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Abstract 
 
   Classifier fusion is considered as one of the best 
strategies for improving performances upon general 
purpose classification systems. On the other hand, 
fusion strategy space strongly depends on classifiers, 
features and data spaces. As the cardinality of this 
space is exponential, one needs to resort to a heuristic 
to find out a sub-optimal fusion strategy. In this work, 
we present a new adaptive feature and score level 
fusion strategy (AFSFS) based on adaptive genetic 
algorithm. AFSFS tunes itself between feature and 
matching score levels, and improves the final 
performance over the original on two levels, and as a 
fusion method, not only it contains fusion strategy to 
combine the most relevant features so as to achieve 
adequate and optimized results, but also has the 
extensive ability to select the most discriminative 
features. Experiments are provided on the FRGC 
database and show that the proposed method produces 
significantly better results than the baseline fusion 
methods. 
 
1. Introduction 
 

In pattern recognition and computer vision 
literature, there are many fusion-related research works 
on different levels. Fusion information is a relatively 
understudied problem because of practical difficulties. 
It may cause significant classifier performance losses if 
the best fusion scheme is not relevantly chosen [4].  

Several fusion strategies can be roughly classified 
into three main categories: fusion at an early stage, 
fusion at a later stage and hybrid fusion. However, 
many systems that integrate information at an early 
stage are believed to be more effective than those that 
perform integration at a later stage [3]. Therefore, 
while it is relatively more difficult to achieve in 
practice, fusion at early stage has drawn more attention 
in recent years. There are two types of early fusion: 

fusion at image level (3D image [1] or 3D/2D image 
[2]), and fusion at feature level [3]. In fact, at the 
feature level the concatenated feature vectors may 
contain noisy or redundant data, thus leading to 
decreased performances of the classifier [4]. In this 
case, the feature selection procedure is an important 
step. Several search strategies, which provide one 
optimal (or near-optimal) subset of features with 
respect to a certain criterion, have been put forward: 
exhaustive search [4, 5], best individual features (BIF), 
sequential forward selection (SFS), sequential 
backward selection (SBS) [4], sequential forward 
floating search (SFFS) [4,6], sequential backward 
floating search (SBFS) [4,7] and evolutionary 
algorithms. Among them, the genetic algorithm (GA) 
[8] includes a subset of evolutionary algorithms 
focusing on the application of selection, mutation, and 
recombination to a population of competing problem 
solutions. In fusion at later stage, all classifiers are 
included in the fusion scheme. Since these individual 
experts may be correlated, it may not be the best 
scheme to follow. In this case, there are three fusion 
sub-levels: score match level [9], rank level [10] and 
decision level [11]. Kittler and al. [15] presented and 
developed a common theoretical framework for these 
combining classifiers. At the first level, similarity 
scores are combined by various techniques [12], for 
example, Sum Rule, Product Rule, etc. At the second 
level, sorted lists computed by classifiers are merged 
based on different approaches such as Borda Count and 
Logistic Regression [13]. At the third level, all the 
candidates of the classifiers are fused by adopting 
several methods [14], i.e., Majority Vote or Majority 
Vote with maximum confidence. The last category 
contains intermediate fusion schemes, such as serial 
fusion and multilevel fusion. The main motivation of 
the serial or hierarchical architecture [14] is to filter out 
the most similar K classes using a simple classifier and 
then to feed these K classes into a more complex and 
powerful second classifier. On the other side, there are 



few works that describe multilevel fusion. In [16], 
fusion is introduced in both feature level and 
confidence level for face recognition.  

In this work, we propose a general multilevel fusion 
method that is able to obtain a global sub-optimal 
solution while lessening the complexity of calculation. 
The main contributions of this paper are as follows. 
We propose to use a genetic algorithm with a novel 
coding strategy for effective feature selection; at the 
same time an optimal fusion strategy scheme is 
generated at both feature and matches score levels.  

The remainder of this paper is organized as follows: 
Adaptive feature and score level fusion strategy is 
introduced in section2, and section 3 presents 
experimental results. Section 4 concludes the paper. 
 
2. Adaptive feature and score level fusion 
strategy (AFSFS) 
 

The proposed approach (Figure. 1) is based on 
genetic algorithm, using a novel coding technique, to 
search the optimal fusion scheme. 
 
2.1. Algorithm Overview 

 
 

Figure 1. Algorithm Overview 
 
The method consists of two steps. In the first step 

the data information is preprocessed and features are 
extracted. For measurement cost and classification 
accuracy, Linear Discriminant Analysis (LDA) is used 
to reduce the dimensionality for each feature. The 
second step finds one subset of features that is optimal 
with respect to the corresponding fusion scheme. So, 
all features are coded to form individual 
“chromosomes” according to the model described in 
the section 2.2. Furthermore, these chromosomes are 

used by a genetic algorithm [21] to encode the trial 
solution for the current problem. Iterative selection, 
crossover, and mutation were used to make evolve a 
new population. At each new generation, a new set of 
chromosomes is produced, using the fittest genes of the 
previous generation, for a better solution. Assessment 
of the satisfactory degree of this solution, encoded as 
individuals, is reflected in the fitness. Also, the 
individuals with higher fitness have a high probability 
of being selected and producing offspring. The 
crossover operator produces better offspring by 
exchanging the characteristics of the parents. This 
enables the most efficient characteristics to be 
concentrated in the same individual. The mutation 
operator randomly changes the genetic representation 
of an individual and tends to inhibit the possibility of 
converging to a local optimum, rather than the global 
optimum. The evolution is carried out until a desired 
solution is arrived, or a pre-specified number of 
iterations are completed. The final solution with higher 
fitness represents the optimal fusion strategy. 
 
2.2. Basic Properties of Genetic Algorithm 
 

We propose a novel coding strategy to select 
simultaneously the efficient feature and the optimal 
fusion scheme. This coding strategy consists to divide 
the   chromosome into two parts: Part A and Part B 
(See Figure. 2). Given N features, Part A has N gene 
positions that correspond to each feature, and 
represented with integer values: 1 implies that the 
feature is active and used in feature level fusion, 0 
implies that the feature is active and used in score level 
fusion, and -1 implies that the feature is inactive. Part 
B codes the fusion model that depends on the number 
NF of active features at feature level fusion. In this 
model, we generate all possible combinations. 
However, we can’t create a strategy that contains a 
single feature and we consider that combinations 
obtained by permutation are equivalent. Part B is also 
composed of two parts P1and P2: P1 refers to the 
model M and P2 associates the features in this model.  

An example of this representation is illustrated in 
Figure 2. With a Part A as 1011101-11, we can 
generate 4 models Mi, with i in {1..4}: M1=(6, 0), M2= 
(2, 4), M3= (3, 3), M4=(2, 2, 2). The number of the 
selected model is represented in the chromosome by its 
binary code: the model M2 is selected and represented 
by (010) and two vectors V1, V2 are created by 
concatenation, V1= [F3, F4] and V2= [F5, F1, F7, F9]. 
The fusion strategy corresponds to a score matching 
level with V1, V2, F2 and F6. The fitness of this 
strategy is calculated based on performance rate with 
simple sum rule in score level fusion. Stochastic 
universal sampling [17] is used to select best 
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chromosomes “strategies”. Uniform crossover is used 
only on Part A and random mutation may occur on Part 
A or Part B of chromosome. Stopping criteria chosen 
for problem solving is selected from these conditions: 
1) either the maximum number of iterations over the 
terminal number max of generations, 2) the best fitness 
value beyond the value of fitness limits. 

Figure 2. Example of chromosome coding strategy 
 
3. Experimental Results 
 

The proposed algorithm is tested in a face 
recognition application, where the objective is to find 
an optimal subset of features and their adequate fusion 
strategy. 
 
3.1. Database, Experiment Settings and 

Feature Extracted 
 

The FRGC [18] database was chosen for our 
experiments. Each face data consists of one 3D face 
model and its registered 2D color image. 3D faces are 
preprocessed with techniques in [22]. FRGC v1.0 
dataset is used for estimating LDA parameters while 
FRGC v2.0 is used for test. In the first step, 116 
subjects having each 4 face models were selected from 
FRGC v1.0 to train subspace based approaches such as 
estimating LDA parameters. One 3D face scan with a 
neutral expression was selected from each subject to 
make a gallery of 50 subjects and 472 (3D) face scans 
were treated as probes. Furthermore, we have used 3D 
features. In fact, we have considered the raw point-
cloud representation of 3D face model as well as 
geometric features containing normal (Nor Vec), 
binormal (BiN Vec), tangent vector  (Tang Vec) [19] 
and curvature related features that have the potential 
for a higher accuracy to describe the surface based 
events. Four categories of curvature-based features are 
extracted. The first two types rely on main directions 
corresponding to maximum (Max Curv) and minimum 
(Min Curv) curvatures [20]. The last two are their 
derivatives, i.e., the mean (Mean Curv) and Gaussian 
(Gauss Curv) curvatures. We further investigated 

another type of 3D feature based on the anthropometric 
(Anthr Mes) approach which advocates extracting a 
signature from some anthropometric points considered 
the most relevant. So, Part A of chromosome is 
organized as follows: {Tang Vec, BiN Vec, Nor Vec, 
Gauss Curv, Max Curv, Mean Curv, Min Curv, Anthr 
Mes}. 

 
3.2. Results and Analysis 

 
LDA is applied to reduce dimensionality of all 

features. One similarity measure of each feature was 
computed with Nearest Neighbor (NN). Table 1 
displays the performance of each feature. As in the 
table, the best rank-one recognition rate is provided by 
tangent vectors with 86.22%.  

Table 1. Rank-one recognition rate of individual type of 
feature on the FRGC v2.0 database  

 NN  NN  NN 

Max Curv 73.98 Mean Curv 79.59 BiN  Vec 79.59 
Gauss Curv 62.76 Anthr Mes 64.8 Nor  Vec 79.59 
Min Curv 73.98 Tang  Vec 86.22   

Table 2. Rank-one recognition rates with different fusion 
schemes 

 Recognition 
Rate

SBFS-based classifier selection [6] 91.84% 
Original Sequential Backward Floating Search 
(SBFS)[4] 

90.31% 

Adaptive feature and score level fusion strategy 
(AFSFS)

92.35% 

 
With a gain of 5.62 percent, the improvement is 

achieved by SBFS-based classifier selection [6] (See 
Table2). In fact, the near optimal subset found by 
SBFS-based classifier selection for simple sum 
technique is {Tang Vec, BiN  Vec, Mean Curv, Anthr 
Mes }. The same subset is produced by AFSFS from 
the relevant chromosomes in the following form: Part 
A: 00-1-1-10-10, Part B: P1: 000001. In our work, the 
optimal strategy fusion is generated after 50 
generations, each generation containing 50 
chromosomes, and coded as follows. Part A: 
00111010, Part B: [P1: 000010, P2:7, 4, 3, 5]. The 
selected strategy consists firstly to concatenate {Nor 
Vec, Gauss Curv} in vector V1, {Max Curv, Min 
Curv} in vector V2. Secondly, we use this optimal 
subset {V1, V2, Tang Vec, BiN Vec, Mean Curv, Anthr 
Mes} in score level fusion to produce the best rank-one 
recognition rate 92.35%. As we can see in table2, 
Original Sequential Backward Floating Search [4] 
represents a feature-selection method which achieves a 
90.31% rank-one recognition rate. The proposed 
genetic algorithm improves rank-one recognition 
accuracy as compared with other methods [4, 6] in two 
steps: selecting the most discriminative features and 
proposing an optimized fusion strategy. 
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4. Conclusions and Future Works 
 

In this paper we propose a framework of fusion 
strategies that is able to go far beyond the classical 
early and late fusion. A genetic algorithm is used to 
find a sub-optimal fusion scheme. This technique is a 
powerful global optimization method which is based 
on natural selection and genetics mechanisms. 
However, it is important to use the suitable coding 
strategy. Therefore, a new coding technique is 
developed and shows its effectiveness through 
experiments on FRGC v2.0 dataset. In fact, the 
proposed method AFSFS tunes itself between feature 
and matching score levels, and produces significantly 
better results than Original Sequential Backward 
Floating Search (SBFS) and SBFS-based classifier 
selection. 

In future works, we intend to extend this fusion 
scheme in order to generate the best model feature-
classifier-fusion (FCF). This can be possible if fitness 
function is dynamic and can select the best classifier 
for each fusion method. We plan as well to apply this 
framework to other applications in pattern recognition.  
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