
AUTHOR ET AL.: TITLE 1

Collaborative Activity Indicators Engineering:
Using modeled traces in the context of

Technology Enhanced Learning Systems
T. Djouad, A. Mille, C. Reffay and M. Benmohammed

Abstract— Designing and exploiting collaborative activity indicators is a strong challenge for Technology Enhanced Learning
Systems (TELS). In this work we compute indicators using modeled traces transformation and we use to allow possible this
computation a Trace Based System. We develop a managment TBS for Moodle. We propose an original model-driven
approach, introducing the concepts of modeled traces (MT) and of trace-based system. In this approach, designing an indicator
consists in explicitly modeling the trace to compute it, highlighting the elements of observation necessary to collect in order to
elaborate a specific indicator. Therefore, effective implementation of an indicator consists in expliciting the transformations
carried out of available traces on a particular learning platform. These initial observed elements (obsels) form what we call the
primary modeled traces. A «path» of transformation is explicitly designed and applied for both documenting and performing the
indicator computation. Using this approach, it is possible to form a library of enriched indicators models in association with the
corresponding primary trace model and the explicit transformation path. Reusing an indicator in various contexts is easier and
well documented. This approach is illustrated on the Moodle platform in order to explain the practical use of our implemented
system.

Index Terms— Modeled trace, Trace Based System, indicators computation, collaborative learning.

—————————— � ——————————

1 INTRODUCTION
VALUATING collaborative learning situations by considering a learner alone or a group of learners in Technology

Enhanced Learning Systems is a delicate task, which requires a permanent adaptation during the learning activity. To

understand the dynamic of learning and effectively evaluate collaborative learning situations, researchers and TELS

designers use interaction traces analysis in a significant number of systems. A useful survey of such systems is pre-

sented in [1]. When activity traces are used to create indicators, the models of interaction traces have to be adapted to

enable teachers to design and automate the collaborative indicators computation, assisting them to understand, evalu-

ate, monitor and support online learning.

In this paper, we are specifically interested in studying methods used to facilitate the analysis of traces in collabora-

tive learning situations. These methods are based on a Model Driven Engineering (MDE) approach to design and com-

pute effectively collaboration indicators, which are learning-platform independent. Our research question addresses

three issues:

• How to get and restructure the raw data from their sources (ex: log files) to create first modeled traces called

primary traces [2]. During this data collecting phase, the primary trace is built from needed data delivered by the

TELS as basic information to elaborate the target indicator;

• What are the transformations required, according to the MDE approach, and what are the operators to define

xxxx-xxxx/0x/$xx.00 © 200x IEEE

E

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

and to compute, from that primary trace, intermediate traces that make sense to describe the collaborative ac-

tivity;

• What are the ultimate transformed trace models associated to each collaborative indicator, and what is the

structure of these models. These indicators models can be used by the researcher, the activity’s designer, the

trainer, the tutor or even the learner himself in a learning situation.

 This work is in the field of Computer Supported Collaborative Work (CSCW), and is based on Model Driven Engi-

neering, to transform trace models and build collaborative indicators.

1.1 Indicators in Computer Supported Collaborative Learning (CSCL)
According to Dimitracopoulou [3] “Interaction analysis indicators constitute variables that indicate ‘something’ re-

lated to the mode or the ‘quality’ of individual activity (e.g. variables that he/she change, order of significant actions,

etc.), the mode or the quality of the collaboration (e.g. division of labour, participation rates, categories of specific con-

tributions), the process or the quality of the collaborative product”. An indicator is a mathematical variable which has a

list of characteristics. It is a variable that takes digital, alphanumerical or graphical values. A value has a status: a

value is calibrated or interpreted. An indicator may depend on other variables such as time, or even other indicators.

Dimitracopoulou in [4] proposes to use interaction analysis tools to compute indicators values. Fig. 1 explains how

these tools work. Users (trainers, learners, etc.) use different activity tools offered by learning environments like white-

board, chat, forums, etc. Data selection helps to get (in automatic or semi-automatic way) different user’s interaction

traces issued from the tools based activities. We can retrieve information needed to form these traces from files such as

log files of learning platform or we can collect observed elements directly during the activity itself by instrumenting

the application. Basic observed elements are choosen in the available observable elements according to their role for

indicators computation.

Analysis processes produce several kinds of indicators. An indicator may indicate the mode or the quality of indi-

vidual contributions (ex: Send a message in a chat), collaboration (ex: the division of labor, the density or the cohesion

of a group) or also the quality of what was finally produced (ex: the depth of a discussion thread in a forum).

The indicator value is used to build a feedback to different users. According to the categories proposed in [1], this

feedback can be a direct visualization of the indicator value (mirroring), or the value can be compared to a desired state

(monitoring) or it can feed a more elaborated process providing guiding information to learners (guiding).

AUTHOR ET AL.: TITLE 3

Figure 1 • Indicators computation [3]

A lot of work has been published about indicators, generally respecting the definition proposed in [3]. For example

in [5] we compute the cohesion and the centrality in social networks from discussion forums. The platform ACOLAD

[6] provides tutors with a tool which gives information about the activity 3-tuple: Assiduity, Availability, and In-

volvement. Santos et al. [7] offer a tool that computes the degree of involvement of each learner during the session

from interaction traces. This tool identifies: participative learner, useful learner, non-collaborative learner, learner who

takes initiatives, and communicative learner. Other indicators are qualitatively interpreted as in [8] where the density

of the social network is interpreted using histograms. Tedesco [9] measures agreement and disagreement between

learners.

May et al. [10] provides a method and tool to compute and visualize the indicator “Read a message in a forum” using

traces from the server and from the client. As illustrated on Fig. 2, the sphere size shows the time spent by a user to

read a message. The various spheres are located on the time axis, and their color depends on the type of action done by

the user (ex: blue for posted messages, green for completely read (exposed) messages). This visualization gives more

accurate information on quality of readings based on the part (scrolling) exposed and the time the user spent on it.

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Figure 2 • Indicator visualization « Read a message » in Travis [10]

The "ForumExplor" platform [11] works on forums’ archives. It simplifies large forum analysis by offering different

tools: thematic views and overviews of forums’ archives. The overview presented on (Fig. 3) is based on a simple statis-

tics and represents the participation distribution along the time axis. The thematic view is based on lexical recognition

and pre-registered themes. Each theme is associated to a word list and a color. (Fig. 4) shows for each post of a thread,

the different themes it is related to.

Figure 3 • Global view of the indicator: Participation in a forum

Figure 4 • Thematic view: color of a discussion thread

As seen in the above examples, indicators may play an important role for evaluating and guiding the learning proc-

ess but there is often no explicit method to construct them and to integrate them in TEL systems. To address this issue,

several researches tend to propose generic frameworks to design and implement indicators.

AUTHOR ET AL.: TITLE 5

EM-AGIIR, an open multi-agents architecture defined in [12] provides a framework to reuse indicators. A Query

Agent explores the tracing sources, and identifies the collected data needed to compute the indicator value; a Database

Agent stores traces that feed the indicator; an HMI1 Agent displays the indicator value. The Indicator Agent analyzes the

traces sent by the Database Agent and compute the indicator value (where the indicator is computed by a function f),

and thereafter, sends results to the HMI Agent to display the results. Fig. 5 explains the principle of this architecture.

Figure 5 • The architecture of EM-AGIIR [12]

This architecture offers a nice way to integrate different codes for computing an indicator but there is no model of

what is a trace, no explicit formalism to describe the indicator computation and no way to explicit how trace elements

are used during the indicator computation.

Reference [13] proposes to reuse and improve educational scenarios using a formal grammar to compute indicators.

The representation model of the indicator is based on three parts: the Defining part qualifies the need for observation,

the Getting part describes how data acquisition is performed, and the Using part shapes the indicators use.

This model is very interesting to guide and to document the way a descriptor is composed but there is no way to

move from this description to an operational process of the indicator computation when described. Nevertheless, this

explicit description could become the input of an automatic indicator computation.

1.2. The indicators in CSCL: some examples
Many indicators are listed in [3] within their corresponding platforms. The computation of some of these indicators

is detailed in this section in order to be used as examples in part 2. They have been chosen as representative of a large

1 HMI: Human Machine Interface

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

panel(?) of indicators. In this section, we also refer to the learning platforms they have been implemented in.

1.2.1. The division of labor
This indicator is defined and implemented in the platform “COllaborative TRAffic Simulator” [14]. It identifies the di-

vision of labor adopted by two users working on a set of shared resources. Specifically designed for researchers, this

indicator identifies the role taken by each participant in the collaborative learning process. The authors define three

types of division of labor: Task based division where each person acts on separate resources; Role based division where one

person edits all resources and Concurrent division where both persons act more or less equally on all resources. The

characterization of these three types of division of labor can be computed from the Sum of Differences (SD) and the Sum

of Absolute Differences (SAD):

ASAS

AiSAiS
SD i

21

)21(

+

−
=
∑

ASAS

AiSAiS
SAD i

21

21

+

−
=
∑

With S1Ai (respectively S2Ai): the number of actions made by the subject S1 (respectively S2) on the resource Ai,

and S1A (respectively S2A): the number of actions made by the subject S1 (respectively S2) on all the resources. The

SAD indicates the symmetry of actions. The value 0 means that both users have the same number of actions, while the

value 1 means that all actions were made by the same user. Fig. 6 shows the different types of division of labor accord-

ing to extreme and meaningful values (0, 1, -1) for variables SD and SAD.

Figure 6 • Classifying the division of labor using SD and SAD indicators [14]

AUTHOR ET AL.: TITLE 7

1.2.2. Interaction indicator
The Interaction indicator is implemented in the platform MODELLINGSPACE [15], and used by teachers to measure

the activity rate in problem solving. It computes the number of actions made in an activity module (like a chat) within

a time interval. If we consider the time interval [t0-tm] associated to a collaboration session, time is quantified as fol-

lows: ti = t0 + i * d with d = (tm-t0) / n. Interactions(k, ti) is the number of actions made in an activity module k during

the time interval [ti-1, ti], with k in [k,kmax] corresponding to the interaction tools (k = 1 => Chat, k = 2 => Forum,…).

If Interactions(k, ti) = 0 then no action is made on the activity module k, in the time interval [ti-1, ti]. If the value of In-

teractions(k, ti) is high, collaboration may have occurred between users during this time interval.

1.2.3. Active Agent Indicator
This indicator implemented in the platform MODELLINGSPACE [15] is used by teachers to measure the activity (eg

: send a message in chat) during a problem solving activity. An actor (ex: learner) is only active if he interacts in an ac-

tivity module during a time interval. The indicator Active Agent shows the number Agents(k, ti) of actors who have in-

teracted at least once in the activity module k during a time interval [ti-1, ti].

1.2.4. Collaborative Action function indicator (CA)
This indicator, also implemented in the platform MODELLINGSPACE [15] is used to represent both the number of

actions and the number of active agents during the problem solving. This indicator is computed from two previous

indicators: Agents(k, ti) and Interaction(k, ti), during a time interval ti. The indicator Collaborative Action CA(ti) is com-

puted by the following formula:

),(*),()(
max

1
i

kk

k
ii tknsInteractiotkAgentstCA ∑

=

=

=

1.2.5. Non Verbal Actions indicator (NVA)
The indicator NVA, implemented also in the platform MODELLINGSPACE [15], is used by teachers and researchers

during and after the collaboration session. It represents the percentage of all non-verbal actions made on different in-

teraction tools. The idea is to compute first: all verbal actions (ex: chat message, forum message, etc.), and then, con-

sider the rest of actions as non-verbal. The following example considers that chat actions are the only verbal actions:

0),(

),(

),'('),(

)(
max

1
max

1

max

1 >
−

= ∑
∑

∑ =

=
=

=

=

=
kk

k
ikk

k
i

kk

k
ii

i tknsInteractioif

tknsInteractio

tChatnsInteractiotknsInteractio

tNAV

If NVA≈ 0 then the actors use only verbal actions. NVA≈ 1 means that no verbal action is made in the activity tools

during the selected time interval ti.

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

1.2.6. Selected Agent Contribution indicator (SAC)
The SAC indicator implemented also in the platform MODELLINGSPACE [15] is used by learners, researchers and

teachers to evaluate the participation of a given actor during a synchronous problem solving. It computes the interac-

tion rate of this actor (Agent) compared to all interactions occurring in an interaction module k, during a time interval

[ti-1, ti]. The formula is:

0),(
),(

),,(
),(

max

1
max

1

max

1 >= ∑
∑

∑ =

=
=

=

=

=
kk

k
ik

i

kk

k
i

i tknsInteractioif
tknsInteractio

tagentknsInteractio
tagentSAC

Interactions(k, agent, ti) is the number of actions made by a referred actor (agent) in module k during the time interval

[t i− 1,t i] . If SAC=0 then the actor performed no action in the time interval. SAC=1 means that the referred agent

performed all actions in the module k during this time interval.

1.2.7. Participation percentage indicator (PART)
PART is implemented in the platform MODELLINGSPACE [15], and represents the participation level of actors in

any activity module. This indicator gives the percentage of agents who act in a specified time interval. The formula is:

sTotalAgent

tAgent
tPART i

i

)(
)(=

For example, if PART = 0.5 then half of agents have interacted in some of the activity modules during [t i− 1 , t i] . If

PART = 0 then no actor has acted in the group within this time interval.

2. COMPUTING INDICATORS FROM INTERACTION TRACES
To provide a general approach capable of both describing and making operational indicators in a TELS, we propose

a MDE [16] method to compute indicators with a Traces-Based System (TBS) [17]. We explain the general approach of

our method in the first section. We show how we use a Models Driven Engineering approach in the second section.

The last section illustrates this approach through three different use cases based on TBS that build and reuse trace

transformation to compute several indicators.

2.1. Approach
Indicators are built from observed elements in a trace. The right level of abstraction of observed elements needed for

the indicator formula is obtained by trace model transformations from elementary observed elements traces in the

TELS. This method includes three steps: Collecting data, transforming traces , and finally the computation step. Fig. 7

shows the order of these steps:

AUTHOR ET AL.: TITLE 9

Figure 7 • Our proposed approach in three steps

2.1.1. Trace based system
A Trace Based System [18] is proposed by the research group SILEX2 to manage modeled traces. A Modeled Trace

(M-Trace) in a TBS is defined as a trace model and a set of traces instances according to this model. Each observed ele-

ment (obsel) of a trace is located in the time axis. So, we call trace a collection of temporally situated observed elements.

We mean by "observed element" any structured information resulting from observing interactions. The architecture of

the TBS [17] represented in Fig. 8, includes: - a collecting system that builds the modeled traces from a tracing source; -

a kernel offering tools to transform traces. This kernel includes: -a trace database (instances and model) and a trans-

formation system to transform M-traces; - a visualization system; - a query System to interrogate the trace database.

Figure 8 • TBS Architecture

The trace management system adds and removes M-traces, defines access rights, and manages the M-traces trans-

formations. One can send requests to the M-Traces base, and retrieve information adapted to the users’ needs. A trans-

formation of a modeled trace is a process that transforms an M-Trace (managed by a Traces-Based System) to another M-

Trace managed by the same system. The primary M-Traces in TBS are the only untransformed M-Traces. Fig. 9 shows an

example of M-trace transformation. We can merge two M-Traces, the result is an M-Trace containing the instances of

the two input M-Traces. We can create the model of the resulting M-Trace by a reformulation process or simply filter

2 Liris.cnrs.fr/silex/

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

an M-Trace according to some criteria, etc. Main operators involved in indicators construction are presented in more

details in section 3.2.

Figure 9 • Example of M-Traces transformation

2.1.2. Collecting data
Data collection consists of selecting pertinent/useful data within the tracing sources. On the one hand, this collec-

tion depends on learning platforms, and on the other hand, it depends on the primary trace model. The primary trace

model defines what information is needed, and the tracing sources define what is available. In this Collecting phase, we

use collaborative activity models, and, according to them, we collect all obsels that can feed these models. Section 3 will

present an example of primary trace model for collaborative activities on the Moodle platform.

2.1.3. Transformations models
Starting from the primary trace, we propose transformation sequences using model-transformation operators (ex-

plained in Section 3.2). These operators modify either the model or its instances. We provide a library of models for

transformed traces associated to indicators. Each of them is associated with its transformation path: we call these traces

TMRI, standing for Indicator Rule oriented Modeled-Trace. We can then reuse and easily adapt the transformation path

to generate other models of M-Traces and therefore, other indicators.

2.1.4. Computation of indicators
Proposition

Our method associates a trace model with each indicator “I”. This model must contain all observation elements

needed to compute the indicator directly (i.e: without any futher transformation). We define an indicator “I” by:

I = {RI, TMRI}

With: RI: the computation Rule, TMRI the trace model used for computation.

AUTHOR ET AL.: TITLE 11

Fig. 10 illustrates this proposition, where a trace Trace(I), corresponding to its model TMRI, is associated to a collabora-

tive indicator Indicator(I). The indicator value is derived from Trace(I) by applying a computation rule RI. For example,

we can compute the indicator "Active Agent" by using a computation rule we call RActiveAgent.

Figure 10 • Associating a trace model to each indicator to compute it

2.2. Model Driven Engineering
A model in [19] is defined as "A set of statements about some system under study”. Another definition in [20] de-

fines a model as “a simplification of a system built with an intended goal in mind. The model should be able to answer

questions in place of the actual system”. These general definitions do not allow easy computations and we adopt the

definition given in [16]: A model is a description or a prescription for all or part of a system using a defined language.

In the case of description, the model (describing the system) is correct if its characteristics and behaviour are evolving

over time in the same way as the real system. Whereas in the case of prescription, the system is considered valid if

none of the model’s characteristics is contradictory with the obtained system. We use meta-models to describe models.

A meta-model in [21] is a model, it defines a language that expresses the model. Our system handles models describ-

ing traces and provides transformation operators. The final traces (in the transformation path) may represent useful

observed elements as information for indicators calculus. So, our system provides the operational semantics to execute

the transformation path in order to get indicators values.

Model Driven Engineering in CSCL is inspired from software engineering and focuses on model changes (according

to their contexts of use), rather than system coding. This reduces widely the effort of designers, teachers, researchers,

etc. We consider our work is directly related to model driven engineering as it allows to manage dynamically models

during the design of indicators. The indicators computation method we propose requires a model (M-Trace) and a

transformation sequence to translate the primary trace model into the indicator trace model. This is the essential con-

tribution of this paper to the indicators computation, compared with current methods.

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Moreover, a Trace Model is a formal model, and an M-trace (a Trace with its model) has a precise semantics allow-

ing requests for transformations. Thanks to the trace transformation process, the TBS provides facilities to design new

models and to produce corresponding traces from existing ones.

2.3. Indicators engineering driven by trace models
With traditional methods (Fig. 11) and as we explained in section 1.1, to get an indicator, we prepare data before

starting a special computation. This special computation may require new and important coding efforts if the platform

changes or evolves. So, for each new indicator on the one hand, and for each learning platform on the other hand, we

have to change the code for the “Specific Computation” part or/and for the “data pre-processing” part.

Figure 11 • Ad-hoc indicator computation

We describe and compute an indicator with/using a transformation sequence of trace models that is expressed in

the generic transformation language of the TBS. This transformation sequence is first directly applied to models but not

to data (not yet available). The four following steps are used to describe and to compute an indicator using a TBS:

Step 1: To build a new indicator "I" in the TBS, we propose to define a trace "I" and its computation rule)(XiRi

where Xi are all the variables we need to compute the indicator. At the beginning, there is no instance associated with

the indicator model, just an empty set of instances before starting the next step (Fig. 12).

AUTHOR ET AL.: TITLE 13

Figure 12 • Proposing a model for a new trace indicator "I"

Step 2: In this second step, the user provides a transformation sequence of a given trace model. The identification of

a transformation sequence for the indicator “I” provides a transition path from the primary trace model to the indicator

model. We have always a set of empty instances, and TBS operators can build this sequence. Fig. 13 illustrates how we

build a transformation sequence, and shows the relationships between the primary trace model and the indicator

model. Section 3 will give concrete examples using operators we defined.

Step 3: The third step called “data pre-processing” generates the various instances of the primary trace models. The

result of this step is the primary M-Trace (models and instances): It is also called the trace collecting step. Fig. 14 shows

an example of trace collecting for the primary trace.

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Figure 13 • A transformation sequence from the primary trace to the indicator model

Figure 14 • Preparing data: instantiate the primary trace model

Step 4: In the last step, we execute the transformation sequence (defined in step 2) from the primary trace (instanti-

ated in step 3) to instantiate all the intermediate models through propagation of transformed data across the transfor-

mation paths. Transformations spread up in intermediate transformed traces until the trace which is directly associated

with the indicator. The result of this last step is the "I" indicator M-trace (model and instances). Fig. 15 shows the exe-

cution of the transformation sequence from the primary trace to the indicator model. The instances of the "I" indicator

trace are used as input data for the computation rule "RI".

AUTHOR ET AL.: TITLE 15

Figure 15 • Running the transformation from the primary trace

Our method allows model transformation and reduces the effort to compute indicators. It minimizes the gap be-

tween indicators and tracing sources, because we focus on the model transformation, and not on a special computation

associated to each indicator in CSCL. Fig. 16 compares the indicator computation process between ad-hoc methods

(that we presented earlier) and our method (TBS).

16 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Figure 16 • Comparison between the ad-hoc calculation and our method oriented transformation’s traces models (Educ: Educator;
Com.D :Computer Designer; Inter.Calc : intermediate computation, Trans: Transformation).

To illustrate the benefits of our method (based on models driven engineering), we propose to detail the indicator

creation steps in three different cases: (1) creating a new indicator from scratch, (2) creating a new indicator based on

an existing indicator, and (3) adapting an existing indicator to another platform.

2.3.1. First case: Building a new indicator in a TBS from scratch.

In this first case, let us build (with the help of the TBS) a new indicator "Active Agent" [15] with Moodle as tracing

source. Being a creation from scratch, we will follow the four steps presented before: (1) proposing a trace model for

the indicator, (2) defining the associated transformation sequence, (3) preparing the data collecting phase, and then (4)

feeding the different models across the transformation graph. Fig. 17 shows an example of how to build the indicator

"Active Agent" from the Moodle platform and illustrates the flexibility of our method, and the transformation graph

from the raw data to the indicator value without using a specific computation.

AUTHOR ET AL.: TITLE 17

Figure 17 • Build from scratch the new indicator “Active Agent” for an activity taking place on the Moodle platform

2.3.2. Second case: calculating a different indicator by using a Trace Model for the same platform, existing in the
transformation library

Principle

In this case, we compute an additional indicator in the TBS using the same platform. It means that we have already

built indicators in the TBS, and we have saved the associated transformation sequences in a library. This second case

differs from the first case in that the process reuses a transformation sequence available in the library.

Example: building the indicator I2 "Division of labor" [14] on Moodle, considering we already have built the indica-

tor "Active Agent" on Moodle.

Steps:

• Propose a trace model for this new indicator.

• Search in the models library of indicators a trace model indicator similar to this new model. In our example,

we suppose that the indicator model "Active Agent" created in the illustration of the first case is similar in its

structure to the indicator "Division of Labor". The measure of similarity between models is out of the scope of

18 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

this paper.

• Modify the transformations sequence associated to the selected model. This modification allows the reuse of

an existing transformation sequence in the TBS, and then, derives the transformation associated to the new in-

dicator.

• Execute the new transformation sequence to obtain instances for the new model.

 Fig. 18 explains these steps. We can see in this case that we just modify a part of the existing transformation se-

quence (the shaded part of the sequence in Fig. 18) to get the new model.

Figure 18 • Calculating a new indicator "Division of Labor" in the TBS from the existing sequence “Active Agent”

Fig. 18 emphasizes the part our TBS deals with: from the primary trace to the Indicator model, leaving raw data and

output values outside the system. TBS becomes alike a function that has the raw data for input and has the indicators

value for output. Inside the TBS box, there are only trace model transformations leading to the desired indicators’

model.

AUTHOR ET AL.: TITLE 19

2.3.3. Third case: Adapting an existing indicator to an other platform
In the third case, we want to reuse an existing indicator in the TBS, in order to adapt it to another learning platform.

Because TBS is independent from the learning platform, we try this time to generate the indicator value (built previ-

ously) considering another learning platform as the tracing source. For example, we build the transformation sequence

of the indicator "Active Agent" on the platform Moodle, and we rebuild this indicator for the WebCT platform. In this

case we have the indicator model we want to compute as well as its transformation sequence. This transformation se-

quence is not reused directly but requires some modification steps:

- Find the indicator model we want to compute in the models library, for example, the indicator model "Active

Agent",

- Load the transformation sequence associated with this indicator,

- If the learning platform changes then the primary trace model has to be changed, because it is linked to the various

activities offered by the new learning platform. Thus, we have to change a part of the transformation sequence. As

shown in Fig. 19, we modify only the shaded part. The rule used to compute the indicator remains unchanged. This

strategy allows us to adapt indicators computation to different learning platforms, which leverages the method we

propose.

20 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Figure 19 • Calculating the same indicator "Active Agent" for a different platform (Moodle / WebCT)

In this section, we have presented a method to compute indicators from the transformation of M-traces based on

engineering driven by trace models. We have identified three possibilities: a new indicator from scratch, a new indica-

tor for the same platform, and an existing indicator for a different learning platform. The next section shows this

method implementation with a case study on the specific platform Moodle.

3. IMPLEMENTATION
This third part of the paper illustrates an implementation of what we have presented in the previous sections: TBS,

transformation operators and transformation sequences of trace models. The implemented Trace-based system uses the

platform Moodle [22] as tracing source, but its architecture is open to other learning platforms. Section 3.1 presents the

data collecting phase from Moodle to generate a primary M-trace. Section 3.2 presents the transformation sequence of

the traces with generic operators. Section 3.3 illustrates some indicators models.

AUTHOR ET AL.: TITLE 21

3.1. Collecting data phase for collaborative activities
We propose here a specialized collecting phase for various collaborative learning activities. We are interested in

synchronous and asynchronous activities, where actors work together on the same resources. The resources used in

Moodle are: Wiki, chat, text resources, and private messages.

3.1.1. Example on Moodle
In a previous work [23], we proposed a primary trace model for Moodle. We extended this model to support addi-

tional actions that manage contacts. This additional information can feed indicators, which help researchers to study

learners’ collaborative behavior.

Figure 20 • Primary trace model from Moodle platform

Our tool provides a selector to choose the list of elements the user wants to collect. This choice depends on the trace

models the user wants to build as a basis to compute the target indicator. Connected to the Moodle database, the tool

imports necessary data, and instantiates the trace model in OWL format. This format follows the syntax of the Jena

parser [24]. We provide a graphical user interface (GUI) to select data. As shown in Fig. 21, the GUI gives a list of ob-

22 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

servable actions the user can pick up. Here, the user chooses only 5 from 18 possible actions. The collecting module

collects data from tracing sources and instantiate the primary trace model. The result of this collecting phase is a pri-

mary trace in OWL format.

Figure 21 • User interface used to collect observed actions

3.2. The transformation operators of the implemented TBS
We propose a list of operators to build generic transformations. These transformations are independent from the

collaborative learning platform. We classify these operators into three categories presented in the following subsec-

tions (3.2.1-3).

3.2.1. Operators that do not modify the trace model
These operators do not modify the model, but only the trace instances. This category includes: Matching, Selection

and Fusion of two traces instances (these instances have the same trace model).

3.2.1.1. The Matching operator
This operator identifies a sequence of observed actions using patterns. To find a pattern in such a sequence, we use

an algorithm proposed in [25]. This operator can be used in the following way:

TraceX := Matching (pattern) [TraceY];

Where TraceX is the resulting trace, pattern is the pattern used to define our research criteria, while TraceY is the

AUTHOR ET AL.: TITLE 23

source trace where the matching function looks for episodes that fit the given pattern. For example, we can say that an

effective entry in a Chat is sequence of actions such as "Chat Enter" followed by writing a message in the Chat “Chat-

WriteMessage". Fig. 22 illustrates the Matching operator on this example. Let A=ChatEnter and B=ChatWriteMessage, X

and Y are any other observed action. If we consider “XYXYXYAYXXYBXXXBXYYAYXYYXBXYXX” as an input se-

quence of actions, then, the resulting (output) sequence with a matching (A, B) would be a list of “AB”.

Figure 22 • Example of Matching

3.2.1.2. The selection
This operator works as a filter on the input instances. The selection criteria may use the following attributes: time, ac-

tion type, associated tool, and actor. The syntax of this operator is:

TraceX := Selection (Criterion) [TraceY];

TraceX is the resulting trace; Criterion is a logical expression based on a general instance attributes; and TraceY is the

source where instances are selected. Fig. 23 shows how to select all observed actions associated with the ActorX from

the input trace.

24 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Figure 23 • Example of selection

3.2.1.3. The fusion of two traces:
This operator concatenates two instances of traces (TraceX and TraceY) into a new trace (TraceZ). The two traces

must have the same model. The operator is used as follows:

TraceZ := Fusion (TraceX, TraceY) / where TraceX and TraceY have the same model.

To illustrate how we use this operator (Fig. 24), we consider two traces: E-mails sent and E-mails saved by ActorX. We

combine these two traces by fusion. We call the result of this fusion: Emails-Manipulations associated to ActorX.

Figure 24 • Example of a fusion of two traces

3.2.2. Operators that modify a Trace model
These operators change the model structure. The trace model is structured into classes. We propose two operators:

rewriting the model and pruning the model.

3.2.2.1. Rewriting models
This operator rewrites the name or the attributes of a model (class). This modification is propagated into instances

structure by changing its labels. The result of this rewriting is a new model different from the initial model. The opera-

tor is used as:

ModelY=Rewrite(ModelX,ClassNameA,ValueNameB)

AUTHOR ET AL.: TITLE 25

Where: ModelX is the intial model, ModelY is the result Model, ClassNameA is the class to rewrite in ModelX, and

ValueNameB is the newname of ClassNameA in ModelY (ClassNameA will not exist in ModelY, and is replaced by

ValueNameB). This operation is shown in Fig. 25. We can change the name of the class "Record" of the input trace

model to “Save” in the output trace model.

Figure 25 • Example of a Rewrite operation

3.2.2.2. Pruning model
This operator removes classes or class attributes in a model. We give as parameters for this operator the list of what

we have to keep in a model. The operator is used as:

TraceX: = Pruning(TraceY.(List of classes or attributes to keep)).

Fig. 26 gives an example of pruning where only the attributes of the source model are kept in the result model.

Figure 26 • Example of pruning

3.2.3. Operators used for the indicators computation
We also propose two operators Count and Sort used to compute indicators. These operators are not integrated in the

TBS. However, we can use them to build the computation rule (Ri) from the indicator M-trace.

- Count: it counts the number of instances in a trace. The result is a positive integer or zero.

- Sort: it sorts observed actions using as criteria: time, observed type or observed tools.

26 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

4. TRANSFORMATIONS ILLUSTRATED IN OUR TBS CONNECTED TO MOODLE

4.1. The implemend TBS in Moodle
All operators mentioned in Section 3.2 have been included in our implemented TBS. Fig. 27 illustrates the selection

operator. On this example, we selected “User4" actions from the primary trace Moodle. The resulting trace instances

“TrackUser4” contain all obsels related to this user.

Figure 27 • Selection operator applied to a primary trace (from Moodle)

Fig. 28 shows the matching operator. In this example, the pattern contains observed actions like “write a private mes-

sage” and “write in a chat” (PrivateMessage, ChatMessage).

AUTHOR ET AL.: TITLE 27

Figure 28 • Matching operator applied to a primary trace (from Moodle)

4.2. The indicators computation
We show in this section how to apply operators on the M-trace to build transformation sequences, and then gener-

ate M-trace for collaboration indicators. In order to show how easily our implemented TBS can build indicators, we

picked some indicators presented in Section 1 to illustrate here their transformation and concrete computation.

 4.2.1. Example1: The proportion between 2 different types of actions for the same actor over a time interval.
Let us remind that the computation rule of the proportion between two actions types A and B is: Proportion (A,B)

=(NT_A-NT_B) /(NT_A+NT_B), where NT_i is the Number of actions of Type i. In our case: an action is related to an

actor. The transformation sequence from the primary trace to the indicator is explained in Fig. 29. We propose to make

a selection on all observed actions related to the ActorX, and then select only those occurring in a chosen time interval.

Then we prune the model to keep only the names and the type of the observed actions. Then we extract (using 2 selec-

tions) observed actions of types “A” and “B”, which are used as input data for the computation rule, using the opera-

tors "Count" and "Proportion". This generic transformation sequence is not the unique solution. For example, selections

on actor and time intervals may be built in a different order. Here, our aim is not to provide the transformation se-

quence for this indicator, but rather the authoring tools to build such sequences.

28 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Figure 29 • Generic transformation Sequence to compute the indicator: "Proportion between two observed types A and B”

In the implemented SBT, we show how to build the proportion between the observed type "private message" and

"chat message" made by the User15. Fig. 30 illustrates the construction of this sequence in the implemented SBT.

Figure 30 • Transformations sequence computing the proportion of private messages among all chat messages of User15

AUTHOR ET AL.: TITLE 29

We propose to build the computation rule in a toolbox taking the transformed traces as input. This toolbox offers

arithmetic operators; visual forms “Pies and histograms”; and calls the Count operator. Fig. 31 shows the computation

rule implementation for the indicator Proportion.

Figure 31 • Compute the Proportion indicator value of the last example in the implemented TBS

4.2.2. Example2: The division of labor
The division of labor computation is based on the sum of the differences (SD) of two instances associated with each

user on each tool. There is no specific rule in the CSCL (Computer Supported Collaborative Learning) literature to

compute this indicator. We propose the following transformation sequence to compute the indicator. We use the selec-

tion and pruning operators to build the sequence (Fig. 32).

30 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Figure 32 • Generic transformations Sequence to compute SD part of indicator: "Division of labor" between two actors ActorX and ActorY

The transformation sequences for ActorX and ActorY being the same, we can reuse the first one to build the second

one, thanks to the TBS ability to reuse existing transformation sequences in other transformations. Fig. 33 shows the SD

computation between actors "15" and "16" on tools "ToolChat1" and "Private Message".

AUTHOR ET AL.: TITLE 31

Figure 33 • Example of a transformation sequence to compute the SD part of the indicator “division of labor” (between actors 15 and 16) on
the tools: “ToolChat1” and “Private Message”. Save_Track and Load_Track are two operators used by TBS-IM to keep m-tracks in memory
and clarify which track the current transformation is applied to. These m-tracks management actions are not transformation.

4.2.3. Exemple3: An actor who reads his own contributions (auto self read) on a resource (I)
This indicator explains how often an actor reads his own contributions. In CSCL, there is no fixed rule to compute

this indicator. We propose here to use a pattern with the matching operator. The pattern is defined as [A+,B*] where A

represents the action type: "Edit Tool" and B is "Read in the same tool". The "+" means that the actor has modified

his/her contribution at least once, while the "*" means that the actor may have read 0 or more times this contribution.

32 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

For example, the pattern ABB means that an actor has edited his/her contribution once, and read it twice. The pattern

is illustrated by an automaton in Fig. 34.

Figure 34 • Pattern to identify auto self read indicator

The associated transformation sequence for this indicator is based on this pattern, and is shown in Fig. 35. We pro-

pose in this figure, the same indicator computation with another transformation based on the selection and fusion op-

erators. The fusion requires that the number of instances “Editing” is greater than 0.

This example shows the existence of some equivalence between transformation sequences. We can build two differ-

ent sequences to compute the same indicator which also demonstrates the expressiveness of our method.

AUTHOR ET AL.: TITLE 33

Figure 35 • Two sequences for the indicator (Auto-Self-read), using fusion or matching operator

We have chosen to implement the second transformations sequence (Fig 36) for the actor "2" and tool "ToolWiki1".

The "A" in the generic sequence becomes "EditWikiPage" and "B" becomes "WikiView".

In this part, we have presented the implementation of our method with the proposal of generic operators that trans-

form models or their instances. We have shown the existence of a certain class of equivalence between the transforma-

tion sequences, as well as the ability to reuse transformation subsequences in the same sequence or in new sequences.

We have also shown the feasibility of our method with the implemented TBS which integrates a primary trace from

Moodle. The indicators computation becomes an easy task, without going through the coding details.

34 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Figure 36 • Sequence changes for the actor 15 on tool Wiki in order to compute the readings of his own contributions on this wiki

4. CONCLUSION
We have presented a method and a tool to describe and compute collaborative indicators when using a Trace-Based

System. The method is based on an MDE approach (trace models), and helps build transformation sequences of mod-

els to compute collaboration indicators. This method uses a Trace-Based System to manage the traces that are needed

for computing indicators. The Trace-Based System also supports the reuse of models during the design and calculation

steps. We propose an architecture and a tool to build and manage interaction traces used to compute indicators. It’s

essential and crucial for the proposed engineering to support the modelling process by facilitating models reuse for

collecting observables as well as for the indicators computation themselves. Therefore, this work enables to describe

explicitly the indicator construction (calculation expression, associated trace model and transformations’ path from the

primary trace) making ease the reuse of this knowledge and, moreover, proposes a concrete framework (a trace base

system) to compute these indicators from interaction traces of the learning activity.

Then, we showed the benefit of this method compared to the ad-hoc indicators computation, where we compute in-

dicator at an abstract level with transformations operators without using a specific coding. As recommended in [4], our

method is widely independent from the learning platform. Indeed, it describes and executes the computation of a new

indicator from the M-trace transformation sequences without using the learning platform. Only the initial collection of

users’ events is made specifically for the target platform, providing the primary modelled trace used by all transforma-

tion sequences to compute collaborative activities indicators.

AUTHOR ET AL.: TITLE 35

The user can then reuse transformation sequences to compute the same indicators for other learning platforms, to

ensure independence between the learning platform and the way to compute the collaborative activity indicator. The

use and reuse of transformation sequences applied on the M-Trace is the originality of our proposed method. This

method applies also to social systems that involve a big number of participants, as well as for collaborative activities in

small groups (2-3 persons). The notion of modelled primary trace is generic and does not limit the number of learners.

We must only associate an identifier with each learner, since we start with a primary M-Trace collecting event from

any number of learners. We can also apply our method to compute individual activities indicators, but an important

part of our work consists in studying collaborative activities indicators proposed in the literature, and define -for each

of them- the abstract models of the collected traces. For the moment, we build a library of indicators with their associ-

ated trace models and focuss on collaborative activities indicators. Publishing this library may be relevant for all learn-

ing platforms designers wishing to integrate it.

In a future work, our implemented TBS and the models transformations library will be tested by independent re-

searchers with other learning platforms. We also plan to make the proposed transformation mechanism richer by add-

ing new operators or by enriching existing ones and particularly the rewriting operator.

REFERENCES

[1] A. Soller, A. Martinez, P. Jermann, M. Muehlenbrock, “From Mirroring to Guiding: A Review of State of the Art Technology for Supporting Col-

laborative Learning. IJAIED,” International Journal of Artificial Intelligence in Education, vol. 15, pp. 261-290, 2005.
[2] A. Mille and Y. Prié, “Une théorie de la trace informatique pour faciliter l'adaptation dans la confrontation logique d'utilisation/logique de conception,

“ Proc. 13èmes journées de Rochebrune –Traces-Enigmes-Problèmes, Rochebrune, France, 2006.
[3] A. Dimitracopoulou, “State of the art of interaction Analysis: Interaction Analysis Indicators. Interaction and Collaboration Analaysis supporting

Teachers’ and Students’ Self-regulation. (ICALTS),” JEIRP Deliverable D.26.1.1. Kaleidoscope NoE, pp. 153, December 2004.
[4] A. Dimtracopoulou, “Computer based Interaction Analysis Supporting Self-regulation: Achievements and Prospects of an Emerging Research Direc-

tion,” In Kinshuk, M.Spector, D.Sampson, P. Isaias (Guest editors). Technology, Instruction, Cognition and Learning (TICL), 2008.
[5] C. Reffay and T. Chanier, “How social network analysis can help to measure cohesion in collaborative distance-learning,“ Procs. Computer Supported

Collaborative Learning Conference (CSCL'2003), Bergen, Norway, pp. 343-352, June 2003.
[6] A. Jaillet, ”Peut-on repérer les effets de l’apprentissage collaboratif à distance”, Distances et savoirs, vol. 3, no. 1, pp. 49-66; 2005.
[7] O.C. Santos, A. Rodríguez , E. Gaudioso , J-G.Boticario, “Helping the tutor to manage a collaborative task in a web-based learning environment,”

Communication in the Workshop Towards Intelligent Learning Management Systems, Sydney, Australia, p.72-81, 2003.
[8] A. Martínez, Y. Dimitriadis, E. Gómez, B. Rubia, P. de la Fuente, “Combining qualitative and social network analysis for the study of classroom

social interactions,“ Computers and Education, vol. 41, no. 4, pp.353-368, 2003.
[9] P.A. Tedesco, “MArCo: Building an Artificial Conflict mediator to Support Group Planning Interactions,” International Journal of Artificial Intelli-

gence in Education, vol 13, pp.117-155, 2003.
[10] M. May, S. George, P. Prévot, “Tracking, Analyzing, and Visualizing Learners' Activities on Discussion Forums,” Proc. International Conference on

Web-based Education (WBE 2007), Chamonix, , pp. 649-656, 2007.
[11] A. Lavallard, Exploration interactive d'archives de forums : Le cas des jeux de rôle en ligne, Doctorate thesis, Université de Caen, Juillet 2008.
[12] F. Diagne, “Em-AGIIR : un Environnement Multi-AGent ouvert pour la supervIsion à partir d’Indicateurs Réutilisés,“ Proc. 2ième rencontre des

jeunes chercheurs RJC-EIAH08, Lille, France, pp. 65-70, 2008.
[13] D. Pham Thi Ngoc, “Réingénierie des EIAH : automatiser et réutiliser le savoir-faire en analyse d'usage,“ Proc. 2ième rencontre des jeunes chercheurs

RJC-EIAH08, Lille, France, pp. 99-104, 2008.
[14] P.R. Jermann, Computer Support for Interaction Regulation in Collaborative Problem-Solving. Doctorate thesis, Genève, 2004.
[15] N. Avouris, M. Margaritis, V. Komis, R. Melendez, A. Saez, “ModellingSpace: Interaction Design and Architecture of a collaborative modelling

environment, “ Proc. the 6th conference of Computer Based Learning in Science (CBLIS), Nicosia, Cyprus, pp. 993-1004, 2003.
[16] P. Laforcade, T. Nodenot, C. Choquet, P.A. Caron, “Model-Driven Engineering (MDE) and Model-Driven Architecture (MDA) applied to the Model-

ling and Deployment of Technology Enhanced Learning (TEL) Systems: promises, challenges and issues,” In: Architecture Solutions for E-Learning
Systems, pp. 116-136, 2007.

[17] J. Laflaquière, L.S Settouti, Y. Prié, A. Mille, “A trace-based System Framework for Experience Management and Engineering,” Workshop on Ex-
perience Management and Engineering (EME 2006) in conjunction with KES2006, Bournemouth UK. 2006.

[18] L.S Settouti, Y. Prié, J-C. Marty, A. Mille, “A Trace-Based System for Technology-Enhanced Learning Systems Personalisation,” Proc. The 9th IEEE
International Conference on Advanced Learning Technologies, Riga, Latvia. 2009.

[19] E. Seidwitz, “What models Mean,” IEEE Software, vol. 20, no. 5, pp.26-32.

36 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

[20] J. Bézivin, O. Gerbé, “Towards a precise Definition of the OMG/MDA framework,” Proc. the 16th Conference on Automated Software Engineering
IEEE (ASE'2001), San Diego (USA), pp 273-280, 2001.

[21] OMG. Meta-Object Facility (MOF) Specification Version 1.4. http://www.omg.org/technology/documents/ formal/mof.htm
[22] Moodle. Modular Object-Oriented Dynamic Learning Environment. http://docs.moodle.org/fr/Accueil
[23] T. Djouad, “Analyser l’activité d’apprentissage collaboratif : Une approche par transformations spécialisées de traces d’interactions“, Proc. 2ième

rencontre des jeunes chercheurs RJC-EIAH08, Lille, France, pp. 93-98,2008.
[24] Jena. A Semantic Web Framework for Java, http://jena.sourceforge.net/
[25] A. Mille, B. Fuchs, B. Chiron, “Raisonnement fondé sur l'expérience : un nouveau paradigme en supervision industrielle“. Revue d'intelligence artifi-

cielle, vol. 13, pp.97-128, 1999

