
Combining configuration and query rewriting for
Web service composition ?

Amin Mesmoudi, Michaël Mrissa, and Mohand-Säıd Hacid

Université de Lyon
Université Lyon 1

LIRIS CNRS UMR 5205
F-69622, France

amin.mesmoudi@insa-lyon.fr,
{michael.mrissa,mohand-said.hacid}@liris.cnrs.fr

Abstract. In this paper, we combine query rewriting and configuration
to provide a new semantic-based approach to service composition, fea-
turing a two-stage process that relies on 1) a simple formalization of
semantic Web services that supports query rewriting, and 2) a clear sep-
aration between constraints and service/domain knowledge description.
Given a user query and a set of service descriptions, query rewriting is
used to decompose the query into sets of services that implement the
required functionalities (discovery phase). At the orchestration phase,
configuration is used to capture dependencies between services, and to
generate a set of composite Web services ranked according to user prefer-
ences, while maintaining validity with respect to business rules organized
into different levels (composition, service and user). We provide a formal
framework and a complete implementation of the proposed approach, to-
gether with experiments by considering services from different domains.

Keywords:semantic Web services, composition, query rewriting, config-
uration

1 Introduction

Web services provide diverse functionalities that range from online payment
to weather forecast, flight reservation, or simply data retrieval. Composition
consists in combining several Web services into a composite one in order to
provide the user with advanced, value-added functionalities (travel planning,
online shopping, etc.). A composition involves several steps, which consist in:
(1) decomposing a high-level user goal into sub-goals, (2) finding Web services
that implement the functionalities of each sub-goal, and (3) orchestrating the
interactions between composed Web services in order to achieve the high-level
goal of the composition and to fulfill user’s requirements.

? The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (S-Cube).

Several techniques exist to compose semantic Web services using AI plan-
ning, mainly based on planning as model checking, situation calculus and HTN
planning (see, e.g., [6,19] for surveys). However, those techniques mainly focus
on functional properties of services when building the execution plan, without
investigating the complex dependencies that come into play between services,
and do not offer a clear separation between discovery and orchestration tasks.

In our approach, we propose to achieve composition as a two-step task by
resorting to discovery and orchestration. Discovery consists in finding individ-
ual Web services that implement functionalities required by sub-tasks extracted
from the user’s goal. Service discovery is mainly based on query rewriting. Or-
chestration consists in building an ordering for Web services invocation. This
task falls into two steps: (1) retrieve the dependencies between Web services and
(2) generate the execution plan. We perform the orchestration task by means of
configuration techniques.

This paper is organized as follows: in Sect. 2, we provide some background
knowledge on query rewriting and configuration. We also summarize the limita-
tions of current approaches regarding Web service composition and we highlight
the need for a combination of configuration and query rewriting. In Sect. 3 we
develop the theoretical part of our proposal, and we detail our implementation
in Sect. 4. Sect. 5 discusses the advantages and limitations of our approach, and
Sect. 6 gives some insights on future work.

2 Background knowledge and Related Work

The approach described in this paper relies on a combination of query rewriting
and configuration for service discovery and composition. In this section, we
explore related works using these techniques for Web service composition. We
also highlight the originality of the approach we propose with respect to the
state of the art.

2.1 Semantic Web service composition

With the advent of the Semantic Web, Web services are annotated with seman-
tic descriptions linked to ontologies, which makes their semantics explicit and
machine-understandable and allows advanced reasoning about their capabilities,
inputs/outputs, etc. The most known Web service ontologies are OWL-S [15] and
WSMO [2], which both provide a general ontology for service description. Then,
the Web service composition problem comes to the semantic level, which offers
new opportunities for the automation of composition, using advanced techniques
such as planning (see, e.g., [7,11,12,13,21,25]).

Some works such as [18] only deals with the discovery aspect of composition,
without taking care about control and data dependencies between services. In
our approach we consider these two steps of the composition.

In Lecué et al. [13], the authors propose an algorithm to compose semantic
Web services with respect to functional constraints (represented as semantic

links between services). In our work, in addition to functional constraints, we
support other types of constraints (referred to as composition, service, and user
constraints).

In the other works, the dependencies between services have to be part of the
query and are not handled by the composition approach. For example, Sirin et
al. [21] define the relations between services in the goal of the composition, and
generate an order of execution of the atomic processes that constitute the new
composite service at the end of the planning step. In our case, we propose algo-
rithms to automatically detect (i.e. without user intervention) the dependencies
between services by relying on both business rules and functional dependencies
(see Sect. 3.4 for details).

Another limitation of the aforementioned works is the tight coupling with a
particular description language (i.e., OWL-S or WSMO) to describe and reason
about services. In our proposal, we separate the abstract and concrete levels of
service description and we remain independent from the underlying semantic
Web service (SWS) description formats. Instead, we describe service function-
alities in a domain ontology. Many concrete services may implement the same
abstract functionality, keeping the reasoning task at the abstract level. A similar
work is proposed in Dong et al. [7] who extend the OWL-S profile with abstract
descriptions of services, that are hierarchically organized. In the following, we
review the main works related to the techniques we rely on (i.e. query rewriting
and configuration) in order to discover and orchestrate Web services.

2.2 Query Rewriting

Query rewriting (using views) consists in reformulating a query according to
views that are already available from the database. Query rewriting techniques
have been widely explored in the database community. A survey of the main
query rewriting algorithms is provided in [9].

With respect to the domain of Web service composition, query rewriting
techniques have also been used in [14,22,4]. In such cases, Web services are
accessed via Datalog queries. Lu et al. [14] provide a framework for answering
queries with a conjunctive plan that includes inputs and outputs of participating
Web services. In Thakkar et al. [22], a combination of inverse rules algorithm and
tuple-level filtering allows building the composition. However, in those works,
Web services are matched without taking into account the semantic information
contained in their descriptions. In Bao et al. [4], a new algorithm is proposed
to construct a composite Web service i.e. generating the dependencies between
already selected services, but the discovery phase is missing and the authors
treat only functional constraints.

2.3 Configuration

Configuration has been part of the Artificial Intelligence (AI) field for a long
time. Some attempts to formalize configuration have been proposed in several

works (see, e.g., [5,8,10,16,17]). Configuration consists in finding sets of concrete
objects that satisfy the properties of a given model.

With respect to Web service composition, several techniques based on config-
uration have been proposed (see, e.g., [1,20]). Sheng et al. [20] use configuration
techniques to solve the composition problem. They rely on process templates and
use ECA (Event Condition Action) rules together with tuple spaces in order to
select services that match the process template. No template is required in our
work, the process is dynamically generated from service dependencies.

In Albert et al. [1], the authors use configuration to calculate the composition
goal, and from this goal they generate a valid workflow. So, configuration is
used in the discovery task. On the contrary, we use configuration techniques to
find relationships between services after the discovery task and we generate an
execution plan with such relationships. The use of configuration for discovery
is expensive in terms of complexity compared to query rewriting, as it requires
reasoning with objects, whereas query rewriting simply consists in decomposing
a query using propagation rules.

Additionally, in our case the size of the search space is bounded by the number
of leaf concepts in the ontology. In the work of Albert et al. [1], the search space
is the number of all valid services in the repository. Another limitation of this
work comes from the integration of different kinds of constraints in the goal of
composition i.e. there is no distinction between the different types of constraints.
In our work, we classify constraints into different levels (classified by types of
constraints). The user has not to specify such constraints in a query, they are
used during the composition process. Doing this way, the user concentrates on
the required functionalities rather than the way services should be combined.
Hence, the query language displays the declarativity propery.

Combining query rewriting and configuration allows separating several con-
cerns that come into play in the composition process. First, query rewriting
allows identifying inputs, outputs and service functionalities required in the
composition. Second, configuration enables the formalization of constraints at
different levels (domain level, composition level and service level). The goal of
our proposal is to improve the service discovery step with query rewriting and
to handle service orchestration with the help of configuration constraints. In the
following, we show the main advantages of our approach and illustrate it on a
typical scenario.

3 Contribution

3.1 Case study

To illustrate our proposal, we use a case study that consists of an online travel
reservation process. For instance, a user planning to travel to some country for
a determined amount of time needs to book a flight, to find an accommodation,
and to rent a car in order to visit some interesting places around. This example
relies on a domain ontology available at http://liris.cnrs.fr/~soc/doku.

php?id=transverse.

http://liris.cnrs.fr/~soc/doku.php?id=transverse
http://liris.cnrs.fr/~soc/doku.php?id=transverse

We model user requirements for a composition with a query Q specified as
a couple < M,P >, where M represents the Mandatory part of the query and
P represents the Preference part of the query, each part is specified as a triple
< I,O,C >. With regards to part M :

– I (for input) denotes the input data the user provides, which are handled as
constraints in the query,

– O (for output) denotes required information to be provided as a result of
the query,

– C denotes service categories representing functionalities that must be utilized
to answer the query.

In our example, I includes departure and return dates and locations, and O
includes details about flight, train or bus tickets, hotel, flat or B&B information
and type of vehicle and price and C includes transport, accommodation and
vehicle rental. According to our query representation and given some user input
I, the objective is to provide all the information required in O, by finding an
appropriate combination of Web services that only make use of the input I
specified in the query. P represents preferences on inputs(I), outputs(O) and
category of services(C). Details and an example about preferences are given in
Sect. 3.5.

3.2 Defining a WS description language

In this section, we define the kind of semantic Web services we consider. We also
give an informal introduction to the knowledge representation language we use.
We will reason on the abstract descriptions of services, and do not handle the
concrete part of services (binding).

Definition 1. A semantic Web services database OT describes the struc-
tural part of services, i.e. the categories of services used in the database.

Definition 2. A service S is composed of a set of input parameters (IS) and
a set of output parameters (OS).

In our case study, we assume the existence of three categories of Web services
in the application domain (e-tourism). Several instances of these Web service
categories belong to the semantic Web service database and could implement
these categories in different ways. For instance, hotel, flat, B&B and youth hos-
tel reservation services are subcategories of the Accommodation category (see
ontology at http://liris.cnrs.fr/~soc/doku.php?id=transverse).

In the following, we specify syntax and semantics of the language for describing
the constrained vocabulary that will be used to specify OT . Basically, axioms
of the form A v D are contained in OT . The elementary building blocks are
primitive concepts (ranged over by the letter A) and primitive roles (ranged

http://liris.cnrs.fr/~soc/doku.php?id=transverse

over by R). Intuitively, concepts describe sets of objects and thus correspond
to unary predicates while attributes describe relations and thus correspond to
binary predicates. Concepts (ranged over by D, E) are formed according to the
following syntax rule:

D,E −→ A | primitive concept
D u E | conjunction
∀R.D | universal quantification
∃R.D | existential quantification

P (f1, ..., fn) | predicate restriction

Axioms come in the form A v D. This axiom states that all instances of A
are instances of D. An ontology part of services OT consists of a set of axioms.

Given a fixed interpretation, each formula denotes a binary or unary relation
over the domain. Thus, we can immediately formulate the semantics of attributes
and concepts in terms of relations and sets without the detour through predicate
logic notation. An interpretation I = (∆I , ·I) consists of a set ∆I (the domain
of I) and a function ·I (the extension function of I) that maps every concept
to a subset of ∆I , every constant to an element of ∆I and every attribute to a
subset of ∆I × ∆I . Moreover, we assume that distinct constants have distinct
images (Unique Name Assumption). The interpretation function can then be
extended to arbitrary concepts as shown in Tab. 1.

Construct Set Semantics

(∀R.D)I {d1 ∈ ∆I | ∀d2.(d1, d2) ∈ RI ⇒ d2 ∈ DI}
(∃R.D)I {d1 ∈ ∆I | ∃d2.(d1, d2) ∈ RI ∧ d2 ∈ DI}

P (f1, . . . , fn)I {d ∈ ∆I | ∃d1, . . . , dn ∈ ∆I : fI
1 (d) = d1, . . . , f

I
n (d) = dn and

(d1, . . . , dn) ∈ PD}
(D u E)I DI ∩ EI

Table 1. Structural subsystem: semantics of the constructs

We say that two concepts C,D are equivalent iff CI = DI for every inter-
pretation I, i.e., equivalent concepts always describe the same sets.
We say that an interpretation I satisfies the axiom A v D if AI ⊆ DI . If OT
is a set of axioms, an interpretation I that satisfies all axioms in OT is called a
OT -interpretation. A concept D is OT -satisfiable if there is an OT -interpretation
I such that DI 6= ∅. We say that D is OT -subsumed by E (written D vOT E)
if DI ⊆ EI for every OT -interpretation I.

3.3 Query Rewriting

Each part (M and P) of the query Q is defined as a conjunction of terms. Each
term is a concept expressed in the query language L over the ontology OT .

We assume that L is a subset of the language used to describe OT and presented
in Sect. 3.2. In this section we focus on the Mandatory part of the query. The
Preference part is considered in Sect. 3.5.

We identify three types of concepts in the Mandatory part of a query: inputs,
outputs and service categories. Inputs have their values provided by the
user as query parameters. Outputs must be provided as an answer to the query
execution, and service categories represent functionalities to be selected. In this
section we use Q to refer to the Mandatory part of user query.

To make things simple, we define Qcat as the service category part of the
query and we will use QCons to denote the constraint part. Hence, in this con-
text query rewriting consists in finding Web services belonging to the relevant
categories (i.e. resolve the Qcat part of the query), and that satisfy the query
by: 1) providing the required output data, and 2) requiring overall no more data
than those provided as inputs (i.e. resolve the QCons part of the query). Let us
consider the following query expressing the needs for a travel:

Q = Transport u ∃HasInput.departureP lace u ∃HasInput.destinationP lace u
∃HasInput.departureDate u ∃HasOutput.transportPrice uAccommodation u

∃HasInput.checkoutDate u ∃HasOutput.accommodationPrice u
∃HasOutput.accommodationDescription u CarRental u ∃HasOutput.rentalPrice u
∃HasInput.retrievalDateu∃HasInput.returnDateu∃HasOutput.rentalDescription

The inputs specified in query Q are departureP lace, destinationP lace,
departureDate, checkoutDate, retrievalDate and returnDate. In our context,
we are at design time, and thus we are looking for Web services that once com-
posed will provide the required functionality. Hence, we do not specify the ac-
tual values to be sent to the resulting business process afterwards. According
to the query Q, a query could have values such as (Lyon, Paris, 12/06/2010,
18/06/2010) as input data. Accordingly, the outputs expected as a result to the
query are transportPrice, accommodationPrice, accommodationDescription,
rentalPrice, and rentalDescription. As shown in Tab. reftab:tableofsubsumption,
in our case study, we have the following information described in the ontology
OT (available at http://liris.cnrs.fr/~soc/doku.php?id=transverse).

Hotel v Accommodation P lane v Transport TouristCar v CarRental
BedBreakfast v Accommodation Train v Transport BusinessCar v CarRental

F lat v Accommodation Bus v Transport

Table 2. Hierarchical relations between service categories of the domain

In order to rewrite the query we rely on a modified version of the bucket
algorithm presented in [9]. The bucket algorithm allows to rewrite a user query
according to existing views that relate to available data sources. ”Both the query
and the sources are described by select-project-join queries that may include
atoms of predicates.. . . the main idea underlying the bucket algorithm is that

http://liris.cnrs.fr/~soc/doku.php?id=transverse

the number of query rewritings that need to be considered can be drastically re-
duced if we first consider each subgoal in the query in isolation, and determine
which views may be relevant to each subgoal” [9].

In order to rewrite a queryQ, the bucket algorithm starts by creating a bucket
for each subgoal containing the views that are relevant. Then, it considers the
conjunction of the different views in each bucket, and finally applies filtering
mechanisms in order to build the rewriting. The reader may refer to [9] for more
details.

We build our proposal on an analogy between the bucket algorithm and
the Web service composition problem. In our proposal, views correspond to
service categories, predicates to constraints and subgoals to concepts. Views in
the original bucket algorithm correspond to service categories in our context, and
they are associated with constraints related to the service. The constraints can be
expressed either directly in the query or taken from the ontology and added to the
query. For example, when a user specifies an Accommodation request, the query
rewriting consists in selecting the service categories subsumed by the concept
accommodation, and identifies in the bucket those satisfying the constraints of
the query.

Algorithm 1 Propagation rule

1: for all C in Q do
2: LC = {C}
3: for all S in LC do
4: for all D @ S in OT and D /∈ LC do
5: LC = LC ∪ {D}
6: end for
7: if ∃D @ S in OT then
8: LC = LC \ {S}
9: end if

10: end for
11: end for

The propagation rule given in Algorithm 1, where C,D and S are concepts
in the ontology such that D @ S is an element of the ontology is first applied.
We denote by LC the set of all the leaves (concrete services) that belong to the
category C. For example, for the category Transport, LC = {Plane, Train,Bus}.
We suppose that Qcat is not empty, which means that at least there is one C in
the query Q. Here are some explanation of Algorithm 1:

– Line 2: we initialize every LC with one category element C.
– Lines 3-10: we try to fill all LC ’s sets with concrete services,
– Lines 3-6: we add the subconcept D of a service S to LC if it is not yet in
LC ,

– Lines 7-9: we remove the service S from LC if this concept has at least one
sub-concept.

Then, we generate the bucket table as the Cartesian product of all LC gen-
erated from Algorithm 1. Let L =

⋃
C LC , let BC be the set of all possible

rewritings of Qcat, then BC =
∏

l∈L l
At the end of the process, several combinations of services will satisfy the

Qcat part of the query, which means that the selected services satisfy the query
in terms of functionality. Each Row of BC of Tab. 3 is a possible rewriting of
the query Q. Each cell of the first row denotes the service category mentioned in
the query. Cells of the next rows describe concrete services (together with their
inputs and outputs) that are subsumed by service categories of the query. Hence,
each row of table 3 contains a combination of Web services that fulfill the Qcat

part of the query. In the sequel, we use Qc
cat to denote the fact that the service

category c is an element of Qcat.

Transport Accommodation CarRental

Plane
u∃HasInput.departureP lace
u∃HasInput.destinationP lace ...

Hotel
u∃HasInput.checkinDate
u∃HasInput.checkoutDate ...

TouristCarRental
u∃HasOutput.rentalDescription
u∃HasOutput.rentalPrice ...

...

Table 3. Contents of the buckets

To each row of the table, we apply Algorithm 2. Its primary goal is to filter
invalid combinations of services that do not provide all the required output
parameters specified in Q. Its secondary goal is to identify inputs that services
require and that are not provided in Q (MI). We denote by D the concrete
services utilized to rewrite Q. For each service D, we define its inputs as Di

cons

and its outputs as Do
cons. We assume that all the outputs in the request are

missing and every time we find a service that provides an output which is in the
request, we remove it from the set of missing outputs denoted by MO. At the
end of processing of each line, if there are missing outputs, we delete this line
from the table because this set of services does not provide the required outputs.
Finally, we add one column to the BC table to represent MI.

3.4 Configuration

The configuration task consists in validating Web service composition with the
business constraints that usually govern application domains. Constraints in-
clude dependency relationships between Web service invocations, data and con-
trol flow constraints such as “CarRental can only be validated if the flight is
booked”, etc. Configuration constraints may prove some rewriting to be inef-
ficient for the needs of the composition, in such a case it is possible to select
another set of services that could satisfy the composition. We distinguish be-
tween two types of constraints: composition-level and service-level constraints.

Algorithm 2 I/O algorithm

1: for all row L in BC do
2: MI = ∅,MO = Qo

cons

3: for all service D in Ls do
4: MI = MI ∪ {Di

cons}\Qi
cons

5: MO = MO\{MO ∩Do
cons}

6: end for
7: if MO 6= ∅ then
8: some output is missing: invalid combination
9: remove the line from the table

10: else
11: record MI
12: end if
13: end for

Composition level constraints are relevant to the application domain and involve
several services. For example, “if both Flight and CarRental services are called
in the composition, then CarRental can only be validated if the flight is suc-
cessfully booked”. Accordingly, service-level constraints are relevant to a specific
service, for example “using the JapaneseHotel Web service implies using credit
card payment”.

Our use of configuration at a distinct stage from service discovery allows
1) decoupling business rules from generic facts in the domain knowledge rep-
resentation, thus facilitating reuse of the domain ontology and its business ex-
ploitation in diverse ways, and 2) identifying constraints related to the compo-
sition and homogeneously incorporating these constraints into the composition
in order to detect any inconsistencies.

Formal representation of composition constraints To represent the con-
straints involved in the configuration, we use three sets D, I, E such that:

– D represents a set of dependency relationships related to the domain of
composition, D ⊆ S × S, (s1, s2) ∈ D denotes that s1 must precede s2 in
the execution order.

– I represents a set of incompatibility relationships, I ⊆ S × S, (s1, s2) ∈ I
denotes that it is strictly forbidden to put s1 and s2 in the same composition.

– E represents a set of requirement relationships, E ⊆ S × S, (s1, s2) ∈ E
denotes that it is mandatory to find service s1 in a composition involving s2.

A calculus for configuration

The configuration task is defined as a deductive reasoning task using business
rules represented as constraints between services to provide a dependency graph
G that represents the dependencies between services that form the execution
plan of the composition. We define a dependency graph G as a tuple G = (V,R),

where V is a set of services involved in the composition, R ⊆ V × V , represents
a set of dependencies between services, (s1, s2) ∈ R denotes the fact that a
service s2 cannot be invoked before the end of execution of the service s1. The
goal specification in our configuration task is represented as a tuple (S,MI),
where S is a set of services to be composed and MI is a set of missing inputs
represented as a set of functional constraints. The following example represents
the configuration goal specification corresponding to the first row of our table of
buckets shown in table 3:

(S,MI) = ({Plane,Hotel, TouristCarRental}, {location, chekinDate})

Additionally, the dependency relationships for the e-tourism domain are :

D = { (Transport, CarRental), (Transport, Accommodation),
(Accommodation, CarRental) }

Here, we have three business rules for the e-tourism domain. The first one ex-
presses that if Transport and CarRental services are involved in the same compo-
sition thus CarRental depends on Transport (i.e. Transport precedes CarRental).
The second, if Transport and Accommodation services are involved in the same
composition thus Accommodation depends on Transport (i.e. Transport precedes
Accommodation), and finally, if Accommodation and CarRental services are in-
volved in the same composition thus CarRental depends on Accommodation (i.e.
Accommodation precedes CarRental).

Our inference rules work on a pair of sets C.G where C is the specification
of the goal and G is the solution of the configuration represented as a graph.
We start with the initial goal and the empty solution (C.(∅,∅)), and the algo-
rithm ends when no more inference rule can be applied. In order to simplify the
definition of rules we use the following notations (with (s, d) ∈ S × S):

– A simple dependency is denoted by (s, d)i where i ∈ (sicons ∩MI) and
∃o ∈ docons s.t. o v i.
This dependency reflects the relationships between service inputs and out-
puts.

– An induced dependency is denoted by D(s) = {(s, d)/ ∃d ∈ S ∪ V and
∃(x, y) ∈ D, s.t. s v x and d v y}. This set reflects the dependencies of a
service s deduced from the set D of dependencies of a domain.

– A path of indirect dependency is referred to by
Path(x, y) = {(x, x1), (x1, x2), ..., (xi−1, xi), (xi, y)} with x 6= x1 and xi 6= y
This set reflects an indirect dependency relationship between two services.

Now we present the rules used in order to solve our problem, in the following
Ŕ denotes the changed/new set of dependencies:

R1 (S ∪ {s},MI).(V,R) → (S,MI).(V ∪ {s}, Ŕ) with Ŕ = R ∪ DD
S∪V (s) and

DD
S∪V (s) is the set of induced dependencies related to the service s.

R2 (S,MI ∪ {i}).(V.R)→ (S,MI).(V, Ŕ) iff ∃{s1, s2} ⊆ V with (s1, s2)i
Ŕ = R if (s1, s2) ∈ R else Ŕ = R ∪ (s1, s2)

R3 (S,MI ∪ {i}).(V,R)→ (S,MI).(V,R) if ∃í ∈ Qi
cons with í v i

R4 (∅,MI).(V ∪ {x, y}, R)→ (∅,MI).(V́ , R)
V́ = V ∪ {x, y} iff @(s1, s2) ∈ I with (x v s1 and y v s2) or (x v s2 and
y v s1)
V́ = V ∪ {⊥} otherwise

R5 (∅,MI).(V ∪ {x, y}, R)→ (∅,MI).(V́ , R)
V́ = V ∪ {x} iff @(s1, s2) ∈ E,∃y ∈ V with (x v s1 and y v s2)
V́ = V ∪ {⊥} otherwise

R6 (∅,MI).(V,R ∪ Path(x, y) ∪ (x, y))→ (∅,MI).(V,R ∪ Path(x, y))
R7 (∅,MI).(V,R ∪ Path(x, x))→ (∅,MI).(V ∪ {⊥}, R)

Let us give some intuition regarding the interpretation of these rules:

– R1 simply expresses that each time we add a service to the graph of depen-
dencies, we must add all dependencies related to this service, these depen-
dencies must be related to another service in S.

– R2 reflects the creation of dependency relationships between services.
– R3 removes missing inputs provided from another part of the query.
– R4 detects incompatibilities between services.
– R5 controls the requirements of services.
– R6 detects deadlocks between services (cycles in the solution graph).
– R7 optimizes dependencies between services (removes useless dependencies).

The configuration task starts with V = ∅, R = ∅ and S = Ls, where Ls is a
set of services obtained from the row L of the bucket table. If the inference task
ends with MI = ∅, and ⊥ /∈ V we conclude that the composition is correct.
Otherwise, we delete the row L from the bucket table. If MI 6= ∅, there are
missing inputs that cannot be provided in the composition, and if ⊥ ∈ V, there
is an inconsistency between services. Let us illustrate our approach with the
example of the first row of Tab. 3, the previous example of the goal specification
and business rules of the e-tourism domain:

– Initial state:
(S,MI) = ({Plane,Hotel, TouristCarRental}, {location, chekinDate})

– Application of rule R1 to Plane, Hotel and TouristCarRental results in the
creation of new dependencies

– Application of R2 to chekinDate means that this missing input can be pro-
vided from another service of the same composition

– Application of R3 to location means that this missing input can be provided
from user query

– Application of R4 remove useless dependencies
– After firing these rules we obtain the following solution:

(S,MI) = (∅, ∅)
(V,R) = ({ Plane, Hotel, TouristCarRental},{ (Plane, Hotel), (Hotel,
TouristCarRental) })

The inference engine performs the selection and the application of rules while
keeping satisfied a complete priority order between rules using the transitive
function (4) which means that the right side has a higher priority than the left
side, as follows : R7 4 R6 4 R5 4 R4 4 R2 4 R3 4 R1

Execution Plan We can now use the result of the configuration to build the
execution plan P, where P is a triple 〈S0, O, SG〉, the initial state S0 represents a
state where no service is invoked yet, the SG is the goal state where all services
have been invoked, O is the order of service execution, described as follows:
first, we invoke services that have no dependency. We can identify these services
with X ∈ V such that ∃Y ∈ V and @(Y,X) ∈ R with (V,R) the configuration
result. Then, we invoke each service that has its precedence constraints fulfilled
(invocation of precedent services is over). The execution is completed when there
are no services to execute, in this case we are in state SG (goal).

3.5 User preferences and Ranking

Integrating user preferences in composition allows us to obtain ranked results.
Few works investigated the integration of user preferences in the composition
task [3,23]. In [3], the authors proposed the integration of non-functional pref-
erences (QoS) in the service selection task. They resort to Sohrabi et al. [23]
proposal to integrate user preferences in the composition of services with Golog
at the instance level.

In our work, we are interested in user preferences at the process level (such
as “FlightService is preferred to BusService”) and at the service input/output
level (such as “we prefer a service that accepts credit card payment” for input
preference, “we prefer a service that shows if a car has GPS” for output prefer-
ence). Once the configuration task achieved, we obtain several results that can
satisfy the part M of the query. Here we propose to rank these results according
to preferences expressed in part P of the query.

First, we define a “concept score” which is calculated for each concept in P
and represents the degree of relevance between a composition and one concept
in P . Next, a global score for the composition is calculated from individual
concept scores. Our technique is inspired from the computation of geographical
scores in [24]. We adapted this technique as it provides an interesting similarity
with our work. Indeed, the computation of geographical scores relies on two
measures: closeness and specificity. We noticed that the more specific a solution
is, the better ; and accordingly, we noticed that is is interesting to calculate the
closeness between concepts of the query and concepts of the composition in order
to evaluate its relevance. The experiments are in favor of this assumption.

Concept score A concept score represents the degree of relevance between a
concept in P and the composition result. It is characterized by the following two
elements:

Definition 3. (Closeness) Semantic distance between the part P of the query
and the concept.

Definition 4. (Specificity) A weight discounting term based on the semantic
extent of the concept.

The relevance S(c,R), between a composition R and a preference concept c
is calculated as follows:

S(c,R) = Closeness(c,R).Specificity(c) (1)

In the next equation, V i
cons and V o

cons represent set of inputs and outputs
respectively related to the services in V .

Closeness(c,R) =

1 ⇐⇒ c ∈ V ∪ V i

cons ∪ V o
cons with R = (V, Ŕ)

0.8 ⇐⇒ ∃y, y @ c such that y ∈ V ∪ V i
cons ∪ V o

cons with R = (V, Ŕ)

0.2 ⇐⇒ ∃y, c @ y such that y ∈ V ∪ V i
cons ∪ V o

cons with R = (V, Ŕ)
0 otherwise

(2)

Specificity(c) = 1/extent(c) (3)

The function extent(c) is the semantic extent implied by the concept c. It is
related to the hierarchical position of the concept in the ontology, and intuitively
measures the granularity of a domain concept. For example, let us take X v Y
and Y v Z, if X has no sub-concepts, the extent value of X is 1, for Y the
extent value is 2 and for Z the extent value is 3.

Definition 5. Composition score

We define the composition score S(R,P) for a given composition result R
using P as follows:

S(R,P) =

∑
c∈P S(c,R)

|P |
(4)

After computing all the composition scores of candidate compositions we
apply a descending sort and obtain the final (ranked) results.

3.6 Selecting instances of Web services

Once the services have been configured, there is a need to select concrete in-
stances of Web services, which are identified with their description files in the
Web service repository. These description files are written in some SWS descrip-
tion language like OWL-S or WSMO, but more importantly they refer to terms
of OT in order to explicitly describe in a machine-interpretable way the function-
ality the corresponding Web services provide. Since several compositions could
be proposed, we select one of them, we look into the repository for Web services
that match the functionalities, and in case no services can be found, we select
another composition until a valid combination is found or until there are no more
available combinations, in which case no solution can be found.

4 Implementation and experiments

In this section we describe the implementation of a prototype that automates the
composition of semantic Web services according to the design process described
in the paper. We also provide experiments.

In this section, we show the underlying architecture and how we implemented
it. We discuss the tools used and some scenarios on the use of our framework.
As shown in Fig. 1, our framework is divided into two major components (A)
and (B). (A) represents the repository indexing tools and (B) represents the
composition tools.

Fig. 1. General architecture of our framework

(A) Repository indexing tool : This component indexes and categorizes a
set of SWS from a given application domain into a single service ontology that
describes the functionalities the services offer. It takes as input a set of SWS
descriptions and the corresponding domain ontology and generates an abstract
representation of their functionalities organized in a hierarchical structure that
respects the relations between service functionalities according to the domain
ontology. Our service ontology is defined with the language presented in Sect. 3.2.
As shown in Fig. 2 this component is split into two parts: a repository parser
that takes as input a set of services of a given domain and stores services in a
single data structure. In our prototype, the services are defined with OWL-S,
and their descriptions are parsed with the OWL-S API 1. An ontology builder
that reads the generated data structure and the domain ontology to generate

1 http://on.cs.unibas.ch/owls-api/

http://on.cs.unibas.ch/owls-api/

Fig. 2. Detailed overview of the indexer tools

a service ontology. The domain ontology is used to generate the relationships
between the concepts of the new service ontology. In the implementation of this
component we relied on the Jena library2 to access to domain ontology and
create the new service ontology.

(B) Composition tool : This component generates the execution plan from
services involved in the composition and sorts execution plans according to user
preferences. It takes as input the user query and the service ontology. Fig. 3 shows
details of the two parts of this component (composer and ranking system).

The Composer part takes the mandatory part of the user query and a
service ontology and generates a set of dependency graphs. We can distinguish
the following parts in the composer:

1. Query parser: it checks the syntactic conformity of the user query and
generates from this query a set of objects that represent inputs, outputs and
service categories. Its implementation relies on ANTLR3. We have written
a grammar by means of ANTLRWorks4 and generated the lexer and parser
code that were integrated into an Eclipse project. Antlr uses the LL analyzer.

2. Correctness: it checks the logical form of the user query. For example, it
eliminates duplicate objects.

3. Service Extractor: it extracts services, which correspond to views men-
tioned in user query. In the implementation, we use Jena to access to ser-
vice ontology and extract the final subclasses of categories mentioned in the
mandatory part of the query.

4. Rewritings generator: it implements the bucket algorithm, it generates
all the combinations of services.

5. Rewritings checker: it implements algorithm 2 that eliminates rewritings
that cannot be potential solutions.

2 http://jena.sourceforge.net
3 http://www.antlr.org/
4 http://www.antlr.org/works

http://jena.source forge.net
http://www.antlr.org/
http://www.antlr.org/works

Fig. 3. Detailed overview of the composition tools

6. Configurator: it implements the calculus defined in Sect. 3.4, the goal is
to generate a graph of dependencies between services, starting from a set
of rewritings, the service ontology and a set of the business rules. We use
three binary predicates namely incompatible, depends and required, to
represent the business rules of a domain (described in Sect. 3.4). In the im-
plementation of this component we used Drools5 which is a forward chaining
inference-based rules engine, together with the Jena 2 library for ontology
access and a simple predicate parser to access business rules. Our rules are
defined in Sect. 3.4, and described in a separate file from the rules engine
implementation.

The Ranking System ranks the results of the configuration according to
the user preferences, it contains a parser and ranking component. In the ranking
component we implemented our model of Ranking defined in Sect 3.5. We used
the Jena library to access the service ontology.

Our framework is open source and available for download on the project web-
site6 under the GNU LGPL license. We provide a sample package that demon-
strates how to use our framework with some scenarios, one of those scenarios
is a GUI application that loads the ontology, executes user queries and displays
results as directed graphs. We use the standard graphical Java components and
JUNG (java universal network/graph)7 framework to display graphs.

5 http://www.jboss.org/drools
6 http://liris.cnrs.fr/~soc/doku.php?id=transverse
7 http://jung.sourceforge.net

http://www.jboss.org/drools
http://liris.cnrs.fr/~soc/doku.php?id=transverse
http://jung.sourceforge.net

4.1 Results and preliminary evaluation

In this section, we describe our evaluation environment, the different tests and
an interpretation of the results obtained from this evaluation.

Experimentation setup : we conducted experiments using the prototype sys-
tem implemented to evaluate the approach. In the experiments, the computer
used to run the prototype system has the following features: Intel (R) Core (TM)
2 CPU, 2.1 GHz with 3GB RAM. The PC runs Windows Seven and Java SE v
1.6.017. In our testing phase, we used OWL-S TC 8, which is a collection of ser-
vices for semantic Web services. This collection contains over 1,000 concrete
services, organized into 7 domains as shown in Tab. 4

Domain education medical care food travel communication economy weapon

Services 286 286 34 195 59 395 40

Table 4. overview of OWL-S TC services

OWL-S TC uses 23 domain ontology to describe the concepts used in the
definitions of Web services in OWL-S. We used domain ontology to index the
SWS repository i.e. create abstract definitions of Web services. More details can
be found in the documentation of OWL-S TC.

Results The objective is to investigate the influence of some parameters on
the execution time of the processes (composition, discovery and orchestration).
We generated for each domain a query, to properly measure the variation of
execution time of each phase. Tab. 5 shows the number of services and the size
of the query for each service ontology in the 7 domains. These 7 ontologies have
been extracted from a service descriptions in OWL-S TC using our repository
indexer (see Sect. 4).

Domain education medical care food travel communication economy weapon

Services 658 138 68 348 113 868 102

Serv. in Q 16 22 8 12 4 9 3

Table 5. Overview of service ontologies

Fig. 4 shows the variation of execution time for each phase compared to the
number of services in the query.

8 http://projects.semwebcentral.org/projects/owls-tc/

http://projects.semwebcentral.org/projects/owls-tc/

Fig. 4. Evolution of the execution time

One can see that the execution time for the discovery phase (blue curve) is
increasing i.e. when the number of services in the query increases the execution
time increases. There is also another parameter that impacts the variation of
execution time: the number of leaves (in the ontology) for the categories of ser-
vices. So every time this number increases the number of combinations increases
and consequently the execution time increases.

For the second curve (in red) that represents the change in execution time
compared to the number of services used in the query for the configuration phase,
one can see that the execution time is not increasing because this phase takes as
input the buckets table, so if the size of this table is small, the time will decrease,
as the configuration of the two queries (services =9 and services = 22) which was
the size of buckets table after rewriting, 4 and 18 respectively. Other parameters
impact on the execution time, for example the number of missing input for a
rewrite, size of business rules associated with a domain, etc. The queries used
for testing and service ontologies are available for download on the project Web
site.

5 Discussion

Our approach is characterized by a clear separation between query rewriting (for
discovery) and configuration (for orchestration). First, the use of query rewriting
reduces the complexity of service discovery. Indeed, this technique requires a
very simple formalism to hierarchically organize the functionalities of a domain,
as opposed to OWL-S or similar languages that require complex reasoning for
discovery, due to their strong expressivity. We facilitate reasoning at this stage
by relying exclusively on subsumption relations between concepts. Hence, the
discovery step provides sets of services that are potential solutions to a query.
Orchestration issues are left to the configuration part because of their complexity.

Second, configuration allows integrating business rules as constraints related
to the domain of composition and to services of this domain without mixing with

the domain ontology, keeping a clear separation between fast-changing business
rules and general, more static, domain knowledge. The use of Event-Condition-
Action (ECA) rules is more straightforward (and probably less time-consuming)
than advanced reasoning on constraints expressed as predicates. Then, it is easier
to automate the finding of dependency relations between composed services while
satisfying business rules. Another advantage is that the dependencies between
composed services do not have to be explicitly part of the query (as it is the case
with most existing works like SHOP2-based works). In our approach, we handle
them. Finally, our simple, two-step approach to composition allows to support
user preferences in the composition process. We proposed a ranking algorithm
that classifies valid solutions, if any, depending on a set of user preferences.

6 Conclusion

In this paper, we provided a framework that relies on the combination of query
rewriting and configuration, together with a formal definition of the underlying
languages, in order to facilitate the composition of semantic Web services.

The main feature of the proposed approach is its construction as a two-stage
process that relies on 1) a simple formalization of semantic Web services that
supports query rewriting, and 2) a clear separation between constraints and ser-
vice/domain knowledge description. Also, the proposed approach accommodate
user preferences as part of the composition process.

There are many research directions to be pursued. First, we plan to inves-
tigate how to accommodate arbitrary business rules during the configuration
steps. Other interesting issues are related to the support of (i.e. optimization
w.r.t.) QoS aspects of the composition such as cost, response time or reliability,
or approximate queries. That is, when an exact composition is not feasible, we
should look for alternative solutions that better reflect user preferences. Third,
the scalability problem should be tackled on real world services. Another issue
is the optimization of the rewriting algorithm.

These issues are currently being investigated.

References

1. P. Albert, L. Henocque, and M. Kleiner. An end-to-end configuration-based frame-
work for automatic sws composition. In ICTAI (1), pages 351–358. IEEE Computer
Society, 2008.

2. S. Arroyo and M. Stollberg. WSMO Primer. WSMO Deliverable D3.1, DERI Work-
ing Draft. Technical report, WSMO, 2004. http://www.wsmo.org/2004/d3/d3.1/.

3. Y. Badr, A. Abraham, F. Biennier, and C. Grosan. Enhancing Web Service Se-
lection by User Preferences of Non-functional Features. In Proceedings of the 2008
4th International Conference on Next Generation Web Services Practices, pages
60–65. IEEE Computer Society, 2008.

4. S. Bao, L. Zhang, C. Lin, and Y. Yu. A Semantic Rewriting Approach to Automatic
Information Providing Web Service Composition. The Semantic Web–ASWC 2006,
pages 488–500.

5. H. Burckert, W. Nutt, and C. Seel. The Role of Formal Knowledge Representa-
tion in Configuration. WRKP’96: Knowledge Representation and Configuration
Problems, 1996.

6. K. Chan, J. Bishop, and L. Baresi. Survey and comparison of planning techniques
for web services composition. University of Pretoria2007. c© ISMED, 209, 2007.

7. J. Dong, Y. Sun, S. Yang, and K. Zhang. Dynamic web service composition based
on OWL-S. Science in China Series F: Information Sciences, 49(6):843–863, 2006.

8. A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner, and M. Zanker. Configura-
tion knowledge representations for semantic web applications. AI EDAM, 17(1):31–
50, 2003.

9. A. Y. Halevy. Answering queries using views: A survey. The VLDB Journal,
10(4):270–294, 2001.

10. R. Klein, M. Buchheit, and W. Nutt. Configuration as model construction: The
constructive problem solving approach. In Artificial Intelligence in Design, vol-
ume 94, pages 201–218. Citeseer, 1994.

11. M. Klusch, A. Gerber, and M. Schmidt. Semantic web service composition planning
with owls-xplan. In Proceedings of the AAAI Fall Symposium on Semantic Web
and Agents, Arlington VA, USA, AAAI Press, 2005.

12. A. Kumar, B. Srivastava, and S. Mittal. Information modeling for end to end
composition of semantic web services. In Y. Gil, E. Motta, V. R. Benjamins, and
M. A. Musen, editors, International Semantic Web Conference, volume 3729 of
Lecture Notes in Computer Science, pages 476–490. Springer, 2005.

13. F. Lecue, A. Delteil, A. Leger, and O. Boissier. Web service composition as a com-
position of valid and robust semantic links. International Journal of Cooperative
Information Systems, 18(1):1–62, 2009.

14. J. Lu, Y. Yu, and J. Mylopoulos. A lightweight approach to semantic web service
synthesis. In WIRI, pages 240–247. IEEE Computer Society, 2005.

15. D. L. Martin, M. Paolucci, S. A. McIlraith, M. H. Burstein, D. V. McDermott,
D. L. McGuinness, B. Parsia, T. R. Payne, M. Sabou, M. Solanki, N. Srinivasan,
and K. P. Sycara. Bringing Semantics to Web Services: The OWL-S Approach. In
J. Cardoso and A. P. Sheth, editors, SWSWPC, volume 3387 of Lecture Notes in
Computer Science, pages 26–42. Springer, 2004.

16. D. L. McGuinness and J. R. Wright. Conceptual modelling for configuration: A
description logic-based approach. AI EDAM, 12(4):333–344, 1998.

17. O. Najmann and B. Stein. A theoretical framework for configuration. In F. Belli
and F. J. Radermacher, editors, IEA/AIE, volume 604 of Lecture Notes in Com-
puter Science, pages 441–450. Springer, 1992.

18. M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara. Semantic matching of
web services capabilities. In I. Horrocks and J. A. Hendler, editors, International
Semantic Web Conference, volume 2342 of Lecture Notes in Computer Science,
pages 333–347. Springer, 2002.

19. J. Rao and X. Su. A survey of automated web service composition methods.
Semantic Web Services and Web Process Composition, pages 43–54, 2005.

20. Q. Sheng, B. Benatallah, Z. Maamar, and A. Ngu. Configurable Composition and
Adaptive Provisioning of Web Services. IEEE Transactions on Services Computing,
2(1):34–49, 2009.

21. E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN planning for web service
composition using SHOP2. Web Semantics: Science, Services and Agents on the
World Wide Web, 1(4):377–396, 2004.

22. J. L. A. Snehal Thakkar and C. A. Knoblock. A data integration approach to
automatically composing and optimizing web services. In 2004 ICAPS Workshop
on Planning and Scheduling for Web and Grid Services, June 2004.

23. S. Sohrabi, N. Prokoshyna, and S. McIlraith. Web service composition via the
customization of Golog programs with user preferences. Conceptual Modeling:
Foundations and Applications, pages 319–334, 2009.

24. H. Toda, N. Yasuda, Y. Matsuura, and R. Kataoka. Geographic information re-
trieval to suit immediate surroundings. In D. Agrawal, W. G. Aref, C.-T. Lu,
M. F. Mokbel, P. Scheuermann, C. Shahabi, and O. Wolfson, editors, GIS, pages
452–455. ACM, 2009.

25. M. Vukovic and P. Robinson. SHOP2 and TLPlan for proactive service composi-
tion. In UK-Russia Workshop on Proactive Computing. Citeseer, 2005.

	Combining configuration and query rewriting for Web service composition

