vertex should have to comply
with a desired simplex angle ρ∗i and metric parameters
ε∗1i, ε

∗
2i, ε

∗
3i. In this way, the local curvature of the mesh

may be controlled by the simplex angle, and the vertex
position relative to its neighbors by the metric param-
eters. By minimizing the energy, the internal force is:
−−→
Finti = ∂S i

∂Pi
= λ
−−−→
PiP∗i . If we use equation (4) to express

the vertex position, the internal force can be written as:
−−→
Finti = λ

(
ε∗1i
−−−−−−→
PiPN1(i) + ε∗2i

−−−−−−→
PiPN2(i) + ε∗3i

−−−−−−→
PiPN3(i)

+L(ri, di, ρ
∗
i )
−→
Ni

)
(7)

In our work ρ∗i is defined by a mean curvature con-
tinuity constraint [39] computed over a neighborhood
around each vertex, and the metric parameters are fixed
to 1/3, to obtain a regular mesh.

To compute the external force Fexti in each vertex, a
field of external forces −→v is used. We tested two types of
mesh deformations with different external force fields.
The first type was based on the voxels intensity. The
field of forces for this segmentation is defined by the po-
tential P = − ‖∇ [Gσ ∗ Ib]‖2 (normalized in [0,1]) that
must be minimized in each vertex, where Ib is a bina-
rized SPECT image of the kidneys and Gσ is a Gaussian
function. Thus, in order to obtain forces that push the
model to low-potential zones, the external force field is
computed as: −→v = −∇P. The result of this segmenta-
tion is similar to an isosurface but smoothed because of
the mesh internal forces. The second type of deforma-
tion was a gradient related segmentation that uses the
GVF algorithm [36] to compute the field of forces. The
GVF algorithm compute a field of forces using an edge
map as input, preserving only the forces that point to-
wards the main edges. To compute the edge map H as
high gradient zones, a Sobel filter was used:

H =

√
(I ∗ S x)2 + (I ∗ S y)2 + (I ∗ S z)2 (8)

where I is the SPECT image, and S x, S y, S z are the com-
ponents of a 3D sobel filter. This edge map was normal-
ized in the interval [0,1] before being used in the GVF
algorithm. In this way, the deformable model is pushed
to higher gradient zones that correspond to edges in the
image.

Only the projection of the external force on the unit
vector normal to the mesh surface is considered in ev-
ery vertex, since the tangent component affects only the
parametrization of the surface but not its shape. There-
fore the external force is:

−−−→
Fexti = κ

−→
Ni ·
−→vi , (9)
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where κ is the weight of the external force.
The initial mesh to segment each kidney is defined

by an isosurface at 15% of the maximum value in the
image, and computed by the “marching tetrahedra” al-
gorithm [43]. This algorithm generates a triangulation
from which we can directly calculate the dual simplex
mesh. Equation (6) is used iteratively over the Np points
of the mesh, until the mean deformation of the mesh
in one step MD = 1

Np

∑Np

i=1

∥∥∥Pt+1
i − Pt

i

∥∥∥ is smaller than
a threshold. Fig. 3 shows a kidney segmentation by a
simplex mesh deformed by forces derived from image
gradient.

Figure 3: SPECT image segmented by a simplex mesh using de-
formable models

2.2. The 2.5D US modality

The US images were acquired using a localizer that
tracked the positions of two rigid bodies, one fixed to
the US probe and another fixed to the bed. The relative
spatial location among the US slices can be known us-
ing a spatial transformation between the reference sys-
tems associated with the two rigid bodies (Fig. 4). The
resulting image does not constitute a proper 3D recon-
struction, because the arbitrary manual displacement of
the US probe leads to 2D images located in different
places and orientations. However, knowing the spatial
location allows us to compensate for the lack of a full
regular volume; this image is known as a 2.5D image.
Every of the 2.5D US images used in this work was
composed of approximately 400 2D US slices.

2.2.1. Segmentation of 2.5D US images
Unlike other medical imaging modalities, segmenta-

tion of US images is particularly difficult because the
image quality is relatively low, with significant noise.
Moreover, the kidney tissue boundary in US images is
more difficult to localize than the edges of other organs;
even for an expert the segmentation is not straightfor-
ward [44], and usually requires manual initialization.
Our method uses manual initialization, which consists

Figure 4: Spatial localization of the US slices that compose the 2.5D
US image. An optical localizer tracks the position of two rigid bodies,
one fixed to the bed and another fixed to the US probe. The relative
spatial location among the slices can be obtained using a spatial trans-
formation between the reference systems associated with the two rigid
bodies.

in aligning the axes of an ellipsoid with the kidney po-
sition in a single 2D US slice (Fig. 5). After this initial-
ization, an automated 2D segmentation is performed on
each 2D image of the set that conforms the 2.5D US im-
age, applying a deformable contour [44, 45] method and
a set of Gabor filters [46, 47, 48, 49] to capture multi-
scale image features.

The aim of our method is to find enough points in
the US image to carry out the registration, rather than
finding the whole kidney geometry.

Figure 5: The initialization of the 2.5D US image segmentation of
each kidney is based on the manual location of the axes of an ellipsoid
in a single 2D US slice, so that they are aligned with the principal axes
of the kidney in 3D.
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Initialization. The manual initialization consists on fit-
ting a 3D ellipsoid to the location of each kidney. To de-
fine the position of the ellipsoids, the user has to choose
two 2D US images, one per kidney, and in each image
to identify two kidney principal axes over three. The
axes that must be identified are the longest axis, which
are the axial axis, and one of the two smaller axes: the
sagittal or the coronal. The third axis of the ellipsoid is
calculated using the other two, it is orthogonal to them
and has the same length as the identified small axis.
Fig. 5 shows the two images and the kidney principal
axes in 3D. A graphical interface is used to choose a
central slice of each kidney and then locate two prin-
cipal axes by moving, rotating and selecting the length
of each axis, as shown in Fig. 6. The kidney shape is
simplified as an ellipsoid (3D), and the intersections be-
tween this ellipsoid and the different planes of the US
slices are used as the initial estimation of the kidney po-
sition in the 2D US images (Fig. 7).

Figure 6: Localization of two ellipsoid axes for the initialization of
the US segmentation. The ellipsoid axes must be placed coincident
with two of the kidney axes in a central slice of the kidney. The user
can rotate, move and adjust the length of the lines shown in the figure.

Using Gabor filters. The Gabor functions [47] are lin-
ear filters located in both the spatial and frequency do-
main. In the spatial domain, they can be decomposed
into a complex sinusoid modulated by a Gaussian func-
tion, and in the frequency domain are Gaussians cen-
tered in the frequency of the sinusoid. This property of
space and frequency location makes them ideal for lo-
cal frequency analysis, and thus have often been used
for texture analysis and feature extraction. A bank of
Gabor filters with different frequencies and orientations
of the sinusoid can be generated using a mother func-

Figure 7: The initial contours for the segmentation of US images are
obtained as the intersection between each image plane in 3D space
and an ellipsoid defined by manual initialization.

tion. The mother function of our filter bank is:

G(x, y) = g(x′, y′) exp
(
2π jF x′

)
, (10)

where (x′, y′) = (x cos θ + y sin θ,−x sin θ + y cos θ) are
the coordinates rotated by angle θ, F is the spacial cen-
tral frequency of the function, and

g(x, y) =

(
1

2πσxσy

)
exp

−1
2

 x2

σ2
x

+
y2

σ2
y

 (11)

is a Gaussian function. Since circular functions were
considered, the variances of the Gaussian were σx =

σy = σ. This variance σ is related to the frequency
bandwidth of the Gabor filters, which in octaves is
b = log2[(Fσπ+α)�(Fσπ−α)], where α =

√
ln 2�2.

We set the bandwidth of the Gabor filters to 1 octave.
The central frequencies for the filter bank were selected
empirically as F = {0.08, 0.2, 0.35} . The frequen-
cies were adjusted by choosing those that visually em-
phasize the difference between the kidney tissue and
surrounding tissue in a set of training images, differ-
ent from that used for testing. The usual set of an-
gles θ = {0, π/6, π/3, π/2, 2π/3, 5π/6}, covering 180◦

degrees, has been used.
The Gabor functions of the bank are applied to the 2D

US images, and for each combination of F and θ a tex-
ture feature is obtained for each image. Because Gabor
functions are complex, the texture features have a real
Hreal
F ,θ

and an imaginary Himg
F ,θ

part. With these texture
features we can define the output energy of each filter:

EF ,θ =

√
Hreal
F ,θ

2
+ Himg

F ,θ

2
(12)

These energies are normalized on the interval [0, 1]
and used to control the active contours [50, 51, 35], as
shown later.
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Adjustment of the initial contour. As initial contour for
each 2D US image, we use the ellipse obtained from the
intersection between the plane of the US image located
in 3D space, and the previously defined initial ellipsoid
(Fig. 7). Every contour is defined by a set of points
{Pi}

NP
i=1. First, the ellipse is fit in each 2D US image us-

ing a 2D similarity transformation to better match the
kidney edges. The transformation parameters are cal-
culated finding the transformation that maximizes the
integral along the ellipse of the energy gradient in the
direction normal to the ellipse. The energies EF θ used
for this computation are those corresponding to the low-
est central frequency F1. In this way, the parameter vec-
tor p∗ =

[
α∗, s∗, t∗x, t

∗
y

]
of optimal rotation α∗, scaling s∗,

and translation t∗, is obtained for each ellipse, with:

p∗ = argmax
p

Nθ∑
nθ=1

NP∑
i=1

∇EF1θnθ (T (Pi; p)) ·
−→
N (T (Pi; p)) ,

(13)
where ∇EF1θnθ is the energy gradient corresponding to
the lowest central frequency (0.08) and angle θnθ, Nθ

is the number of orientations used in the Gabor filters,
−→
N(Pi) is the unit vector normal to the ellipse at point
Pi, and T (·; p) is a similarity spatial transformation with
vector of parameters p. In the maximization, only a lim-
ited number of transformations are used, among which
the best is chosen. These transformations are defined
by the following set of parameters: translations tx =

{10 · nx} , ty =
{
10 · ny

}
with nx = ny = [−10, 10], rota-

tions α = {−π/6, 0, π/6} and scaling s = {0.9, 1, 1.1}.

Renal medulla preprocessing. As mentioned before, it
is of advantage for US renal image segmentation to
eliminate the forces derived from the renal medulla, to
avoid contours from being attracted into a local mini-
mum. To this end, we need to detect the medulla. An
image where the medulla is easier to detect can be ob-
tained using the energies EF ,θ of the Gabor filters:

B =
1

NθNF

NF∑
nF =1

Nθ∑
nθ=1

EFnF ,θnθ
(14)

where NF and Nθ are the number of frequencies and ori-
entations used in the Gabor filters, respectively. As can
be seen, the B image is the mean of the resulting ener-
gies of each Gabor filter. To localize the renal medulla,
this image is binarized with an empirical threshold of
0.4, obtaining Bbin. Next, all the zk connected elements
are searched in Bbin, and the ones that have no neighbor-
ing pixels outside the ellipse adjusted to the kidney are
labeled as belonging to the renal medulla. This may be

expressed as:

M = {zk ∈ Bbin | (¬L ⊕ r) ∩ zk = ∅} , (15)

where M is the binary image of the medulla, L is the bi-
nary image of the ellipse adjusted to the kidney, ⊕ is the
morphological dilation operator and r is a 3 × 3 struc-
tural element. Fig. 8 shows the procedure to identify the
medulla.

Active contours. In each 2D US image, the ellipse pre-
viously adjusted to the kidney is deformed using active
contours. As in the 3D case, the contour is deformed by
internal and external forces, and the dynamics of each
vertex is given by a Newtonian law of motion (eq. 5).

The internal force is defined as:

−−→
Finti = α

∂2Pi

∂i2
− β

∂4Pi

∂i4
(16)

where α and β are weights that control tension and rigid-
ity of the curve, and Pi = (x(i), y(i)) is the parameter-
ization of the curve. As in the SPECT segmentation,
the external force is derived from an external force field
−→v . To achieve a coarse-to-fine deformation of the con-
tour, we first deform the contour using the features ob-
tained with the lowest central frequency and then with
the higher ones. The field of forces related with each
frequencyF is computed using the GVF algorithm [36],
in order to obtain smooth external force fields without
undesired local minima. To compute the edge mapsHF
used as input for the GVF algorithm, the energies EF θ
are used:

HF =
1

Nθ

Nθ∑
nθ=1

∥∥∥∇EF θnθ

∥∥∥ (17)

In order to avoid forces created by the renal medulla
edges, the image M is used to delete these edges be-
fore using the edge maps as input of the GVF algorithm.
First, the zone identified as renal medulla in M (Fig. 8)
is dilated with an 8 × 8 structural element. Then, the
edges within this zone are deleted in HF , and the GVF
algorithm is used in the edge maps, obtaining the fields
of forces. Only the normal to contour component of
the force is used, as in equation (9), because the tan-
gent component only affects the parametrization. First,
the adjusted ellipse is deformed using the force field ob-
tained with the lowest frequency Gabor filter, and then
the resultant contour is deformed sequentially using the
other force fields, making possible a coarse-to-fine de-
formation.

8



Figure 8: Renal medulla identification in the US images: 1) Computing image B as the average of the energies resulting from each Gabor filter
EF θ. 2) Binarization of image B. 3) Search the zk connected elements (red) in Bbin that have no neighboring pixels outside the ellipse adjusted to
the kidney. 4) Elements that represent the position of the renal medulla.

Extracting valid contours. After the deformation step,
only some of the points Pi are considered as reliable.
Let hi be the value of Pi in edge map HF obtained
with the highest frequency F ; only the points with hi

greater than 20% of the maximal value in the curves are
kept. These curve segments are joined if they are close
enough (30 pixels approx.). Finally, all the small curves
are eliminated, providing with highly confident border
segments. Fig. 9 illustrates the final result of the whole
2.5D US segmentation process.

Figure 9: Superimposition of automatic (darker, green) and manual
(lighter, yellow) US segmentation of the kidney contours.

2.3. Registration
The edges of the kidneys found in both images are

used to perform the registration. But first, the images
are per-registered to put them closer and in the same ori-
entation. This pre-registration is based on the position

of the kidneys delivered on the initialization of the 2.5D
US image segmentation (ellipsoids), and on the segmen-
tation of the SPECT image. The centers of gravity and
the main directions of these data are matched using a
similarity transformation. Next, to achieve the regis-
tration, a nonlinear optimization algorithm [52] is used
to minimize the quadratic distance between the points
found in the 2.5D US image and the 3D kidney meshes
extracted from the SPECT image. Nevertheless, as we
said in the introduction, movements caused by breathing
during the acquisition of the 2.5D US images, induce
that the kidney position in each 2D image is slightly dif-
ferent. To correct this movement, the position of each
US slice is adjusted iteratively together with a global
registration of the entire 2.5D US image, as we show
below.

We have assumed that the 3D model extracted from
the SPECT image is the real shape of the kidney, there-
fore, the position of each US slice is adjusted using this
model. In this way, the SPECT is the target image and
the 2.5D US image is the floating image.

Global registration. A similarity transformation, with
vector of parameters ps (three rotation angles, three
translations, and one scale parameter), is used in a
global registration to minimize the distance between the
edges found in both images. Thus, the minimization to
find the optimal vector of parameters p∗s is:

p∗s = argmin
ps

Nc∑
c=1

Np(c)∑
i=1

d2(Ts(Pc,i; ps), S ) (18)
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where, Ts(·; ps) is a similarity transformation with vec-
tor of parameters ps, Nc is the number of contours in
the 2.5D US image (slices where kidney edges were
detected), Np(c) is the number of points in contour c,
Pc,i is the position of point i of contour c, and d2(Pi, S )
is the minimum squared distance between point Pi and
the surface represented by mesh S . This minimization
is performed using the Levenberg-Marquardt algorithm,
which is especially suitable for minimizing functions
that are a sum of squared residuals. The vector of resid-
uals to minimize can be defined as:

es(ps) =
[
E1,1(ps), . . . ,E1,Np(1)(ps),

E2,1(ps), . . . ,ENc,Np(Nc)(ps)
]
, (19)

where:
Ec,i(ps) = d(Ts(Pc,i; ps), S ). (20)

Thus, equation (18) can be expressed as:

p∗s = argmin
ps

‖e(ps)‖2 , (21)

and the vector es(ps) can be minimized with the
Levenberg-Marquardt algorithm. To optimize the mini-
mization, distances d(Ts(·; ps), S ) are pre-computed us-
ing a distance transform [53], which is also used to di-
rectly estimate the Jacobian required for the minimiza-
tion algorithm. This implementation of the minimiza-
tion is comparable in speed with the popular ICP (Itera-
tive Closest Point) algorithm [54, 52]. After this dis-
tance minimization, we assume that each US slice is
close enough to model S to correct movements caused
by breathing using a local rigid transformation Tr(·; pr).

Local registration. The distance between the contour
points in the US images and S , is minimized indepen-
dently for each US slice. In this way, the inconsistency
in the position of some US slices, caused by movements
during the 2.5D US image acquisition, can be corrected.
The minimization used to find the optimal vector of pa-
rameters p∗r (c) for the rigid transformation Tr(·; pr) of
each contour c is:

pr(c)∗ = argmin
pr

Np(c)∑
i=1

d2(Tr(Pc,i; pr), S ). (22)

The Levenberg-Marquardt algorithm is used again in
the minimization, but in this case the vector of residuals
is:

er(pr(c)) =
[
Ec,1(pr(c)), . . . ,Ec,Np(c)(pr(c))

]
(23)

After the positions of all slices have been corrected,
another global registration (eq. 18) is performed to im-
prove the registration. This loop between a global reg-
istration and a local registration of each slice (Fig. 1)
is repeated until the mean displacement of the points,
in the registration for movement correction, is under a
threshold defined as 0.5. Fig. 10 shows the 3D kidneys
model and the points found in the 2.5D US image after
registration. Fig. 10(a) shows the result obtained using
only the global registration, and Fig. 10(b) shows the re-
sult obtained also using local registrations. An example
of the final registration ca bee seen in Fig. 11.

(a) (b)

Figure 10: 3D kidneys model extracted from the SPECT image and
points found in the 2.5D US image, after the registration. (a) Global
registration without local registrations for movement correction. (b)
Registration using local registrations for each US splice.

(a) (b)

Figure 11: Example of SPECT-US image registration. a) US image
superimposed with re-sliced SPECT image. b) 3D SPECT model with
US image in 3D.

3. Results

3.1. SPECT Segmentation
The SPECT images were obtained injecting

99mTc-DMSA into the bloodstream, and using a
dual-head gamma camera (manufacturer: SMV; model:
DST-Xli). 3D images were reconstructed by apply-
ing the OSEM [55] (Ordered Subsets Expectation
Maximization) iterative method, using 64 posterior
projections over 180◦. Image size was 128 × 128 × 128
voxels, each of 4 × 4 × 4mm.
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Gradient and intensity SPECT segmentations were
assessed on 27 exams, which were part of routine ex-
aminations ordered by physicians. Parameters used for
the model dynamics were empirically calibrated over a
set of training images. The parameters with better per-
formance according to a simple visual inspection were
chosen in equations (6), (7) and (9): γ = 0.65, λ = 0.2
and κ = 0.8.

The segmentations were evaluated qualitatively by a
team of three medical experts using a graphic interface
for visualization. As suggested in [13], the evaluation
range was from 1 to 5 (1: very bad, 2: bad, 3: good,
4: very good, and 5: excellent).

For all images, the assigned score was 5. Thus, ac-
cording to experts, both methods based on voxel inten-
sity and gradient, exhibited equivalent results and are
acceptable. Fig. 12 shows an example of the SPECT
segmentation.

Figure 12: SPECT segmentation. Left: intensity related segmentation.
Right: gradient related segmentation.

3.2. 2.5D US Segmentation

A six degrees-of-freedom optical localizer (Praxim
Surgetics R© station) was used during acquisition to de-
termine the relative position of the 2D US slices that
conform the 2.5D US image. To calibrate the sys-
tem (spatial relation between the 2D images and the
rigid bodies, Fig. 4) a membrane phantom method
was used [56]. The US images were acquired using
an echo camera Aloka 55D-630 connected to a frame
grabber. The image resolution was 480 × 640 with a
0.25 × 0.19mm pixel size.

In order to evaluate the segmentation, seven 2.5D US
exams were acquired from two patients and five healthy
volunteers through posterior and lateral access. Param-
eters for the segmentation were chosen empirically in
equations (6), (9) and (16) as: γ = 0.65, κ = 10, and
α = 0.6, β = 0. The selection criterion was the per-
formance according to a simple visual inspection over a
set of training images. The weight of the external force
κ is higher than in the SPECT segmentation because in

this case the normalization was made over the energies
EF θ, and then these energies were averaged to obtain the
input of the GVF algorithm. To evaluate the segmenta-
tion, the distance between our semi-automatic segmen-
tation and a manual segmentation of the US images was
measured. Medical experts participated in the manual
marking of the kidneys’ edges using a graphic interface
specially designed for this purpose. They were asked to
restrict to edges that could be clearly identified in the
images. Fig. 9 shows a manual segmentation of the kid-
ney (lighter/yellow line). Every 2.5D US image is com-
posed of approximately 400 2D US slices. Since this
number of images was large for manual evaluation, 20
images, where the kidney was visible, were randomly
selected from each exam.

Table 1 shows the percentage of rejected images due
to incorrect initial ellipse position, as well as average
distance and percentage of borders detected in compar-
ison to the manual segmentation. Results show that our
method detect the kidney edges with a precision of ap-
proximately 3.3mm.

Table 1: Results of our US segmentation relative to manual segmen-
tation.

Patient Bad initialized Edges detected Average distance
images [%] [%] [mm]

P1 5 48.85 3.64
P2 5 73.51 4.67
P3 5 58.25 3.06
P4 0 63.85 2.63
P5 10 74.57 3.84
P6 5 74.50 2.42
P7 10 65.40 2.82

Mean 5.71 65.56 3.30

3.3. Registration

The SPECT images used to validate the registration
were acquired in the same set of patients and volun-
teers who participated in the evaluation of the 2.5D US
segmentation. Two types of assessments were carried
out: qualitative and quantitative. The performance of
our method was compared in both assessments with a
reference registration method, which uses an OL (Op-
tical Localizer), “rigid bodies” and a spatial calibration
between the SPECT and 2.5D UD acquisition systems.
This registration based on an optical localizer yields
good results, in [15] a RMS error of 2.03mm was ob-
tained using a phantom and comparing the registration
with direct measures of the optical localizer. However,
this registration does not correct the movements caused
by breathing.
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Quantitative evaluation. Since the SPECT segmenta-
tion was assessed with the highest score by the medi-
cal experts, we assumed that these edges and the man-
ual marked ones in the 2.5D US images can be used as
anatomical features to evaluate the registration. There-
fore, the distance between the 3D model extracted from
the SPECT image and the manual US segmentation, was
measured after registration. The distance was computed
sampling each manual segmentation uniformly and then
measuring the minimum distance between each sam-
pled point and the surface defined by the mesh result-
ing from the SPECT image segmentation. Then, the
average value of these distances was computed in each
exam. To compare our method, the same distance was
measured in a registration performed with the reference
method.

Fig. 13 shows an example of the 3D SPECT segmen-
tation overlapped with the curves of the manual US seg-
mentation after registration. Table 2 shows the average
distances obtained using the OL method, and using our
method with both SPECT segmentations: gradient re-
lated segmentation (GS) and intensity related segmen-
tation (IS). The results are of good quality, and show
similar performance with both SPECT segmentations.
An analysis of variance (ANOVA) was used to verify
the statistical significance (p < 0.0001) of the difference
between the results of our registration method and the
OL reference one.

Table 2: Quantitative registration evaluation. Comparison between the
OL (Optical Localizer) method, and our method using GS (Gradient
related Segmentation) and IS (Intensity related Segmentation).

Distance [pix]
Patient OL method Our method Our method

with GS with IS
P1 2.25 1.46 1.39
P2 2.10 0.92 0.88
P3 2.07 1.29 1.15
P4 4.28 0.91 1.17
P5 2.33 1.03 0.94
P6 2.84 1.06 1.17
P7 2.49 0.84 0.79
Mean 2.62 1.07 1.07

Distance [mm]
Patient OL method Our method Our method

with GS with IS
P1 8.98 5.84 5.57
P2 8.40 3.66 3.52
P3 8.28 5.16 4.61
P4 17.11 3.65 4.68
P5 9.33 4.11 3.77
P6 11.37 4.24 4.70
P7 9.97 3.37 3.14
Mean 10.49 4.29 4.28

Figure 13: 3D SPECT automatic segmentation and manual US seg-
mentation after registration. The distance between both segmentations
was used as a quality measurement of the registration.

Qualitative evaluation. The registration was assessed
in the same sets of US slices used in the evaluation of the
2.5D US segmentation. A group of three physicians was
asked to evaluate the registration in every one of the se-
lected US slices. The scale for the evaluation was from
1 to 5. In this scale, the score 1 was a very bad regis-
tration — images are completely out of registration and
the results are not suitable for medical decisions —, and
score 5 was an excellent registration — the registration
is almost perfect—. Registrations with value 3 or above
were considered useful for medical purposes.

The graph in Fig. 14 shows the scores obtained by the
registration of the images of each patient. Table 3 shows
the mean score of the OL method and our method using
both, gradient and intensity related, SPECT segmenta-
tions. A “t-test” was used to check that the evaluation
of our registration was over the clinical cut-off of 3 with
p<0.001, proving useful for clinical applications. More-
over, an ANOVA analysis was performed, verifying the
statistical significance (p < 0.05) of the difference be-
tween the results of our registration method and the OL
reference one.

Table 3: Qualitative registration evaluation. Comparison between the
OL method and our method using GS and IS.

Type of registration Score
OL method 3.19
Our method with GS 4.08
Our method with IS 4.13

Overall evaluation. Our method achieved better results
in quantitative and qualitative evaluations, in compari-
son with the method based on optical localization. This
improvement is because our method carries out an indi-
vidual correction in the position of each US slice. The
movement caused by breathing is also present during
SPECT image acquisition, causing blur in the resulting
image. In contrast, the 2.5D US images are not blurred
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Figure 14: Scores obtained by the registrations of images of seven
patients. The scores of the OL method and our method using GS and
IS are showed.

because each slice is acquired independently and instan-
taneously. Therefore, kidney position inconsistencies
may appear in the 2.5D US image if the patient moves
during image acquisition, and each slice should be ad-
justed to match the SPECT image. Excellent results can
be obtained using the method based on optical localiza-
tion in slices where the position of the kidney matches
the average position in the SPECT image. Neverthe-
less, the performance will be lower in the remaining
slices. Fig. 15 shows comparisons between slices reg-
istered with our method and using an optical localizer.
While in some slices the registration is very similar, in
others a displacement due to patient motion can be ob-
served.

4. Conclusion

A method has been developed in order to register re-
nal SPECT and 2.5D US images. Usually there is not
enough anatomical information in the SPECT image,
which may limit its usefulness. The proposed registra-
tion makes it possible to combine functional informa-
tion from the SPECT images with anatomical informa-
tion from the US images. There are few studies on this
type of registration in the literature, and usually they use
an optical localizer and a calibration between frames of
reference associated to both acquisition systems. Our
method only uses information contained in the image
and corrects the movement caused by patient breathing.
The method is based on a previous segmentation of the
images in both modalities. The SPECT segmentation,
2.5D US segmentation and the registration, were eval-
uated separately. The SPECT segmentation received
a very good qualitative evaluation. The 2.5D US seg-
mentation was evaluated quantitatively with a good per-
formance and enough edges were found to guide the
registration. Additionally, a method to detect the re-

a)

b)

c)

d)

Figure 15: Left: Slices registered with the OL method. Right: Slices
registered with our method. The scores obtained in the qualitative
evaluation of the splices are: a)1-5 ;b)3-5 ;c)4-5 ;d)4-5

nal medulla was developed in order to improve the US
segmentation. Results show that the registration was
successfully performed, however, its quality could be
improved. Our method take into account movements
due to breathing, registering each 2D US image, but
we think that important enhancement can be achieved
through a better acquisition protocol to reduce kidney
movements during the acquisition phase. An alternative
may be to use blocked breathing during the image ac-
quisition or to monitor the breathing to discard images
that do not correspond to the same part on the respira-
tory cycle. From the medical point of view, it may also
be useful to have an objective automatic correlation be-
tween lesions seen in the SPECT and the anatomical US
image, for example, the ratio between functional lesions
and volume of the kidney.
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France, 169–175, 2007.

[43] G. M. Treece, R. W. Prager, A. H. Gee, Regularised march-
ing tetrahedra: improved iso-surface extraction, Computer &
Graphics 23 (4) (1999) 583–598.

[44] M. Martı́n-Fernndez, C. Alberola-López, An approach for con-
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