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ABSTRACT

Boolean operations are crucial for many domainpe@slly for
those requiring exactness and efficiency. Morphicidfiltering
and indexation of meshes are the most critical iepidns of
Booleans because they need to perform them seqlignin this
context, we propose a new algorithm which fulfilsicls
requirements. We achieve efficiency and exactnbesugh the
use of an efficient data structure and the adoptibthe exact
computation paradigm. Our benchmark showed thatalgarithm
handles big size polyhedra and outperforms statehef art
methods.

Categories and Subject Descriptors

1.3.5 [Computer Graphics]: Computational Geometry and Object

Modeling

F.2.2 [Analysis of Algorithms and Problem Complexity}
Nonnumerical  Algorithms  and
problems and computations

J.6 [Computer-Aided Engineering]: Computer-aided design

(CAD)

General Terms
Algorithms, Performance, Reliability.

Keywords
Boolean operations, polyhedra, exact computatioeonggtric
modeling.

1. INTRODUCTION

Boolean operations on polyhedra are a fundamemsk in
computational  geometry,  computer-aided
manufacturing, computer graphics, etc. Their exachputation

and the handling of all degenerate cases is auliffiask because
of non-manifold results (the set of polyhedra i$ dosed under
Boolean operations), round-off errors inherent wdtbn number

types, etc. In computational geometry, the exaahmdation

paradigm is becoming widely used. It allows addresghe non-

robustness issues related to round-off errors. Meweexact

arithmetic is slow in comparison with floating-pbone.

Our work is motivated by the need to exact anctieffit Boolean
operations in order to apply successions of Minkowsgerations
(addition and subtraction) on meshes as done ienaitical
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Problems—Geometrical

design  and

morphology on discrete images. Such morphologidéring
techniques will allow characterizing 3d models fadexation
purpose.

In this work, we present a new algorithm for theaax
computation of Boolean operations on polyhedra.sted exact
arithmetic to avoid round-off related issues anficieht data
structures to achieve efficiency. It is also knothat the set of
polyhedra is not closed under Minkowski operati¢emse fig. 1
for an example with 2D polygons). Therefore, onestrprocess
the output of Minkowski operators in order to rendevalid for
subsequent operations, and take care of efficiamcly exactness
at the same time.
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Figure 1. Necessity of computing Booleans when agpig
Minkowski operations.

2. RELATED WORK

Several approaches have been proposed in literdturghe
computation of Boolean operations and polyhedra.

An exact approach based on Nef polyhedra was pegpby

Hachenberger [1-2] and implemented in CGAL. Eventhifs

approach is robust and is able to handle non-mianifetput, it is
slow in practice and thus not suited for time-cati tasks.
Moreover, it suffers from overflow issues when @ierg on large
size polyhedra. While some approaches have begndedicated
to free-form solids [3-4-5], some others tried ppeoximate exact
Booleans.

Smith and Dodgson proposed an algorithm ensuringsalt
topologically correct [6]. However, this method sse
approximations (perturbations) to determine theati@hship
between two entities (vertices, edges, facets ahds$ and never
consider the case where they are coincident. Tihrithm may
generate geometric artifacts.



A hybrid method using a volumetric model has beesented by
Pavi [7], but this method generates errors if the nesmh of the
octree-based volumetric model does not fit with ¢iee of the
facets.

Exact computations have been adopted by BernstelinFassell
with a method using plane-based convex polygonttsgi
algorithm and binary space partitioning (BSP) [&ecently,
Campen and Kobbelt used this method to find theroutills of
self-intersecting meshes, and Boolean operatigns [9

3. OUR METHOD
3.1 Description

In this work, we propose an efficient method to pote the
union, the intersection and the subtraction betwdam
polyhedra. The computation of the intersectionisaised on exact
computations [10]. Since the result of Boolean afiens is not
necessarily two-manifold (faces touching tangelytialouble
vertices, etc.), we decided to separate the gegroétthe non-
manifold features. However the resulting mesh cabeoused as
an input for another Boolean operation since owgorthm
operates only on polyhedron. Our idea is to comptite
intersection of the two input polyhedra and buife fresult by
propagation, using the intersection as a boundimg (see fig. 2
for a simple example between two spheres).

09

Union Intersection

Subtraction

Figure 2. The green zone is the part of the input glyhedra
that belongs to the result polyhedron

If some facets of the polyhedra are coplanar, titersection
between the meshes is not a line, but the bourldiegve need is
included into the intersection. This case is désctiwith more
details in the subsections 3.2.3 and 3.2.5.

3.2  The Algorithm

We want to compute a bounding line on the polyhedra build
the result of the Boolean operation around this, lfollowing the
surface of the polyhedra. Our algorithm is composksix steps
to compute a Boolean operation.

1- Initialisation of the polyhedra

2- Find every pairs of triangles that intersect

3- Compute the intersections as segments

4- For each intersected triangle, store the intersecti
segments and orient them

5- Triangulate the intersected facets and add todhgisn
the triangles that belong to it.

6- Propagate the result to the whole polyhedra, utieg
connectivity of the facets.

3.2.1 Initialisation

The first step consists of checking that the faadtghe two
polyhedra are triangular. If not, a triangulatiendone for each
facet. This is necessary to simplify the computatiof the
intersections to a single case between two trianglEhe
triangulation is the only modification done on th&o input
polyhedra.

3.2.2 Finding the Intersections

The boundary line is made of segments, and eaahesggs an
intersection between two triangles. We then havént which
triangles are concerned by the intersection betwleeriwo input
polyhedra, and more precisely, we must find evear pf
triangles that intersect. It is possible to tesergwpair but this
solution has &(nm)time complexity. That is why we will use an
AABB-Tree (Axis Aligned Bounding Boxes Tree). Faoh facet
of one of the input polyhedra, we compute its aaigned
bounding box and we store it into a binary seareb twere each
node is the bounding box of its two sub-trees {gpe).
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Figure 3. AABB-Tree built on four triangles
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The construction of the tree has a time complexdt®(n log(n))
and the intersection test of an axis aligned baa this tree has
O(log(n)) time complexity. Therefore, the full intersectidest
between the two polyhedra h@g(n+m)*log(n)) time complexity.
The other advantage in using an AABB Tree is tha¢ t
construction of an axis aligned bounding box fdriangle and
the intersection test are efficient. In order tauee the time
complexity, the tree is built on the polyhedron ingvthe smaller
number of facets because:

Ifn<m
Then(n+m) * log(n) < (m+n) * log(m)

Every pair of facets whom bounding boxes intersedttored to
compute the intersection. In most of the cases,aiidhe stored
pairs of triangles are really intersecting. If thiangles are very
close, their bounding boxes could intersect.

3.2.3 Compute the Intersections

For each facet, we need to find and store evesrsattion with

the facets of the other polyhedron. We want to fndounding

line on the two input polyhedra. In most cases,itersection of

two triangles is a segment, but in certain paréicebses, it could
be a point or a polygon. For the coplanar casesthiee edges of
a facet belong to the plane of the other facetméfins that the
three neighbouring facets have at least one eddedied in the

plan. That is why it is not necessary to computeittiersection

for the coplanar cases because they are obviouslgunded by

other intersections that are easier to compute.



As we want to find a bounding line made of segmeittis also
not necessary to consider the cases where theséctam is a
point since it does not contribute to the compatabf a line.

The algorithm we used to compute the intersectietween two
triangles is based on the method described by Stémend
Eberly [11]. The first step in the computation dastssof finding
the position of each triangle with respect to tlenpf the other
triangle. There are six different cases showngn4i
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Figure 4. The six possible intersections of a triagle and a
plane.

If one of the two triangles is in one of the thrdiest
configurations, the intersection is not computeddplanar case
is always surrounded by configurations of interisectwith two
points on the plane or by others coplanar case#h Wis first
result, we know the position of the three vertioka triangle with
respect to the plan, so we know which edges aegsietting the
plan. In general, two edges are intersecting tha.pDtherwise, it
means that one or two vertices are on the planayesdlirectly
know the coordinates of the intersection. For etiEngle, we
compute, if necessary, the two intersection pdietsveen the two
edges and the plan, and we verify that these pairgsin the
triangle or not. There are three possibilities ndwnone of the
points are in the triangle, the two triangles do intersect. If we
founded two distinct points included in the twabgles, we have
the intersection segment. If we have only one pdimheans that
we are on the case shown in fig. 5.

Figure 5. Intersection of two edges.

However, this point is important and must be mereatj because
if this is the unique intersection of these tri@msglwe have to
know this point to subdivide correctly these facets

Every edge on the polyhedra belongs to two fatketeese facets
intersect another facet, we would compute the sefgtion twice.
Therefore for each intersected facet, we stordishef the edges

which cross the facet, with a reference to therseigtion point.
We can avoid computing an intersection more tham time by
verifying if the point has already been computed.

3.2.4 Orientation of the Segments

The bounding line cuts the two initial polyhedraoinwo parts,

but we need to know which one is part of the restithe Boolean
operation and which is not. That is why each segrsestored as
two points in a particular order. The cross prodoetween the
normal of the triangle and the vector created i two points
must be pointing to the direction of the part af glolyhedron that
belongs to the result. To know which part of théeisected
triangle belongs to the result, we must take imwoant the cross
product between the normal of the triangles and Bobelean

operator (union, intersection or subtraction).

Figure 6. The intersection of two triangles is a ggnent defined
by the points 1 and 2.

The order of the points when we store the segnfetitavs this
procedure:

If (NaXNg) . (pt2—ptl) >0

If UNION

| store ptl, pt2) for triangleA
store pt2, ptl) for triangleB

Else If INTERSECTION

| store pt2, ptl) for triangleA
store pt1, pt2) for triangleB

Else If SUBTRACTION

| store ptl, pt2) for triangleA
store ptl, pt2) for triangleB

EndIf

Else

If UNION

| store pt2, ptl) for triangleA
store ptl, pt2) for triangleB

Else If INTERSECTION

| store ptl, pt2) for triangleA
store pt2, ptl) for triangleB

Else If SUBTRACTION

, store pt2, ptl) for triangleA
store pt2, ptl) for triangleB

EndIf

EndIf

3.2.5 The Particular Cases

When the intersection is a case where an edge efadrthe
triangles is on the plane of the other triangleddgs not mean
that there is a part of the bounded line here. Wistmerify that
the two polyhedra are partially overlapping herée Tifferent
cases are represented in fig. 7.
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Figure 7. Conditions for computation when a particlar case
where a contact “edge-triangle” happens.

If the two triangles intersect in an edge, we mumtsider the
position of the two other triangles sharing the sasdges. We
have to find if the two polyhedra cross in this edg not. For
each facet of the polyhedr@nsharing the edge, we have to find if
they are inside the polyhedrdhor not. If the two facets are on
the same side, there is no intersection. Othentlseintersection
is part of the bounded line. It is possible thab tfacets are
coplanar. In this case, we must take into accohatBoolean
operator (union, intersection or subtraction) tdedwine if the
facet of A must be considered inside or outsille It is also
possible that each facet Afis coplanar with two facets &. In
this case, we consider that the polyhedra are veriapping.

In case of union, In case of intersection,In coplanar cases,
the polyhedra the polyhedra do not the polyhedra do
overlap overlap not overlap

Figure 8. Examples where the two facets intersecha@n edge.

3.2.6 Cut the Intersected Facets

The intersected facets are triangulated using thiestcained
Delaunay triangulation. The segments computed enpidurt 3.2.3
are constraints. Then, we are able to know whichthef two

triangles of the triangulation, on each side of anstrained
segment, belongs to the result or not. We propadhie
information to the neighbouring triangles and reeeit if a
constrained edge is crossed, until each trianglehexked. If a
facet intersects another, but does not have ansti@oned
segment, we do not validate the facet for now. Vée the
triangulation to know if the three neighbouring dtcbelong to
the result. If these facets have constrained setnehis
information would be false, but it is not importamtcause this
information is used only if the facet does not hamg constrained

segment.

Figure 9. Identification of the three neighbouringfacets.

3.2.7 Propagate the Result on the Polyhedra
During the previous step, we determined if the ehfacets
surrounding an intersected facet belong to thdtrésee fig. 10).

We just have to propagate this information to thel polyhedra
using the connectivity between the facets. If a&fdelonging to
the result has constrained points, this facetasgulated.

Figure 10. One of the polyhedra before the propagain. The
red facets are intersected, the green facets arempaf the
result, and the blue facets are not.

4. RESULTS

We have tested our algorithm on simple polyhedraheck its
correctness. The figure 11 represents the resaftshie three
operations (union, intersection and subtractiorthwi star and a
cross. We can see that these results are correae\r, there are
no particular cases with these polyhedra.

Then, we wanted to check if the particular cases aell
computed. The three following examples show whabpkas
when coplanar cases appear. The figure 12 showsirtten of
two overlapping cubes in a particular case. Theang bottom
facets are coplanar and certain facets on the prdgent a
configuration where the triangles intersect on algee The
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Figure 11. Results for the union, the intersectioand the
subtraction of two polyhedra (star and cross).

subtraction between these two cubes in figure I8vsithat the
two coplanar facets disappeared, proving that tmpatation of
the subtraction is correct in particular configioms. If two cubes
are in contact on one facet, the intersection is esnpty
polyhedron. But for the union of these cubes, te parts of the
facets in contact should disappear. The figurehbdvs this result.
To make it easier to be seen, a facet has beetedele

W

Figure 12. Union with coplanar facets (overlappingubes).

¢

Figure 13. Subtraction with coplanar facets (overlpping
cubes).

Figure 14. Union with coplanar facets (contact beteen two
cubes). The common facet correctly disappeared.

We have also tested our algorithm on many largentdiels
(composed of hundred of thousand of facets). Irota compare
our algorithm with others, we have computed Boddegperations
with two other methods. The first one is the Ne$dzhapproach
implemented in CGAL [1-2], the second one is thgogthm
implemented in Moka [13] and based on topologic snap
following N. Guiard’s method [12]. The table 1 shlowhe
computation time for three different methodig.and fg are the
number of facet of the two input polyhedra ahds the total
number of intersected facets. The polyhedois an aircraft and
the polyhedrorB is an elephant. The figure 15 shows the result of
the three operations with these polyhedra (firdtrom of table
one).

1 (a ' (b)
(C) *

(d)

(e)

Figure 15. (a) and (b) : aircraft and elephant. Thentersected
facets are red, the green facets are outside theher polyhedra,
the blue facets are inside the other polyhedra.
(c) union. (d) intersection. (e) subtraction.



Table 1. Time results for comparison with other algrithms
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