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ABSTRACT

The stochastic Greenberg-Hastings cellular automaton is
a model that mimics the propagation of reaction-diffusion
waves in active media. Notably, this model undergoes a
phase transition when the probability of excitation of a cell
varies. We developed a specific FPGA design to study the
critical behavior of this model. Using dedicated architec-
tural optimizations, we obtain a significant speed-up with
respect to software simulation for lattice sizes of512×512.
We exploited this speed-up to obtain improved estimations
of the critical threshold.Our results indicate the existence
of an asymptotic value of this threshold when the number
of cell states increases.

KEYWORDS: Cellular Automata Models and Al-
gorithms, Fine-Grained Parallel Architectures and
FPGA, Efficient Architectures and Implementations,
Local Neighborhood and Topology Awareness

1. INTRODUCTION

Reaction-diffusion systems are a class of dynamical sys-
tems that have been used to model a large class of natu-
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ral phenomena. In 1952, Turing proposed to couple re-
actions and diffusion of some imaginary chemical compo-
nents, themorphogens, to explain how structured patterns
could appear in initially symmetric organisms [1]. Since
then reaction-diffusion systems were used to describe nat-
ural phenomena in various fields, such as mollusk shell pig-
mentation [2], heart modelling [3], etc. Beyond the model-
ing of natural phenomena, reaction-diffusion media have
also been suggested as possible means for building new
types of computing devices [4].

Here, we focus on a discrete version of reaction-diffusion
systems. The model we study is a stochastic variation of
the Greenberg-Hastings cellular automaton [5] (GHCA). In
spite of its apparent simplicity, this model displays com-
plex behaviors. In particular, when the transmission prob-
ability varies, the GHCA undergoes a critical phase transi-
tion from an active (alive) into an absorbing (dead) phase
[6, 7]. This critical behavior is surprisingly robust and is
preserved even when large amounts of failures or defects
are added to the system [8]. Such properties are especially
suitable for technology-oriented applications. For instance,
we have recently proposed a bio-inspired system based on
GHCA, to achieve decentralized and robust gathering of
mobile agents scattered on a surface [7].

Several aspects of the GHCA and its critical behavior re-
main poorly understood. For instance, when the number
of states (see below) is not too large, the critical behavior
is known to be in the universality class of directed perco-



lation [7]. At the limit when this number tends to infin-
ity, the GHCA reduces to a SIR epidemic model with per-
fect immunization [9], which is in a different universality
class (namely dynamic percolation), e.g. presents a differ-
ent critical behavior [10]. Hence the behavior of the GHCA
with large (but finite) number of states is unclear, albeit our
preliminary results suggested the existence of an asymp-
totic value for the critical threshold [8].

To test the behavior of the GHCA with a large number of
states is a computational challenge because one needs to
average over large numbers of simulations to reach suffi-
cient statistics for increasing simulation times. This im-
poses a limit on software-based simulations, since in se-
quential machines, the inherent parallelism of CA has to
be emulated. Typically, this is achieved by calculating the
time evolution of each cell separately and using double
buffers to simulate the parallel nature of CA, thus leading
to a considerable slowing down of the simulations. The
primary objective of the present study is to implement the
GHCA model on an FPGA device so as to leverage the nat-
ural parallelism of FPGAs, thus to reach significant speed-
ups with respect to software simulation. This gain is then
utilized to obtain improved simulations of the behavior of
the GHCA with an increasing number of states.

The article is organized as follows. We first present the
GHCA model and our motivation for its FPGA implemen-
tation in Sec. 2. Then, Section 3 describes the more tech-
nical aspects of the FPGA architecture that was designed.
The results of the implementation are given in Sec. 4 while
the simulation results are shown and analyzed in Sec. 5.
Finally we present our conclusions in Sec. 6.

2. MODEL

2.1. Model Description

A cellular automaton (CA) is a discrete, spatially extended
dynamical system. The CA we study is composed of a two-
dimensional array of cells,L ⊂ Z

2. Each cell can be in
one of the states in{0, . . . ,M}, where the state0 is called
theneutralstate, stateM is called theexcitedstate and the
other states are called therefractory states. The state of a
cell c ∈ L at timet is denoted byσt

c. At each time step,
the state of a cell evolves according to is own current state
and the state of its neighboring cells,N (c). The rules that
define the evolution of the stochastic Greenberg-Hastings
CA are:

• A cell in the neutral state becomes excited, with prob-
ability pT if at least one of its neighbors is excited.

• A cell in a refractory state,{1, . . . ,M−1}, will evolve
independently by decreasing its state until it reaches

the neutral state.

• A neutral cell, whose neighbors are all neutral or re-
fractory remains in the neutral state.

Here pT is called thetransmission rate; it is the main
parameter of our study. More formally, letB(pT ) be a
Bernoulli random variable that takes the value 1 with prob-
ability pT and the value 0 with probability1− pT . Further,
let Et

c denote the set of excited cells in the neighborhood
of c at timet, Et

c = {c′ ∈ Nc : σt
c′ = M}. Then

σt+1
c =







M , σt
c = 0, |Et

c| > 0 andB(pT ) = 1
σt

c − 1, σt
c ∈ {1, . . . ,M − 1}

0, otherwise

For our experiments we use two different types of neigh-
borhood, the4-connected neighborhood, N4, defined as

N4(c) = {c′ ∈ L : |cx − c′x| + |cy − c′y| = 1}

and the8-connectedneighborhood,N8, defined as

N8(c) = {c′ ∈ L : max(|cx − c′x|, |cy − c′y|) = 1}

Finally, for the simulation environment, we used square lat-
tices with dimensionL and toric boundary conditions so
that the indices of cells,(cx, cy), are taken inZ/LZ.

2.2. Analysis of Phase Transitions

As mentioned in the introduction, the stochastic reaction-
diffusion CA exhibits a phase transition aspT varies. The
origin of the transition is a change in the probability that
the process will be active, i.e. that the number of excited
cells will be greater than zero, ast → ∞ for infinite size
systems. The value ofpT where the phase transition oc-
curs is called thecritical threshold, pTC

. For values ofpT

lower thanpTC
, the probability that the reaction-diffusion

process will be active ast → ∞ is zero, while for values
greater thanpTC

, this probability becomes non-zero. Fig-
ure 1 shows two examples of the phase transition forN4

andN8.

The most straightforward method to determinepT is to
study the evolution of the density of excited cells with
respect to time (see for instance [11, 7]). In the current
work we focus on another important time-dependent scal-
ing property of directed percolation, the probability thata
cluster grown from a single seed will be active aftert time
steps [12]. For the GHCA, this amounts to studying the
probability that a reaction-diffusion process starting from
a single cell in the excited state will still be active aftert
time steps. We expect, and seek to verify that this probabil-
ity scales ast−δ in the critical region [12]. We denote the



(a)N4, pT = 0.45 (b)N4, pT = 0.55

(c)N8, pT = 0.20 (d)N8, pT = 0.30

Figure 1. Examples of the Stochastic
Reaction-Diffusion Process Obtained forM = 4. Cells
in the neutral state are shown in black and cells in the
excited state in bright red. (a) and (b) are examples of

sub- and super-criticalpT for the 4-connected topology.
(c) and (d) correspond to sub- and super-critical values

of pT for the 8-connected topology. In (a) and (c) the
process will quickly fall into the absorbing phase (all
cells in neutral state). The snapshots were taken with

FiatLux [13].

probability that a reaction-diffusion process survives after
time t by Ps(t).
To evaluatePs(t) we used the following process: letD de-
note the random variable that expresses the time that a pro-
cess reaches extinction (time of “death”). Further, letnt be
the number of experiments, such that the reaction-diffusion
process reaches extinction at timet, with M andpT fixed.
Then, the probability that a process will “die” at timeτ
can be expressed asP (D = τ) and can be estimated using
nτ

ntot
, wherentot is the total number of experiments carried

out for the specificM , pT andL values. The cummulative
distribution

Pd(t) = P (D < τ) =
t−1
∑

τ=1

P (D = τ)

describes the probability that the process will become ex-
tinct in the time interval[1, t). From this, we can calculate
the probability that the process will survive up to timet as
Ps(t) = 1 − Pd(t). The above processing was performed
on the sampled data in an off-line fashion. Finally, an indi-
vidual experiment is defined by the values of five parame-

ters that characterize the environment and the cell transition
function, namelyM , pT , tmax, Nc andL, wheretmax is the
maximum number of steps an experiment is allowed to run.

To identify the critical threshold,pTC
where the phase tran-

sition between survival and extinction of the process oc-
curs, we need to run experiments for a large number of
time-steps, close to the critical threshold,pTC

. The number
of experiments for each value ofpT should be such that the
resulting measurements exhibit as less noise as possible.
Each iteration of an individual experiment consists of sim-
ulating the CA and measuring the number of time steps re-
quired until the reaction-diffusion process becomes extinct.
Each individual experiment was repeated from at least104

times up to105 times, with the actual number depending
on the quality of the results. To evaluate the quality, after
eachtmax iterations, we processed the results and visually
inspected the figures in log-log scale, so as to ensure that
the lines did not exhibit too much noise (which could cause
the lines to cross) and repeated the experiment for another
104 iterations, if necessary.

To further justify our choice for using FPGAs for the simu-
lation process, it is worth mentioning that the time needed
for the experiments amounted to a couple of weeks, on a
single FPGA, despite a great speed-up factor (see§ 4.3).
Time is the main limiting factor for the precision in which
we determinepTC

.

3. SIMULATION ENVIRONMENT AND
ARCHITECTURE

For conducting the experiments, we have set up an FPGA-
based environment for simulating the reaction-diffusion
process. The main motivation for using FPGAs was that
their regular, two-dimensional structure provides an ideal
architecture for mapping the structure of a cellular automa-
ton. The architectural approach we use is similar to the
one described in [14], [15], which is based on dividing the
simulation environment into groups of cells and calculating
each group in parallel. The groups of cells that form the en-
tire environment are then processed sequentially. The main
difference with the approach followed there is that we use
a technique that reduces the required memory but increases
the simulation time.

3.1. Objectives

Our objective was to implement a tool that helps the gen-
eration of FPGA designs for simulating cellular automata.
The generated designs are configurable up to a certain de-
gree and depend on an external host for initializing their pa-
rameters and running the simulations. This is an improve-
ment with respect to our previous work [14], since it allows



us to run a wider range of experiments on each FPGA de-
sign. The current version of the tool supports measuring the
number of active cells in the environment. The maximum
number of time steps,tmax is a run-time configuration op-
tion and each experiment terminates either aftertmax time
steps or when a condition on the density is met (terminat-
ing condition), in our case, when there are no more active
cells in the environment.

The generated designs use a simple memory-like interface
that maps the runtime and design time parameters to mem-
ory locations and allows the host software to query the
static parameters and modify the current state of the sim-
ulated CA. In our designs, the memory interface allows the
software to read and write the state of each cell, configure
the excited cell state and modify the probability of trans-
mission (pT ), as well as read parameters that were used to
generate the design.

3.2. Architecture

The overall architecture of the FPGA is depicted in Fig. 2.
The architecture is based on dividing the environment
space into groups of cells, so that each group is processed
in parallel, while the different groups are processed sequen-
tially. The simulation environment depends on an external
host that initializes each simulation and reads back the sim-
ulation results. The initialisation process typically consists
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Figure 2. Outline of the Architecture of the Simulation
Environment

of the following steps: (1) initialise the random number
generators with random seeds generated by the host, (2)
clear the CA array, (3) set thepT value and (4) set the ini-
tial state of the array.

3.2.1. Structure of the Environment and Definitions
The structure and organization of the environment follows
the block-synchronousmethod, as described in [14], [16]
and [15]. The main characteristic of this approach is that it

provides a solution to the problem ofenvironment scaling,
which is caused by the resource utilization of the cells. En-
vironment scaling refers to the limits imposed on the num-
ber of cells that can be fit in an FPGA, as the environment
size increases, because of the limited FPGA resources. In
our case, it is important to note that the resources are not
so much consumed by the computation of the transition
function, but much more by the generation of the ran-
dom events. Finally, the block-synchronous approach ex-
ploits the regular structure of FPGAs and provides a design
methodology that maps the regular two-dimensional struc-
ture of a CA to an FPGA.

The approach consists in organizing a set of cells around a
memory, so that they form a block. The notion of ablock is
that of a self-contained partition, i.e., a partition that holds
the necessary information and processing units in order to
simulate a subset of the environment. Blocks are further
organized in agroupso that a group is equivalent to a top-
level partition of the environment that can be processed
in a completely autonomous and parallel fashion. Since,
in FPGAs, the memory resources are regularly distributed
among the configurable logic slices, the block-synchronous
method tries to organize the CA so as to be roughly topo-
logically equivalent to the device, i.e. by arranging a block
of cells around a memory. For an optimized partitioning of
the CA with respect to FPGA resources, see [15].

Let us define the following: letGx andGy be the num-
ber of groups in the two spatial dimensions andBx, By

the number of blocks in the two dimensions of the group.
Further, let(gx, gy) be the coordinates of a group in the
environment and(bx, by) the coordinates of a block within
the group. Finally, we will usesb to denote the number of
bits used to store the state of each cell andCx andCy to
denote the number of cells in the two spatial dimensions of
each group.

3.2.2. Cell Architecture

The main computational unit of the simulation environment
is thecell. For each time iteration, each cell of the environ-
ment must update its state according to the rules of Sec. 2.
An outline of the cell architecture is depicted in Fig. 3. It
consists of two main parts, one for generating the Bernoulli
random event and one for generating the output state. In the
reaction-diffusion process, the information communicated
from and to the neighbors can be reduced to a single bit,
since we are interested in knowing only if a neighbor is ex-
cited or not, and the state computation is trivial. The main
computational part of each cell is the random number gen-
eration, which consumes the greatest part of the resources
when scaling the architecture to higher parallelism.
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3.2.3. Random Number Generation

The Bernoulli random event generator for the transmission
probability was implemented using a Linear Feedback Shift
Register (LFSR) and a comparator. Ideally, the random
event generator should use as many LFSRs as the num-
ber of bits required to achieve the desired precision for the
value of pT , extracting one bit from each LFSR to gen-
erate the random word. Alternatively, we could use the
same LFSR and extract the number of required bits, one at
each clock step. Unfortunately, the first approach increases
the FPGA resources occupied by each cell and reduces the
number of cells that can be implemented in parallel, while
the later introduces large delays in the computation. As
a compromise, we extract the required bits from the same
LFSR by reading the bit values from different positions of
the shift register (Figure 4). To avoid immediate spatial
dependencies, the bits were extracted from non-regular in-
tervals. The required precision forpT was of the order of

...

...

pt[0] pt[1] pt[2] pt[16]pt[i]

Figure 4. Generation of the Random Word used in the
Random Events.

10−4, a value which can be achieved by using 17 bits for
the pseudorandom word. To ensure that the period of the
random numbers will not introduce problems in the sim-
ulation, the LFSR length has been chosen to be 168 bits,
following the design guidelines described by George and
Alfke [17].

3.2.4. Block Architecture
The overall architecture of a block is depicted in Fig. 5.
Each block is built around an FPGA Block RAM module
that stores the state of the cells that form the block. Our
approach uses a single buffer implementation, that allows
for larger environment sizes at the cost of doubling the time
required to complete a time iteration. The architecture is
similar to the one described by Girau et al. [15], the main
difference being the extra control that is required to allow
the host program to read and write the value of a cell.

Block
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offset
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select / decode
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write_addr
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read/write cell address

exc_out

Figure 5. Outline of the Block Architecture.

3.2.5. Group and Environment Architecture
A group of blocks consists ofBxBy blocks and a set of
memories that store the state information of the boundary
cells of the group. This information is communicated back
to the boundary cells, as the group iterates through the envi-
ronment as it is displayed in Fig. 6. The number of bound-
ary memory cells and how they are connected to a group
depends on the topology of the CA. For the 4-connected
topology we need 2 memories of capacityCxGxGy bits
and 2 memories of capacityCyGxGy bits. In the 8-
connected topology we need 4 additional 1-bit memories
with depthGxGy that store the state of the diagonal corner
cells.

To describe the single-buffering technique, note that the
boundary memories act as an information buffer, capable
of storing the information that is communicated among
groups from timet− 1 to timet. The state of the boundary
cells at timet depends on the information generated by the
transition of the neighboring cells during the previous time
step. If that information is available during timet for all
boundary cells of a group, then we can calculate the tran-
sition of a group independently of its environment. The
technique consists in breaking up the update process in two
distinct steps. The first one simulates a run of the group for
the entire environment in order to generate the information
at timet and stores the information in the boundaries. Then



in the next step, the boundary information fromt−1 is used
to calculate the new states and the results are stored in the
cell memories. When all groups have been processed this
way, the next state transition may begin (with its two steps).
Note that, although we can avoid using double buffering in
the main CA array and in the block memories, we still need
to use double buffering in the boundary memories, so that
we are able to store the states computed in step 1 for time
t, while storing the states of timet − 1 required for step 2.

To quantify the memory usage reduction that we can
achieve with this approach, the total memory required
for storing the state of the environment amounts to
2GxCxGyCysb bits, if we use double buffering. In ad-
dition, the number of bits in the boundary memories
amounts to2(GxGy)(2Cx + 2Cy), assuming 4-connected
topology. Therefore, the memory reduction percentage is

CxCysb

2(2Cx+2Cy+CxCysb)
. As we can see the percentage does

not depend on the environment size in terms of groups, but
on the group dimensions. In our case where we used group
size of16 × 16 andsb = 4, we achieved a memory reduc-
tion of about47%.

3.2.5. Environment Control Module
The environment control module is the functional unit of
the architecture that instruments the function of the remain-
ing modules. It is responsible for generating the memory
addresses and control signals for the group and the blocks
and for performing a series of operations, as for example
simulating a single time step, evaluating the termination
conditions and so on. The global control for implement-
ing a single time iteration consists of two distinct steps. At
the first step, it performs a “simulation run” during which
the boundary information are read from one of the memory
banks and stored in the second one. At the second step,
the boundary memories are switched, so that each group
reads the updated information. The second step is the sim-
ulation step where the block memories are enabled and the
next state of the CA is computed. After the second step, the
boundary memories are switched, so that each group reads
the updated information in the next update process. The
total number of clock cycles for these steps is2GxGy.

3.2.6. Communication with the external host
As we mentioned, the FPGA device uses a memory inter-
face to communicate with an external host. This results
in the FPGA being actually a memory mapped peripheral,
so that the configuration parameters and CA related values
are visible as memory addresses. The advantage of this ap-
proach is that it allows for reusability of a design, since the
“hosting environment” needs only to implement a memory
interface. In our case, where the prototyping board that

block ......
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....
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........

........
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........
Group

Figure 6. Environment Partition into Groups and
Scheduling of Group Evaluation

Table 1. Synthesis Results for the512 × 512
Environment

Slices RAMB16
Cell 34 (< 1%) 0
Block 234 (< 1%) 1
Group 12743(≈ 25%) 64
Environment 13143 (≈ 26%) 136

we used for our experiments was based on a PCI interface,
communicating with the FPGA design was accomplished
by directly writting to memory locations. The only over-
head was some “glue logic” that translated the relative off-
sets of the PCI memory base to the one used by the FPGA.

4. IMPLEMENTATION RESULTS

4.1. Synthesis Results

The device we used was a Xilinx Virtex 4 (XC4VLX100-
10FF1513) with a total of 49152 slices and 240 block rams.
Table 1 shows the device utilization in terms of slices and
block rams for the different modules in hierarhical order.
We should note that the number of block rams occupied by
the group and environment modules would be doubled if
we used a double buffering scheme.

4.2. Experimental Setup

The experiments were carried out using an FPGA Proto-
typing board equiped with a XC4VLX100-10FF1513 Xil-
inx device. For our simulations we used mainly two gen-
erated FPGA designs, with environment sizes consisting of
256 × 256 and512 × 512 cells, respectively, and having a
configurable stateM and toric boundaries. In both cases,
the block size was2 × 2 cells while the group consisted
of 8 × 8 blocks, thus achieving a total parallelism of 256



cell calculations per cycle. Since simulation of each time
step consists of two distinct iterations, and therefore, each
block has to be evaluated twice in order to obtain the new
state, we have aneffective parallelismof 128 cells per cy-
cle. Finally, the choice between256×256 or 512×512 en-
vironment sizes was made after getting and evaluating the
first results of each experiment. Normally, for small values
of M we would start with the256 × 256 environment size
and switch to a larger one when finite size effects became
apparent.

4.3. Speed up and Device Metrics

In order to measure the obtained speed-up we used as a
benchmark machine an Intel(R) Core(TM)2 Quad CPU,
Q9550 running at 2.83GHz. We ran a series of experiments
on a 256x256 cells environment using the FiatLux CA sim-
ulator ([13]), so that each experiment consisted of104 time
steps. To minimize the CPU time required for each time
step, we disabled the display of the CA state. From these
experiments, we calculated the mean time required for a
software implementation to complete104 time steps. The
expected simulation time for an array of the same dimen-
sions, consisting of 4x4 block groups and 4x4 cell blocks
can be calculated as follows. The effective parallelism of
the above design is 128 cells per cycle, meaning that a time
iteration of the environment completes in 512 clock cycles.
Given that the FPGA device operates at 100MHz, each time
iteration completes in 5120ns≈ 5.2us. Since each experi-
ment consisted of104 iterations, the actual time required to
complete an experiment is5.2 · 104us = 52ms. Given that
the mean time to complete an experiment in the CPU was
86.5 · 103ms, we obtain a speed-up of approximately 1650.

The actual speed-up figure was much lower than that, since
the time taken up by the CPU for the initialisation of each
experiment was significant compared to the time required
for the FPGA to carry out the actual experiment. Although
the exact figure is not straighforward to measure we esti-
mate that the time taken by the CPU to initialize each ex-
periment, wait until the experiment finishes, read back the
result and store it to a file, amounted to several multiples of
the time required for a single experiment. As a very rough
estimate we could say that the resulting speed-up was, be-
cause of this overhead, close to one third of the calculated
one. A way to improve this would be to move parts of the
CPU control logic into the FPGA by integrating, for exam-
ple, a microcontroller unit capable of running a batch of ex-
periments and storing the results in the FPGA, for the host
to read them back. We are planning on moving towards this
direction in our future implementations.

5. DATA ANALYSIS

5.1. Experimental Procedure

Recall that our goal is to identify the critical thresholdpTC

for each value ofM and each topology. Initially, using
inspection on a small number of custom experiments, we
determined an interval for the value ofpT , around which
the phase transition occurred, with an initial precision of
roughly 2 × 10−2. Dividing this interval into 10 equally
spaced subintervals, we measured the probability of sur-
vival versus time for up totmax time steps. On the follow-
ing iterations we further refined the search interval so as to
obtain a precision equal to approximately10−4. We here
display only thepT -time plots that are close to the critical
threshold.

5.2. Setup and Results

In this section we describe the procedure that we followed
to measure the critical exponent from the experimental
data, and we shortly comment on our results. We further
outline the open questions that arise, and that will form the
basis for our future work. Note that due to the large number
of experimental results, we will only present here a subset
of the obtained graphs. A larger set of graphs can be found
the AMYBIA project website1.

5.2.1. Identifying the Phase Transition
To locatepTC

, we ploted the measured probabilityPs(t)
as a function of time for the different values ofpT . Since
we expect that near the phase transition, the observed quan-
tity will follow a power-law [12], the plots were drawn in
a log-log scale, where the critical case should appear as a
straight line. The critical probability is then observed at
the point wherePs(t) exhibits a curvature change. This
curvature change can be interpreted as a transition from al-
most certain extinction of the reaction-diffusion processto
non-zero probability of survival, so that the values ofpT

above the critical valuepTC
correspond to survival of the

process, while values below the critical lead to extinction.
The behavior we described can be observed in Fig. 7, where
the curvef(t) = Kt−δ for the critical exponent value
δ = 0.451 ([8]) is shown for reference.

Finally, to determine the maximum number of time steps
that each experiment should run,tmax, we ran a series of
preliminary experiments. As we can see in Fig. 7, the dis-
tance of the probability curves from the straight line charac-
terizing the critical threshold,∆p = |pT − pTC

|, increases
with time. Hence, the closer one gets to the critical thresh-
old, the longer the simulation time must be to discriminate

1http://webloria.loria.fr/ ˜ fates/Amybia/
reacdiff.html



between subcritical and supracritical conditions. This calls
for setting the value oftmax as large as possible, in order
to increase the precision in which we want to determine
pTC

. On the other hand, an increase intmax results in an
increase of the running time of the experiments. Finally,
since in our case we are using toric boundaries, longer
run times increase the probability that travelling reaction-
diffusion “waves” will cover distances larger than the grid
dimensions and, therefore, increases the probability that
two or more “waves”, travelling in different or even per-
pendicular directions will collide and probably annihilate.
Note that the term reaction-diffusion “wave” is used in a
rather relaxed manner to describe “clusters” of excited cells
that persist in time and move randomly in the environment.
Taking these factors into account, the value oftmax has been
determined empirically to be104 time steps.

5.2.2. 4-connected Topology Results
In the case of 4-connected neighborhood, we ran a series of
experiments for values ofM ranging from 2 to 15. All of
these experiments were carried out using an environment
of size512 × 512. The number of individual experiments
for each one of the last set of iterations ranged from4×104

to 6× 104, while the total number of experiments that have
been run in all iterations was approximately6×106. Figure
7 shows the obtained experimental curves for the case of 4-
connected topology, withM = 14 and various values for
pT . The curves forpT ≥ 0.50362 have a clear tendency to
bend upwards at long times, while those forpT ≤ 0.50330
tend to bend downwards. The curve forpT ≥ 0.50346 is
almost linear (at long times) in this log-log plot (though it
still bends down around the end of the simulation). As con-
firmed by good agreement with a power law behavior with
exponent−0.451, we take the latter value as an estimate for
the critical thresholdpTC

at M = 14. We used the same
method for other values ofM and report the corresponding
pTC

values in Fig. 8.

First of all, we note that these values are in general agree-
ment with the preliminary results that we reported in [8].
Notwithstanding, the estimates reported in [8] were based
on a different technique (namely the decay of the den-
sity of excited cells, starting from random initial condi-
tions) and, being obtained through software simulations,
displayed much lower statistical quality and concerned a
much narrower range ofM -values. Furthermore, as we can
readily observe, the critical exponent values for consecu-
tive even and odd values ofM are equal, at least within
the precision of our experiments. This phenomenon has al-
ready been noticed in [8], and is further confirmed by the
present improved simulations. One last thing to note is that,
as we can observe from Fig. 8, the values ofpTC

seem to
tend to an asymptotic value of around0.51 at large values

of M .

 0.01

 0.1

 1

 10

 1  10  100  1000  10000

P
ro

ba
bi

lit
y 

of
 s

ur
vi

va
l

time

Log-Log plot M = 14, L=512

f(x)
0.50330
0.50346
0.50362
0.50380

Figure 7. Plot for M=14, 4-connected Topology

 0.42

 0.43

 0.44

 0.45

 0.46

 0.47

 0.48

 0.49

 0.5

 0.51

 0  2  4  6  8  10  12  14

C
rit

ic
al

 T
hr

es
ho

ld

M

Critical Threshold - M plot - 4-connected topology

even
odd

Figure 8. pTC
Dependence on the Number of StatesM

5.2.3. 8-connected Topology Results
For the 8-connected topology, we conducted a series of ex-
periments with the value ofM ranging from 2 to 14. For
values ofM up to 5, the experiments for the 8-connected
topology were conducted using a256×256 grid size, while
for the remaining values ofM we used512 × 512 envi-
ronment. The total number of experiments that were con-
ducted, during all iterations were approximately2 × 106.
Figure 9 shows the results obtained forM = 14. Using the
same method as above, we locate the critical threshold at
a value around0.2622, with the same statistical quality as
for the 4-connected topology above. The evolution ofpTC

with M is shown in Figure 10.
As in the 4-connected case above, the reported data in-
dicates an asymptotic value at largeM values situated
around0.25. However, in opposition to the 4-connected
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case above, consecutive even-odd values ofM exhibit dif-
ferent values ofpTC

.
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5.2.4. Non-toric boundary conditions
Before moving on to the conclusions, we would like to
give some insight on the effects of using different boundary
conditions. Regarding the hardware complexity, the free
boundaries are the simplest ones and can be implemented
by using a set of multiplexers for the neighborhood input
values. The multiplexers are controlled by a set of com-
parators that select the value zero when the group position
lies on the boundary of the environment. Toric boundaries
are sligthly more complex. In this case no multiplexers are
required at the neighborhood inputs, but the address gen-
eration circuit for the boundary memories becomes more
complicated. Adiabatic boundaries require the use of “vir-
tual” cells. Their implementation is similar to the toric
case.

Regarding the boundary condition effects on the evolu-
tion of the reaction-diffusion process, our experiments have
shown that they tend to appear more rapidly for the case
of free boundaries and manifestate as a second curvature
change on a double logarithmic probability-time plot. In
the case of toric boundaries, the effects appear for larger
values ofM , i.e. M = 6 on a256 × 256 grid. Increasing
the grid size generally minimizes these effects, although
from our observations, they tend appear more rapidly in
the case of free boundaries, asM continues to increase.

6. CONCLUSIONS

The reported experimental results further strengthen the re-
sults of [8] and the quality of the statistics in these im-
proved simulations open new and interesting research ques-
tions. First, our results confirm the probable existence of an
asymptotic value for the critical threshold when the num-
ber of states increases. The fact that the values obtained for
the 4-connected topology are roughly twice those for the 8-
connected topology is easily understood. Indeed, a mean-
field approach to the GHCA, validated by several exper-
imental measurements, predicts that the critical threshold
decays as the inverse of the average number of neighbors
per node in the lattice [8].

The value of the asymptotic limit (around0.51) is how-
ever much more delicate to understand. At theM → ∞
limit, a cell needs infinite time once activated, to get back
to the neutral stateσ = 0. Thus in effect, a cell can only
be activated once in a finite time simulation, and once ac-
tivated it remains insensible to its neighborhood. In this
case, the GHCA model reduces to the so-called SIR model
with perfect immunization (also called general epidemic
process) [9], for which the critical transmission threshold
is exactly0.5 on a 2D square lattice [10]. Using this argu-
ment, one would expect an asymptotic value of0.5 for pTC

in the GHCA with 4-connected topology and not0.51. The
situation is however more complex. Indeed, the SIR is in
the universality class of dynamical percolation (DyP), not
directed percolation (DP) as for the GHCA. The two mod-
els are thus expected to display different critical behavior.
For instance the value of the critical exponentδ for DyP
is much lower than its value in DP (0.092 versus 0.451)
[9]. Hence, whenM increases, the determination ofpTC

is complicated by the fact that, at some point, the univer-
sality class is expected to switch from DP to DyP. Future
studies will be needed to understand this crossover at large
M values. This issue is actually particularly challenging as
the determination of the threshold and the universality class
for still largerM values will demand that our experimental
platform be extended so as to handle larger environments
and higher levels of parallelism.



Another open problem is to explain the even-odd equality
of pTC

(M) in the 4-connected case. The reason of this
behavior is currently unknown. As our experimental re-
sults have shown, this behavior is not observed in the 8-
connected case. It is interesting therefore to identify which
case, the 4-connected or the 8-connected one, is the regular
one. To this end, it would be interesting to investigate other
topologies as well, in order to identify if this phenomenon
is restricted to the 4-neighbors topology.

From the implementation point of view, future studies will
consider methods for expanding the FPGA environments
so as to measure more complex quantities, as well as to
handle a larger variety of topologies. Finally, we will in-
vestigate methods to further increase the simulated envi-
ronment sizes, as well as to increase the parallelism and de-
crease simulation times, given the size constraints of FPGA
devices.
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