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ABSTRACT

The proposed model is devoted to the segmentation and re-
construction of 3D vascular trees1. We rely on an explicit
representation of a deformable tree, where topological rela-
tionships between segments are modeled. This allows easy
posterior interactions and quantitative analysis, such asmea-
suring diameters or lengths of vessels. Starting from a unique
user-provided root point, an initial tree is built with a tech-
nique relying on minimal paths. Within the constructed tree,
the central curve of each segment and an associated variable
radius function evolve in order to satisfy a region homogene-
ity criterion. We present results obtained on 3D CTA images
of the carotid bifurcation.

Index Terms— Generalized cylinder, tree, segmentation,
CTA, vessel

1. INTRODUCTION

The recovery of branching structures, especially vascular
trees in MRA, CTA or retinal images, has been an extensively
studied subject [1, 2, 3]. In this context, a major concern lies
in the extraction of centerlines and thicknesses of significant
branches, which make up relevant data for posterior clinical
study. Specifically, a tree modeling algorithm should be
able to handle imaging issues like great variability in length
and thickness of segments. Many methods dealing with
centerlines extraction like [3] make sequential tracking of
segments, in the sense that the whole final tree structure is
propagated from one or several seed location(s). Given a
search window, points are consecutively added to segments
regarding intensity features. The difficulty lies in the im-
plementation of techniques dealing with junctions, whether
current segment should be split or not. Moreover, topological
relationships between segments are not necessarily repre-
sented.

1This work was supported by ANR grant MESANGE ANR-08-BLAN-
0198

Fig. 1. 3D tree structure, in which segments are generalized
cylinders

We propose a novel deformable tree model based on gen-
eralized cylinders (see fig. 1). It is slightly related to the
work in [2, 4], as minimal paths [5] intervene in the construc-
tion of centerlines. However, our approach differs from those
in the sense that the initial tree is built by back-propagation
from endpoints to the user-provided root point. This avoids
to implement decision mechanisms to handle junction points,
which may rely on sensitive thresholds. The obtained struc-
ture explicitly represents topological relationships between
segments (the parent segment and children are known for a
given segment). Then, each segment is endowed with a de-
formable generalized cylinder defined by a central curve and
a radius function, which both evolve with respect to a vari-
ational homogeneity criterion similar to [6]. The evolution
of the deformable tree lies on the simultaneous evolution of
all generalized cylinders. The esimated tree volume is vox-
elized and refined using an implicit active surface. We finally
present results obtained on 3D CTA images of the carotid bi-
furcation, in which segmentation is performed on vessel lu-
mens and compared to ground truth.

2. INTENSITY ENHANCEMENT

Due to the injection of contrast agent before imaging, the ves-
sel lumen is brighter than neighboring structures like muscles
and fat. It remains however darker than bone. As a prepro-



cessing step before building the deformable tree, we enhance
intensities around a reference intensityIref, making the rea-
sonable assumption that intensity within the lumen follows
a Gaussian distribution. The transformation is implemented
through a look-up table computed with

Ioutput = exp

(

(Iinput − Iref)
2

2σ2

)

The reference intensityIref is chosen as the mean intensity in a
small neighborhood around one of the provided initial points.
The standard deviation is set toσ = 20. In the remainder of
the paper,I corresponds to the enhanced intensity.
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Fig. 2. Vessel intensity enhancement : initial image (left),
enhanced image (center), Gaussian look-up table (right)

3. BUILDING THE INITIAL TREE WITH MINIMAL
PATHS

The minimal path approach by Cohen and Kimmel [5] aims
at finding curves of minimal length in a Riemannian space
endowed with an isotropic metric. The length of pathC is:

L[C] =

∫ 1

0

w + P (C(s))ds (1)

wheres is the arc length andw is a regularization constant.
PotentialP , which defines the isotropic metric, is either
intensity-based or gradient-based, depending on the appli-
cation. The minimal path approach determines a global
minimum of the energy, given two fixed endpointsx0 andx1.
First, the minimal action mapU0, which corresponds to
the minimal cost integrated along a path starting atx0 and
ending atx, is computed by the Fast Marching method.
Then, the geodesic pathγ linking point x1 to x0 is found by
back-propagation onU0, starting fromx1 until x0 is reached.

As we seek for bright vessels in our application, we use
an intensity-based potential computed on the enhanced im-
age. Vessels endpoints are provided in the test datasets. The
following potential function achieves a quickly increasing
penalty in dark areas:

P (x) =
1

2
+

arctan (λ(1 − 2I(x)))

2 arctanλ
∈ [0, 1]

whereλ > 1 is the chosen slope. The action map is prop-
agated from the most relevant root location, which is one of
the provided endpoints. Gradient descent of the action map
is subsequently performed starting from the other endpoints.
Instead of applying independent back-trackings, we check for

φ(s)
Γ(s, v)

s

v

Fig. 3. Deformable generalized cylinder: radius varies both
along and around the axis

the presence of an already traced path at each gradient descent
step. Hence, a structure of connected paths is built. Portions
of paths between two junctions (or between a junction and an
endpoint) become tree segments.

4. DEFORMABLE GENERALIZED CYLINDER FOR
TUBULAR STRUCTURES REPRESENTATION

Each tree segment is endowed with a generalized cylin-
der, which represents the vessel centerline and radius.
Let φ : [0, 1] → R

3 be the curved axis, parameterized by
arc-lengths, andR : [0, 1] × [0, 2π] → R

+ the radius func-
tion. Let T, N andB be the tangent, normal and binormal
vectors of curveφ. Frame{T,N,B} defines an orthogo-
nal coordinate system sweeping along the curve. It is used
to build varying cross-sections orthogonal to the curve’s lo-
cal direction. Hence, the surface position vector is definedas
follows:

Γ(s, v) = φ(s) + R(s, v)(cos vN + sin vB)

where parameterss andv sweep along and around the cylin-
der, respectively (see fig. 3). As stated in [7], defining the
surface in this way yields an undesirable twisting effect on
the cylinder. Actually, we compute corrected normal and bi-
normal vectors (denoted with∗) following [8]:

N∗(s+∆s) =
N∗(s) − 〈N∗(s),T(s+∆s)〉T(s+∆s)

‖N∗(s) − 〈N∗(s),T(s+∆s)〉T(s+∆s)‖

B∗(s+∆s) = T∗(s+∆s)×N∗(s+∆s)

which basically consists in projecting previous normal andbi-
normal vectors on the current orthogonal plane. The general-
ized cylinder is endowed with energy functionalE, weighted
sum of the internal energyEsmoothand the external region en-
ergyEdata:

E[φ,R] = ωEsmooth[φ,R] + (1 − ω)Edata[φ,R] (2)

The user-provided coefficientω, weighting the influence
of EsmoothoverEdata, controls the elastic properties of the de-
formable band. SinceE depends both onφ andR, the cylin-
der minimizingE should satisfy two coupled Euler-Lagrange



equations:

δE[φ,R]

δφ
= 0 and

δE[φ,R]

δR
= 0 (3)

where the variational derivatives of the energy with respect
to the curve and radius vanish. To express the regularization
term, we rely on the reasonable assumption that a smooth axis
curve and a smoothly varying radius will yield a smooth sur-
face:

Esmooth[φ,R] =

∫ 1

0

‖φs‖ ds+

∫ 1

0

∫ 2π

0

R2
s + R2

v dvds

The first variations of the smoothness term are:
δEsmooth

δφ
=−‖φs‖κN

δEsmooth

δR
=−2 (Rss + Rvv)

whereκ is the curvature ofφ. LetRin andRout be the inner
and outer regions bounded byΓ. Since the structure of inter-
est should satisfy an intensity homogeneity criterion, thedata
term is as follows:

Edata[φ,R] =

∫

Rin

gin(x)dx +

∫

Rout

gout(x)dx (4)

where region descriptorsgin andgout increase with respect to
inhomogeneity of the enhanced intensity. We usegin(x) =
(I(x) − µtree)

2 and gout(x) = (I(x) − µout)
2, whereµtree

andµout are the average intensities inside and outside the en-
tire tree structure, respectively. Relying on the divergence
theorem to write volume integrals onRin andRout as surface
integrals ofΓ, calculus of variations is used to express the first
variation of the data term with respect to radius:

δEdata

δR
= R(1 −Rκ cos v)(gin(Γ) − gout(Γ))

The previous term is actually divided byR when imple-
mented in the gradient descent, so that an increase of radius
does not yield an increase in its variation. The cylinder is
implemented as a polygonal line ofn verticespi, each ver-
tex being endowed withm angular positions with associated
radii Rij . The initial curve is provided by the minimal path
approach described in section 3, whereas initial radii are set
to a given constantR(0). Regarding our implementation, it is
not necessary to calculate the first variation ofEdata with re-
spect to the axis. Indeed, the axis should remain in the center
of the tube, as in the symmetry-seeking model in [9]. Hence,
vertex coordinates are computed as centroids of angular posi-
tions when all radii have been updated. This is summarized
by the following scheme:

R
(t+1)
ij = R

(t)
ij − ∆t δE/δR|

R=Rij

p
(t+1)
i = p

(t)
i

+
1

m

m
∑

j=1

R
(t+1)
ij

(

cos

(

2πj

m

)

N
(t)
i + sin

(

2πj

m

)

B
(t)
i

)

p
(t+2)
i = p

(t+1)
i + ∆t δEsmooth/δφ|φ=pi

wheret + 2 actually corresponds to the smoothing step. To
maintain sufficient vertex density, the curve is resampled after

each deformation step, i.e. after gradient descent has beenap-
plied on all vertices. The evolution scheme is simultaneously
applied on all cylinders in the tree.

5. REFINING SEGMENTATION WITH
REGION-BASED LEVEL SETS

In order to allow comparison between the estimated region
and ground truth, the tree volume should be voxelized into
the image space. The conversion from real coordinates to in-
teger voxel-wise coordinates may yield various inaccuracies,
especially due to rounding errors. Hence, we perform a final
refinement step using level-set based segmentation. We con-
sider the level set functionψ : D ⊂ R

3 → R and its inner
volume asRin = {x|ψ(x) ≤ 0}. The voxelized tree is used
as the initial inner volume. Functionψ deforms according to
the evolution equation:

∂ψ

∂t
= F (x) ‖∇ψ(x)‖ ∀x ∈ R

d (5)

where speed functionF is a weighted sum of smoothness and
data terms:

F (x) = ωFsmooth(x) + (1 − ω)Fdata(x)

where coefficientω controls the significance of the smooth-
ness term. In the level set framework, regularization is usu-
ally based on curvature. In order to achieve a more diffuse
regularization, we replace the curvature term with a Gaussian
convolution, as in [10]. As regards the data term, one may
note that vessels are brighter than neighboring structureslike
muscles and fat. With respect to intensity, they may be seg-
mented using a straightforward region criterion. We consider
the data term of the Chan-Vese model [6]:

Edata[ψ] =

∫

Rin(ψ)

(I(x) − kin)
2dx +

∫

Rout(ψ)

(I(x) − kout)
2dx

The data speed term is determined from the variational deriva-
tive of energyEdatawith respect toψ.

Fdata(x) = δ(ψ(x))[−(I(x) − kin)
2 + (I(x) − kout)

2]

Thanks to gradient descent, variableskin andkout are assigned
to average intensities inside and outside the current region, re-
spectively. For implementation purpose, we use a regularized
version of the Diracδ function, as in [6]. The level set func-
tion is updated according to the narrow band technique with a
single pixel-wide band. One or two iterations are sufficientto
achieve good surface fitting while preventing the region from
propagating into undesirable vessels.

6. EXPERIMENTS

The deformable tree model was tested on 9 CTA images
of the carotid bifurcation, where the Common Carotid
Artery (CCA) branches off into the external (ECA) and
internal (ICA) carotid arteries. Datasets were provided



Fig. 4. Deformable tree (left) and corresponding voxelized
volume (right) on CTA image of the carotid bifurcation

by the Biomedical Imaging Group from Erasmus MC in
Rotterdam, for the carotid segmentation challenge2, which
was held in conjunction with MICCAI 2009 [11]. For each
image, ground truth was available, so that segmentation
accuracy could be quantified. We actually used the training
database for testing, which makes sense as we do not perform
any learning stage. Endpoints in each artery were part of
provided data. We used the point in the CCA as the root for
propagating the action map (see section 3), and the two other
points as start locations for backtracking and building the
initial paths. Hence, the deformable tree is only made up of a
parent segment and two child segments (see fig. 4).

The initial radiusR(0) was typically set to4 pixels. As
regards regularization weightω, both for the deformable tree
and the implicit active surface, values ranging from0.4 to 0.7
were sufficient to maintain smooth boundaries. The same set
of parameters was suitable for all experiments. With a C++
implementation running on an Intel Core 2 Duo 2.2GHz PC
(4Gb RAM), computational costs yielded by our approach are
as follows:8.3s for the construction of the initial tree,≈ 15s
for tree evolution and4.5s for building and evolution of the
refining level set. Quantitative segmentation results, with re-
spect to ground truth data, are listed in table 1. We used the
Dice region similarity measure as well as Hausdorff-based
boundary similarity measures. The Hausdorff distanceHmax

and its modified versionHmean [12] respectively measure the
maximal and mean euclidean distances from every voxel in
the estimated surface to the closest one in the ground truth
surface. We believe the reconstruction results to be promis-
ing, although we could not properly handle dataset ’chal-
lenge004’, which was insufficiently contrasted to allow seg-
mentation by the region-based criterion.

7. CONCLUSION AND FUTURE WORK

We described an explicit deformable tree, holding relation-
ships between segments, for the extraction of branching struc-
tures. Deformation of the entire tree was performed by evolv-
ing generalized cylinders towards a minimum of an energy

2See the web page of the challenge athttp://cls2009.bigr.nl/

Data Dice index (%) Hmean Hmax

challenge000 94.9 0.437 7.071

challenge001 86.1 1.301 9.000

challenge002 90.1 0.849 3.606

challenge003 91.4 0.840 7.280

challenge004 X X X
challenge005 91.7 0.896 6.708

challenge006 92.3 0.663 6.708

challenge007 92.5 0.982 3.606

challenge008 94.6 0.536 5.831

Table 1. Segmentation measures with respect to ground truth:
Dice index (% units), modified Hausdorff distance (pixel
units) and Hausdorff distance (pixel units). Average pixelsize
is 0.25mm

functional. Future work will focus on the formulation of lo-
cal region terms handling intensity variations along branches,
which we believe to be valuable for extracting thin and low-
contrasted vessels. We may also consider automatic selection
of initial segment endpoints, which could be done by studying
particular differential quantities on the action map.
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