
Managing Distributed Service Environments:
A Data-oriented Approach

Yann Gripay
Université de Lyon, CNRS

INSA-Lyon, LIRIS, UMR5205
7 avenue Jean Capelle

F-69621, Villeurbanne, France
yann.gripay@liris.cnrs.fr

Marian Scuturici
Université de Lyon, CNRS

INSA-Lyon, LIRIS, UMR5205
7 avenue Jean Capelle

F-69621, Villeurbanne, France
marian.scuturici@liris.cnrs.fr

ABSTRACT
Managing dynamic and distributed computing environments,
a.k.a. pervasive or ubiquitous environments, is currently a
major issue in many application domains. The abstraction
of functionality as services, representing sensors, actuators,
and all other devices ranging from small mobile handsets
to powerful servers, is a common way to address this issue.
However, managing a great number of dynamic distributed
services is still a difficult issue.

In this paper, we present a data-oriented approach for dis-
tributed service environments. It relies on a model that ho-
mogeneously represents services producing, storing and/or
consuming data and data streams, and providing compu-
tation and actuator functionality. This model enables the
extension of one-shot and continuous query processing tech-
niques to manage distributed service environments. We also
describe a protocol of RESTful web services implementing
this model, and service-oriented continuous query processing
techniques on top of it.

1. INTRODUCTION
Computing environments evolve towards what is called

pervasive or ubiquitous systems [10]: they tend to be more
and more heterogeneous, decentralized and autonomous. On
the one hand, personal computers and other handheld de-
vices are largely widespread and take a large part of informa-
tion systems. On the other hand, data sources may be dis-
tributed over large areas through networks that range from
a world-wide network like the Internet to local peer-to-peer
connections like for sensors.

Managing those dynamic and distributed computing en-
vironments is currently a major issue in many application
domains: intelligent buildings, environmental monitoring,
remote patient monitoring, etc.. The abstraction of func-
tionality as services, representing sensors, actuators, and all
other devices ranging from small mobile handsets to pow-
erful servers, is a common way to address this issue [1, 11].
This abstraction enables several approaches to manage those
environments: service discovery, service composition and or-
chestration, service-oriented architectures, etc. However,
managing a great number of dynamic distributed services
is still a difficult issue, in particular when dealing with het-
erogeneous service functionality that can handle data and
data streams.

In this paper, we present a data-oriented approach for
distributed service environments, which is an ongoing work
within a French National Research Agency (ANR) project

called Optimacs [6]. This approach relies on a model that
homogeneously represents services producing, storing and/or
consuming data and data streams, and providing computa-
tion and actuator functionality. Using concepts from the
relational model, we aim at building a logical data model of
such environments.

Moreover, this model enables the extension of one-shot
and continuous query processing techniques to manage dis-
tributed service environments [9]. The integration of our
service model within a complete data model, namely the
SoCQ (Service-oriented Continuous Query) data model, is
tackled in [3]. Applications can then be expressed as declar-
ative queries [2, 8], leading to new opportunities for query
optimization in this context. It is however out of the scope
of this paper: in this paper, we just sketch the SoCQ data
model and associated query processing techniques.

We also propose a protocol of RESTful web services that
implements our service model, namely the SoCQ Data Ser-
vice protocol [7]. This protocol is based on the HTTP pro-
tocol, but exploit it in a “relational way”.

The rest of the paper is organized as follows. In Section 2,
we present our service model through some definitions and
notations, and also discuss some interesting extensions. We
describe the service protocol in Section 3 and sketch the
SoCQ data model in Section 4. We then conclude and dis-
cuss some perspectives in Section 5.

2. SERVICE MODEL
We propose a data-oriented approach for dynamic dis-

tributed services. We first state some definitions and then
define some notations. We reuse standard definitions and
notations from the relational model, borrowed from [5], for
the following data-oriented concepts: attribute, schema, tu-
ple, relation.

2.1 Definitions
In our approach, a service is seen as a container of capabil-

ities, called service resources. A service is neither a function
nor a datasource in itself, but is a provider of such resources.
A resource is represented as a method, a relation, an output
stream or an input stream. The same resource can be im-
plemented by several services. Operations are the possible
interactions with a resource implemented by a given service.

Definition 1 (Service). A service is a logical entity
identified by an URL. It is described by a name and a list
of service resources it provides. A service is dynamic: at a
given time, it is either available or unavailable.

Definition 2 (Service Resource). A service resource
is a logical component identified by a name. It is described
by a type, an input schema and an output schema. There
exist 4 types of resources:

1. Method: A method resource is a computation or actu-
ator component. It represents a functionality that can
be invoked. An invocation is parameterized by a tuple
of data over its input schema and produces n tuples
(with n ≥ 0) of data over its output schema1.
Example: sendMessage(address,message):(sent)

2. Relation: A relation resource is a data storage com-
ponent. It stores tuples of data over its output schema.
Tuples can be inserted, deleted and retrieved.
Example: contacts():(name,address,job)

3. Output Stream: An output stream resource is a con-
tinuous data producer component. It produces tuples
of data over its output schema and sends them to its
subscribers (a.k.a. consumers). A subscription is pa-
rameterized by a tuple of data over its input schema.
Example: temperatures(threshold):(temperature)

4. Input Stream: An input stream resource is a data
sink component. It consumes tuples of data over its
input schema.
Example: videoInput(image):()

Definition 3 (Service Resource Operation). A ser-
vice resource operation is an operation that can be performed
on a service resource to interact with it. There exist 3 oper-
ations, which behavior depends on the type of the resource:

1. retrieve-data: It retrieves data from a resource. It
retrieves stored tuples from a relation. It subscribes to
an output stream, with some given input parameters,
in order to continuously receive produced tuples. It in-
vokes a method, with some given input parameters, and
retrieves tuples from the invocation result (it may then
be called an invoke operation). It is not defined for an
input stream.

2. insert-data: It inserts data into a resource. It inserts
some given tuples into a relation. It feeds an input
stream with some given tuples. It is not defined for a
method or an output stream.

3. delete-data: It deletes data from a resource. It deletes
some stored tuples from a relation. It is not defined for
a method, an output stream or an input stream.

2.2 Notations
Within our data-oriented approach, we now define the

structure of a data model for dynamic distributed services.
It is based on five mutually disjoint infinite countable sets:
the discrete time domain T of “time instants”, constants
(i.e., data values) D, attributes A, services Ω, and resources
(or “prototypes of functionality” [3]) Ψ.

1In a data-centric perspective, we suppose that every
method has at least one attribute in its output schema. If a
method does not have a “natural” one (e.g., some actuator
functionality like switching on a light or sending a message),
its output schema should still contain one boolean attribute.
An invocation of such methods should then return one tuple
with the boolean value true.

We also define the boolean domain B = {true, false} ⊂ D
and the service URL domain U ⊂ D. The set of resources
is furthermore partitioned in 4 disjoint subsets representing
the 4 types of resources: methods M, relations R, output
streams O, input streams I.

A schema S represents a set of attributes, denoted by
schema(S) = {A1, ..., An} ⊂ A. A tuple t over a schema S
contains a data value for each attribute of S, i.e., it is an
element of D[S] = Dom(A1) × ... ×Dom(An) ⊆ Dn, where
Dom(Ai) ⊆ D is the domain of attribute Ai.

A service ω ∈ Ω has an identifier (i.e., its URL) denoted
by id(ω) ∈ U . Its availability at instant τi ∈ T is denoted
by available(ω, τi) ∈ B. Its set of resources is denoted by
resources(ω) ⊂ Ψ, where a resource ψ ∈ Ψ has an input
schema Inputψ and an output schema Outputψ.

We represent service operations as functions:

1. Operation retrieve-data from resource ψ on service
ω with input tuple t at time τi:

retrieveψ :
(U ,D[Inputψ] ∪ ∅, T) → P(D[Outputψ])

(id(ω), t, τi) 7→ r

The function result is a finite set of tuples over
Outputψ. For a method or relation resource (ψ ∈
M∪R), the operation result is the function result
at instant τi. The input tuple is however not expected
for a relation (i.e., t = ∅). For an output stream re-
source (ψ ∈ O), the operation result is the sequence
of function results for τj ≥ τi, as long as the subscrip-
tion lasts.

2. Operation insert-data into resource ψ on service ω
with input tuple t at time τi:

insertψ :
(U ,D[Inputψ], T) → B

(id(ω), t, τi) 7→ b

For a relation or input stream resource (ψ ∈ R∪I), a
tuple over the input schema Inputψ is expected. How-
ever, for a relation resource (ψ ∈ R), the input schema
is always considered to be the same as the output
schema: Inputψ = Outputψ.

3. Operation delete-data from resource ψ on service ω
with predicate p at time τi:

deleteψ :
(U , P[Outputψ], T) → B

(id(ω), p, τi) 7→ b

p ∈ P[Outputψ] denotes a predicate over the output
schema Outputψ of the relation. It can only be applied
on a relation resource (ψ ∈ R).

The integration of those notations within a complete data
model is tackled in [3] (cf. Section 4). The representation of
services is focused on method and output stream resources,
but can be smoothly extended to integrate relation and in-
put stream resources as defined in this paper.

2.3 Ongoing Extensions
We are currently working on two extensions of our model.

The first one is the definition of derived resources. A
derived resource ψ′ is a component of another resource ψ
that enables other types of interactions with ψ. For example,
an output stream resource can be derived from a relation
resource so that subscriptions to the stream are notified of
tuples inserted into and deleted from the relation.

The second one is a new type of resources: context re-
sources. It can represent a set of static and dynamic prop-
erties describing a service (or another resource, through a de-
rived resource). Static properties could be simply retrieved
(e.g., service name, device type), or also updated in order
to configure a service (e.g., period of sampling for a sensor).
Dynamic properties could be subscribed to, like for output
streams, in order to be notified of value changes (e.g., service
location, battery level).

3. SERVICE PROTOCOL
In order to implement our proposition, we propose a pro-

tocol of RESTful web services: the SoCQ Data Service pro-
tocol [7]. This protocol is based on HTTP requests. Service
operations are handled in a “relational way”, where input
and output data are represented by tuples over input and
output schemas.

3.1 Services and Resources
A service is identified by an URL. This URL allows to

retrieve the description of a service, in particular the list of
resources it provides.

http://ds.example.com/service1

Name: MyExampleService
Description: Example SoCQ Data Service
Resources:

sendMessage:Method
contacts:Relation
temperatures:OutputStream
videoInput:InputStream

A resource is identified by its name within a service: it can
be simply accessed by the URL of the service augmented by
the name of the resource. It then allows to retrieve the
description of the resource.

http://ds.example.com/service1/sendMessage

Name: sendMessage
Type: Method
Description: Send a mail message to the given address
Schema.Input:

address:String
message:String

Schema.Output:
sent:Boolean

3.2 Data Representation
In this protocol, we use five basic data types: string for

character strings, integer and real for numbers, boolean
for boolean values and binary for other data types (like
images, sound files). Input and output schemas are a list of
attributes, with their name and their data type.

An input data tuple is sent within a HTTP request as a
list of request parameters (with their value) corresponding
to each input schema attribute. System parameters can be
added, like ds:encoding.input to specify the input encod-
ing of string and binary values (e.g., base64 encoding).

// Input parameters for Method sendMessage
address=yann.gripay@liris.cnrs.fr
&message=Hello World!

// Same parameters, but with base64 encoding
address=eWFubi5ncmlwYXlAbGlyaXMuY25ycy5mcg==
&message=SGVsbG8gV29ybGQh
&ds:encoding.input=base64

Output data tuples are retrieved in the HTTP response
body as a list of tuples. A tuple is itself a list of values
for each attribute of the output schema. Each value is on
a single line of the response. String and binary values are
base64 encoded in order to keep the protocol format2. A hu-
man user may however specify to retrieve unencoded string
values by using the system parameter ds:encoding.output.

// Tuples from Relation Contacts
name:WWFubg==
address:eWFubi5ncmlwYXlAbGlyaXMuY25ycy5mcg==
job:VGVhY2hpbmcgQXNzaXN0YW50

name:TWFyaWFu
address:bWFyaWFuLnNjdXR1cmljaUBsaXJpcy5jbnJzLmZy
job:QXNzaXN0YW50IFByb2Zlc3Nvcg==

3.3 Operations
Service resource operations are invoked using the HTTP

get operation on the service resource URL augmented with
the name of the operation, with some request parameters:

1. retrieve-data: <resource-url>/get

For methods and output streams, an input tuple is
expected, but not for relations.

2. insert-data: <resource-url>/insert

For relations and input streams, an input tuple is ex-
pected.

3. delete-data: <resource-url>/delete

For relations, a predicate over the output schema is
expected (more details in [7]).

The HTTP response for insert-data and delete-data
operations is empty (the HTTP status code may however
indicate an error). The HTTP response for retrieve-data
is a document containing output data tuples. For methods
and relations, it is a finite document with a finite number
of tuples. For output streams however, it is an infinite doc-
ument where output tuples are printed when they are pro-
duced by the resource: it represents a subscription to this
resource that will end only when the client terminates the
HTTP connection.

3.4 Ongoing Extensions
We are currently working on extending the data type sys-

tem within our protocol. Besides our five basic atomic data
types, we aim at integrating two complex data types:
list(<type>) (e.g., list(string)) and object(<schema>)
(e.g., object(name string, address string, age inte-
ger)), that can also be nested (e.g., list(object(name
string, addresses list(string)))). Those data types would
be handled like other data types within schema and tuples.
In the protocol format for input and output tuples, complex
data types could be represented like in JSON [4].

Moreover, we aim at integrating refined data types to
build more precise data types, e.g., string.url.service, bi-
nary.image.jpeg, object.spatial.coordinates(x real,
y real). This refinement could enable the integration of
some existing type systems like MIME types.

Finally, in order to follow more closely REST architecture
principles, the protocol will allow to invoke different resource
operations on the same resource URL by using different stan-
dard HTTP methods like get, post, put, delete.
2Decoding encoded tuples from the example is left as an
exercise for the reader. . . ;-)

4. QUERYING DATA AND SERVICES
Within our data-oriented approach, we have built a com-

plete data model, namely the SoCQ data model [2, 3], on
top of our service model. It provides a declarative query
language to homogeneously handle data, data streams and
services. In a similar way to databases, we have defined
the notion of “relational pervasive environment” composed
of several eXtended Dynamic Relations, or XD-Relations.

The schema of an XD-Relation is composed of attributes
that are either real or virtual. Virtual attributes do not have
a value at the data level, but represent input and output pa-
rameters of service resources that may receive some values
through some query operators. A schema of XD-Relation
is further associated with binding patterns indicating which
service resources are involved (with which input/output at-
tributes), whereas service identifiers (i.e., service URLs) are
handled at the data level. An XD-Relation may be either
finite (i.e., like a standard relation) or infinite (i.e., a data
stream). Currently, binding patterns represent either invo-
cations of a method resource or subscriptions to an output
stream resource (streaming keyword).

RELATION contacts (
name STRING,
address STRING,
messenger SERVICE,
message STRING VIRTUAL,
sent BOOLEAN VIRTUAL

)
USING BINDING PATTERNS (
sendMessage[messenger] (address, message) : (sent)

);
name address messenger message sent

nicolas nicolas@elysee.fr http://.../mailer * *
carla carla@elysee.fr http://.../mailer * *

françois francois@im.gouv.fr http://.../jabber * *

RELATION sensors (
sensor SERVICE,
location STRING,
temperature REAL VIRTUAL

USING BINDING PATTERNS (
getTemperature[sensor] () : (temperature),
temperatures[sensor] () : (temperature) STREAMING

);
sensor location temperature

http://ds.example.com/sensor1 roof *
http://ds.example.com/sensor2 corridor *
http://ds.example.com/sensor3 office *

Given the two examples XD-Relations contacts and sen-
sors, we can express an application of “temperature surveil-
lance” by a simple service-oriented continuous query. The
following query subscribes to the output streams of the sen-
sors, and sends alert messages when a given threshold (36.0�)
is reached.

SELECT location, name, sent
STREAMING UPON insertion
FROM sensors, contacts
WITH message := concat("Alert in ",location)
WHERE temperature > 36.0
AND location != "roof"

USING temperatures [1], sendMessage

In [3], besides standard relational operators that are re-
defined over XD-Relations, operators dedicated to virtual
attributes and binding patterns are defined. Among them,
the service discovery operator can build XD-Relations that
represent a set of available services providing some required
resources. For example, the XD-Relation sensors could be

the result of such an operator and be continuously updated
when new temperature sensor services become available and
when previously discovered services become unavailable.

5. CONCLUSION
In this paper, we have tackled the issue of managing dis-

tributed service environments through a data-oriented ap-
proach. We propose a model that homogeneously repre-
sents services with the notion of service resources (methods,
relations, output streams and input streams) and their as-
sociated operations (retrieve-data, insert-data, delete-data).

This model has been implemented as a protocol of REST-
ful web services respecting this data-oriented approach. In
particular, input and output data for interactions with ser-
vices are always tuples over input and output resource schema.
This model has been integrated into a complete data model,
leading to service-oriented continuous query processing tech-
niques that can be implemented on top of the described pro-
tocol.

Through our data-oriented approach, “pervasive” applica-
tions and other user queries in dynamic distributed service
environments can be expressed in a simple declarative way.
It creates new opportunities for optimization techniques in
such environments. We then aim at developing a benchmark
for those environments to evaluate the performance of “hy-
brid queries” [6] involving data and services with objective
indicators.

6. ACKNOWLEDGMENTS
This work is part of the French National Research Agency

(ANR) project Optimacs [6] (ANR-08-SEGI-014, 2008–2011)
involving the following institutions: LIG (Université de Greno-
ble, France), LIRIS (Université de Lyon, France), and LAMIH
(Université de Valenciennes, France). The authors thank all
the members of the project that contributed directly or in-
directly to this paper.

7. REFERENCES
[1] D. Estrin et al. Connecting the Physical World with

Pervasive Networks. IEEE Pervasive Computing,
1(1):59–69, 2002.

[2] Y. Gripay, F. Laforest, and J.-M. Petit. SoCQ: a
Framework for Pervasive Environments. In ISPAN
2009, 2009.

[3] Y. Gripay, F. Laforest, and J.-M. Petit. A Simple (yet
Powerful) Algebra for Pervasive Environments. In
EDBT 2010, 2010.

[4] JSON (JavaScript Object Notation).
http://www.json.org/.

[5] M. Levene and G. Loizou. A Guided Tour of Relational
Databases and Beyond. Springer-Verlag, 1999.

[6] Optimacs Project. http://optimacs.imag.fr/.

[7] SoCQ Data Service. http://liris.cnrs.fr/ds/.

[8] SoCQ Project. http://liris.cnrs.fr/socq/.

[9] G. Vargas-Solar et al. IGI 2010, chapter Querying
Issues in Pervasive Environments. 2010.

[10] M. Weiser. The Computer for the 21st Century.
Scientific American, 265(3):94–104, September 1991.

[11] F. Zhu, M. Mutka, and L. Ni. Service Discovery in
Pervasive Computing Environments. IEEE Pervasive
Computing, 4(4):81–90, 2005.

