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Abstract

In this paper we tackle the problem of detecting individual
human actions in video sequences. While the most success-
ful methods are based on local features, which proved that
they can deal with changes in background, scale and illu-
mination, most existing methods have two main shortcom-
ings: first, they are mainly based on the individual power of
spatio-temporal interest points (STIP), and therefore ignore
the spatio-temporal relationships between them. Second,
these methods mainly focus on direct classification tech-
niques to classify the human activities, as opposed to de-
tection and localization. In order to overcome these limi-
tations, we propose a new approach, which is based on a
graph matching algorithm for activity recognition. In con-
trast to most previous methods which classify entire video
sequences, we design a video matching method from two
sets of ST-points for human activity recognition. First,
points are extracted, and a hyper graphs are constructed
from them, i.e. graphs with edges involving more than 2
nodes (3 in our case). The activity recognition problem
is then transformed into a problem of finding instances of
model graphs in the scene graph. By matching local fea-
tures instead of classifying entire sequences, our method
is able to detect multiple different activities which occur
simultaneously in a video sequence. Experiments on two
standard datasets demonstrate that our method is compara-
ble to the existing techniques on classification, and that it
can, additionally, detect and localize activities.

1. Introduction
Human action recognition has been an active research area
in recent years due to its wide number of applications
which include video-surveillance but also annotation and
retrieval, human computer interaction etc. At this time,
building a robust activity recognition system still remains a
very challenging task, because of the variations in actions
classes, different possible viewpoints, as well as illumi-
nation changes, moving cameras, complex dynamic back-

grounds and occlusions.
Based on the features used for recognition, existing ac-

tion recognition methods can be broadly divided into two
categories: local approaches [4, 14, 16, 18] and holistic
approaches [12, 23, 22] and some methods which do not
neatly fall into these categories, e.g. Sun et al. [20] combine
local and holistic features. Most of the holistic-based ap-
proaches rely on pre-processing of input data such as back-
ground subtraction or tracking. The local-based approaches
overcome some limitations by exploiting robust descriptors
extracted from interest points. Most of these methods are
based on bag-of-words models (BoW), which have been
very successful for text analysis, information retrieval and
image classification. Inspired by this, a number of works
have shown very good results for human action recognition
[4, 14, 16]. However, they discard the spatio-temporal lay-
out of the local features which may be almost as important
as the features themselves.

To overcome the limitations of the BoW models, efforts
have been made to exploit information from the spatial and
temporal distribution of interest points [13, 26]. These ex-
tensions, however, still suffer from some of the inherent
problems involved in classification: they do not allow to
localize activities, and they require selecting the optimal
number of codewords for codebook formation as well as
fine-tuning of parameters.

As a response, matching techniques have been intro-
duced recently, e.g [9, 19, 15]. Shechtman and Irani [19]
define a motion consistency measure to match space-time
volumes directly. However, the distance between pair of
videos is computed by exhaustively comparing patches ex-
tracted from every space-time point. Ke et al. [9] com-
bine a part-based shape and flow matching framework from
[19] for event detection in crowded videos. Recently, Ryoo
and Aggarwal [15] have presented a histogram-based match
kernel for video matching. Among the methods mentioned
above, our approach is most closely related to the work
of Ryoo and Aggarwal [15], who perform video matching
from two sets of ST-points. Our method differs from their
work in two main points. First, the authors in [15] define

1



a set of logical predicates for taking into account the pair-
wise relationships among points. Instead, we take into ac-
count higher-order relationships between points through a
graph-matching technique. It should be noted that such log-
ical predicates are difficult to extend to higher relationships.
Second, their method needs to train a codebook from the
training sets, while our method does not require any learn-
ing.

In this paper, we advocate for the advantages of graph
matching methods and their capability of exploiting re-
lationships between local primitives. The main contri-
bution of our paper is the introduction of a graph-based
matching method for detecting and localizing multiple ac-
tions in video sequences. Graph matching techniques have
been studied intensively in the field of pattern recognition
[2, 5, 11, 21, 25], but no method has yet been given for
recognizing human activities — a straightforward applica-
tion of these techniques to video recognition is difficult. It
is widely known that exact (sub) graph matching is NP-
complete [21], as is sub graph isomorphism [24]. Approxi-
mate solutions have been proposed for various applications.
For instance, let N1, N2 be the number of vertices (nodes)
in graphs G1 and G2 , respectively. Optimally assigning
each node from G1 to one of the nodes in G2 is of com-
plexity O(N1 · N2) if only the unary measurements (e.g.,
SIFT descriptors) associated with each node are used, i.e.
for each node in G1 we assign the node G2 having mini-
mum feature distance. However, this is highly suboptimal.
If neighborhood relationships are taken into account, i.e.,
coherence of distances and/or angles associated to the edges
in the graphs, the complex interactions between assignment
variables make the complexity exponential: there are NN2
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possible assignments over the whole set of nodes in G1,
where each assignment takes O(N2

1 ) to check. Although
fast approximative algorithms do exist, e.g. with graph cuts
[21], the problem remains very difficult.

As pointed out in [25], the vertex correspondance prob-
lem can be transformed into an edge correspondence prob-
lem. In this approach, each edge in graph G1 is assigned an
edge in graphG2 according to a minimal distance which in-
volves, both, the feature distances of the 4 involved nodes as
well as edge compatibility, e.g. a comparison of the lengths
of the model edge and the assigned edge. In [11], the re-
sulting optimization problem is solved approximately with
a spectral method, which relaxes the discrete assignemnt
variables into continuous ones and then solves it numeri-
cally by removing some constraints during the optimiza-
tion procedure itself. This principle can be naturally ex-
tended to higher order interactions. Zass and Shashua [25]
present a hyper-graph1 matching method, which is of com-

1A hyper-graph is a generalization of a graph, where an edge can con-
nect any number of vertices, and hyper-edge is an arbitrary number of
nodes [25].

plexity O(|N1|.|N2|.z(2d−1)), where z is the closest hyper-
edges per vertex and d is the order of hyper-edges consid-
ered (d=2 for pairs). This method is still very time con-
suming, because in a real application z could not be far
from min(|N1|, |N2|). Very recently, Duchenne et al. [5]
generalized the spectral matching method from [11] by us-
ing a tensor-based algorithm for high order graph match-
ing, which is of complexity O(n3 + nd log(n)) where n =
max(|N1|, |N2|). A modified version of this triangle based
algorithm (i.e., d=3) is the basis of our work on activity
recognition in video sequences.

Exploiting the full potential of a graph based represen-
tation, our method offers several important advantages over
other activity detection methods for videos:

• The proposed method can not only classify but also de-
tect and localize activities, which occur simultaneously
in the same video sequence2.

• It does not require any parameter tuning, training, fore-
ground/background segmentation, or any motion esti-
mation or tracking.

• By verifying the spatio-temporal constraints in a sig-
nificant way, our method needs only a small number
of features points (i.e., the important ones) extracted
from two given videos to perform matching. In con-
strast, the conventional BoW methods need to collect
dense points from the videos to perform classification.

Besides these advantages, our method features several con-
tributions compared to the original graph matching method
introduced by Duchenne et al. [5] for object detection:

• By significantly reducing the number of hyper-edges
in the graph, our method is of much lower complexity
compared to the original one [5] (c.f section 3.1).

• We incorporate both triangle geometries and their ori-
entations to find potential corresponding triangles (c.f
section 3.2), which speeds up the convergence by elim-
inating incompatible triangles.

• We benefit from the features calculated at each ST-
point to initialize the algorithm (c.f section 3.3), which
reduces the number of false alarms and speeds up con-
vergence.

• Most of methods on graph matching consider the score
returned by the objective function as a detection crite-
ria. However, this is not optimal, as one cannot distin-
guish the case in which several vertices in the scene
graph are matched to the same vertex in the model
graph. We propose to interpret the projection of the

2Several methods can be adapted for detecting multiple actions by us-
ing sliding windows in both space and time dimensions, e.g. from [14, 16].



set of vertices of the first graph onto the second one
to compute a second score, called the detected score,
which, along with the matching score, is used for de-
tection (c.f section 3.4).

The rest of this paper is organized as follows. After briefly
summing up the Tensor-based algorithm in section 2, we
introduce our adaptation and extension of this algorithm to
video matching in section 3. In section 4, we discuss the
computational complexity of the proposed method. The ex-
perimental results are presented in section 5. Finally we
conclude and give some perspectives of this work.

2. Hyper-graph matching
In this section, we summarize the hyper-graph match-

ing method introduced in [3] and [11] and refined in [5].
Let Gm = (V m, Em, Fm) and Gs = (V s, Es, F s) be two
hyper-graphs (the model and the scene graph, respectively)
where hyper-edges correspond to a d-tuple of vertices. In
our case, where d=3, E represents a set of triangles (our
d-tuples), V a set of vertices, and F the set of their associ-
ated unary measurements (i.e an appearance feature). In the
following we denote the number of nodes in both graphs as
N1 = |V m| and N2 = |V s|, respectively. A matching be-
tween Gm and Gs is equivalent to looking for an N1 ×N2

assignment matrix X such that Xij is set to 1 when vmi is
matched to vsj , and to 0 otherwise. Thus, the search space
is the set X of assignment matrices:

X = {Xij ∈ {0, 1} :
∑
i

Xij = 1} (1)

Note that we constrain each model node vmi to be matched
to exactly one scene node vsj , but a scene node vsj may be
matched to several model nodes. As in [5], the matching
problem is formulated as the maximization of the following
score on X:

score(X) =
∑

i,i′,j,j′,k,k′

Hi,i′,j,j′,k,k′Xi,i′Xj,j′Xk,k′ (2)

where Hi,i′,j,j′,k,k′ is an energy potential estimating the
compatibility of pairs of triplets (i, j, k) ∈ V m and
(i′, j′, k′) ∈ V s. High values of H correspond to simi-
lar triplet pairs. Here, the product Xi,i′Xj,j′Xk,k′ will be
equal to 1 if (i, j, k) are all matched to (i′, j′, k′) (the orig-
inal formulation of this problem in [3] and [11] involved
pairs).

In [3, 11], the scoring function is maximized through a
continuous optimization procedure which requires relaxing
the values of X such that each element takes continuous
values in the interval [0, 1] subject to the constraint that the
norm of the column vectors of X is 1. Exploiting this con-
straint, and further requiring the elements of H to be non-
negative, the maximum value of (2) can be calculated as the
largest eigenvalue of X .

The basis of our method is the refined method proposed
by Duchenne et al. [5], which improves upon [3] and [11] in
three ways: (i) whereas the interactions in [3, 11] are pairs,
[5] extends the order to triplets (triangles), which may boost
the discriminative power of the method, especially since in-
teractions between neighboring d-tuples are not taken into
account in this class of hyper-graph techniques; (ii) the new
organization into triplets in [5] allows to change the L2

norm of the relaxation to the L1 norm, which makes the
de-relaxation of the continuous values into discrete assigne-
ment decisions more robust; The largest eigenvalue is cal-
culated using an iterative power-iteration algorithm.

3. The proposed method

The main objective of our method is to measure the sim-
ilarity of two videos through a graph-based matching tech-
nique. ST-interest points are first extracted from the video
sequences, then the proximity graphs are constructed from
them (see section 3.1). The activity recognition problem is
now formulated as (sub) graph matching between a model
graph and a (potentially larger) scene graph. We initialize
the iterative matching process using appearance features as-
sociated with each node of the graphs (see section 3.3). We
resort to the power-iteration algorithm introduced in [5] to
maximize a new objective function designed for the appli-
cation (see section 3.2). Finally, we propose a new way to
verify the matching result in order to decide whether the
scene graph contains an instance of the model graph, i.e.,
the two videos contain the same human activity (see section
3.4).

3.1. Constructing more expressive graphs

The complexity of the power-iteration method in [5]
highly depends on the number of the d-tuples (triangles) in
the two graphs constructed from the videos. The original
algorithm constructed fully connected graphs, i.e. graphs
with close to N3

1 and N3
2 nodes, respectively. We present

hereafter a graph construction method producing graphs
with far fewer but more expressive hyper-edges, which sig-
nificantly reduces complexity and also increases robustness
to non-rigid transformations. Given two sets of ST-points,
we construct two corresponding graphs for the model video
and the scene video, i.e. we construct the two sets Em and
Es of hyper-edges (triangles). Without loss of generality,
we present the construction of the model graph Gm, the
scene graph Gs is constructed in a similar way.

Temporal aspects — One of the most important prop-
erties of video is the nature (and importance) of the tempo-
ral order, which is very often dominated by causal relation-
ships. We exploit this in two ways: (i) we put a constraint
on the preservation of the correct temporal order of pairs of
triplets (see section 3.2) (ii) we restrict the number of hyper-



Figure 1. Illustration of a partial view of our graph: circles are ST-
points; three close points are grouped to form a triangle; arrows
indicate the temporal order of the points in a triangle.

edges, i.e., we keep only one hyper-edge per triplet of tree
points. This first filter allows us to sample the number of
triplets from n3 to |C3

n|.
ST-Proximity — Fully connected graphs create trian-

gles between all possible triplets of points, even between
very distant ST-points (in time and/or space). While, gen-
erally speaking, a higher number of triangles tends to in-
crease the discriminative power of the matching method, it
also tends to decrease robustness. This is especially true for
triangles between very distant points, as the space-time ge-
ometrical transformation between two instances of the same
human activity is not necessarily rigid. We propose to fil-
ter the set of triangles by a simple thresholding rule keep-
ing only triangles which are close in space and time using
two different thresholds, one for the spatial dimensions and
one for the temporal dimension (see figure 1 for an illus-
tration). The points in a triangle are then ordered accord-
ing to the temporal order. If there are more than one point
in the same frame, they are ordered according to their spa-
tial coordinates. In practice, we fix the thresholds such that
|Em| ≤ 8×N1.

The scene graph Gs is constructed in a similar way, but
taking more triplets (i.e., using bigger thresholds) to deal
with noise and scale changes. This gives the sub graph
matching algorithm a larger set of scene triangles to choose
from for each model triangle. In practice, we choose the
thresholds such that |Es| ≤ 50×N2.

3.2. An objective function for video sequences

In order to boost the discriminative power of the match-
ing algorithm, we propose the following compatibility ma-
trix H for the objective function in equation (2) designed
for activity recognition in videos:

Hi,i′,j,j′,k,k′ = Ht
i,i′,j,j′,k,k′ × φ((i, j, k), (i′, j′, k′)) (3)

where φ(., .) and Ht govern temporal and space-time geo-
metrical aspects of the transformation:

Temporal aspects — As mentioned in section 3.1, we
think that it is crucial to exploit the important nature of the
temporal dimension in video sequences. We therefore intro-
duce the functional φ(., .) which verifies if two triangles are
equally oriented taking into account the (temporal) order of
their points:

φ((i, j, k), (i′, j′, k′)) =

{
1 if Dijk = Di′j′k′

0 otherwise (4)

whereDijk is the sign of the determinant of the triplet com-
puted from their spatio-temporal coordinates:

Dijk = sign

 ix iy it
jx jy jt
kx ky kt

 (5)

Note that the row order in the determinant must be the same
as the point order in the triplet.

ST-geometrical distance — The factor Ht in (3) de-
scribes the geometric similarity between two triangles and
is given as follows:

Ht
ijki′j′k′ = exp

{
−||α(i, j, k)−α(i′, j′, k′)||

σg

}
(6)

where ||·|| is the L2 norm and α(·, ·, ·) is a vector of the
cosines of the first and second angles in the triangle (recall
that the points of a triangle are ordered), as the third one
is linearly dependent. The parameter σg governs the intra-
class variations of the angles, we set it to half the mean over
the distances between all triangles.

ST-geometrical proximity — To further decrease com-
plexity, and to increase discriminative power, triangles in
the model graph are only allowed to match triangles in the
scene graph if their geometrical shapes (given above) are
close enough. More precisely, only the first ranked dis-
tances as given by (6) are kept non-zero in Ht, where the
ranking can be computed efficiently using a k-d tree. In
practise we keep the first 350 scene triangles for each model
triangle.

3.3. Adding space-time features

The proposed matching compatibility function H does
not use any features associated with the ST-points — we ar-
gue that the matching algorithm itself is more robustly con-
trolled through ST-geometry, as distances in space-time are
difficult to compare with distances in most features spaces
in a single energy function. However, we propose to ben-
efit from the power of feature descriptors to better initial-
ize the matching algorithm. In our experiments we chose
the cuboid descriptor introduced by Dollar [4], which cal-
culates a histogram of gradients at the position of each ST-
point. Denoting by fmi and fsj the features calculated on



point i of the model graph and point j of the scene graph,
respectively, we initialize the relaxed assignment matrix X
as follows:

Xij = exp

{
−
||fmi − fsj ||

σf

}
(7)

where the parameter σf captures the variation of distances
in feature space. Only the values for Nb(i) nearest neigh-
bors in feature space (efficiently identified through a k-d
tree) are kept non-zero in the matrix X . In practice, we set
Nb(i) to 0.35|N2|. Additionally, the required norm con-
straint described in section 2 is then enforced through nor-
malization.

3.4. Action detection in videos

In order to decide whether an instance of the graph (a
video in our case) has been detected or not, most energy
based graph matching methods consider the final match-
ing score, which is denoted by score(X∗) and given as the
maximum of equation (2), calculated as a sum of all match-
ing scores between triangles after matching. This, however,
is not an optimal choice. For instance due to noise, sev-
eral triangles in Gs are matched to the same triangle in Gm,
and we cannot remove such irrelevant matches by filtering
based on only the matching score. Moreover, these match-
ing scores depend on the geometric features of triangles
used to verify compatibility between triangles, and there-
fore make the choice of a threshold difficult.

We propose a different score, called scored(X), which
removes the uncertainties from the matrix X . More pre-
cisely, we de-relax the values of the optimal matrixX∗ (ob-
tained as the maximum of (2)) by taking the maximum for
each node in the model graph and setting the others to zero:

Zij =

{
Xij if Xij = maxkXik

0 otherwise (8)

Then, scored is defined by the mean projection:

scored(X) =
1

N1

∑
i

Z(i, j) (9)

Clearly, scored ∈ [0..1] and it is equal to 1 for the ideal
case where every node in Gm is well matched. While
the matching score(X) indicates how similar two graphs
are, scored(X) measures us the percentage of correctly
matched points. We combine them through a global score
as follows:

scoreGlobal(X) =

{
scored(X) if score(X) ≥ τ0
0 otherwise

(10)
where τ0 is a preliminary threshold obtained through exper-
iments.

4. Computational complexity and running time
Our system has been implemented entirely in Matlab and

for the moment processes videos as entire sequences. How-
ever, the algorithm itself can be implemented to deal with
video streams by processing small overlapping consecutive
blocks. The size of these blocks can be kept small since the
model activities are short — around 5 to 30 frames in our
case, with a few longer examples of 60 frames in our model
dataset.

Our matlab implementation does not run in realtime, as
1 second of video for the moment requires 46.7 seconds of
processing on a single core processor with 2GHz and 2GB
of RAM, including feature extraction, scene graph construc-
tion, and matching against 98 model graphs. However,
given the notorios lack of efficiency of matlab, a reimple-
mentation in C++ should provide real-time or near-realtime
performance on a state of the art machine. We would
also like to point out that the algorithm is inherently par-
allel since matching with different model graphs can be
done in parallel. Furthermore, the matrix computations of
the power-iteration method should run very efficiently on a
GPU.

The theoretical complexity of the algorithm is given as
follows for the different steps:

Graph construction (see section 3.1) Constructing the tri-
angles of the fully connected graphs would need
O(N3

1 + N3
2 ) operations. Since we highly subsample

the number of triangles, and since this is done in small
blocks of space-time cubes, the real complexity is far
below.

Computation of the compatibility matrix H (see section
3.2) Since the number of model and scene triangles is
a linear function of the number of the respective ver-
tices, and we also restrict the number of scene trian-
gles per model triangle, the complexity can be given
as O(C1·N1·C2·N2 log(N2)) where C1 is the amount
of triangles per node and C2 is the number of nearest
scene triangles per model triangle. This complxity in-
volves a factor O(N2· log(N2)) for the access to the
k-d tree.

Initialization (see section 3.3) In a similar manner, the
complexity of the initialization step is given as
O(N1·C3·N2· log(N2)) where C3 ≤ N2 is the num-
ber of nearest neighbors searched for each node of the
model graph.

Optimization As mentioned before, the power-iteration
method introduced by [5] and described in section 2
is of complexity O(N3

M + Nd
M log(n)) where NM =

max(|N1|, |N2|). However, this complexity is for the
worst case of fully connected graphs. In our case the
real complexity is far from this.



5. Experimental results

We evaluated the performance of our proposed algorithm
with regards to two different tasks:

• The classification of entire video sequences according
to the activity of a single activity performed by a sin-
gle person in the video. Since standard databases are
available for this kind of task, we are able to give quan-
titative performance figures (classification accuracy).

• Detection and localization of multiple activities per-
formed by multiple people at different locations and
time instants in the same video. Up to our knowledge,
no standard database is available for this more difficult
problem. We illustrate the performance of our method
qualitatively.

5.1. Classification of entire sequences

Datasets — Our experiments are carried out on the stan-
dard KTH and Weizmann human action datasets. The KTH
dataset was provided by Schuldt et al. [18] in 2004 and is
the largest public human activity video dataset. It contains
a total of 2391 sequences, comprising 6 types of actions
(boxing, hand clapping, hand waving, jogging, running and
walking) performed by 25 subjects in 4 different scenarios
including indoor, outdoor, changes in clothing and varia-
tions in scale. Each video clip contains one subject perform-
ing a single action. The Weizmann dataset was first used in
by Blank et al. [1] in 2005, which consists of 90 video clips
of 10 actions (walking, running, jumping, gallop sideways,
bending, one-hand-waving, two-handswaving, jumping in
place, jumping jack, and skipping) performed by 9 differ-
ent subjects. Again, each video clip contains one subject
performing a single action.

Testing protocol — We took advantage of the ST-
interest point detector developed by Dollar et al. [4] and
their cuboid descriptor as the unary measurement associated
to each STIPs. Using leave-one-out cross-validation, we ap-
ply our method for the classification of activities and report
the average accuracies, even though the focus of our method
is to detect/localize the activities. To this end, we employ a
group of videos from a single subject in the dataset as the
testing videos (i.e., scene graphs), and the remaining videos
as the model videos (i.e., model graphs). This was repeated
so that each group of videos in the dataset is used once as
the testing videos. For each loop, we match each test video
against all model videos, and take the label (i.e., the activ-
ity) of the model video which gives maximum score from
equation (10).

Table 1 presents a comparison of our results with state-
of-the-art results. The results indicate that our method is
at least comparable with previous methods and outperforms

Table 1. Comparison of our method with different methods, tested
on KTH and Weizmann datasets.

Method KTH Weizmann
Our method 91.2 100.0

Schindler and Gool [17] 92.7 100.0
Fathi and Mori [6] 90.5 100.0
Gorelick et al. [8] - 99.6

Sun et al. [20] 94.0 97.8
Niebles et al. [14] 83.3 90.0

Kim et al. [10] 95.3 -
Liu and Shah [13] 94.2 -

Ryoo and Aggarwal [15] 93.8 -
Zhang et al. [26] 91.3 -
Gilbert et al. [7] 89.9 -

Savarese et al. [16] 86.8 -
Dollar et al. [4] 81.2 -

most of them, while we do not require any prior information
about the actions to be recognized.

5.2. Detection and localization of multiple and indi-
vidual actions

The main contribution of our method is the possibility
of detecting and localizing multiple activities from unseg-
mented video sequences. Unfortunately, to the best of our
knowledge, there is no standard dataset for evaluating such
applications (i.e., the ones like the KTH and Weizmann
datasets for activity recognition evaluation). This is due to
the fact that this problem is still incompletely understood.3

To evaluate our system, we have performed a third exper-
iment on our own dataset, which contains 120 videos in 4
classes (run, walk, vertical jump, sitdown).4 Our dataset is
different from those of KTH and Weizmann in two points:
i) different activities are performed in different directions
with respect to the camera; and ii) we included videos as
short as between 3 and 10 frames.

For each pair of videos, we first perform matching as
described in section 5.1 and we localize the action by pro-
jecting the points in the model graph onto the scene graph
based on the obtained solution. A threshold is used to ex-
clude the unwanted matches. Finally, the detected action is
localized around the detected points.

Figure 2 shows some visual results for our dataset. The
detected actions are delineated with red bounding boxes at
the frame level. Circles are the detected ST-points, from
which we localize activities. From this figure, we can see
that our method can detect any kind of activities, i.e. not
limited to the periodic activities (e.g. walking) and the in-
teraction activities. Note that in our dataset, several actions
are of very short duration (e.g. sitdown), the methods that

3Several teams have proposed algorithms and tested them on their own
datasets which are not publicly available, e.g. [19, 20].

4Our dataset will be available soon.



a) recognition results for videos containing simultaneous walking and sitdown

b) recognition results for videos containing simultaneous running and jumping
Figure 2. Recognition results on several consecutive frames of two videos of our dataset (top to bottom and left to right). This figure
should be viewed in color.



are based on a bag of word model often fail for such actions.

6. Conclusion

In this paper, we propose a graph matching method for
action recognition in video sequences. Our method fea-
tures several advantages for activity recognition such as:
it can detect/localize multiple activities in the same video
sequence without any preprocessing; our method avoids
the non-trivial problem of selecting the optimal number of
codewords for codebook construction; unlike many other
methods it does not need training, background/foreground
segmentation, tracking, and does not require any prior
knowledge on the action. Through experiments, we have
shown that it is feasible to apply graph matching methods
to action recognition.

Besides the advantages mentioned above, our method
still has limitations, e.g. detecting multiple instances of the
same activity in a video. In this case, we need to detect
the first instance, eliminate it, and restart a new process for
other instances. These limitations will be considered in our
ongoing work. In addition, we also aim at extending this
method to capture higher-order geometric structures among
the local features, e.g. relationships between triangles.
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