
Exact and Efficient Booleans for Polyhedra
Cyril Leconte, Hichem Barki, and Florent Dupont

LIRIS Laboratory, UMR CNRS 5205, Université de Lyon, Université Claude Bernard Lyon 1

43 Bd. du 11 novembre 1918, F-69622 Villeurbanne, France

ABSTRACT
Boolean operations are crucial for many domains, especially for
those requiring exactness and efficiency. Morphological filtering
and indexation of meshes are the most critical applications of
Booleans because they need to perform them sequentially. In this
context, we propose a new algorithm which fulfils such
requirements. We achieve efficiency and exactness through the
use of an efficient data structure and the adoption of the exact
computation paradigm. Our benchmark showed that our algorithm
handles big size polyhedra and outperforms state of the art
methods.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling
F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—Geometrical
problems and computations
J.6 [Computer-Aided Engineering]: Computer-aided design
(CAD)

General Terms
Algorithms, Performance, Reliability.

Keywords
Boolean operations, polyhedra, exact computation, geometric
modeling.

1. INTRODUCTION
Boolean operations on polyhedra are a fundamental task in
computational geometry, computer-aided design and
manufacturing, computer graphics, etc. Their exact computation
and the handling of all degenerate cases is a difficult task because
of non-manifold results (the set of polyhedra is not closed under
Boolean operations), round-off errors inherent to built-in number
types, etc. In computational geometry, the exact computation
paradigm is becoming widely used. It allows addressing the non-
robustness issues related to round-off errors. However, exact
arithmetic is slow in comparison with floating-point one.

Our work is motivated by the need to exact and efficient Boolean
operations in order to apply successions of Minkowski operations
(addition and subtraction) on meshes as done in mathematical

morphology on discrete images. Such morphological filtering
techniques will allow characterizing 3d models for indexation
purpose.

In this work, we present a new algorithm for the exact
computation of Boolean operations on polyhedra. We used exact
arithmetic to avoid round-off related issues and efficient data
structures to achieve efficiency. It is also known that the set of
polyhedra is not closed under Minkowski operations (see fig. 1
for an example with 2D polygons). Therefore, one must process
the output of Minkowski operators in order to render it valid for
subsequent operations, and take care of efficiency and exactness
at the same time.

Figure 1. Necessity of computing Booleans when applying
Minkowski operations.

2. RELATED WORK
Several approaches have been proposed in literature for the
computation of Boolean operations and polyhedra.

An exact approach based on Nef polyhedra was proposed by
Hachenberger [1-2] and implemented in CGAL. Even if this
approach is robust and is able to handle non-manifold output, it is
slow in practice and thus not suited for time-critical tasks.
Moreover, it suffers from overflow issues when operating on large
size polyhedra. While some approaches have been only dedicated
to free-form solids [3-4-5], some others tried to approximate exact
Booleans.

Smith and Dodgson proposed an algorithm ensuring a result
topologically correct [6]. However, this method uses
approximations (perturbations) to determine the relationship
between two entities (vertices, edges, facets and solids) and never
consider the case where they are coincident. This algorithm may
generate geometric artifacts.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

A hybrid method using a volumetric model has been presented by
Pavić [7], but this method generates errors if the resolution of the
octree-based volumetric model does not fit with the size of the
facets.

Exact computations have been adopted by Bernstein and Fussell
with a method using plane-based convex polygon splitting
algorithm and binary space partitioning (BSP) [8]. Recently,
Campen and Kobbelt used this method to find the outer hulls of
self-intersecting meshes, and Boolean operations [9].

3. OUR METHOD
3.1 Description
In this work, we propose an efficient method to compute the
union, the intersection and the subtraction between two
polyhedra. The computation of the intersections is based on exact
computations [10]. Since the result of Boolean operations is not
necessarily two-manifold (faces touching tangentially, double
vertices, etc.), we decided to separate the geometry of the non-
manifold features. However the resulting mesh cannot be used as
an input for another Boolean operation since our algorithm
operates only on polyhedron. Our idea is to compute the
intersection of the two input polyhedra and build the result by
propagation, using the intersection as a bounding line (see fig. 2
for a simple example between two spheres).

Figure 2. The green zone is the part of the input polyhedra
that belongs to the result polyhedron

If some facets of the polyhedra are coplanar, the intersection
between the meshes is not a line, but the bounding line we need is
included into the intersection. This case is described with more
details in the subsections 3.2.3 and 3.2.5.

3.2 The Algorithm
We want to compute a bounding line on the polyhedra and build
the result of the Boolean operation around this line, following the
surface of the polyhedra. Our algorithm is composed of six steps
to compute a Boolean operation.

1- Initialisation of the polyhedra
2- Find every pairs of triangles that intersect
3- Compute the intersections as segments
4- For each intersected triangle, store the intersection

segments and orient them
5- Triangulate the intersected facets and add to the solution

the triangles that belong to it.

6- Propagate the result to the whole polyhedra, using the
connectivity of the facets.

3.2.1 Initialisation
The first step consists of checking that the facets of the two
polyhedra are triangular. If not, a triangulation is done for each
facet. This is necessary to simplify the computation of the
intersections to a single case between two triangles. The
triangulation is the only modification done on the two input
polyhedra.

3.2.2 Finding the Intersections
The boundary line is made of segments, and each segment is an
intersection between two triangles. We then have to find which
triangles are concerned by the intersection between the two input
polyhedra, and more precisely, we must find every pair of
triangles that intersect. It is possible to test every pair but this
solution has a O(nm) time complexity. That is why we will use an
AABB-Tree (Axis Aligned Bounding Boxes Tree). For each facet
of one of the input polyhedra, we compute its axis aligned
bounding box and we store it into a binary search tree were each
node is the bounding box of its two sub-trees (see fig. 3).

Figure 3. AABB-Tree built on four triangles

The construction of the tree has a time complexity of O(n log(n))
and the intersection test of an axis aligned box into this tree has
O(log(n)) time complexity. Therefore, the full intersection test
between the two polyhedra has O((n+m)*log(n)) time complexity.
The other advantage in using an AABB Tree is that the
construction of an axis aligned bounding box for a triangle and
the intersection test are efficient. In order to reduce the time
complexity, the tree is built on the polyhedron having the smaller
number of facets because:

If n < m
 Then (n+m) * log(n) < (m+n) * log(m)

Every pair of facets whom bounding boxes intersect is stored to
compute the intersection. In most of the cases, not all the stored
pairs of triangles are really intersecting. If the triangles are very
close, their bounding boxes could intersect.

3.2.3 Compute the Intersections
For each facet, we need to find and store every intersection with
the facets of the other polyhedron. We want to find a bounding
line on the two input polyhedra. In most cases, the intersection of
two triangles is a segment, but in certain particular cases, it could
be a point or a polygon. For the coplanar cases, the three edges of
a facet belong to the plane of the other facet. It means that the
three neighbouring facets have at least one edge included in the
plan. That is why it is not necessary to compute the intersection
for the coplanar cases because they are obviously surrounded by
other intersections that are easier to compute.

Union Intersection

Subtraction

As we want to find a bounding line made of segments, it is also
not necessary to consider the cases where the intersection is a
point since it does not contribute to the computation of a line.

The algorithm we used to compute the intersection between two
triangles is based on the method described by Schneider and
Eberly [11]. The first step in the computation consists of finding
the position of each triangle with respect to the plan of the other
triangle. There are six different cases shown in fig. 4.

Figure 4. The six possible intersections of a triangle and a
plane.

If one of the two triangles is in one of the three first
configurations, the intersection is not computed (a coplanar case
is always surrounded by configurations of intersection with two
points on the plane or by others coplanar cases). With this first
result, we know the position of the three vertices of a triangle with
respect to the plan, so we know which edges are intersecting the
plan. In general, two edges are intersecting the plan. Otherwise, it
means that one or two vertices are on the plane, so we directly
know the coordinates of the intersection. For each triangle, we
compute, if necessary, the two intersection points between the two
edges and the plan, and we verify that these points are in the
triangle or not. There are three possibilities now. If none of the
points are in the triangle, the two triangles do not intersect. If we
founded two distinct points included in the two triangles, we have
the intersection segment. If we have only one point, it means that
we are on the case shown in fig. 5.

Figure 5. Intersection of two edges.

However, this point is important and must be memorized, because
if this is the unique intersection of these triangles, we have to
know this point to subdivide correctly these facets.

Every edge on the polyhedra belongs to two facets. If these facets
intersect another facet, we would compute the intersection twice.
Therefore for each intersected facet, we store the list of the edges

which cross the facet, with a reference to the intersection point.
We can avoid computing an intersection more than one time by
verifying if the point has already been computed.

3.2.4 Orientation of the Segments
The bounding line cuts the two initial polyhedra into two parts,
but we need to know which one is part of the result of the Boolean
operation and which is not. That is why each segment is stored as
two points in a particular order. The cross product between the
normal of the triangle and the vector created with the two points
must be pointing to the direction of the part of the polyhedron that
belongs to the result. To know which part of the intersected
triangle belongs to the result, we must take into account the cross
product between the normal of the triangles and the Boolean
operator (union, intersection or subtraction).

Figure 6. The intersection of two triangles is a segment defined
by the points 1 and 2.

The order of the points when we store the segments follows this
procedure:

3.2.5 The Particular Cases
When the intersection is a case where an edge of one of the
triangles is on the plane of the other triangle, is does not mean
that there is a part of the bounded line here. We must verify that
the two polyhedra are partially overlapping here. The different
cases are represented in fig. 7.

If (NA x NB) . (pt2 – pt1) > 0
If UNION

store (pt1, pt2) for triangle A
store (pt2, pt1) for triangle B

Else If INTERSECTION
store (pt2, pt1) for triangle A
store (pt1, pt2) for triangle B

Else If SUBTRACTION
store (pt1, pt2) for triangle A
store (pt1, pt2) for triangle B

EndIf
Else

If UNION
store (pt2, pt1) for triangle A
store (pt1, pt2) for triangle B

Else If INTERSECTION
store (pt1, pt2) for triangle A
store (pt2, pt1) for triangle B

Else If SUBTRACTION
store (pt2, pt1) for triangle A
store (pt2, pt1) for triangle B

EndIf
EndIf

no
intersection

point on
plane

coplanar with
the plane

segment with
one point on

the plane

segment segment with
two points on

the plane

Figure 7. Conditions for computation when a particular case
where a contact “edge-triangle” happens.

If the two triangles intersect in an edge, we must consider the
position of the two other triangles sharing the same edges. We
have to find if the two polyhedra cross in this edge or not. For
each facet of the polyhedron A sharing the edge, we have to find if
they are inside the polyhedron B or not. If the two facets are on
the same side, there is no intersection. Otherwise, the intersection
is part of the bounded line. It is possible that two facets are
coplanar. In this case, we must take into account the Boolean
operator (union, intersection or subtraction) to determine if the
facet of A must be considered inside or outside B. It is also
possible that each facet of A is coplanar with two facets of B. In
this case, we consider that the polyhedra are not overlapping.

Figure 8. Examples where the two facets intersect on an edge.

3.2.6 Cut the Intersected Facets
The intersected facets are triangulated using the constrained
Delaunay triangulation. The segments computed in the part 3.2.3
are constraints. Then, we are able to know which of the two

triangles of the triangulation, on each side of a constrained
segment, belongs to the result or not. We propagate this
information to the neighbouring triangles and reverse it if a
constrained edge is crossed, until each triangle is checked. If a
facet intersects another, but does not have any constrained
segment, we do not validate the facet for now. We use the
triangulation to know if the three neighbouring facets belong to
the result. If these facets have constrained segments, this
information would be false, but it is not important because this
information is used only if the facet does not have any constrained
segment.

Figure 9. Identification of the three neighbouring facets.

3.2.7 Propagate the Result on the Polyhedra
During the previous step, we determined if the three facets
surrounding an intersected facet belong to the result (see fig. 10).

We just have to propagate this information to the whole polyhedra
using the connectivity between the facets. If a facet belonging to
the result has constrained points, this facet is triangulated.

Figure 10. One of the polyhedra before the propagation. The
red facets are intersected, the green facets are part of the

result, and the blue facets are not.

4. RESULTS
We have tested our algorithm on simple polyhedra to check its
correctness. The figure 11 represents the results for the three
operations (union, intersection and subtraction) with a star and a
cross. We can see that these results are correct. However, there are
no particular cases with these polyhedra.

Then, we wanted to check if the particular cases are well
computed. The three following examples show what happens
when coplanar cases appear. The figure 12 shows the union of
two overlapping cubes in a particular case. The top and bottom
facets are coplanar and certain facets on the side present a
configuration where the triangles intersect on an edge. The

never
computed

always
computed

never
computed

never
computed

never
computed

always
computed

computed
if −

computed

∪

computed
if ∩ or −

computed

∪

computed

∪

computed
if ∩ or −

computed
if −

computed

∪
Polyhedron A

In case of union,
the polyhedra

overlap

Polyhedron B

In case of intersection,
the polyhedra do not

overlap

In coplanar cases,
the polyhedra do

not overlap

outside

outside

inside

subtraction between these two cubes in figure 13 shows that the
two coplanar facets disappeared, proving that the computation of
the subtraction is correct in particular configurations. If two cubes
are in contact on one facet, the intersection is an empty
polyhedron. But for the union of these cubes, the two parts of the
facets in contact should disappear. The figure 14 shows this result.
To make it easier to be seen, a facet has been deleted.

Figure 12. Union with coplanar facets (overlapping cubes).

Figure 13. Subtraction with coplanar facets (overlapping
cubes).

Figure 14. Union with coplanar facets (contact between two
cubes). The common facet correctly disappeared.

We have also tested our algorithm on many large 3d models
(composed of hundred of thousand of facets). In order to compare
our algorithm with others, we have computed Booleans operations
with two other methods. The first one is the Nef-based approach
implemented in CGAL [1-2], the second one is the algorithm
implemented in Moka [13] and based on topologic maps
following N. Guiard’s method [12]. The table 1 shows the
computation time for three different methods. fA and fB are the
number of facet of the two input polyhedra and fI is the total
number of intersected facets. The polyhedron A is an aircraft and
the polyhedron B is an elephant. The figure 15 shows the result of
the three operations with these polyhedra (first column of table
one).

Figure 15. (a) and (b) : aircraft and elephant. The intersected
facets are red, the green facets are outside the other polyhedra,

the blue facets are inside the other polyhedra.
(c) union. (d) intersection. (e) subtraction.

(c)

(a) (b)

(d)

(e)

Figure 11. Results for the union, the intersection and the
subtraction of two polyhedra (star and cross).

Table 1. Time results for comparison with other algorithms

#facets
fA = 4864
fB = 5558
fI = 442

#facets
fA = 19456
fB = 22232

fI = 904

#facets
fA = 77824
fB = 88928
fI = 1827

Union 34.546 s 147.684 s 963.154 s

Inter 32.672 s 132.435 s 660.487 s
CGAL
(Nef)

Sub 33.515 s 138.388 s 783.458 s

Union

Inter Moka

Sub

0.832 s 3.268 s 11.340 s

Union 0.380 s 0.930 s 2.511 s

Inter 0.364 s 0.858 s 2.134 s
Our

Method
Sub 0.372 s 0.898 s 2.351 s

The union with 311296 facets for the aircraft and 355712 facets
for the elephant took 7.805 seconds to be computed and the final
result has 567952 facets.

We can see that our algorithm is 90-380 times faster than CGAL.
However, contrary to our method, CGAL creates a result without
any useless vertices. Moka gives the result of the three operations,
but for practical purposes, we generally need only one result. In
addition to this, certain parts of our algorithm are common for the
three operators. Then, the computation of the three operations
would take less than the sum of them computed separately.
Moreover, Moka does not ensure that the result is correct.

5. CONCLUSION AND PERSPECTIVES
We proposed an algorithm for the computation of Boolean
operations on polyhedral based on an AABB-Tree construction
and bounding lines computation.

The particular cases for the intersection are computed separately
to ensure a correct result. The treatment of these cases is longer
than the regular cases, but they are uncommon in practice. Our
approach gives correct results because we used exact number
types (no round-off errors).

Experimental results showed that our algorithm outperforms
existing methods cited in this paper (based on Nef polyhedra and
combinatorial maps). Moreover, our algorithm correctly handled
big size polyhedra comprised of hundreds of thousands of facets.

We are working on the generalization of our algorithm to non-
manifold input and meshes composed of several disjoint
boundaries. All this work is necessary in order to perform
morphological filtering on meshes, which in turn will allow
proposing new measures for the characterization and indexation
of 3d models.

6. REFERENCES
[1] Granados, M., Hachenberger, P., Hert, S., Kettner, L.,

Mehlhorn, K. and Seel, M., Boolean operations on 3D
selective Nef complexes: Data structure, algorithms, and
implementation. In: Lecture Notes in Comput. Sci., vol.
2832. Springer, Berlin. pp. 654-666.

[2] Hachenberger, P. and Kettner, L. 2005. Boolean operations
on 3D selective Nef complexes: optimized implementation
and experiments. In Proceedings of the 2005 ACM
Symposium on Solid and Physical Modeling (Cambridge,
Massachusetts, June 13 - 15, 2005). SPM '05. ACM, New
York, NY, 163-174.

[3] Biermann, H., Kristjansson, D., and Zorin, D. 2001.
Approximate Boolean operations on free-form solids. In
Proceedings of the 28th Annual Conference on Computer
Graphics and interactive Techniques SIGGRAPH '01. ACM,
New York, NY, 185-194.

[4] Adams, B. and Dutré, P. 2003. Interactive boolean
operations on surfel-bounded solids. In ACM SIGGRAPH
2003 Papers (San Diego, California, July 27 - 31, 2003).
SIGGRAPH '03. ACM, New York, NY, 651-656.

[5] Bajaj, C., Paoluzzi, A., Portuesi, S., Lei, N. & Zhao, W.
2008 Boolean operations with prism algebraic patches.
Comput. Aided Des. Appl. 5, 730–742

[6] Smith, J. M. and Dodgson, N. A. 2007. A topologically
robust algorithm for Boolean operations on polyhedral
shapes using approximate arithmetic. Comput. Aided Des.
39, 2 (Feb. 2007), 149-163.

[7] Pavić, D., Campen, M. and Kobbelt, L. 2010. Hybrid
Booleans. Computer Graphics Forum. vol.29(1), pp.75-87,
2010.

[8] Bernstein, G. and Fussell, D. 2009. Fast, exact, linear
Booleans. In Proceedings of the Symposium on Geometry
Processing (Berlin, Germany, July 15 - 17, 2009).
Eurographics Symposium on Geometry Processing.
Eurographics Association, Aire-la-Ville, Switzerland, 1269-
1278.

[9] Campen, M. and Kobbelt, L. 2010. Exact and Robust (Self-)
Intersections for Polygonal Meshes. In Computer Graphics
Forum. vol.29, pp.397-406, May 2010.

[10] Pion, S. and Fabri, A. 2006. A generic lazy evaluation
scheme for exact geometric computations. In Proc. 2nd
Library-Centric Software Design, 75-84.

[11] Schneider, P. J. and Eberly, D. 2002 Geometric Tools for
Computer Graphics. Elsevier Science Inc.

[12] Guiard, N. 2006. Construction de modèles géologiques 3D
par co-raffinement de surfaces. PhD thesis.

[13] Moka. www.sic.sp2mi.univ-poitiers.fr/moka/

