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ABSTRACT 
Boolean operations are crucial for many domains, especially for 
those requiring exactness and efficiency. Morphological filtering 
and indexation of meshes are the most critical applications of 
Booleans because they need to perform them sequentially. In this 
context, we propose a new algorithm which fulfils such 
requirements. We achieve efficiency and exactness through the 
use of an efficient data structure and the adoption of the exact 
computation paradigm. Our benchmark showed that our algorithm 
handles big size polyhedra and outperforms state of the art 
methods. 

Categories and Subject Descriptors 
I.3.5 [Computer Graphics]: Computational Geometry and Object 
Modeling 
F.2.2 [Analysis of Algorithms and Problem Complexity]: 
Nonnumerical Algorithms and Problems—Geometrical 
problems and computations 
J.6 [Computer-Aided Engineering]: Computer-aided design 
(CAD) 

General Terms 
Algorithms, Performance, Reliability. 

Keywords 
Boolean operations, polyhedra, exact computation, geometric 
modeling. 

1. INTRODUCTION 
Boolean operations on polyhedra are a fundamental task in 
computational geometry, computer-aided design and 
manufacturing, computer graphics, etc. Their exact computation 
and the handling of all degenerate cases is a difficult task because 
of non-manifold results (the set of polyhedra is not closed under 
Boolean operations), round-off errors inherent to built-in number 
types, etc. In computational geometry, the exact computation 
paradigm is becoming widely used. It allows addressing the non-
robustness issues related to round-off errors. However, exact 
arithmetic is slow in comparison with floating-point one.  

Our work is motivated by the need to exact and efficient Boolean 
operations in order to apply successions of Minkowski operations 
(addition and subtraction) on meshes as done in mathematical 

morphology on discrete images. Such morphological filtering 
techniques will allow characterizing 3d models for indexation 
purpose. 

In this work, we present a new algorithm for the exact 
computation of Boolean operations on polyhedra. We used exact 
arithmetic to avoid round-off related issues and efficient data 
structures to achieve efficiency. It is also known that the set of 
polyhedra is not closed under Minkowski operations (see fig. 1 
for an example with 2D polygons). Therefore, one must process 
the output of Minkowski operators in order to render it valid for 
subsequent operations, and take care of efficiency and exactness 
at the same time. 

 

Figure 1. Necessity of computing Booleans when applying 
Minkowski operations. 

2. RELATED WORK 
Several approaches have been proposed in literature for the 
computation of Boolean operations and polyhedra. 

An exact approach based on Nef polyhedra was proposed by 
Hachenberger [1-2] and implemented in CGAL. Even if this 
approach is robust and is able to handle non-manifold output, it is 
slow in practice and thus not suited for time-critical tasks. 
Moreover, it suffers from overflow issues when operating on large 
size polyhedra. While some approaches have been only dedicated 
to free-form solids [3-4-5], some others tried to approximate exact 
Booleans.  

Smith and Dodgson proposed an algorithm ensuring a result 
topologically correct [6]. However, this method uses 
approximations (perturbations) to determine the relationship 
between two entities (vertices, edges, facets and solids) and never 
consider the case where they are coincident. This algorithm may 
generate geometric artifacts. 
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A hybrid method using a volumetric model has been presented by 
Pavić [7], but this method generates errors if the resolution of the 
octree-based volumetric model does not fit with the size of the 
facets. 

Exact computations have been adopted by Bernstein and Fussell 
with a method using plane-based convex polygon splitting 
algorithm and binary space partitioning (BSP) [8]. Recently, 
Campen and Kobbelt used this method to find the outer hulls of 
self-intersecting meshes, and Boolean operations [9]. 

3. OUR METHOD 
3.1 Description 
In this work, we propose an efficient method to compute the 
union, the intersection and the subtraction between two 
polyhedra. The computation of the intersections is based on exact 
computations [10]. Since the result of Boolean operations is not 
necessarily two-manifold (faces touching tangentially, double 
vertices, etc.), we decided to separate the geometry of the non-
manifold features. However the resulting mesh cannot be used as 
an input for another Boolean operation since our algorithm 
operates only on polyhedron. Our idea is to compute the 
intersection of the two input polyhedra and build the result by 
propagation, using the intersection as a bounding line (see fig. 2 
for a simple example between two spheres). 

 
 

 

Figure 2. The green zone is the part of the input polyhedra 
that belongs to the result polyhedron 

If some facets of the polyhedra are coplanar, the intersection 
between the meshes is not a line, but the bounding line we need is 
included into the intersection. This case is described with more 
details in the subsections 3.2.3 and 3.2.5. 

3.2 The Algorithm 
We want to compute a bounding line on the polyhedra and build 
the result of the Boolean operation around this line, following the 
surface of the polyhedra. Our algorithm is composed of six steps 
to compute a Boolean operation. 

1- Initialisation of the polyhedra 
2- Find every pairs of triangles that intersect 
3- Compute the intersections as segments 
4- For each intersected triangle, store the intersection 

segments and orient them 
5- Triangulate the intersected facets and add to the solution 

the triangles that belong to it. 

6- Propagate the result to the whole polyhedra, using the 
connectivity of the facets. 

3.2.1 Initialisation 
The first step consists of checking that the facets of the two 
polyhedra are triangular. If not, a triangulation is done for each 
facet. This is necessary to simplify the computation of the 
intersections to a single case between two triangles. The 
triangulation is the only modification done on the two input 
polyhedra. 

3.2.2  Finding the Intersections 
The boundary line is made of segments, and each segment is an 
intersection between two triangles. We then have to find which 
triangles are concerned by the intersection between the two input 
polyhedra, and more precisely, we must find every pair of 
triangles that intersect. It is possible to test every pair but this 
solution has a O(nm) time complexity. That is why we will use an 
AABB-Tree (Axis Aligned Bounding Boxes Tree). For each facet 
of one of the input polyhedra, we compute its axis aligned 
bounding box and we store it into a binary search tree were each 
node is the bounding box of its two sub-trees (see fig. 3). 

 

Figure 3. AABB-Tree built on four triangles 

The construction of the tree has a time complexity of O(n log(n)) 
and the intersection test of an axis aligned box into this tree has 
O(log(n)) time complexity. Therefore, the full intersection test 
between the two polyhedra has O((n+m)*log(n)) time complexity. 
The other advantage in using an AABB Tree is that the 
construction of an axis aligned bounding box for a triangle and 
the intersection test are efficient. In order to reduce the time 
complexity, the tree is built on the polyhedron having the smaller 
number of facets because: 

If n < m 
 Then (n+m) * log(n) < (m+n) * log(m) 

Every pair of facets whom bounding boxes intersect is stored to 
compute the intersection. In most of the cases, not all the stored 
pairs of triangles are really intersecting. If the triangles are very 
close, their bounding boxes could intersect. 

3.2.3  Compute the Intersections 
For each facet, we need to find and store every intersection with 
the facets of the other polyhedron. We want to find a bounding 
line on the two input polyhedra. In most cases, the intersection of 
two triangles is a segment, but in certain particular cases, it could 
be a point or a polygon. For the coplanar cases, the three edges of 
a facet belong to the plane of the other facet. It means that the 
three neighbouring facets have at least one edge included in the 
plan. That is why it is not necessary to compute the intersection 
for the coplanar cases because they are obviously surrounded by 
other intersections that are easier to compute. 

Union Intersection 

Subtraction 



As we want to find a bounding line made of segments, it is also 
not necessary to consider the cases where the intersection is a 
point since it does not contribute to the computation of a line. 

The algorithm we used to compute the intersection between two 
triangles is based on the method described by Schneider and 
Eberly [11]. The first step in the computation consists of finding 
the position of each triangle with respect to the plan of the other 
triangle. There are six different cases shown in fig. 4. 

 
 
 

 
 
 
 

Figure 4. The six possible intersections of a triangle and a 
plane. 

If one of the two triangles is in one of the three first 
configurations, the intersection is not computed (a coplanar case 
is always surrounded by configurations of intersection with two 
points on the plane or by others coplanar cases). With this first 
result, we know the position of the three vertices of a triangle with 
respect to the plan, so we know which edges are intersecting the 
plan. In general, two edges are intersecting the plan. Otherwise, it 
means that one or two vertices are on the plane, so we directly 
know the coordinates of the intersection. For each triangle, we 
compute, if necessary, the two intersection points between the two 
edges and the plan, and we verify that these points are in the 
triangle or not. There are three possibilities now. If none of the 
points are in the triangle, the two triangles do not intersect. If we 
founded two distinct points included in the two triangles, we have 
the intersection segment. If we have only one point, it means that 
we are on the case shown in fig. 5.  

 

Figure 5. Intersection of two edges. 

However, this point is important and must be memorized, because 
if this is the unique intersection of these triangles, we have to 
know this point to subdivide correctly these facets. 

Every edge on the polyhedra belongs to two facets. If these facets 
intersect another facet, we would compute the intersection twice. 
Therefore for each intersected facet, we store the list of the edges 

which cross the facet, with a reference to the intersection point. 
We can avoid computing an intersection more than one time by 
verifying if the point has already been computed. 

3.2.4  Orientation of the Segments 
The bounding line cuts the two initial polyhedra into two parts, 
but we need to know which one is part of the result of the Boolean 
operation and which is not. That is why each segment is stored as 
two points in a particular order. The cross product between the 
normal of the triangle and the vector created with the two points 
must be pointing to the direction of the part of the polyhedron that 
belongs to the result. To know which part of the intersected 
triangle belongs to the result, we must take into account the cross 
product between the normal of the triangles and the Boolean 
operator (union, intersection or subtraction). 

 

Figure 6. The intersection of two triangles is a segment defined 
by the points 1 and 2. 

The order of the points when we store the segments follows this 
procedure: 

 

3.2.5 The Particular Cases 
When the intersection is a case where an edge of one of the 
triangles is on the plane of the other triangle, is does not mean 
that there is a part of the bounded line here. We must verify that 
the two polyhedra are partially overlapping here. The different 
cases are represented in fig. 7.  

If (NA x NB) . (pt2 – pt1) > 0 
If UNION 

store (pt1, pt2) for triangle A 
store (pt2, pt1) for triangle B 

Else If INTERSECTION 
store (pt2, pt1) for triangle A 
store (pt1, pt2) for triangle B 

Else If SUBTRACTION 
store (pt1, pt2) for triangle A 
store (pt1, pt2) for triangle B 

EndIf 
Else 

If UNION 
store (pt2, pt1) for triangle A 
store (pt1, pt2) for triangle B 

Else If INTERSECTION 
store (pt1, pt2) for triangle A 
store (pt2, pt1) for triangle B 

Else If SUBTRACTION 
store (pt2, pt1) for triangle A 
store (pt2, pt1) for triangle B  

EndIf 
EndIf 
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intersection 
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coplanar with 
the plane 

segment with 
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two points on 

the plane 



 

Figure 7. Conditions for computation when a particular case 
where a contact “edge-triangle” happens. 

If the two triangles intersect in an edge, we must consider the 
position of the two other triangles sharing the same edges. We 
have to find if the two polyhedra cross in this edge or not.  For 
each facet of the polyhedron A sharing the edge, we have to find if 
they are inside the polyhedron B or not. If the two facets are on 
the same side, there is no intersection. Otherwise, the intersection 
is part of the bounded line. It is possible that two facets are 
coplanar. In this case, we must take into account the Boolean 
operator (union, intersection or subtraction) to determine if the 
facet of A must be considered inside or outside B. It is also 
possible that each facet of A is coplanar with two facets of B. In 
this case, we consider that the polyhedra are not overlapping. 

 
 
 
 

Figure 8. Examples where the two facets intersect on an edge.   

3.2.6 Cut the Intersected Facets 
The intersected facets are triangulated using the constrained 
Delaunay triangulation. The segments computed in the part 3.2.3 
are constraints. Then, we are able to know which of the two 

triangles of the triangulation, on each side of a constrained 
segment, belongs to the result or not. We propagate this 
information to the neighbouring triangles and reverse it if a 
constrained edge is crossed, until each triangle is checked. If a 
facet intersects another, but does not have any constrained 
segment, we do not validate the facet for now. We use the 
triangulation to know if the three neighbouring facets belong to 
the result. If these facets have constrained segments, this 
information would be false, but it is not important because this 
information is used only if the facet does not have any constrained 
segment. 

 

Figure 9. Identification of the three neighbouring facets. 

3.2.7 Propagate the Result on the Polyhedra 
During the previous step, we determined if the three facets 
surrounding an intersected facet belong to the result (see fig. 10). 

We just have to propagate this information to the whole polyhedra 
using the connectivity between the facets. If a facet belonging to 
the result has constrained points, this facet is triangulated.  

 

Figure 10. One of the polyhedra before the propagation. The 
red facets are intersected, the green facets are part of the 

result, and the blue facets are not. 

4. RESULTS 
We have tested our algorithm on simple polyhedra to check its 
correctness. The figure 11 represents the results for the three 
operations (union, intersection and subtraction) with a star and a 
cross. We can see that these results are correct. However, there are 
no particular cases with these polyhedra. 

Then, we wanted to check if the particular cases are well 
computed. The three following examples show what happens 
when coplanar cases appear. The figure 12 shows the union of 
two overlapping cubes in a particular case. The top and bottom 
facets are coplanar and certain facets on the side present a 
configuration where the triangles intersect on an edge. The 
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subtraction between these two cubes in figure 13 shows that the 
two coplanar facets disappeared, proving that the computation of 
the subtraction is correct in particular configurations. If two cubes 
are in contact on one facet, the intersection is an empty 
polyhedron. But for the union of these cubes, the two parts of the 
facets in contact should disappear. The figure 14 shows this result. 
To make it easier to be seen, a facet has been deleted. 

 

 

Figure 12. Union with coplanar facets (overlapping cubes). 

 

Figure 13. Subtraction with coplanar facets (overlapping 
cubes).  

 

Figure 14. Union with coplanar facets (contact between two 
cubes). The common facet correctly disappeared. 

We have also tested our algorithm on many large 3d models 
(composed of hundred of thousand of facets). In order to compare 
our algorithm with others, we have computed Booleans operations 
with two other methods. The first one is the Nef-based approach 
implemented in CGAL [1-2], the second one is the algorithm 
implemented in Moka [13] and based on topologic maps 
following N. Guiard’s method [12]. The table 1 shows the 
computation time for three different methods. fA and fB are the 
number of facet of the two input polyhedra and fI is the total 
number of intersected facets. The polyhedron A is an aircraft and 
the polyhedron B is an elephant. The figure 15 shows the result of 
the three operations with these polyhedra (first column of table 
one). 

 

Figure 15. (a) and (b) : aircraft and elephant. The intersected 
facets are red, the green facets are outside the other polyhedra, 

the blue facets are inside the other polyhedra.  
(c) union. (d) intersection. (e) subtraction. 

(c) 

(a) (b) 

(d) 

(e) 

Figure 11. Results for the union, the intersection and the 
subtraction of two polyhedra (star and cross). 



Table 1. Time results for comparison with other algorithms 

  

#facets 
fA = 4864 
fB = 5558 
fI = 442 

#facets 
fA = 19456 
fB = 22232 

fI = 904 

#facets 
fA = 77824 
fB = 88928 
fI = 1827 

Union 34.546 s 147.684 s 963.154 s 

Inter 32.672 s 132.435 s 660.487 s 
CGAL 
(Nef) 

Sub 33.515 s 138.388 s 783.458 s 

Union 

Inter Moka 

Sub 

0.832 s 3.268 s 11.340 s 

Union 0.380 s 0.930 s 2.511 s 

Inter 0.364 s 0.858 s 2.134 s 
Our 

Method 
Sub 0.372 s 0.898 s 2.351 s 

 
The union with 311296 facets for the aircraft and 355712 facets 
for the elephant took 7.805 seconds to be computed and the final 
result has 567952 facets. 

We can see that our algorithm is 90-380 times faster than CGAL. 
However, contrary to our method, CGAL creates a result without 
any useless vertices. Moka gives the result of the three operations, 
but for practical purposes, we generally need only one result. In 
addition to this, certain parts of our algorithm are common for the 
three operators. Then, the computation of the three operations 
would take less than the sum of them computed separately. 
Moreover, Moka does not ensure that the result is correct. 

5. CONCLUSION AND PERSPECTIVES 
We proposed an algorithm for the computation of Boolean 
operations on polyhedral based on an AABB-Tree construction 
and bounding lines computation. 

The particular cases for the intersection are computed separately 
to ensure a correct result. The treatment of these cases is longer 
than the regular cases, but they are uncommon in practice. Our 
approach gives correct results because we used exact number 
types (no round-off errors).  

Experimental results showed that our algorithm outperforms 
existing methods cited in this paper (based on Nef polyhedra and 
combinatorial maps). Moreover, our algorithm correctly handled 
big size polyhedra comprised of hundreds of thousands of facets. 

We are working on the generalization of our algorithm to non-
manifold input and meshes composed of several disjoint 
boundaries. All this work is necessary in order to perform 
morphological filtering on meshes, which in turn will allow 
proposing new measures for the characterization and indexation 
of 3d models. 
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