
Learning an efficient and robust graph matching procedure for specific object
recognition

Jerome Revaud∗, Guillaume Lavoué∗, Yasuo Ariki† and Atilla Baskurt∗
∗Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, F-69621, France

Email: firstname.lastname@liris.cnrs.fr
†CS-17, Kobe University, Japan

Email: ariki@kobe-u.ac.jp

Abstract—We present a fast and robust graph matching
approach for 2D specific object recognition in images. From a
small number of training images, a model graph of the object
to learn is automatically built. It contains its local keypoints as
well as their spatial proximity relationships. Training is based
on a selection of the most efficient subgraphs using the mutual
information. The detection uses dynamic programming with a
lattice and thus is very fast. Experiments demonstrate that the
proposed method outperforms the specific object detectors of
the state-of-the-art in realistic noise conditions.

Keywords-specific object recognition; cascade; graph match-
ing;

I. INTRODUCTION

Object recognition has been a very active topic in the
past 30 years. Whereas the perfect class object recognition
system is yet to be invented, specific object recognition
has almost been thought to be solved with the apparition
of keypoints, whose most famous avatar is probably SIFT
[1]. Indeed, methods using keypoints present numerous
advantages: they are invariant to translation, scale, rotation
and occlusion without significant increase in complexity;
thanks to the high descriptive power of the keypoints, any
training is quite unnecessary; they are close to real-time; and
finally they are simple to carry out.

Numerous works have put their interest in the way of
detecting an object from its keypoints. A very popular one
among them is RANSAC [2] as it can detect an object lost
in a cluttered scene thanks to its robustness to outliers. But
there are two main problems with RANSAC: firstly, it needs
quite a large number of matches to ensure a detection, which
may be difficult in noisy conditions; and secondly under
complex transformations, the number of required iterations
becomes very important. To solve those issues, Chum et
al. have proposed a local optimization in the RANSAC
algorithm [3]: in the main loop, a simpler transform is
computed while in the local optimization the full transform
parameters are inferred from the previously found inliers
set. In comparison, our method also uses a simple transform
but makes no assumption on the full transform by relaxing
the position constraints between distant keypoints, like in
[4]. Also, the assumption of RANSAC or voting methods

like [1] that each model keypoint carries the same amount
of information about the model often does not hold in
practice: some features are very specific while some others
are quite casual. On the contrary our method can estimate
the importance of each model feature and choose a detection
threshold fitted for each of them. We show later that when
it comes to realistic noise conditions, the performances of
those existing methods can drop dramatically.

On the other hand, graph matching seems to be a
straightforward way to object detection. Indeed, after hav-
ing extracted some salient keypoints, both model object
and scene can be represented as graphs. While numerous
researchers have put their efforts in finding some efficient
heuristics for graph matching, we only retain here the idea of
Messmer and Bunke [5] which involves growing subgraphs
progressively. In order to enable a detection as fast as
possible, we combined this idea with the work of Viola
and Jones [6], in which the authors have cascaded several
classifiers to minimize the number of examined features. In
the end, our specific object recognition system can deal with
noise and occlusion while still being minimalist in terms of
computations.

The proposed algorithm takes as input a small collection
of model and background images. It automatically gathers
every model keypoints into a prototype graph (section II-B),
which is then used for the recognition (section II-C). More
precisely, a detection lattice is derived from it: the lattice
contains several different ways of building the prototype
graph by adding keypoints one by one. The case of occlusion
is dealt with by pruning the detection lattice as soon as
the corresponding subgraphs become specific enough to the
model (section II-D). Finally, we present some results in
section III and conclude in section IV.

II. ALGORITHM DESCRIPTION

The algorithm is summarized in figure 1: (a) (b) first,
a prototype graph is extracted from sparse local model
features; (c) then, the detection lattice is derived from it
so as to enable robustness to occlusion and low run-time
complexity. In the context of this paper a lattice is a structure
comparable to a tree, at the difference that two different

(a) (b)

(d)(c)

ᴓ

Figure 1. Summary of the proposed method (see text for details).

paths starting from the root can meet up later (but still
excluding cycles since edges are oriented). (e) Finally, the
lattice is used to detect the model object in test images.

A. Preliminary keypoints indexation

We detect and extract beforehand SIFT keypoints in each
training image I ∈ I. Each keypoint k ∈ KI is defined by a
center ck, a radial vector hk (i.e. scale and orientation) and
a descriptor zk.

Search distance: Since the system will need in the
following to quickly check for the presence/absence of a
given keypoint at a given position in the image, we index the
keypoints in a k-d tree so as to enable their fast retrieval. The
search distance returned for a request keypoint r in image
I is defined as:

sd(r, I) = min {‖cr − ck‖+ α ‖hr − hk‖ |
‖zr − zk‖ < σ}k∈KI

(1)

B. The prototype graph

After having aligned each model image in a reference
frame, we conduct a co-occurrence analysis of every fea-
ture. Specifically, each keypoint is searched in other model
images at the same relative position and the resulting search
distances are summed. The most redundant keypoints thus
own the minimum sums and are preserved while their
twins (same keypoints in other images) are removed. Then,
the remaining keypoints are connected together in function
of their proximity. Two keypoints k1and k2 are linked if
‖c1 − c2‖ < ‖h1‖ ‖h2‖ (we assume here the position noise
to be dependent of the keypoint size, so that each graph edge

ideally stands for a stable neighborhood relationship). Figure
1.(b) presents an example of a simple prototype graph.

C. The detection lattice

The aim of the detection lattice is to store various ways
of building the prototype graph by adding model keypoints
one by one (see figure 1.(c)). In other words, each lattice
node is a connected subgraph and each lattice oriented
edge represents a feature addition to the start subgraph.
For this reason, the lattice can be seen as a cascade of
classifiers, where each edge stands for a micro-classifier that
bases its decision on the search distance of its associated
keypoint: if the added keypoint can be found in the test
image at the specified position (relatively to the feature
position in the model image1), the edge is crossed, otherwise
the progression is stopped.

Globally, the recognition procedure is initiated by a
RANSAC-like random picking ; then the algorithm “feeds”
the lattice with the chosen keypoint and tries to make it go
as deep as possible. When a terminal node is reached, a vote
is cast for the global model position in the test image (red
square in fig. 1.(d)). Finally, votes are clustered in the scale-
space and the cluster size is used to take the final decision.

D. Building the lattice

Initialization: The first lattice level (i.e. subgraphs of
cardinality l = 1) is constituted by the Nseed best model
keypoints in terms of redundancy2. This restriction comes
from the fact that the complexity is roughly linear with
Nseed, but it still gives good results when Nseed is low
(section III-C).

Iterative pruning of the lattice: For obvious reasons,
it is not possible to build the full lattice. Instead, we adopt
an iterative procedure where, for each lattice level l ≥ 2,
we create every possible candidate subgraphs of cardinality
l (with respect to lattice level l − 1), train the new edges
classifiers and finally retain only a limited number of the
best candidates.

Classifier training: We used the mutual information as
in [7] to train the micro-classifier embedded on each candi-
date edge ei. Practically, the mutual information (MI) mea-
sures the correlation between two random variables. In our
case, the decision function has the form sd(r, I) < constant
(see eq. (1)) so we only take the positive correlation (pMI)
into account:

pMI(A;O) =
∑

(a,o)∈{(0,0),(1,1)}

p(a, o).log
p(a, o)
p(a)p(o)

where A and O are binary random variables which respec-
tively denote the detection of a subgraph and the correctness
of the detection. Training is done as traditionally with

1We use here a simple 2D similarity transform.
2Scale is used instead if only one training image is available.

cascaded classifiers [6]: the detection is launched both on
positive and negative images with the current incomplete
lattice, then for each new edge ei, the optimal threshold
sdmax

i is chosen as the one that maximizes the pMI. We
used a Parzen window technique with a Gaussian kernel to
deal with the situations where only a few training samples
are available.

Global ranking: Afterward, a second optimization step
is run to elect the best subset of candidates from a global
point of view: a single parameter rmax controls the trade-off
between a good spatial coverage of the model (i.e. to be able
to recognize it whatever the occluded area) and a maximum
detection speed. From this perspective, the candidates are
ranked according to the amount of information that they can
provide to the current lattice:

gain(A|M;O) = MI(M,MA;O)−MI(M;O)

Here, M = [r1, . . . , rT] is a vector that contains the
probabilities of detecting the different model areas with the
current lattice. Practically, M is simply the concatenation of
several discretized scale-space pyramids, one for each model
image (4 scales per pyramid: 1x1, 2x2, 3x3 and 4x4 = 30
values/image) and an additional value to store the probability
of false positives. Vectors MA and O relate to the candidate
subgraph A and to the binary ground truth expressed under
the same form, respectively. In order for M to play its role
of memory of the already learned areas, it is updated each
time that a subgraph becomes terminal: MA is added to M
and the result is thresholded to the maximum value rmax.

For example, a value of rmax = 0 amounts to deactivate
this memory (i.e. M=null vector), giving priority to the most
efficient subgraphs, whereas a value of 1 will lead to the
opposite (i.e. never 2 subgraphs covering the same area).
For the experiments, we set rmax to 0.5, its optimal value
in our case. Finally, a limited number of the best candidates
is retained for the current level, and the process repeats until
there are no more candidates or the maximal level Lmax is
reached. In our experiments, we set Lmax to 6 and limit the
lattice width to at most 4Nseed as well as the number of
children per node to 4 at most.

Subgraphs termination: The validation posterior prob-
ability of each candidate subgraphs Ak is estimated as the
minimum probability over the classifiers that points at it:

pAk
= min
∀i:ei→Ak

p(O = 1|sdi ≤ sdmax
i)

If pAk
exceeds the user-defined threshold pmin, then Ak be-

comes a terminal node and will not be grown thereafter (red
squares in fig. 1.(c)). Thus, lattice subgraphs may become
terminal at different sizes depending on the specificity of
their keypoints regarding the object. This can be connected
to the human cognitive way of recognizing occluded objects:

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1 OURS
OURS
OURS
OURS
OURS
LOWE
RANSAC
LO-RANSAC

Recall

P
re
ci
si
on

(Nseed=8)
(Nseed=12)
(Nseed=16)
(Nseed=20)
(Nseed=24)

Figure 2. Top: global R-P curves for the 10 model objects (middle row).
Bottom: examples of detections.

an object can be identified even if a very small but very
characteristic part is visible and vice versa.

III. EXPERIMENTAL SETTINGS

A. Keypoint cluster size

The threshold σ in eq. (1) was set to σ1 = 0.5 for
the first level classifiers (i.e. corresponding to about 1000
visual words since p(‖zr − z0‖ ≤ σ1) ≈ 1/1000) and to
σ2+ = 0.7 for the subsequent levels (about 100 words).
This choice enables more filtering at start and hence a faster
detection speed without noticeable loss of efficiency. Also,
we empirically set α = 8.

B. Test dataset

Often, recognition systems have been tested on HQ photos
as in [1], [8]; however we wanted to truly simulate the
realistic conditions of robotic vision so we manually have
shot a dozen of indoor videos with a SONY handycam
(resolution: 720x480). The variety of represented noises
includes a poor/garish luminosity due to the indoor lighting,
various camera noises (captor, movement blur, interlace) and
also the objects themselves which are not always heavily
textured. The videos were sampled at 10 fps, resulting in
2838 frames where the ground truth was manually labeled.

Ten objects at our disposal were used to test our system
(see fig. 2). They were chosen so as to cover a large range
of possible indoor objects: some are textured, some are not;
some have complex 3D shapes; some are more prone to
specular reflections; etc. We have used between 1 and 4
training images for each model though this number does
not seem to have a great importance. Each object is visible
in a few hundreds of frames. All objects were searched in
the whole set of frames (multiple instances per frame are

allowed). In order to conform ourselves to a realistic case
of use, we only took 19 photos as negative training set.

C. Comparison with existing systems

We compared our system against widely used specific
object detection methods:
• The baseline RANSAC with a k-d tree matching

scheme followed by an homography.
• The locally optimized RANSAC (LO-RANSAC) by

Chum et al. [3] adapted by Philbin et al. [9].
• The object recognition system by Lowe [1].
• The proposed method with Nseed ∈ [8, 24] and pmin =

0.95.
Results are presented in fig. 2 in terms of recall-precision
curves (Nseed between parenthesis for our method). Recall
and precision are defined as Nc/Ng and Nc/Nd respectively,
where Nc is the number of correct detections, Ng the number
of ground truth boxes and Nd the total number of detections
(the higher is the curve, the better). Some detection examples
are shown in fig. 2. Globally, our system outperforms the
others from only Nseed = 20. Although our method starts
the detection from such a small number of seed keypoints
(to relate to the ~300 keypoints/model image for the other
methods), superior values of recall are achieved (i.e. more
instances are detected). Those are the main reasons:
• Lowe’s method and LO-RANSAC requires respectively

at least 3 and 4 correctly matched keypoints to assert a
single detection, which is a rather difficult pre-requisite
in noisy conditions.

• Our implicit proximity constraint helps to filter out
more false positives, whereas the other methods are
global and hence more sensitive to noise.

• The movement blur makes the keypoint descriptors
become unspecific, decreasing the probability that the
first-to-second distance ratio used in the other methods
is accepted. On the contrary, we used an absolute
distance between keypoint descriptors.

This indicates that an efficient detection scheme can be built
in a two-steps manner: one first part for fast and rough
hypothesis generation using a small fraction of the model
information, and a second part for verification using the rest
of the information. Moreover, there is no need for a complex
transform, a simple 2D similarity suffices as long as the
spatial constraints between distant features are relaxed.

Detection speed: Our method is also faster than the
other methods: 55 ms/image on average for 10 objects,
while Lowe’s method and LO-RANSAC requires ~70 ms
and RANSAC about 224 ms. This straightly follows from
the cascaded lattice structure.

IV. CONCLUSION

We presented a novel approach which enables fast 2D
object recognition robust to various realistic noises and
occlusion. Thanks to the use of a cascade of classifiers as

well as an absolute distance between keypoints, our method
outperforms RANSAC-based or voting-based specific object
detectors in noisy conditions. Moreover, we have demon-
strated that reaching big values of recall does not necessarily
require much of the model information ; interestingly only a
tiny fraction of the model keypoints are sufficient to detect
most instances in test images. Finally, the graph matching
framework presented here is very generalist and could be
extended to different image cues (e.g. contours or textures).

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” IJCV, vol. 60, no. 2, pp. 91–110, 2004.

[2] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography,” Commun. ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[3] O. Chum, J. Matas, and J. Kittler, “Locally optimized ransac,”
Pattern Recognition, pp. 236–243, 2003.

[4] V. Ferrari, T. Tuytelaars, and L. Gool, “Simultaneous object
recognition and segmentation from single or multiple model
views,” Int. J. Comput. Vision, vol. 67, no. 2, pp. 159–188,
2006.

[5] B. T. Messmer and H. Bunke, “A new algorithm for error-
tolerant subgraph isomorphism detection,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 20, no. 5, pp. 493–504, 1998.

[6] P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,” in CVPR, pp. 511–518, 2001.

[7] B. Epshtein and S. Ullman, “Feature hierarchies for object
classification,” in ICCV, pp. 220–227, 2005.

[8] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce, “3d
object modeling and recognition using local affine-invariant
image descriptors and multi-view spatial constraints,” IJCV,
vol. 66, no. 3, pp. 231–259, 2006.

[9] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Ob-
ject retrieval with large vocabularies and fast spatial matching,”
in CVPR, pp. 1–8, 2007.

