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Abstract

The paper studies local convexity properties of dig-
ital curves. We locally define convex and concave
parts from the slope of maximal digital straight seg-
ments and arithmetically characterize the smallest
digital pattern required for checking convexity.

Moreover, we introduce the concepts of digital
edge and digital hull, a digital hull being a se-
quence of increasing or decreasing digital edges. We
show that any strictly convex or concave part has a
unique digital hull and arithmetically characterize
the smallest digital pattern that contains a point
incident to two consecutive digital edges.

These theoretical results lead to online and
linear-time algorithms that are useful for polygonal
representations: convex hull computation of convex
digital curves, computation of a reversible polygon
that respects the convex and concave parts of a
digital curve and computation of the well-known
minimum-perimeter polygon.

1 Introduction

In this paper we consider the local convexity prop-
erties of digital curves, i.e. paths of simply 4-
connected lattice points.

The problem that consists in decomposing ob-
jects into perceptually meaningful parts is of great
interest in shape recognition and is closely related
to convexity. The concept of convexity plays an
important role since almost all visible objects are
either convex or else composed of a finite number
of convex objects. A visual part is not necessarily
convex but it can be assumed that it is convex at a
given scale [1]. Thus, finding a good scale with re-
spect to a given purpose or studying the convexity
at various scales may solve the problem.

In addition, the convex and concave parts of an
object straightforwardly give the sign of the cur-
vature of its boundary, which is known to be a
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relevant piece of information about its shape. For
instance, curvature zero-crossings at various scales
leads to an interesting shape representation, known
as the curvature scale space representation [2].
Moreover, at a given scale, the endpoints of max-
imal convex (resp. concave) parts correspond to
points of minimal negative (resp. maximal posi-
tive) curvature [1]. Convexity is thus also a way to
retrieve some dominant points.

In Euclidean geometry, a given region R is said
to be convex if and only if for any pair of points
p, q ∈ R the line segment [pq] is included in R.
However, in digital image processing, when each
pixel is viewed as a point of Z2, the only convex re-
gions (in the Euclidean sense) are isolated points,
which is not satisfactory at all. Many authors de-
fined the convexity of digital sets, i.e. sets of points
of Z2 (see for instance, Sklansky [3], Kim [4, 5],
Kim and Rosenfeld [6, 7], Kim and Sklansky [8],
Chassery [9] and Ronse [10]). Most of these defi-
nitions may be proved to be equivalent for simply
connected sets [5, 4, 10, 11]. However, they fail
to properly define the convex and concave parts of
open digital curves (because a convex open digi-
tal curve may also be considered as a digital set
that is not convex). In many applications such as
line drawings processing, dealing with open digital
curves is important. That is why we define in this
paper convex and concave parts by means of the
slope of the maximal digital straight segments, i.e.
digital straight segments of a digital curve that can-
not be extended at the front or at the back (see [12]
for a review about digital straightness). This def-
inition was first proposed by [13] and is also used
in [14, 15]. In a practical point of view, this def-
inition enables us to deal with any digital curve,
which may correspond to the boundary of a given
digital region or not, like digital spirals (fig. 4). In
a theoretical point of view, this definition appears
to be quite natural since convexity is closely related
to straightness: convex sets are defined by means
of line segments and line segments are convex sets.

Deciding whether a given part of a digital curve
is convex or not is not a trivial task. As shown
in [11], the convexity of the boundary of a digital re-
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gion cannot be decided locally (where locally means
in the 8-neighborhood). Considering this fact, the
following question has been raised in [16]: how far
one can decide whether a part of a digital bound-
ary is convex or not by a method that is as local
as possible? Even though some clues may be found
in [17][Theorem 9] and [18][Lemma 1], no full an-
swer has been given yet. In this paper, we answer
to this question and go further by investigating re-
lated problems about local convexity properties of
digital curves.

In section 2, we recall some basic definitions,
tools and results of digital geometry. More pre-
cisely, we give an arithmetic definition of the digital
straight segments in definition 1, we introduce the
cover of a digital curve by maximal segments in def-
inition 4 and prove some important results about
the intersection between consecutive maximal seg-
ments in lemmas 1, 2 and corollary 1.

In section 3, we locally define convex and con-
cave parts from the slope of maximal segments in
definition 5 and prove theorem 1 and 2 from the
results of the previous section about the intersec-
tion between consecutive maximal segments. These
theorems lead to an arithmetic characterization of
the smallest digital pattern required for checking
convexity and to algorithm 1, an online and linear-
time algorithm dedicated to the decomposition of a
digital curve into convex and concave parts.

In section 4, we introduce the concepts of digi-
tal edge in definition 7 and digital hull in defini-
tion 8, a digital hull being a sequence of increasing
or decreasing digital edges. After proving lemmas 3
and 4, we show theorem 3 that states that any
strictly convex or concave part has a unique dig-
ital hull. Theorem 4 arithmetically characterizes
the smallest digital pattern that contains a point
incident to two consecutive digital edges and lead
to algorithm 2, an online and linear-time algorithm
devoted to the computation of the digital hull of a
strictly convex or concave digital curve.

We show in section 5 that these results are
useful for polygonal representations: convex hull
computation of convex digital curves (section 5.1),
computation of a reversible polygon that respects
the convex and concave parts of a digital curve
(section 5.2) and computation of the well-known
minimum-perimeter polygon (section 5.3).

2 Preliminaries

We work below with the concept of 4-neighborhood.
The results derived in the rest of the paper are ap-
plicable for 8-neighborhood but require more com-
plicated proofs and algorithms.

The x-coordinate and y-coordinate of a point P ∈
Z2 are respectively defined as maps x : Z2 → Z such
that x(P ) is the x-coordinate of P and y : Z2 → Z
such that y(P ) is the y-coordinate of P .

The vector starting from a point P ∈ Z2 and
ending at a point Q ∈ Z2 is denoted by PQ and is
equal to Q−P , i.e. the x-component of PQ, conve-
niently denoted by x(PQ), is equal to x(Q)− x(P )

and the y-component of PQ, conveniently denoted
by y(PQ), is equal to y(Q)− y(P ). The city-block

norm of a vector PQ is denoted by ‖ PQ ‖1 and is

equal to (|x(PQ)|+ |y(PQ)|).
Two points P,Q ∈ Z2 are 4-neighbors if and only

if ‖ PQ ‖1 = 1.
Following Rosenfeld’s definition of simple 4-

path [19], a digital curve, denoted by C, is a se-
quence of points C1, C2, . . . , Cn ∈ Z2 such that for
all i ∈ 1, . . . , n− 1, Ci has exactly two 4-neighbors,
which are Ci−1 and Ci+1.

Moreover, C is open if C1 and Cn have only one 4-
neighbor, and closed if C1 and Cn also have exactly
two 4-neighbors, which are respectively Cn and C2,
Cn−1 and C1.

Any subsequence Ci, Ci+1, . . . , Cj−1, Cj such
that 1 ≤ i ≤ j ≤ n, conveniently denoted by Ci|j ,
is an open digital curve.

We will study below the local straightness and
convexity properties of such open digital curves.
Closed digital curves will be processed as open ones
in section 5.

2.1 Digital Straight Segment

The following definition of digital straight seg-
ment stems from the arithmetic definition of digital
straight line [20]:

Definition 1 (Digital straight segment) A
digital curve Ci|j is a digital straight segment (DSS)
if and only if there exists p, q, l ∈ i, . . . , j, with
p < q, such that CpCq has two relatively prime com-

ponents, i.e. gcd (x(CpCq), y(CpCq)) = 1, and for

all k ∈ i, . . . , j, 0 ≤ det(CpCq, ClCk) < ‖ CpCq ‖1.

The well-known chord property of Rosenfeld [21]
may be seen as a Helly type property of defini-
tion 1 [22]. Moreover, each DSS is a connected
part of the digital straight line D(a, b, µ, ω) of

Reveillès [20] where a = −y(CpCq), b = −x(CpCq),
µ = a.x(Cl)− b.y(Cl) and ω = |a|+ |b|.

The formalism of definition 1 has been intro-
duced in order to highlight the existence of a deter-
minant calculus and to directly deal with segments
(instead of lines).

Let Ci|j be a DSS and let p, q, l ∈ i, . . . , j be such
that the conditions of definition 1 are fulfilled. We
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introduce below some related definitions illustrated
in fig. 1.

Ci

Cj

Cl 4 1

5 2

6

2

6 3 0

4

3 0

Cq

Cp

Figure 1: Example of a DSS of direction vector
u(Ci|j) =CpCq= (3, 4). The remainders of the
points are between 0 and ‖u(Ci|j)‖1 = 6. The lower
and upper leaning points have a remainder respec-
tively equal to 0 and 6, Cl being one of the two
lower leaning points.

The direction vector of Ci|j , denoted by u(Ci|j),

is defined by u(Ci|j) =CpCq.

The remainder of a point M ∈ Z2 with respect
to Ci|j , denoted by r(Ci|j ,M), is equal to the de-

terminant of u(Ci|j) and ClM , i.e. r(Ci|j ,M) =

det(u(Ci|j), ClM).

Let us consider two vectors u, v such that the
components of the first one are relatively prime,
i.e. gcd (x(u), y(u)) = 1. Due to basic arith-
metic results, the equation det(u, v) = r, when
r ∈ Z, has infinitely many solutions belonging to
the following set: {v +z. u |z ∈ Z}. In other
words, the points of Ci|j having equal remainders
with respect to Ci|j lie on a straight line of slope
y(u(Ci|j))
x(u(Ci|j))

( 3
4 in fig. 1). Moreover, between two

points of index p, q ∈ i, . . . , j such that CpCq=
u(Ci|j), there is no pair of points with the same
remainder. Since there are exactly ‖u(Ci|j)‖1 − 1
points within the range p, . . . , q − 1 and exactly
‖u(Ci|j)‖1 − 1 different values of remainder within
the range 0, . . . , ‖u(Ci|j)‖1 − 1, there is a one-
to-one correspondence between the set of points
{Ck|k ∈ p, . . . , q − 1} and the set of integer within
the range 0, . . . , ‖u(Ci|j)‖1 − 1.

The set of upper (resp. lower) leaning points of
Ci|j , denoted by L↑(Ci|j) (resp. L↓(Ci|j)), are the
set of points of Ci|j having a remainder equal to
‖u(Ci|j)‖1 − 1 (resp. 0). The set of upper (resp.
lower) leaning points of fig. 1 have a remainder
equal to 6 (resp. 0).

The use of the terms “upper” and “lower” re-
ally becomes evident when Ci|j is in the first oc-
tant, i.e. 0 ≤ y(u(Ci|j)) < x(u(Ci|j)). Note
that l, as introduced in definition 1, can be the
index of any lower leaning point. For all γ ∈ {↑
, ↓}, the first and last leaning points are the one
having respectively the smallest and greatest in-

dex, i.e. Lγmin(Ci|j) = arg minCk∈Lγ(Ci|j) k and
Lγmax(Ci|j) = arg maxCk∈Lγ(Ci|j) k.

Although the equation det(u, v) = r has infinitely
many solutions when r ∈ Z, it has sometimes ex-
actly one solution, for instance when 0 ≤ y(u) <
x(u) and 0 ≤ x(v) < x(u).

Definition 2 (Bezout vectors) Let Ci|j be a
DSS assumed to be without loss of generality in the
first octant, i.e. 0 ≤ y(u(Ci|j)) < x(u(Ci|j)). The
Bezout vector of Ci|j, denoted by v+(Ci|j) (resp.
v−(Ci|j)) is such that det(u(Ci|j), v+(Ci|j)) =
1 (resp. det(u(Ci|j), v−(Ci|j)) = −1) and
x(v+(Ci|j)) ≤ x(u(Ci|j)) (resp. x(v−(Ci|j)) ≤
x(u(Ci|j))).

The slope of a vector u is the function ρ : Z2 →
Q∪∞ defined by ρ(u) = y(u)

x(u)
. The slope of a DSS

S is the slope of its direction vector u(S).
The order > on slopes is such that ρ(u) > ρ(v)

when det(u, v) < 0. In the sequel, we will take
profit of the fact that comparing slopes and com-
puting remainders both imply a determinant cal-
culus. For instance, we will use the following prop-
erty:

Property 1 Let S be a DSS, M and M ′ be two
points of remainder r and r′ respectively. The fol-

lowing equality is true: det(u(S),MM ′) = r′ − r.

Proof

On the one hand, we have r = r(S,M) =

det(u(S), L↓min(S)M). On the other hand, we

have r′ = r(S,M ′) = det(u(S), L↓min(S)M ′).
From basic properties of determinant, the quan-

tity det(u(S), L↓min(S)M ′) − det(u(S), L↓min(S)M

) is equal to det(u(S), L↓min(S)M ′ − L↓min(S)M

), which is obviously equal to det(u(S),MM ′).

Therefore r′ − r = det(u(S),MM ′).
Property 1 is illustrated in fig. 2.
In the general case, the order > on slopes is not

transitive, i.e ρ(u) > ρ(v) and ρ(v) > ρ(w) does
not imply that ρ(u) > ρ(w). However, the order is
sometimes transitive, for instance when x(u), x(v)
and x(w) are positive. Indeed, ρ(u) > ρ(v) implies
that (x(u)y(v)−y(u)x(v)) > 0. Since x(u), x(v) are

positive, this is equivalent to y(v)
x(v)

> y(u)
x(u)

. Similarly

ρ(v) > ρ(w) implies that (x(v)y(w) − y(v)x(w)) >
0. Since x(v), x(w) are positive, this is equivalent

to y(w)
x(w)

> y(v)
x(v)

. Therefore, y(w)
x(w)

> y(v)
x(v)

> y(u)
x(u)

.

The inequality y(w)
x(w)

> y(u)
x(u)

is equivalent to (x(u

)y(w)− y(u)x(w)) > 0 and thus ρ(u) > ρ(w).
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r = ||u(S)||1 − 1

M
M ′

r = 0

Figure 2: The dotted lines are of directional vector
u(S) and of remainder 0 ≤ r ≤ ‖u(S)‖1 − 1. If two
points M and M ′ are of respective remainders r

and r′ such that r > r′, then det(u(S),MM ′) < 0,
which means that the slope of u(S) is greater than

the slope of MM ′.

2.2 Cover of MSs

A maximal DSS or segment (MS for short) is a DSS
Ci|j that cannot be extended neither at the front
nor at the back. It was first introduced as a digital
tangent in [23] in order to extend the symmetric
digital tangent of Vialard [24].

Definition 3 (MS) A DSS Ci|j that cannot be ex-
tended at the front, i.e. j = n or Ci|j+1 is not a
DSS, is said maximal at the front and is denoted
by Si→. Similarly, a DSS Ci|j that cannot be ex-
tended at the back, i.e. i = 1 or Ci−1|j is not a DSS,
is said maximal at the back and is denoted by S←j.
Finally, a DSS Ci|j that is both maximal at the front
and maximal at the back, i.e. Ci|j = Si→ = S←j, is
a maximal segment (fig. 3).

Ci

Cj

(a)

Cj

Ci

(b)

Cj

Ci

(c)

Figure 3: (a) A DSS Si→ maximal at the front, (b)
a DSS S←j maximal at the back, and (c) a MS.

The cover of a digital curve (or tangential
cover [14]) was first introduced as a set of digital
tangents in [23]. It contains all DSS segmentations,
one of which has the minimal number of DSS [25].
It has been used for estimations of length [26],
tangents [23, 27, 18] or curvature [23, 28, 29] as
well as for convex and concave parts decomposi-
tion [14, 13, 15].

Definition 4 (Cover) The cover of a digital
curve Ci|j is the whole set of maximal segments
contained in Ci|j.

By definition, the cover exists and is unique for
any digital curve. In the sequel, the MSs of the
cover of Ci|j are ordered by the index of their first
point, i.e., they are considered as the sequence
Sk1→, Sk2→, . . . , SkM→ where i = k1 < k2 < . . . <
kM < j and SkM→ = CkM |j . Since the cover con-
tains all existing MSs, for all m ∈ 1, . . . ,M − 1, for
all k ∈ km, . . . , km+1 − 1, Sk→ ⊂ Skm→ and Sk→ is
not a MS.

There exists an elegant algorithm that computes
the cover of a digital curve in linear time [23, 18].
An illustration of the output of this algorithm is
depicted in fig. 4.

Figure 4: Cover of a digital curve. Each MS is
depicted with a red bounding box.

The mechanism can be coarsely described as fol-
lows: given a MS, the next one is computed first
by removing points from the back of the segment
until it is no longer maximal at the front and then
by adding points at the front of the segment until
it is maximal at the front.

The key tasks are adding [30] and removing [18]
a point at one extremity of a DSS in constant time
and space. The recognition algorithm of Debled
and Reveillès [30] provides a way to test the maxi-
mality of a DSS. Given a DSS Ck|l, the algorithm
decides whether Ck|l+1 is a DSS too or not. More-
over, if Ck|l+1 is a DSS, the direction vector, the Be-
zout vectors, the first and last upper and lower lean-
ing points of Ck|l+1 can be computed from those of
Ck|l in constant time [30, 31].

Table 1 sums up these results with simpli-
fied notations. Row 0 contains the possible
values (columns B to E) of the remainder of
Cl+1 with respect to the DSS Ck|l (column A).
Rows 1 to 7 contain the values (columns B-
D), assigned to the parameters of Ck|l+1 (col-
umn A). For instance, if r(Ck|l, Cl+1) = −1, then

u(Ck|l+1) =L↓min(Ck|l)Cl+1 (column D, row 1).
The algorithm of Debled and Reveillès [30] ap-

plied on simply 4-connected digital curve is noth-
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Table 1: If the remainder of Cl+1 with respect
to the DSS Ck|l is greater than −1 and smaller
than ‖u(Ck|l)‖1, Ck|l+1 is a DSS. The parameters
of Ck|l+1 (column A) are computed from the pa-
rameters of Ck|l (columns B-D) [30, 31].

A B C D E

0 r = ‖u‖1 [0, ‖u‖1[ = −1 else

1 u L↑minCl+1
st

il
l

a
D

S
S

,
n

o
ch

an
ge L↓minCl+1

n
o
t

a
D

S
S

a
n
y
m

or
e

2 v− u L↓minCl+1 −u
3 v+ L↑minCl+1 −u u

4 L↓min L↓max L↓min
5 L↓max L↓max Cl+1

6 L↑min L↑min L↑max
7 L↑max Cl+1 L↑max

ing else than the algorithm of Kovalevsky [32] under
the arithmetic formalism of Reveillès [20].

Obviously, if the point Ck is removed from the
back of the DSS Ck|l, Ck+1|l is a DSS too, but pos-
sibly with a different direction vector. Thinking as
if Ck was added to Ck+1|l leads to a reversed algo-
rithm that updates the leaning points, the direction
and Bezout vectors of Ck+1|l from those of Ck|l [18].

2.3 Intersection of two consecutive
MSs

The intersection of two consecutive MSs is never
empty, and contains at least two points. The proof,
based on the fact that any three consecutive points
of a digital curve (assumed to be simply connected)
form a DSS, is left to the reader.

We will show below that the remainder of the
points that bound the intersection between two
consecutive MSs is strongly constrained. The fol-
lowing lemma has already been shown in [31, lemma
2] and will be completed in corollary 1.

Lemma 1 Let Ck|l and Ck′|l′ be two consecutive
MSs of the cover of a digital curve Ci|j and their
intersection Ck′|l.

The remainders of Ck′−1 and Cl+1 with respect
to Ck′|l are both equal to −1 or ‖u(Ck′|l)‖1.

Proof

The remainders of Ck′−1 and Cl+1 with respect
to Ck′|l are neither strictly greater than ‖Ck′|l‖1
nor strictly smaller than −1, because Ck′−1|l and
Ck′|l+1 are DSSs.

Ck

Ck′

Cl

Cl′

1 0

2 1 0 −1

−1

Figure 5: Illustration of Lemma 1 : Ck′|l is a DSS

of slope 1
2 , the remainders of Ck′−1 and Cl+1 with

respect to Ck′|l are both equal to −1.

Let us assume that the remainder of Ck′−1

with respect to Ck′|l belongs to the range
0, . . . , ‖u(Ck′|l)‖1 − 1. Whatever the remain-
der of Cl+1 with respect to Ck′|l in the range
−1, . . . , ‖u(Ck′|l)‖1, Ck′−1|l+1 would be a DSS (ta-
ble 1, row 0, columns B and D), which raises a
contradiction. A similar result is obtained if we
swap the remainder of Ck′−1 and the one of Cl+1.
Therefore, the remainders of Ck′−1 and Cl+1 with
respect to Ck′|l are either equal to ‖u(Ck′|l)‖1 or
−1.

Let us now assume that the remainder of Ck′−1

with respect to Ck′|l equals to −1, whereas the
remainder of Cl+1 with respect to Ck′|l equals to
‖u(Ck′|l)‖1. In addition, let us assume without loss
of generality that Ck′|l is in the first octant, i.e.
0 ≤ y(u(Ck′|l)) < x(u(Ck′|l)) (fig. 6.a).

Table 1 says that Ck′|l+1 is a DSS of
slope greater than the one of Ck′|l. More
precisely det(u(Ck′|l), u(Ck′|l+1)) is equal to
det(v+(Ck′|l+1), u(Ck′|l+1)) (table 1, column D,
row 3), which is equal to 1 according to definition 2.

The first upper leaning point of Ck′|l and Ck′|l+1

are confounded but have remainders respectively
equal to ‖u(Ck′|l)‖1 − 1 and ‖u(Ck′|l+1)‖1 − 1.
Let us denote by L their translation by the vec-
tor s (1,−1) (fig. 6.a). Due to property 1, the
remainder of L with respect to Ck′|l is equal

to r(Ck′|l, L
↑
min(Ck′|l)) + det(u(Ck′|l), s). Since

det(u(Ck′|l), s) = −‖u(Ck′|l)‖1, then r(Ck′|l, L) =
−1. We can similarly show that r(Ck′|l+1, L) = −1.

In addition, due to the definition of L and the
remainders of L and Ck′−1 with respect to Ck′|l,

the vector Ck′−1L is equal to u(Ck′|l) (fig. 6.a).
As a consequence, due to property 1, the re-
mainder of Ck′−1 with respect to Ck′|l+1 is equal
to r(Ck′|l+1, L) + det(u(Ck′|l), u(Ck′|l+1)), which is
equal to −1 + 1 = 0. Ck′−1|l+1 is thus a DSS in
that case (fig. 6.b), which raises a contradiction.

Once again, a similar result is obtained if we swap
the remainder of Ck′−1 and the one of Cl+1. There-
fore, the remainders of Ck′−1 and Cl+1 with respect
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Ck′

Ck′−1
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Cl+1
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4 2 0

5 3 1

6 4 2 0

5 3 1

6 4 2
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−1

−1

−1

(a)

Ck′

Ck′−1

L

Cl+1

Cl

7 4 1

8 5 2

9 6 3 0

7 4 1

8 5 2

9

0

−1

−2

(b)

Figure 6: Illustration of the proof of Lemma 1. (a)
The remainder of Ck′−1 with respect to Ck′|l equals
to −1, whereas the remainder of Cl+1 with respect
to Ck′|l equals to ‖u(Ck′|l)‖1 = 7. (b) Ck′−1|l+1 is a
DSS, which means that Ck′|l cannot be the common
part of two consecutive MSs.

to Ck′|l are both equal to ‖u(Ck′|l)‖1 or −1.
We show in the following lemma that the slope

of the common part of two consecutive MSs is
bounded by the slopes of all the segments that con-
tain this part. A previous result about the inter-
section of two digital straight lines [33, theorem 5]
is quite similar.

Lemma 2 Let Ck|l and Ck′|l′ be two consecutive
MSs of the cover of a digital curve Ci|j. The slope
of their intersection Ck′|l is bounded by the slope of
the DSSs maximal at the front or at the back that
contain Ck′|l, i.e. for all k◦ ∈ k, . . . , k′ − 1 and for
all l◦ ∈ l + 1, . . . , l′, ρ(u(Ck◦|l)) > ρ(u(Ck′|l)) >
ρ(u(Ck′|l◦)) if the remainders of Ck′−1 and Cl+1

with respect to Ck′|l are both equal to −1 and
ρ(u(Ck◦|l)) < ρ(u(Ck′|l)) < ρ(u(Ck′|l◦)) if they are
both equal to ‖u(Ck′|l)‖1.

Proof

Without loss of generality, let us assume that Ck′|l
is in the first octant. Since the coordinates of the
points of a DSS both monotonously increase or

decrease and since Ck′|l has at least two points,
our hypothesis implies that all the points from Ck
to Cl are sorted along the x-coordinate such that
x(Ck) ≤ x(Ck+1) ≤ . . . ≤ x(Cl′−1) ≤ x(Cl′).

Due to lemma 1, the remainder of Cl+1 with re-
spect to Ck′|l is either equal to −1 or ‖Ck′|l‖1. We
will focus on the first case and prove by induc-
tion that for all l◦ ∈ l + 1, . . . , l′, ρ(u(Ck′|l)) >
ρ(u(Ck′|l◦)). In the second case, we can similarly
show that for all l◦ ∈ l + 1, . . . , l′, ρ(u(Ck′|l)) <
ρ(u(Ck′|l◦)).

The proof is based on the three following argu-
ments, which are proved hereafter :

1. ρ(v+(Ci|j)) > ρ(u(Ci|j)) for all DSS Ci|j

2. ρ(u(Ck′|l)) = ρ(v+(Ck′|l+1))

3. ρ(v+(Ck′|l◦)) ≥ ρ(v+(Ck′|l◦+1)) for all l◦ in
l, . . . l′ − 1.

From 2) and 3) we deduce ρ(u(Ck′|l)) ≥
ρ(v+(Ck′|l◦)) for all l◦ in l + 1, . . . l′. With argu-
ment 1) we conclude that ρ(u(Ck′|l)) > ρ(u(Ck′|l◦))
for all l◦ in l + 1, . . . l′.

Proof of 1) - direct from the definition of v+ (def-
inition 2).

Proof of 2) - Since the remainder of Cl+1 with
respect to Ck′|l is assumed to be equal to −1, the
result is direct from table 1, column D, row 3. In
fig. 7, the slope of Ck′|l+1 is equal to 2

5 , whereas the

slope of Ck′|l is equal to 1
2 .

Ck

Ck′

Cl

Cl′

Cl?

Figure 7: Illustration of the proof of Lemma 2. The
slope of the common part Ck′|l is equal to 1

2 =
0.5. Some of the DSSs maximal at Ck′ are depicted
with a red bounding box: Ck′|l+1, whose slope is

equal to 2
5 = 0.4, illustrates argument 2), Ck′|l? ,

whose slope is equal to 3
8 = 0.375, illustrates case

(ii) of argument 3) and Ck′|l′ , whose slope is equal

to 5
13 ≈ 0.385, illustrates case (iii) of argument 3).

All the DSSs maximal at the back contained in the
MS Ck′|l′ have a slope lower than the one of the
common part Ck′|l.

Proof of 3) - Three cases can occur, according to
the value of r(Ck′|l◦ , Cl◦+1).
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(i) If r(Ck′|l◦ , Cl◦+1) belongs to the range
0, . . . , ‖u(Ck′|l◦)‖1 − 1, we have v+(Ck′|l◦) =
v+(Ck′|l◦+1).

(ii) If r(Ck′|l◦ , Cl◦+1) = −1, from table 1, column
D, row 3, we have v+(Ck′|l◦+1) = u(Ck′|l◦), and
conclude that ρ(v+(Ck′|l◦)) > ρ(v+(Ck′|l◦+1)) due
to argument 1). For instance, in fig. 7, the slope of
Ck′|l?−1 is equal to 2

5 = 0.4, which is greater than

the slope of Ck′|l? that is equal to 3
8 = 0.375.

(iii) If r(Ck′|l◦ , Cl◦+1) = ‖u(Ck′|l◦)‖1, the slope
of Ck′|l◦ is strictly lower than the one of Ck′|l◦+1.
For instance, in fig. 7, the slope of Ck′|l′−1 is equal

to 3
8 = 0.375, which is lower than the slope of Ck′|l′

that is equal to 5
13 ≈ 0.385. But we can still con-

clude.
Let us denote by q the positive integer such that

q.u(Ck|l◦) =L↑min(Ck|l◦)L↑max(Ck|l◦). From table 1,

column B, u(Ck|l◦+1) is equal to L↑min(Ck|l◦)Cl◦+1,
which is equal to q.u(Ck|l◦)+v+(Ck|l◦). From table
1, column B, row 3, we have v+(Ck|l◦+1) = (q −
1).u(Ck|l◦) + v+(Ck|l◦).

As a consequence, det(v+(Ck|l◦), v+(Ck|l◦+1)) is
equal to det(v+(Ck|l◦), (q−1).u(Ck|l◦)+v+(Ck|l◦)),
which is equal to −q + 1. We can thus con-
clude that det(v+(Ck|l◦), v+(Ck|l◦+1)) ≤ 0 and that
ρ(v+(Ck′|l◦)) ≥ ρ(v+(Ck′|l◦+1)).
Due to lemma 1, since the remainder of Cl+1 with
respect to Ck′|l is assumed to be equal to −1, the
remainder of Ck′−1 is equal to −1 too.

We can similarly show that for all k◦ ∈ k, . . . , k′−
1, ρ(u(Ck◦|l)) > ρ(u(Ck′|l)), which concludes the
proof.

The results of the two previous lemmas lead to
the following crucial corollary:

Corollary 1 Let Ck|l and Ck′|l′ be two consecu-
tive MSs of the cover of a digital curve Ci|j. We
have ρ(u(Ck|l)) > ρ(u(Ck′|l′)) (resp. ρ(u(Ck|l)) <
ρ(u(Ck′|l′))) if and only if the remainders of Ck′−1

and Cl+1 with respect to Ck′|l are both equal to −1
(resp. ‖u(Ck′|l)‖1).

Proof

⇒ Due to lemma 2, ρ(u(Ck|l)) > ρ(u(Ck′|l′)) (resp.
ρ(u(Ck|l)) < ρ(u(Ck′|l′))) if the remainders of Ck′−1

and Cl+1 with respect to Ck′|l are both equal to −1
(resp. ‖u(Ck′|l)‖1).
⇐ Due to lemma 1, the remainders of Ck′−1 and

Cl+1 with respect to Ck′|l are both either equal
to −1 or ‖u(Ck′|l)‖1. If ρ(u(Ck|l)) > ρ(u(Ck′|l′))
(resp. ρ(u(Ck|l)) < ρ(u(Ck|l))), the remainders of
Ck′−1 and Cl+1 with respect to Ck′|l cannot be
equal to ‖Ck′|l‖1 (resp. −1), because if they were,
due to lemma 2, ρ(u(Ck|l)) < ρ(u(Ck′|l′)) (resp.

ρ(u(Ck|l)) > ρ(u(Ck′|l′))), which raises a contra-
diction. As a consequence, the remainders of Ck′−1

and Cl+1 with respect to Ck′|l are both equal to −1
(resp. ‖Ck′|l‖1) if ρ(u(Ck|l)) > ρ(u(Ck′|l′)) (resp.
ρ(u(Ck|l)) < ρ(u(Ck′|l′))).

3 Decomposition into convex
and concave parts

In this section, we propose a definition of convex
and concave parts related to the slope of the MSs
of the cover of a digital curve. Previous results,
especially corollary 1, lead to interesting local con-
vexity properties that provide a simple, online and
linear-time algorithm of decomposition.

3.1 Maximal convex and concave
parts

Many definitions of digital convexity exist. The
first one, based on digitization, comes from Sklan-
sky [3]. This definition is not convenient be-
cause unconnected sets may be considered as dig-
itally convex. Later, Kim [4, 5], Kim and Rosen-
feld [6, 7], Kim and Sklansky [8], Chassery [9] and
Ronse [10] proposed other definitions of digital con-
vexity. Most of these definitions may be proved to
be equivalent for simply connected sets [5, 4, 10, 11].

However, as in [13, 14, 15], we define convex and
concave parts by the means of the slope of MSs.

Definition 5 (Convex and concave parts)
A digital curve Ci|j is convex (resp. con-
cave) if and only if the slope of any two
consecutive MSs of its cover decreases (resp.
increases), i.e. for all m ∈ 1, . . . ,M − 1,
Skm→ and Skm+1→ are two consecutive MSs
such that ρ(u(Skm→)) > ρ(u(Skm+1→)) (resp.
ρ(u(Skm→)) < ρ(u(Skm+1→))).

This definition is valid for open digital curves,
contrary to most of previous definitions, which are
only valid for digital sets. For instance, the spiral-
shaped digital curve of fig. 4 is convex because the
slope of any two consecutive MSs of its cover de-
creases.

Note that a convex digital curve Ci|j is concave
if the points are scanned from j to i and conversely.

Moreover, a digital curve that is neither convex
nor concave may be straightforwardly decomposed
into maximal convex and concave parts according
to the slope of the MSs of its cover.
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Definition 6 (Maximal convex and concave parts)
Any maximal sequence of consecutive MSs of de-
creasing (resp. increasing) slope determines a
maximal convex (resp. concave) part.

Since the cover is unique, such a decomposition
into maximal convex and concave parts is unique
too (fig. 8). Moreover, one MS may belong to one
maximal part, either convex or concave, respec-
tively in blue and green in fig. 8, or may belong
to both a maximal convex part and a maximal con-
cave part, in yellow in fig. 8.

Figure 8: Decomposition of a digital curve into
maximal convex and concave parts. A MS is de-
picted by a bounding box: blue if the MS is in a
convex part, green in a concave part, yellow if it
makes the transition between a convex and a con-
cave part.

Note that polygons have similar properties.
Their maximal convex and concave parts are max-
imal sequences of edges of respectively decreasing
and increasing slope. One edge may belong to both
a convex and a concave part. Our definitions are
thus quite natural.

3.2 Local criterion for checking con-
vexity

Once the cover is computed, decomposing a digi-
tal curve into maximal convex and concave parts is
trivial. However, further results, relying on corol-
lary 1, are required to derive an online algorithm.

Theorem 1 If a digital curve Ci|j is convex (resp.
concave), then any subpart Ci′|j′ of Ci|j is convex
(resp. concave) too.

Proof

We will assume that Ci|j is convex but a simi-
lar proof can be derived in the case where Ci|j is
assumed to be concave. First, we will prove by in-
duction that Ci|j′ is convex for all j′ ∈ i+ 1, . . . , j.

Let the property Pj′ be “Ci|j′ is convex” for all
j′ ∈ i + 1, . . . , j. Pj is obviously true because
Ci|j is convex. Now, we will show that Pj′ is
true when Pj′+1 is assumed to be true for some
j′ ∈ i+ 1, . . . , j − 1.

Let Ckm and Ckm+1
be the first points of the last

two MSs Skm→ and Skm+1→ = Ckm+1|j′+1 of the

cover of Ci|j′+1. Moreover, let Clm be the last point
of Skm→ so that Skm→ = Ckm|lm . Fig. 9 illustrates
the notations used in this proof.

i j′ + 1

km lm
km+1

Figure 9: Illustration of the indices used in the
proof of Theorem 1.

Two different cases occur:
(i) if j′ + 1 = lm + 1, then j′ = lm and the cover

Ci|j′ is made up of the m first MSs of the cover
of Ci|j′+1 but does not include the last one, i.e.
Skm+1→. Due to the induction hypothesis, Ci|j′+1

is convex and the slope of any two consecutive MSs
of its cover decreases. As a consequence, Ci|j′ is
convex too.

(ii) otherwise, j′ + 1 > lm + 1, which implies
j′ > lm and the cover of Ci|j′ is made up with the
m first MSs of the cover of Ci|j′+1, plus the seg-
ment Ckm+1|j′ , which is contained in Skm+1→ =
Ckm+1|j′+1. Due to the induction hypothesis,
Ci|j′+1 is convex and for all µ ∈ 1, . . . ,m − 1,
ρ(u(Skµ→)) > ρ(u(Skµ+1→)). It remains to prove
that ρ(u(Skm→)) ≥ ρ(u(Ckm+1|j′)).

Due to corollary 1, ρ(u(Skm→)) > ρ(u(Skm+1→))
implies that the remainder of Clm+1 with respect to
Ckm+1|lm is equal to −1. And conversely, if the re-
mainder of Clm+1 with respect to Ckm+1|lm is equal
to −1, ρ(u(Skm→)) > ρ(u(Ckm+1|j′)). Thus, Ci|j′ is
convex too in this case.

We have shown by induction that for all j′ ∈ i+
1, . . . , j, Ci|j′ is convex. Similarly, we can show that
for all i′ ∈ i, . . . , j − 1, Ci′|j is convex. Therefore,
Ci′|j′ is convex, which concludes the proof.

Due to theorem 1, an incremental decomposition
of a digital curve into convex and concave parts
makes sens. In order to decide if a given MS Ck|l
is the last one of a maximal convex (resp. con-
cave) part, we have to check if its slope is smaller
(resp. greater) than the slope of the next MS Ck′|l′
according to definition 5.

Though, we show in the following theorem that
it is enough to compute the remainder of Cl+1 with
respect to Ck|l without considering the next MS
Ck′|l′ :

Theorem 2 Let Ck|l and Ck′|l′ be two consec-
utive MSs of the cover of a digital curve Ci|j.
The following equivalences are true: ρ(u(Ck|l)) >
ρ(u(Ck′|l′))⇔ r(Ck|l, Cl+1) < −1 and ρ(u(Ck|l)) <
ρ(u(Ck′|l′))⇔ r(Ck|l, Cl+1) > ‖u(Ck|l)‖1.

Proof
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We will only show that the first equivalence is true
(fig. 10.a), proving the second one requires a similar
proof.

Ck

Ck′

Cl

Cl′

4 2 0

3 1

4 2 0 −2

(a)

Ck

Ck′

Cl

Cl′

u(Ck′|l+1)

I

(b)

Figure 10: Illustration of theorem 2 (a) and its
proof (b). The parts Ck|l and Ck′|l′ are two con-
secutive MSs of decreasing slopes and the remain-
der of Cl+1 with respect to Ck|l is strictly lower
than −1 (−2 here). The point I is the trans-
lated of Cl+1 by the vector −u(Ck′|l+1). It be-
longs to Ck|l and the value of its remainder is used
to bound r(Ck|l, Cl+1), knowing that ρ(u(Ck|l)) >
ρ(u(Ck′|l+1)).

Since Ck|l is a MS, Ck|l+1 is not a DSS.
In other words, r(Ck|l, Cl+1) > ‖u(Ck|l)‖1 or
r(Ck|l, Cl+1) < −1. Therefore, to conclude, it is
enough to prove that ρ(u(Ck|l)) > ρ(u(Ck′|l′)) ⇔
r(Ck|l, Cl+1) < ‖u(Ck|l)‖1.

We first prove that ρ(u(Ck|l)) > ρ(u(Ck′|l+1))⇔
r(Ck|l, Cl+1) < ‖u(Ck|l)‖1.

Let us consider the DSS Ck′|l+1. By definition,
Ck′|l+1 contains at least two points P and Q such
that Q = P + u(Ck′|l+1). Since Cl+1 is the last
point of Ck′|l+1, the point I, image of Cl+1 after
a translation by the vector −u(Ck′|l+1), necessarily
belongs to Ck′|l. Since Ck′|l is included in Ck|l, I
belongs to Ck|l too (fig. 10.b).

Due to property 1, r(Ck|l, Cl+1) = r(Ck|l, I) +
det(u(Ck|l), u(Ck′|l+1)). Since I belongs to Ck|l,
the remainder of I with respect to Ck|l is greater
than 0 and strictly smaller than ‖u(Ck|l)‖1. Thus,
det(u(Ck|l), u(Ck′|l+1)) < 0 ⇔ r(Ck|l, Cl+1) <
‖u(Ck|l)‖1. However det(u(Ck|l), u(Ck′|l+1)) < 0
is equivalent to ρ(u(Ck|l)) > ρ(u(Ck′|l+1)).

It remains to show that ρ(u(Ck|l)) >
ρ(u(Ck′|l′))⇔ ρ(u(Ck|l)) > ρ(u(Ck′|l+1)).

Due to corollary 1, ρ(u(Ck|l)) > ρ(u(Ck′|l′)) as
well as ρ(u(Ck|l)) > ρ(u(Ck′|l+1)) imply that the
remainders of Ck′−1 and Cl+1 with respect to Ck′|l
are both equal to −1. Conversely, if the remainders
of Ck′−1 and Cl+1 with respect to Ck′|l are equal
to −1, ρ(u(Ck|l)) > ρ(u(Ck′|l′)) and ρ(u(Ck|l)) >
ρ(u(Ck′|l+1)), which concludes the proof.

Similar results may be found in [17][Theorem 9]
and [18, lemma 1] but theorem 2 gives a fuller an-

swer to Eckhardt’s question [16]: how far one can
decide whether a part of a digital curve is convex or
not by a method that is as local as possible? Our
answer is that the smallest digital pattern required
for checking convexity is given by a MS, plus at
least one of the two points located just before and
after this segment. Within a smaller pattern, which
would be a MS, all parts of any digital curves would
be considered straight and thus both convex and
concave, which brings nothing.

Looking at the remainders of the two points that
bound a MS S is a way of classifying the local con-
figuration of the digital curve:

� if the remainders of the two points are strictly
less than −1 (resp. strictly greater than
‖u(S)‖1), S belongs to a convex (resp. con-
cave) part (fig. 11.a and b).

� if the remainder of one of the two points is
strictly less than −1 and the remainder of the
other is strictly greater than ‖u(S)‖1, S makes
the transition between a convex and a concave
part (fig. 11.c).

(a) (b)

(c)

Figure 11: MS in a convex part in (a), in a concave
part in (b), in an inflection part in (c).

3.3 Algorithm

Theorem 2 straightforwardly leads to algorithm 1.
The maximal convex and concave parts of an open
digital curve are retrieved in the course of the cover
computation. A MS Ck|l−1 that belongs to a con-
vex (resp. concave) part and such that the remain-
der of Cl with respect to Ck|l−1 is greater than
‖u(Ck|l−1)‖1 (resp. strictly smaller than −1) is
the end of a maximal convex (resp. concave) part
and the beginning of a concave (resp. convex) part
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(lines 16-20). Fig. 8 illustrates the output of algo-
rithm 1.

Algorithm 1: Convex and concave parts de-
composition

Input: a digital curve Ci|j
Output: The list L of the maximal convex

and concave parts of Ci|j
L ← ∅ ; /* list of convex and concave parts */1

k′ ← i ; /* beginning of the current part */2

k ← k′ ; /* beginning of the current segment */3

l← i+ 1 ; /* index of the current point */4

isConvex ; /* true if convex, false otherwise */5

/* initialization */

while l ≤ j and Ck|l is a DSS do6

l← l + 1 ; /* add a point to the front */7

if l ≤ j then8

if r(Ck|l−1, Cl) < −1 then9

isConvex← true;
else isConvex← false;10

/* body */

while l ≤ j do11

while Ck|l is not a DSS do12

k ← k + 1 ; /* remove a point from the back13

*/

while l ≤ j and Ck|l is a DSS do14

l← l + 1 ; /* add a point to the front */15

if l ≤ j then16

if (isConvex = true and17

r(Ck|l−1, Cl) ≥ ‖u(Ck|l−1)‖1) or
(isConvex = false and
r(Ck|l−1, Cl) < −1) then
L ← L+ Ck′|l−1 ; /* new part stored18

*/

k′ ← k ; /* convex ⇔ concave */19

isConvex← ¬isConvex;20

return L+ Ck′|l−1;21

4 Decomposition into digital
edges

In this section, we introduce the notions of digital
edge, upper and lower hulls and show that any con-
vex (resp. concave) part has a unique upper (resp.
lower) hull that can be computed in linear-time.
This work has several useful applications in the field
of polygonal representation (section 5), which is the
motivation of the definitions and results presented
below.

4.1 Digital edges, lower and upper
hulls

We introduce below the notions of digital edge, up-
per and lower hulls.

Definition 7 (Digital edge) A digital curve Ci|j
is a digital edge if and only if there exists l ∈ [i; j]

such that CiCj= q. u, with q ∈ Z+ and gcd(x(u

), y(u)) = 1, and for all k ∈ [i; j], 0 ≤ det(u,ClCk
) < ‖ u ‖1. Moreover, Ci|j is a lower digital edge if

det(u,CiCl) = 0 and a upper one otherwise.

Cj

Ci

Cl

036

25

14

0

(a)

Ci

Cj

Cl

6 3 0

4 1

5 2

6

(b)

Figure 12: Lower (a) and upper (b) digital edges of
slope 3

4 .

By definition, a upper (resp. lower) digital edge
is a DSS such that its first and last points are both
upper (resp. lower) leaning points. For instance,
the DSS depicted in fig. 1 contains a upper digital
edge and a lower digital edge whose slopes are the
same as its. They are respectively located between
the two upper and two lower leaning points of the
DSS.

We define now the upper and lower hull of a dig-
ital curve.

Definition 8 (upper and lower hulls) The up-
per (resp. lower) hull of a digital curve Ci|j
is a sequence of upper (resp. lower) digi-
tal edges Ck0|k1

, Ck1|k2
, . . . , CkM−1|kM , where i =

k0 < k1 < . . . < kM = j, having de-
creasing (resp. increasing) slope, i.e. for all
m ∈ 1, . . . ,M − 1, Ckm−1|km and Ckm|km+1

are two consecutive upper (resp. lower) digital
edges such that ρ(u(Ckm−1|km)) > ρ(u(Ckm|km+1

))
(resp. ρ(u(Ckm−1|km)) < ρ(u(Ckm|km+1

))). The
ends of each upper (resp. lower) digital edge
Ck0

, Ck1
, . . . , CkM are the vertices of the upper

(resp. lower) hull.

The upper hull of a digital curve is depicted in
fig. 13. Contrary to the cover (fig. 4), any two con-
secutive DSSs, which are upper digital edges, have
only one point in common.
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Figure 13: Upper hull of a digital curve. Each up-
per digital edge is depicted by a red bounding box.

The goal of the following section is to show that
a convex digital curve admits a unique upper hull,
while a concave digital curve admits a unique lower
hull.

4.2 Existence and uniqueness of
lower and upper hulls

The following technical lemmas highlight the links
between DSSs and digital edges.

We compare in lemma 3, the slope of a DSS S
maximal at the front and the one of a digital edge
beginning on the last leaning point of S.

Lemma 3 Let Co|p be a DSS in the first octant,
i.e. 0 ≤ y(u(Co|p)) < x(u(Co|p)), strictly included
in the digital curve Ci|j. Let us assume that there
exists a upper (resp. lower) digital edge starting
from Cl, the last upper (resp. lower) leaning point
of Co|p, and ending at Cl◦ , with p < l◦ ≤ j.
If r(Co|p, Cp+1) ≤ −1 (resp. r(Co|p, Cp+1) ≥
‖u(Co|p)‖1−1), then ρ(u(Co|p)) > ρ(u(Cl|l◦)) (resp.
ρ(u(Co|p)) < ρ(u(Cl|l◦))).

Proof

We will only deal with the case where Cl|l◦ is a
upper digital edge and r(Co|p, Cp+1) ≤ −1 as illus-
trated in fig. 14, because the opposite case requires
a similar proof.

The first upper leaning point of Cl|l◦ , which is
assumed to be a digital edge, and the last up-
per leaning point of Co|p are both located at point
Cl. The remainders of Cl with respect to Co|p and
Cl|l◦ are respectively equal to ‖u(Co|p)‖1 − 1 and
‖u(Cl|l◦)‖1 − 1. Let us denote by L the translation
of Cl by the vector s (1,−1). Due to property 1,
the remainder of L with respect to Co|p is equal
to r(Co|p, Cl) + det(u(Co|p), s). Since det(u(Co|p), s
) = ‖u(Co|p)‖1, then r(Co|p, L) = −1. Similarly,
r(Cl|l◦ , L) = −1.

Due to property 1, det(u(Cl|l◦), LCp+1) =
r(Cl|l◦ , Cp+1) − r(Cl|l◦ , L). Since r(Cl|l◦ , L) =
−1 and 0 ≤ r(Cl|l◦ , Cp+1) < ‖Cl|l◦‖1,

det(u(Cl|l◦), LCp+1) ≥ 1. Thus, ρ(u(Cl|l◦)) <

ρ(LCp+1).

Due to property 1, det(u(Co|p), LCp+1) =
r(Co|p, Cp+1) − r(Co|p, L). Since r(Co|p, L) = −1,

the sign of det(u(Co|p), LCp+1) depends on the
value of r(Co|p, Cp+1).

The remainder of Cp+1 with respect to Co|p
is assumed to be smaller than or equal to −1.
Thus, det(u(Co|p), LCp+1) ≤ 0. In other words,

ρ(u(Co|p)) ≥ ρ(LCp+1).
The points of Co|p have increasing x-coordinates,

because Co|p is in the first octant. Furthermore, the
points of Co|p+1 have increasing x-coordinates too,
because Ci|j is a simple digital curve. Since the in-
tersection between Co|p and Cl|l◦ contains at least
two points, Cp|p+1, the points of Cl|l◦ have also
increasing x-coordinates. Therefore, x(u(Co|p)),

x(u(Cl|l◦)) and x(LCp+1) are positive and due to

transitivity, ρ(u(Co|p)) ≥ ρ(LCp+1) > ρ(u(Cl|l◦))
and finally ρ(u(Co|p)) > ρ(u(Cl|l◦)).

Ci

Co

Cl

Cp

Cp+1

Cl◦ Cj

L

u(Co|p)

u(Cl|l◦ )

Figure 14: Illustration of the proof of lemma 3.
The DSS Co|p, which is depicted in red, is maximal
at the front because r(Co|p, Cp+1) ≤ −1. Its slope

u(Co|p) is equal to 3
7 . The slope u(Cl|l◦) of the

upper digital edge starting from Cl, the last upper
leaning point of Co|p, is equal to 1

3 . The slope of

LCp+1, which is equal to 2
5 , is bounded by u(Cl|l◦)

and u(Co|p).

Lemma 4 shows that there does not exist any
upper (resp. lower) digital edge that shares some
of its points with a DSS S and that strictly contains
the upper (resp. lower) leaning points of S.

Lemma 4 Let Cp|q be a DSS in the first octant, i.e.
0 ≤ y(u(Cp|q)) < x(u(Cp|q)), strictly included in
the digital curve Ci|j. If r(Cp|q, Cq+1) ≤ −1 (resp.
r(Cp|q, Cq+1) ≥ ‖u(Cp|q)‖1−1), there does not exist
any upper (resp. lower) digital edge Cg|h whose first
point belongs to Cp|q and that strictly contains the
first or last upper (resp. lower) leaning point of
Cp|q, denoted by Cl, i.e. such that p ≤ g < l < h.

Proof

11



We will only show by contradiction that Cg|h can-
not be a upper digital edge that strictly contains
the last upper leaning point of Cp|q. The other
cases require a similar proof.

Let us assume that a upper digital edge Cg|h ex-
ists. On the one hand (i), we posit that Ch belongs
to Cp|q, i.e. p ≤ g < l < h ≤ q and on the other
hand (ii), we posit that Ch does not belong to Cp|q,
i.e. p ≤ g < l ≤ q < h (fig. 15).

i j

p q

g h

h
(i)

(ii)

l

Figure 15: Illustration of the indices used in the
proof of lemma 4

The proof is based on the four following argu-
ments, which are proved hereafter :

1. ρ(u(Cp|q)) ≤ ρ(CgCl)

2. ρ(u(Cp|q)) > ρ(ClCh)

3. det(ClCh, CgCl) > 0

4. r(Cg|h, Cl) > ‖u(Cg|h)‖1 − 1 (contradiction)

Due to transitivity, 1) and 2) imply 3) and then,
3) implies 4), which raises a contradiction.

Proof of 1) - Due to property 1, det(u(Cp|q), CgCl
) is equal to r(Cp|q, Cl) − r(Cp|q, Cg) and is thus
greater than or equal to 0. In other words,
ρ(u(Cp|q)) ≤ ρ(CgCl).

Proof of 2) - (i) Due to property 1,

det(u(Cp|q), ClCh) is equal to r(Cp|q, Ch) −
r(Cp|q, Cl) and is thus strictly smaller than 0. As

a result, ρ(u(Cp|q)) > ρ(ClCh).

(ii) Since Cl is the last upper leaning point of
Cp|q and r(Cp|q, Cq+1) ≤ −1, lemma 3 applies and

ρ(u(Cp|q)) > ρ(ClCh).

Proof of 3) - (i) Since Cp|q is in the first octant,

x(u(Cp|q)), x(CgCl) and x(ClCh) are positive.

(ii) Since Cp|q is in the first octant and Ci|j is a
digital curve, the points of Cp|q+1 have increasing
x-coordinates. Moreover, the points of Cg|h have
also increasing x-coordinates, because the intersec-
tion between Cp|q and Cg|h contains at least two

points, Cp|p+1. Therefore, x(u(Cp|q)), x(u(CgCl))

and x(ClCh) are positive.

Due to transitivity, from 1) and 2), ρ(CgCl) >

ρ(ClCh), which is equivalent to det(ClCh, CgCl) >
0.

Proof of 4) - Due to property 1, r(Cg|h, Cl) −
r(Cg|h, Cg) is equal to det(u(Cg|h), CgCl), which is

proportional to det(CgCh, CgCl).

However, det(CgCh, CgCl), which is equal to

det(ClCh, CgCl), is strictly greater than 0 due to
3). As a result, r(Cg|h, Cl) > ‖u(Cg|h)‖1−1, which
raises a contradiction.

We can now state the main theorem of the sub-
section:

Theorem 3 Any convex (resp. concave) digital
curve Ci|j admits a unique upper (resp. lower) hull.

Proof

We will prove by induction that any digital con-
vex curve has a unique upper hull. A similar proof
can be derived for the lower hull of concave digital
curves.

Let the property Pi be “Ck|j admits a unique
upper hull for all k ∈ i, . . . , j”. The property Pj−1

is obviously true, because Cj−1|j is one small upper
digital edge. We will show that Pi is true when Pi+1

is assumed to be true for some i ∈ 1, . . . , j − 2.

Let p be the greatest index such that Ci is
the first upper leaning point of Ci|p, i.e. Ci =

L↑min(Ci|p). Such an index always exists and is
unique. Let us assume without loss of generality
that Ci|p is in the first octant, i.e. 0 ≤ y(u(Ci|p)) <
x(u(Ci|p)). Let Cl be the last upper leaning point

of Ci|p, i.e. Cl = L↑max(Ci|p) (fig. 16).

i j

pl

(i)

(ii)
l′

l′

Figure 16: Illustration of the indices used in the
proof of theorem 3

Since l is strictly greater than i, Cl|j admits a
unique upper hull due to the induction hypothesis.
On the other hand, Ci|l is by definition a digital
edge.

existence: In order to prove that Ci|j admits a
upper hull, it remains to show that the slope of
Ci|l, which is equal by definition to the one of Ci|p,
is strictly smaller than the slope of the first upper
digital edge of Cl|j , denoted by Cl|l′ .

(i) If l′ ≤ p, Cl′ belongs to Ci|p. Due to

property 1, det(u(Ci|p), ClCl′) = r(Ci|p, Cl′) −
r(Ci|p, Cl). Since Cl is the last upper leaning points
of Ci|p, r(Ci|p, Cl) = ‖Ci|p‖1 − 1 and r(Ci|p, Cl′) <

‖Ci|p‖1 − 1. Therefore det(u(Ci|p), ClCl′) < 0 and
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the slope of Cl|l′ is strictly smaller than the one of
Ci|p.

(ii) If l′ > p, Cl′ does not belong to Ci|p. The re-
mainder of Cp+1 with respect to Ci|p cannot belong
to the range 0, . . . , ‖Ci|p‖1 because if it is, the first
leaning point of Ci|p+1 would be Ci, which contra-
dicts the maximality of p. If Ci|p+1 is a DSS, the
remainder of Cp+1 with respect to Ci|p is equal to
−1. Otherwise, Ci|p is maximal at the front and
the remainder of Cp+1 with respect to Ci|p is either
strictly smaller than −1 or greater than ‖Ci|p‖1.
Since Ci|j is convex, the slope of Ci|p is strictly
greater than the one of the next MS. Therefore, due
to theorem 2, the remainder of Cp+1 with respect
to Ci|p is strictly smaller than −1. Thus, putting
all together, the remainder of Cp+1 with respect to
Ci|p is smaller than or equal to −1. According to
lemma 3, the slope of Cl|l′ is strictly smaller than
the one of Ci|p in this case, which proves that Ci|j
admits a upper hull.

uniqueness: In order to prove the uniqueness of
such a hull, it is enough to notice that Cl cannot
be strictly included in a digital edge of the upper
hull of Ci|j due to lemma 4 and is thus a vertex of
such hull. Cl|j admits a unique upper hull due to
the induction hypothesis and Ci|l admits a unique
upper hull too because it is by definition a digital
edge. The upper hull of Ci|j is thus unique.

In the next section we will show that the upper
(resp. lower) hull of any convex (resp. concave)
digital curve can be retrieved in the course of the
cover computation.

4.3 Computation of upper and lower
hulls

Theorem 4 gives the smallest digital pattern that is
enough to consider to retrieve a vertex or an edge
of the upper (resp. lower) hull of any convex (resp.
concave) digital curve.

Theorem 4 Let Ck|l be a DSS included in a
convex (resp. concave) digital curve Ci|j. If
r(Ck|l, Ck−1) ≤ −1 (resp. r(Ck|l, Ck−1) ≥
‖u(Ck|l)‖1) or k = i and r(Ck|l, Cl+1) ≤ −1 (resp.
r(Ck|l, Cl+1) ≥ ‖u(Ck|l)‖1) or l = j, then the first
and last upper (resp. lower) leaning points of Ck|l
are vertices of the upper (resp. lower) hull of Ci|j.
As a corollary, the part bounded by the first and last
upper (resp. lower) leaning points of Ck|l (when it
is not empty as in fig. 17) is a upper (resp. lower)
digital edge.

Proof

Let us assume that Ci|j is convex. A similar reason-
ing leads to the proof about concave digital curves.

Moreover, let us focus on the last upper leaning
point of Ck|l, denoted by Ch, because the same ap-
plies for its first upper leaning point. Fig. 17 de-
picted the configuration of the proof.

Ci

Cj

Ck

Cl

−3

2 0

5 3 1

6 4 2 0

5 3 1 −1Ch

Figure 17: Illustration of theorem 4. The upper
leaning point of Ck|l, Ch is a vertex of the upper
hull of the convex part Ci|j , because r(Ck|l, Ck−1)
and r(Ck|l, Cl+1) are less than or equal to −1.

Given that Ci|j , which is assumed to be convex,
admits a unique upper hull due to theorem 3, we
will prove by contradiction that there does not exist
any upper digital edge Cp|q that strictly contains
Ch, i.e. such that p < h < q.

Let us assume that such a upper digital edge ex-
ists. Due to the assumption about the remainders
of Ck−1 and Cl+1 with respect to Ck|l, Ck′−1|l+1

is not a DSS. Since Cp|q is a DSS, either Cp or Cq
belongs to Ck|l.

Due to lemma 4, there does not exist any up-
per digital edge Cp|q such that Cp belongs to Ck|l
whereas Cq does not. Similarly, there does not exist
any upper digital edge Cp|q such that Cq belongs to
Ck|l whereas Cp does not.

As a consequence, the last upper leaning point
of Ck|l cannot be strictly contained by any upper
digital edge and similarly, the first upper leaning
point of Ck|l cannot be strictly contained by any
upper digital edge. As a consequence, the first and
last upper leaning point of Ck|l match to one vertex
of the upper hull of Ci|j if they are confounded or
bound a upper digital edge otherwise.

Theorem 4 leads to algorithm 2 that focuses
on the upper hull computation of a convex digi-
tal curve. To compute the lower hull of a concave
digital curve it is enough to replace ↑ with ↓.

In the course of the cover computation, the cur-
rent DSS Ck|l−1, is either maximal, maximal at the
front, maximal at the back or is the common part of
two MSs. In the latter case, r(Ck|l−1, Ck−1) = −1
and r(Ck|l−1, Cl) = −1 due to corollary 1. The first
and last upper leaning points of Ck|l−1 are vertices
of the upper hull due to theorem 4.

When points are added to the front of
Ck|l−1, Ck|l−1 is maximal at the back, i.e.
r(Ck|l−1, Ck−1) < −1. If r(Ck|l−1, Cl) = −1, Ck|l
is still a DSS but the first upper leaning point get
the location of the last one (table 1, column D, row
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6). Due to theorem 4, the first and last upper lean-
ing points of Ck|l−1 are vertices of the upper hull.
If they are not confounded, the first upper leaning
point of Ck|l, which is equal to the last upper lean-
ing point of Ck|l−1, is stored as a new vertex of the
upper hull (lines 7 and 20). A similar process is
performed when points are removed from the back
of the current DSS.

Thus, either during the adding step (lines 5-8,
18-21) or the removing step (lines 12-15, 22-25),
any two consecutive retrieved points are the first
and last point of a digital edge. Tricky issues occur
when the removing step follows the adding step and
conversely.

In the first case, the last leaning point of the cur-
rent DSS, which is maximal, may be not retrieved
if the first and last leaning points are distinct, be-
cause only the first leaning point has been stored
during the adding step and only the new location
of the last leaning point will be stored during the
removing step that follows. We added lines 10-11
to fix it.

In the second case, the last leaning point of the
current DSS, which is the common part of two con-
secutive MSs, may be retrieved twice, because the
last leaning point has been stored during the re-
moving step and will be stored again during the
adding step that follows if the first and last leaning
points are distinct. We added thus lines 16-17 to
fix it.

For all these reasons, algorithm 2 correctly re-
trieves all the vertices of the upper hull and only
them.

MSs are not enough to compute the upper or
lower hull of a respectively convex or concave digital
curve. A smaller digital pattern is often required.
In convex digital curves, the digital pattern that is
enough to consider corresponds to DSSs bounded
by two points of remainder smaller than or equal
to −1:

� common parts of two consecutive MSs that
have two bounding points whose remainder is
equal to −1 (lemma 1) (fig. 18.a).

� DSSs maximal at the front or at the back hav-
ing one bounding point of remainder −1 and
the other of remainder strictly less than −1
(theorem 2) (fig. 18.b).

� MSs that have two bounding points whose re-
mainder is strictly less than −1 (theorem 2)
(fig. 18.c).

Algorithm 2: Upper hull computation of a
convex digital curve

Input: a convex digital curve Ci|j
Output: the list L of the vertices of its upper

hull
L ← ∅ ; /* list of the vertices of the upper hull */1

k ← i ; /* beginning of the current segment */2

l← i+ 1 ; /* end of the current segment */3

/* initialization */

L ← Ck;4

while l ≤ j and Ck|l is a DSS do5

if L↑min(Ck|l) 6= L↑min(Ck|l−1) then6

L ← L+ L↑min(Ck|l) ; /* store this point7

*/

l← l + 1 ; /* add a point to the front */8

/* body */

while l ≤ j do9

/* store the last leaning point if the first and

last leaning points of the MS are not

confounded */

if L↑min(Ck|l−1) 6= L↑max(Ck|l−1) then10

L ← L+ L↑max(Ck|l−1);11

while Ck|l is not a DSS do12

k ← k + 1 ; /* remove a point from the back13

*/

if L↑max(Ck|l−1) 6= L↑max(Ck−1|l−1)14

then
L ← L+ L↑max(Ck|l−1) ; /* store */15

/* remove the last leaning point if the first and

last leaning points of the common part are not

confounded */

if L↑min(Ck|l−1) 6= L↑max(Ck|l−1) then16

L ← L− L↑max(Ck|l−1);17

while l ≤ j and Ck|l is a DSS do18

if L↑min(Ck|l) 6= L↑min(Ck|l−1) then19

L ← L+ L↑min(Ck|l) ; /* store */20

l← l + 1 ; /* add a point to the front */21

/* end */

while L↑max(Ck|l−1) 6= Cj do22

k ← k + 1 ; /* remove a point from the back */23

if L↑max(Ck|l−1) 6= L↑max(Ck−1|l−1) then24

L ← L+ L↑max(Ck|l−1) ; /* store this25

point */

return L;26
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(a) (b)

(c)

Figure 18: Digital patterns containing at least one
vertex of the upper hull of a convex digital curve:
(a) common parts of two consecutive MSs, (b) DSSs
maximal at the front or at the back, (c) MSs. The
points marked by a square have a remainder equals
to −1, whereas those marked by a cross have a re-
mainder strictly lower than −1.

5 Applications

In this section, we will described several applica-
tions of the previous results: convex hull computa-
tion (section 5.1), faithful polygonal representation
(section 5.2) and minimum perimeter polygon com-
putation (section 5.3).

5.1 Convex hull computation

Let us now consider a closed digital curve C. Let
us further assume that C is convex, i.e. any open
digital curve drawn from C is convex according to
definition 5.

Let C1|n+1 be the open digital curve associated
to C such that Cn+1 is the repetition of C1 after
one scan of C. Notice that C1|n+1 is convex because
C is convex (but C1|n+1 can also be convex while
C is not convex).

The first point C1 is assumed to be the point
of C having the smallest x-coordinate and great-
est y-coordinate. The next points C2, . . . , Cn are
assumed to be numbered according to a clockwise
orientation.

Let Ck0
, Ck1

, . . . , CkM with 1 = k0 < k1 < . . . <
kM = (n + 1) be the sequence of vertices of the
upper hull of C1|n+1.

Let us now consider the Euclidean convex hull of
C. Since C1 and Cn+1 are the points having the
smallest x-coordinate and greatest y-coordinate,
they are vertices of the Euclidean convex hull of
C.

The goal of this subsection is to show that re-
trieving the vertices of the upper hull of C1|n+1

provides a way of computing the vertices of the Eu-
clidean convex hull of C.

Theorem 5 Let C be a convex and closed digital
curve. Let C1|n+1 be the open digital curve associ-
ated to C such that C1 is a vertex of the Euclidean
convex hull of C. The vertices of the upper hull of
C1|n+1 corresponds to the vertices of the Euclidean
convex hull of C.

Proof

We will prove theorem 5 by induction.
Let the property Pm be “vertex Ckm of the upper

hull of C1|n+1 is a vertex of the Euclidean convex
hull of C” for some m ∈ 1, . . . ,M . Property P1 is
true, because C1 is a vertex of the upper hull of
C1|n+1 and also a vertex of the Euclidean convex
hull of C.

We will prove that Pm is true when Pm−1 is as-
sumed to be true for some m ∈ 2, . . . ,M . In other
words, we will prove that Ckm is a vertex of the
Euclidean convex hull of C, i.e. for all k ∈ 1, . . . , n,

det(Ckm−1
Ckm , Ckm−1

Ck) ≤ 0, when Ckm−1
is as-

sumed to be a vertex of the Euclidean convex hull
of C.

We will first deal with the range km−1, . . . , km
(i) and next with the range 1, . . . , n minus
km−1, . . . , km (ii).

(i) Since Ckm−1|km is a upper digital edge, for

all k• ∈ km−1, . . . , km, we have det(Ckm−1
Ckm

, Ckm−1Ck•) ≤ 0.
(ii) For all k◦ ∈ 1, . . . , n minus km−1, . . . , km,

let us denote by Ckm−1|k◦ the open digital curve
scanned from Ckm−1

to Ck◦ in a clockwise orienta-
tion. Since C is assumed to be convex, Ckm−1|k◦
is convex and has a unique upper hull due to theo-
rem 3. Let Cl0 , Cl1 , . . . , ClT with km−1 = l0 < l1 <
. . . < lT = k◦ be the sequence of vertices of the
upper hull of Ckm−1|k◦ .

Let p be the greatest index such that Ckm−1

is the first upper leaning point of Ckm−1|p, i.e.

Ckm−1 = L↑min(Ckm−1|p). Since Ckm−1|km is a up-
per digital edge, p is greater than km and Ckm
is the last upper leaning point of Ckm−1|p, i.e.

Ckm = L↑max(Ckm−1|p). As in the proof of the-
orem 3, the remainder of Cp+1 with respect to
Ckm−1|p is smaller than or equal to −1 due to the
convexity of C. Therefore, Ckm is the vertex fol-
lowing Ckm−1 in the upper hull of Ckm−1|k◦ due to
theorem 4 and is thus equal to Cl1 (fig. 19.a).

For all t ∈ 1, . . . , T , let Πt be the half-plane
defined by Clt−1

and Clt such that Πt = {P ∈
R2|det(Clt−1

Clt , Clt−1
P ) ≤ 0}. Since the slopes of
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Cl0

Cl1

Ckm−1

Ckm Cp Ck◦

(a)

Cl0

Π0
Π1

ΠT

= Ckm−1

Cl0

= Ckm

ClT

= Ck◦

(b)

Figure 19: Illustration of the proof of theorem 5.
(a) Ckm−1|km (in red) is a digital edge of the up-
per hull of C1|n+1, but also the first digital edge
of the upper hull of Ckm−1|k◦ for all k◦ ∈ 1, . . . , n
minus km−1, . . . , km. (b) Ck◦ belongs to the inter-
section of the set of half-planes {Πt, t ∈ [0;T ]} and
especially to Π1 whose boundary is the straight line
passing through Ckm−1

and Ckm .

two consecutive upper digital edges of a upper hull
are strictly increasing, Clt+1

must belong to Πt.

Moreover, two facts make the location of Clt+1

even more constrained. On the one hand, due to
the induction hypothesis, Ckm−1 = Cl0 is a vertex
of the Euclidean convex hull of C. As a conse-
quence, there exists some vector v such that each
point of C belongs to the half-plane denoted by Π0

and defined by Ckm−1
and v as follows: Π0 = {P ∈

R2|det(v, Ckm−1
P ) ≤ 0}. Thus, Clt+1

must belong
to Π0 too. On the other hand, the vertices of the
upper hull of Ckm−1|k◦ form a simple polygonal line
(without any auto-intersection) because Ckm−1|k◦ is
a simple digital curve and as a consequence, Clt+1

must finally belong to ∩τ∈[0;t]Πτ (fig. 19.b). The
point Ck◦ = ClT belongs to ∩t∈[0;T ]Πt and espe-

cially to Π1, i.e. det(Ckm−1Cl1 , Ckm−1Ck◦) ≤ 0. We

can thus conclude that det(Ckm−1
Ckm , Ckm−1

Ck◦

) ≤ 0, because Ckm = Cl1 .

Due to theorem 5, computing the vertices of the
Euclidean convex hull of C can be made by retriev-
ing the vertices of the upper hull of C1|n+1 provided
that C is convex and C1 is a vertex of Euclidean

convex hull of C. Therefore, algorithm 2 can also
be viewed as a convex hull algorithm for convex
closed digital curves. It has quite interesting fea-
tures because it is on-line, linear-time and only re-
quires a constant working space if the input is read
from an input stream and the output is written to
an output stream.

5.2 Faithful polygonal representa-
tion

Eckhardt and Dorksen-Reiter [34, 16, 35] looked for
a reversible polygon P(S) that faithfully represent
a connected digital set S.

They looked for polygons such that:

� The vertices of P(S) belong to S.

� S is the Gauss digitization of P(S), i.e. S =
P(S) ∩ Z2.

� P(S) has as many maximal sequences of
consecutive edges of decreasing or increasing
slopes as the boundary of S has maximal con-
vex and concave parts.

It turns out that even if some digital sets admit
such polygons (think about the Euclidean convex
hull of convex digital sets for instance), it is impos-
sible to meet the three requirements at the same
time for any sets S [34]. However, we will see in
this section that if we replace the second require-
ment by a weaker one, a faithful polygonal repre-
sentation always exists. Moreover, we will present
an online and linear-time algorithm that computes
such representation.

Definition 9 (Faithful representation) A sim-
ple polygonal line P is a faithful polygonal repre-
sentation of a digital curve Ci|j if and only if:

� The vertices of P belong to Ci|j.

� P is reversible, i.e. Ci|j can be entirely re-
trieved from the list of the vertices of P.

� Each maximal sequence of consecutive edges of
P with decreasing (resp. increasing slopes) is
contained in a maximal convex (resp. concave)
part of Ci|j and each maximal convex (resp.
concave) part of Ci|j contains a maximal se-
quence of consecutive edges of P with decreas-
ing (resp. increasing) slopes.

From definitions 7, 8 and theorem 3, any convex
(resp. concave) digital curve Ci|j admits a convex
(resp. concave) polygonal line that is obtained by
linking the vertices of the upper (resp. lower) hull
of Ci|j by straight line segments. The first and third
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requirements are obviously met. The second one is
met too, because the part of Ci|j lying between two
consecutive vertices is a upper (resp. lower) digi-
tal edge, which can be retrieved by the floor (resp.
ceil) digitization of the straight line segment join-
ing the two vertices. As a consequence, any strictly
convex or concave digital curve has a faithful polyg-
onal representation. Besides, if C1|n+1 is the open
digital curve associated to a convex closed digital
curve C, the polygonal line where all consecutive
vertices of the upper hull of C1|n+1 are linked by
straight line segments is the boundary of the Eu-
clidean convex hull of C due to theorem 5, provided
that C1 is a vertex of that convex hull.

If C is not convex, we can independently com-
pute the upper (resp. lower) hull of each maximal
convex (resp. concave) part, because definition 9
is suitable for open digital curves. Tricky issues
occur in inflection parts, which belong to both a
maximal convex part and a maximal concave part.
Though, such parts are MSs and are thus well arith-
metically defined. We will see below that the upper
and lower hull of two consecutive maximal convex
and concave parts can be linked by a straight line
that passes through the first upper (resp. lower)
and last lower (resp. upper) leaning point of the
MS of inflection.

Definition 10 (Faithful polygon) Let
Ci1|j1 , Ci2|j2 , . . . , CiΛ|jΛ be the sequence of the
maximal convex or concave parts of a digital curve
Ci|j. The faithful polygon (FP) of Ci|j is defined
by the concatenation of a subsequence of the
vertices of the upper or lower hull of the maximal
convex or concave parts of Ci|j:

�λ∈1,...,Λ(Ckλµ , Ckλµ+1
, . . . , Ckλν )

such that:

� If Ciλ|jλ is convex, Ckλµ , Ckλµ+1
, . . . , Ckλν are the

consecutive vertices of the upper hull of Ciλ|jλ
located between:

– Ckλµ = Ci if λ = 1 and Ckλµ =

L↑max(Siλ→) otherwise.

– Ckλν = Cj if λ = Λ and Ckλν =

L↑min(S←jλ) otherwise.

� If Ciλ|jλ is concave, Ckλµ , Ckλµ+1
, . . . , Ckλν are

the consecutive vertices of the lower hull of
Ciλ|jλ located between:

– Ckλµ = Ci if λ = 1 and Ckλµ =

L↓max(Siλ→) otherwise.

– Ckλν = Cj if λ = Λ and Ckλν =

L↓min(S←jλ) otherwise.

Fig. 20 illustrates the notations of definition 10.

L↑max(Siλ→) = Ckλµ
L↑min(S←jλ) = Ckλν

S←jλ = Siλ+1→

L↓max(Siλ→) = Ckλ+1
µ

L↓min(S←jλ−1) = Ckλ−1
ν

Siλ→ = S←jλ−1

Figure 20: Illustration of definition 10

Theorem 6 The FP of any digital curve Ci|j is a
faithful polygonal representation.

Proof

The first requirement of definition 9 is obviously
met. Moreover, the second and third require-
ments are independently met for all sequences
Ckλµ , Ckλµ+1

, . . . , Ckλν , λ ∈ 1, . . . ,Λ. It remains to

show that the FP of Ci|j respects its convex and
concave parts after the concatenation (i) and that
for all λ ∈ 1, . . . ,Λ − 1, Ckλν |kλ+1

µ
can be retrieved

from Ckλν and Ckλ+1
µ

, (ii).

Let us assume that Ciλ|jλ is a maximal convex
part and Ciλ+1|jλ+1 is the maximal concave part
that follows for some λ ∈ 1, . . . ,Λ−1. The converse
case is similar. Moreover, let us denote by S the MS
of inflection Ciλ+1|jλ .

(i) Due to theorem 4, the first and last upper
leaning points of Ciλ+1|jλ are vertices of the upper
hull of Ciλ|jλ whereas the first and last lower lean-
ing points of Ciλ+1|jλ are vertices of the lower hull
of Ciλ+1|jλ+1 .

Due to lemma 3, ρ(Ckλν−1
Ckλν ) > ρ(u(S)) and

by transitivity ρ(Ckλν−1
Ckλν ) > ρ(CkλνCkλ+1

µ
). Simi-

larly, ρ(CkλνCkλ+1
µ

) > ρ(Ckλ+1
µ

Ckλ+1
µ+1

).

As a result, Ckλµ , . . . , Ckλν , Ckλ+1
µ

form a polygonal

line whose edges are decreasing and that is included
in the convex part Ciλ|jλ and Ckλν , Ckλ+1

µ
, . . . , Ckλ+1

ν

form a polygonal line whose edges are increasing
and that is included in the concave part Ciλ+1|jλ+1 .
The third requirement of definition 9 is thus met.

(ii) For all λ ∈ 1, . . . ,Λ and for all δ ∈ µ, . . . , ν −
1, Ckλδ |kλδ+1

is easily retrieved from Ckλδ and Ckλδ+1
,

because Ckλδ |kλδ+1
is a upper digital edge in convex

parts and a lower digital edge in concave parts.
However, retrieving Ckλν |kλ+1

µ
from Ckλν and Ckλ+1

µ

for all λ ∈ 1, . . . ,Λ − 1 is more tricky because
Ckλν |kλ+1

µ
is neither a upper digital edge nor a lower

digital edge.
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For sake of clarity, let us rename Ckλν and Ckλ+1
µ

into Cp and Cq. Let us consider without loss of
generality that [CpCq] is in the first quadrant, i.e.
x(Cq)−x(Cp) and y(Cq)− y(Cp) are positive. Due
to definition 10 and by hypothesis, Cp and Cq are
respectively the first upper and the last lower lean-
ing points of the same MS, denoted here by S. Let
L be the image of Cq after a translation by the
vector s (−1, 1) (see fig. 21).

Cp

Cq

L

Figure 21: Illustration of the proof of theorem 6:
Cp (resp. Cq) is the first upper (resp. last lower)
leaning point of the MS of inflection S (in red). The
part Cp|q−1 is the floor digitization of the straight
line segment (dashed) joining Cp and L (L ex-
cluded), where L is derived from Cq.

The remainder of Cq with respect to Cp|q−1 is
either equal to −1 if Cq is the only lower leaning
point of S or equal to 0 otherwise (table 1, column
D). Due to property 1, r(Cp|q−1, L)− r(Cp|q−1, Cq)
is equal to det(u(Cp|q−1), s), which is equal to
‖u(Cp|q−1)‖1. The remainder of L with respect
to Cp|q−1 is thus either equal to ‖u(Cp|q−1)‖1 or
‖u(Cp|q−1)‖1−1. From table 1, column B, we know
that Cp|q−1 ∪ L is a DSS and even more precisely
a upper digital edge, because Cp is the first upper
leaning point of Cp|q−1.

Therefore Cp|q can be retrieved from Cp and Cq:
Cp|q−1 is indeed the floor digitization of the straight
line segment joining Cp and L, but without L. It
remains to add Cq to Cp|q−1 to end the drawing of
Cp|q.

Algorithm 3 computes the FP of a digital curve
Ci|j . Algorithm 1 and 2 have been merged so that
the vertices of the upper hull are retrieved in the
convex parts while the vertices of the lower hull
are retrieved in the concave parts. The outcome
of algorithm 3 applied on the wave-shaped digital
curve of fig. 8 is shown in fig. 22.

Figure 22: FP of a digital curve in red

Algorithm 3: Faithful polygon of a convex digital
curve

Input: a digital curve Ci|j
Output: The list L of the vertices of the FP

of Ci|j
L ← ∅;Lu ← ∅;Ll ← ∅ ; /* vertices of the FP */1

k ← i ; /* beginning of the current segment */2

l← i+ 1 ; /* end of the current segment */3

/* initialization */

L ← Ck;4

while l ≤ j and Ck|l is a DSS do5

if L↑min(Ck|l) 6= L↑min(Ck|l−1) then6

Lu ← Lu +L↑min(Ck|l) ; /* store this point */7

if L↓min(Ck|l) 6= L↓min(Ck|l−1) then8

Ll ← Ll + L↓min(Ck|l) ; /* store this point */9

l← l + 1 ; /* add a point to the front */10

if l ≤ j then11

if r(Ck|l−1, Cl) < −1 then12

γ ←↑;L ← Lu ; /* convex part */13

else14

γ ←↓;L ← Ll ; /* concave part */15

/* body */

while l ≤ j do16

/* store the last leaning point if the first and last

leaning points of the MS are not confounded */

if Lγmin(Ck|l−1) 6= Lγmax(Ck|l−1) then17

L ← L+ Lγmax(Ck|l−1);18

while Ck|l is not a DSS do19

k ← k + 1 ; /* remove a point from the back */20

if Lγmax(Ck|l−1) 6= Lγmax(Ck−1|l−1) then21

L ← L+ Lγmax(Ck|l−1) ; /* store */22

/* remove the last leaning point if the first and last

leaning points of the DSS are not confounded */

if Lγmin(Ck|l−1) 6= Lγmax(Ck|l−1) then23

L ← L− Lγmax(Ck|l−1);24

while l ≤ j and Ck|l is a DSS do25

l← l + 1 ; /* add a point to the front */26

if Lγmin(Ck|l) 6= Lγmin(Ck|l−1) then27

L ← L+ Lγmin(Ck|l) ; /* store this point28

*/

if l ≤ j then29

if γ =↑ and r(Ck|l−1, Cl) ≥ ‖u(Ck|l−1)‖130

then
γ ←↓ ; /* from convex to concave */31

else if γ =↓ and r(Ck|l−1, Cl) < −1 then32

γ ←↑ ; /* from concave to convex */33

/* end */

while Lγmax(Ck|l−1) 6= Cj do34

k ← k + 1 ; /* remove a point from the back */35

if Lγmax(Ck|l−1) 6= Lγmax(Ck−1|l−1) then36

L ← L+Lγmax(Ck|l−1) ; /* store this point */37

return L;38
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Note that a digital curve always admits a FP.
However, an arbitrary polygon is generally not the
FP of a digital curve. Indeed, the FP of a digital
curve has angles lying in a small range: [−π2 ; π2 ]\0.

Characterizing the FP of a digital curve requires
the introduction of the function quadrant, which
returns true if an edge e lies in a given quadrant
and false otherwise:

Definition 11 (quadrant) Let us denote by q the
function q : Z2, {1, 2, 3, 4} → {true, false} defined
by:

� q(e, 1) = true if x(e) ≥ 0 and y(e) ≥ 0 and
false otherwise.

� q(e, 2) = true if x(e) ≥ 0 and y(e) ≤ 0 and
false otherwise.

� q(e, 3) = true if x(e) ≤ 0 and y(e) ≤ 0 and
false otherwise.

� q(e, 4) = true if x(e) ≤ 0 and y(e) ≥ 0 and
false otherwise.

Proposition 1 Any two consecutive edges e and
e′ of the FP of a digital curve C lie in the same
quadrant, i.e. q(e, x) and q(e

′
, x) are true for some

x ∈ {1, 2, 3, 4}.

Proof

Let us assume without loss of generality that e and
e′ lie in a convex part, i.e. ρ(e) > ρ(e

′
). Moreover,

let us assume without loss of generality that q(e
, 1) is true. By hypothesis, q(e

′
, 2) cannot be true

and we will show below that C cannot be simply
4-connected if q(e

′
, 3) is true or if q(e

′
, 4) is true.

� If q(e
′
, 3) is true, the first two steps of the digi-

tization of e
′

are (−1, 0) and (0,−1), while the
last two steps of the digitization of e are (1, 0)
and (0, 1).

� If q(e
′
, 4) is true, the first step of the digitiza-

tion of e
′

is (0,−1), while the last step of the
digitization of e is (0, 1).

In the two above cases, C crosses twice the same
point and is thus not simply connected. By contra-
diction, q(e

′
, 1) must be true, which concludes the

proof.

We will use definition 11 and proposition 1 in the
following subsection in order to define the minimum
perimeter polygon of a dilatation of C from the FP
of C.

5.3 Minimum Perimeter Polygon

Let us consider a closed digital curve C and let
P(C) be the FP of C. Let the sequence (pk ∈
Z2)k=1...m be the vertices of P(C). The indices
are assumed to be taken modulo m, the number of
vertices.

Let C� be the dilatation of C by the closed unit
square centred on (0, 0), i.e. C� = C ⊕ [− 1

2 ,
1
2 ] ×

[− 1
2 ,

1
2 ]. Let us denote by C�

k the closed unit square

centred on Ck and C�
i|j the successive squares from

C�
i to C�

j . Since Ci|j is 4-connected, C�
i|j is edge-

connected, i.e. for all k ∈ i, . . . , j−1, C�
k and C�

k+1

share exactly one edge.

Definition 12 (MPP) Let C be a closed digital
curve and C� its dilatation by the centred unit
square. Let S be the set of planar curves that go
through C�, i.e. that completely lie in C� and in-
tersect each square C�

k for all k ∈ 1, . . . , n. A min-
imum perimeter polygon (MPP) of C� is a planar
curve P? ∈ S such that:

P? = arg min
P∈S

Perimeter(P)

The equation of definition 12 has been proven
to have a unique solution that is a piecewise linear
curve [36]. However, as noted in [37], there is in-
finitely many polygons having the same perimeter
if their vertices are allowed to be collinear. That’s
why we use the phrase “a MPP” instead of “the
MPP”, which is the minimum perimeter polygon
having no collinear vertices.

The goal of this section is to show that the image
of the FP of C after a simple transformation called
φ-transform, is a MPP of C�. The following defi-
nition is based on definition 11 about the quadrant
of an edge and proposition 1:

Definition 13 (φ-transform) Let us denote by φ
the application that maps any FP of C whose ver-
tices are given by the sequence (pk)k=1...m into a
polygon of the half-integer plane (Z + 1

2 )× (Z + 1
2 )

whose vertices are given by the sequence (pk+ vk
)k=1...m with, for all k ∈ 1, . . . ,m:

� vk= ( 1
2 ,− 1

2 ) if ρ(pk−1pk) > ρ(pkpk+1),
q(pk−1pk, 1) and q(pkpk+1, 1) are true or if
ρ(pk−1pk) < ρ(pkpk+1), q(pk−1pk, 3) and
q(pkpk+1, 3) are true.

� vk= (− 1
2 ,− 1

2 ) if ρ(pk−1pk) > ρ(pkpk+1),
q(pk−1pk, 2) and q(pkpk+1, 2) are true or if
ρ(pk−1pk) < ρ(pkpk+1), q(pk−1pk, 4) and
q(pkpk+1, 4) are true.

� vk= (− 1
2 ,

1
2 ) if ρ(pk−1pk) > ρ(pkpk+1),

q(pk−1pk, 3) and q(pkpk+1, 3) are true or if
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ρ(pk−1pk) < ρ(pkpk+1), q(pk−1pk, 1) and
q(pkpk+1, 1) are true.

� vk= ( 1
2 ,

1
2 ) if ρ(pk−1pk) > ρ(pkpk+1), q(pk−1pk

, 4) and q(pkpk+1, 4) are true or if ρ(pk−1pk
) < ρ(pkpk+1, 2), q(pk−1pk) and q(pkpk+1, 2)
are true.

In order to show that φ(P(C)) is a MPP of C�,
we give below the points through which a planar
curve has to pass in order to be a MPP of C�.
Theorem 7 looks like theorem 4:

Theorem 7 Let Ck|l be a DSS strictly included
in a convex (resp. concave) digital curve Ci|j
and assumed to be without loss of generality in
the first quadrant. If r(Ck|l, Ck−1) ≤ −1 (resp.
r(Ck|l, Ck−1) ≥ ‖u(Ck|l)‖1) and r(Ck|l, Cl+1) ≤ −1
(resp. r(Ck|l, Cl+1) ≥ ‖u(Ck|l)‖1), then the im-
ages of the first and last upper (resp. lower) lean-
ing points of Ck|l after a translation by the vector

( 1
2 ,− 1

2 ) (resp. (− 1
2 ,

1
2 )) are vertices of a MPP of

C�.

Proof

We will assume that Ci|j is convex, the other case
being similar. Moreover, we will focus on the first
upper leaning point of Ck|l because similar results
may be derived for the last upper leaning point.

Let B, E and L be respectively the images of
Ck−1, Cl+1 and L↑min(Ck|l) after a translation by

the vector ( 1
2 ,− 1

2 ). We will use below parametrized
translations defined as follows: given a real number
of the range [0, 1] denoted by λ, Pλ is the image
of P after a translation by the vector (−λ, λ). We
have of course P = P0.

Let D be the straight line of slope u(Ck|l) and
passing through L. For all λ ∈]0, 1], Lλ is obviously
located strictly above D.

On the other hand, due to property 1,
det(u(Ck|l), LB) and det(u(Ck|l), LE) are less than
or equal to −‖u(Ck|l)‖1, because r(Ck|l, Ck−1) and
r(Ck|l, Cl+1) are less than or equal to −1 by hy-
pothesis. Applying property 1 again, we get that
det(u(Ck|l), LBλ) and det(u(Ck|l), LEλ) are less
than or equal to (λ − 1).‖u(Ck|l)‖1 and thus less
than or equal to 0 for all λ ∈ [0, 1]. In other
words, Bλ and Eλ are located on or below D for
all λ ∈ [0, 1].

Let us now consider the planar curves that start
from Bλ for some λ ∈ [0, 1], end at Eλ for some
λ ∈ [0, 1], go through C�

k−1|l+1 by passing through

Lλ for some λ ∈]0, 1] (but not through L = L0).
One of them is depicted fig. 23.

Such curves necessarily cross D at least once be-
fore and after L because Bλ and Eλ are located on

B

L

E

D

Figure 23: Illustration of the proof of theorem 7 :
the dilatation of the DSS Ck|l is depicted in gray,
and the positions Bλ, Eλ and Lλ for all λ ∈ [0, 1]
are depicted with dotted segments. Note that Bλ
and Eλ are below the line D while Lλ is above.
Any planar curves (like the one depicted in purple)
that go through C�

k−1|l+1 by passing through Lλ
for some λ ∈]0, 1] must cross D at least twice and
can thus be shorten. The shortest curve that go
through C�

k−1|l+1 must therefore pass through L =
L0.

or below D for all λ ∈ [0, 1] and Lλ is strictly lo-
cated above D for all λ ∈]0, 1]. Let us denote by
I1 and I2 the nearest intersection points before and
after L. Cutting the curves at I1 and I2 and recon-
necting them by the straight segment [I1I2] leads to
valid curves of smaller length. Therefore, the short-
est path that starts from Bλ for some λ ∈ [0, 1],
ends at Eλ for some λ ∈ [0, 1] and goes through
C�
k−1|l+1 cannot pass through Lλ for all λ ∈]0, 1]

and must pass through L = L0, which means that
L is a vertex of a MPP of C�.

Theorem 7 shows that in the first quadrant the
first and last upper (resp. lower) leaning points
of Ck|l translated by ( 1

2 ,− 1
2 ) (resp. (− 1

2 ,
1
2 )) are

vertices of a MPP of C�. In the second, third
and fourth quadrant, it can be similarly shown
that these points are vertices of a MPP of C�

when translated respectively by (− 1
2 ,− 1

2 ) (resp.
( 1

2 ,
1
2 )), (− 1

2 ,
1
2 ) (resp. ( 1

2 ,− 1
2 )) and (− 1

2 ,− 1
2 )

(resp. ( 1
2 ,

1
2 )). Therefore, due to theorems 4 and 7,

definitions 10 and 13, each vertex of φ(P(C)) is
also a vertex of a MPP of C�. Moreover, the
straight segment joining any two consecutive ver-
tices of φ(P(C)) is the shortest path going through
C� and joining the two vertices, which proves, with
theorem 7, the following theorem:

Theorem 8 Let C be a closed digital curve and
C� its dilatation by the centred unit square. The
φ-transform of the FP of C is a MPP of C�.

A MPP of C� is thus given by the φ-transform
of the FP of C, which is computed by algorithm 3
in linear-time with integer-only computations. The
φ-transform of the FP of fig. 22 is shown in fig. 24.

Several other algorithms have been proposed, but
only a few ones have been designed to take profit
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Figure 24: MPP (in red) of the dilatation of a dig-
ital curve by the centered unit square (in blue)

of the specificity of the digital curves. One of
them [38] does not seem to compute a MPP in all
cases as noticed in [15, 39]. Recently, Provençal
and Lachaud [15] have independently proposed an
arithmetic and a combinatorial algorithm.

The arithmetic one first decomposes the digital
curve into convex and concave parts by the means
of the slope of the MSs (definition 5) and next de-
composes each convex or concave part in quadrant
words, i.e. open digital curves having only two
kinds of steps. For each piece of digital curve, their
lower or upper convex hull is computed using [40].
A MPP is derived from the union of these convex
hulls. The combinatorial algorithm is an on-line
way of computing the same polygon. However, the
authors does not explain why the partitioning of
the digital curve into quadrant words makes sens.

Any partitioning is actually valid if and only if
each part begins and ends at a vertex of a MPP. Our
previous results prove indeed that each maximal
quadrant words begins and ends at a vertex of the
FP, whose φ-transform is a vertex of a MPP.

Let us consider the intersection Ck′|l between two
consecutive quadrant words Ck|l and Ck′|l′ in a con-
vex part of C. The part Ck′|l is also the inter-
section between the last MS of the first quadrant
word S←l and the first MS of the second quadrant
word Sk′→ (fig. 25.a) and as a consequence: (i) the
first and last upper leaning points of Ck|l are its
first and last points, Ck′ and Cl, (ii) due to corol-
lary 1, the remainder of Ck′−1 and Cl+1 with re-
spect to Ck′|l is equal to −1. Due to theorems 4
and 7, the φ-transform of Ck′ and Cl are thus two
consecutive vertices of a MPP of C� (fig. 25.b),
which proves the correctiveness of the algorithms
proposed in [15].

The perimeter of a MPP of C� is known to be a
good estimator of the perimeter of C [38, 41, 26, 36]
and has been recently used as the internal energy
of a digital deformable model [39].

6 Conclusion

The local convexity properties of digital curves have
been studied in this paper.

We have arithmetically characterized the small-

−1 −1

Ck

Ck′ Cl

Cl′

(a)

Ck

Ck′ Cl

Cl′

(b)

Figure 25: In (a), the last MS of the first quadrant
word Ck|l and the first MS of the second quadrant
word Ck′|l′ are depicted by a red bounding box.
Notice that the first and last point of their common
part Ck′|l are also its fist and last upper leaning
points and that the remainder of Ck′−1 and Cl+1

with respect to Ck′|l is equal to −1. In (b), the φ-
transform of Ck′ and Cl are two consecutive vertices
of a MPP of C� due to theorems 4 and 7.

est digital pattern required for checking convexity
in section 3 (theorem 2), which answers to a ques-
tion raised by Eckhardt [16]. The smallest digital
pattern required for checking convexity is actually
given by a maximal segment (MS), plus at least one
of the two points located just before and after this
segment.

Moreover, we went further and have arithmeti-
cally characterized the smallest digital pattern that
contains a vertex of the upper (resp. lower) hull of
a given convex (resp. concave) digital curve in sec-
tion 4 (theorem 4). In convex digital curves, such
a digital pattern is actually a digital straight seg-
ment bounded by two points whose remainder is
less than or equal to −1.

These theoretical results lead to online and
linear-time algorithms (algorithms 1, 2 and 3) that
only use well-known routines: adding a point to the
front of a DSS [30] and removing a point from the
back of a DSS [18]. The proposed algorithms have
been implemented in C++ and the code is avail-
able on the web site of the LIRIS lab1. Fig. 8, 22
and 24 are the outputs of the program. They are
useful for polygonal representations as shown in
section 5: computation of the convex hull of con-
vex digital curves, computation of a faithful poly-
gon (FP) whose existence was another question
raised by Eckhardt [16] and computation of the
well-known minimum-perimeter polygon (MPP).

The FP and the MPP appear to be complemen-
tary to each other. The FP is reversible and exactly
reflects the convex and concave parts of the digital
curve, whereas the MPP minimizes the number of
inflection points required to represent the digital
curve and is known to provide good estimators of

1http://liris.cnrs.fr/m2disco/index en.html?softwares
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tangent and length.
All the results derived in this paper are based on

arithmetics and properties of determinant calculus
(see for instance property 1), but recent works show
that similar results can be obtained with tools com-
ing from combinatorics on words [42, 15]. It turns
out that Christoffel words of the chain code of a
digital curve corresponds to digital edges. Also, the
factorization of the chain code of a convex digital
curve into Lyndon words corresponds to its upper
hull. This suggests to study relationships between
concepts coming from digital geometry and combi-
natorics on words, which will benefit to both areas.

Eventually, note that the parts of the digital
curve highlighted by our algorithms does not re-
flect the visual parts of the original shape if the
resolution is to high with respect to the scale of its
main features or if some stochastic noise is intro-
duced in the digitization. Several ways of copying
with this problem can be followed while keeping an
arithmetic approach that leads to fast algorithms
with integer-only computations: (i) find a deforma-
tion process of the digital curve so that it sticks to
the expected shape, like in digital deformable mod-
els [39], (ii) find a discrete simplification process of
the digital curve in the manner of [1] or (iii) work
on sub-sampled versions of the initial digital curve
as done in [43]. This work and its perspectives lead
to think that digital convexity will help to design
an efficient and accurate method dedicated to the
extraction of visual parts.

References
[1] L. J. Latecki and R. Lakämper, “Convexity rule for

shape decomposition based on discrete contour evo-
lution,” Computer Vision and Image Understanding,
vol. 73, no. 3, pp. 441–454, 1999.

[2] F. Mokhtarian and A. Mackworth, “A theory of multi-
scale, curvature-based shape representation for pla-
nar curves,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 14, no. 8, pp. 789–805, 1992.

[3] J. Sklansky, “Recognition of convex blobs,” Pattern
Recognition, vol. 2, no. 1, pp. 3–10, 1970.

[4] C. E. Kim, “Digital convexity, straightness, and convex
polygons,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 4, no. 6, pp. 618–626, 1982.

[5] C. E. Kim and A. Rosenfeld, “Digital straightness and
convexity,” in Thirteenth annual ACM symposium on
Theory of computing, 1981, pp. 80–89.

[6] C. E. Kim, “On the cellular convexity of complexes,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 3, no. 6,
pp. 617–625, 1981.

[7] C. E. Kim and A. Rosenfeld, “Digital straight lines
and convexity of digital regions,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 4, no. 2, pp. 149–153, 1982.

[8] C. E. Kim and J. Sklansky, “Digital and cellular convex-
ity,” Pattern Recognition, vol. 15, no. 5, pp. 359–367,
1982.

[9] J. Chassery, “Discrete convexity: Definition,
parametrization, and compatibility with continu-
ous convexity,” Computer Vision Graphics and Image
Processing, vol. 21, no. 3, pp. 326–344, 1983.

[10] C. Ronse, “Definition of convexity and convex hulls in
digital images,” Bulletin of the Belgian Mathematical
Society, vol. 37, no. 2, pp. 71–85, 1985.

[11] U. Eckhardt, “Digital lines and digital convexity,” in
Digital and image geometry: advanced lectures, ser.
Lecture Notes in Computer Science. Springer, 2001,
vol. 2243, pp. 209–228.

[12] R. Klette and A. Rosenfeld, “Digital straitghness – a
review,” Discrete Applied Mathematics, vol. 139, pp.
197–230, 2004.

[13] H. Dorksen-Reiter and I. Debled-Rennesson, “Convex
and concave parts of digital curves,” in Geometric
Properties from Incomplete Data, ser. Computational
Imaging and Vision. Springer, 2006, vol. 31, pp. 145–
159.

[14] F. Feschet, “Canonical representations of discrete
curves,” Pattern Analysis and Applications, vol. 8,
no. 1, pp. 84–94, 2005.

[15] X. Provencal and J.-O. Lachaud, “Two linear-time al-
gorithms for computing the minimum length polygon of
a digital contour,” in 15-th IAPR International Con-
ference on Discrete Geometry for Computer Imagery,
ser. Lecture Notes on Computer Science, vol. 5810.
Springer, 2009, pp. 104–117.

[16] U. Eckhardt and H. Dorksen-Reiter, “Polygonal repre-
sentations of digital sets,” Algorithmica, vol. 38, no. 1,
pp. 5–23, 2004.

[17] I. Debled-Rennesson, J.-L. Rémy, and J. Rouyer-Degli,
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