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Abstract

GMM based algorithms have become the de facto stan-
dard for background subtraction in video sequences,
mainly because of their ability to track multiple back-
ground distributions, which allows them to handle com-
plex scenes including moving trees, flags moving in the
wind etc. However, it is not always easy to deter-
mine which distributions of the mixture belong to the
background and which distributions belong to the fore-
ground, which disturbs the results of the labeling pro-
cess for each pixel. In this work we tackle this problem
by taking the labeling decision together for all pixels of
several consecutive frames minimizing a global energy
function taking into account spatial and temporal re-
lationships. A discrete approximative optical-flow like
motion model is integrated into the energy function and
solved with Ishikawa’s convex graph cuts algorithm.

1. Introduction

Background subtraction, the task of separating fore-
ground (object) pixels from background pixels in a
video, is an important step in many applications, ei-
ther because one is interested in an object’s silhouette
itself, or as a preprocessing step, for instance for track-
ing algorithms. Most existing methods build an explicit
background model either using a unimodal distribution
through median [2] or Kalman filtering [12] or similar
techniques, or a multi-modal distribution like GMM’s
[9, 11, 13]. A survey can be found in [8].

In some cases one is interested in a very precise
segmentation result, e.g. when an object’s shape shall
be used to recognize object classes or actions. In this
regard, the strengths of the existing methods are also
their weaknesses: the FG/BG segmentation decisions
are taken on a per pixel level, which is highly sub-

optimal.
In this paper we present a method 1 which improves

existing GMM based algorithms by taking the segmen-
tation decision on “global” level, i.e. simimultanuously
for all pixels of a whole block of the spatio-temporal
cube. Spatial and temporal interactions are taken into
account by a global energy function which is minimized
with graph cuts, searching for the exact globally best
solution. Temporal interactions handled with a motion
model which is calculated through an approximate op-
tical flow algorithm, also solved with graph cuts.

The contribution of this paper is twofold: the exper-
iments show a significant improvement over existing
methods. Furthermore, the algorithm for approximate
optical flow might be useful in other applications.

Our paper is organized as follows: section 2 is a short
reminder on GMM based BG subtraction. Section 3 de-
scribes our method and section 4 presents experimental
results. Section 5 finally concludes.

2. GMM based Background subtraction

Without loss of generality we present the case for
grayscale images in this paper, the adaptation to color
images and other multivariate cases is straightforward.

The perhaps most widely known and used back-
ground subtraction algorithm is the Stauffer-Grimson
algorithm [11] which is also be the base of our method.
It keeps K Gaussians for each pixel presenting a multi
modal distribution of pixel grayvalues. At each new
frame the new grayvalue y is checked against all Gaus-
sians and the best matching Gaussian is selected, if y is
within a threshold of standard deviations of the mean,
a new Gaussian is created else. The parameters of the

1This project was financed through the French National grant
“ANR-CaNaDA” — Comportements Anormaux: Analyse, Détection,
Alerte, No. 128, which is part of the call for projects CSOSG 2006
Concepts Systèmes et Outils pour la Sécurité Globale.



matched Gaussian (weight, mean, standard deviation)
are updated using a learning rate parameter.

The difficulty lies in the decision whether a matched
Gaussian corresponds to the background (BG) or the
foreground (FG) distribution. In [11], the Gaussians are
ordered by w

σ , where w is the weight and σ is the stan-
dard deviation of a Gaussian, and it is assumed that 70%
of the time a pixel matches against background.

In our method, we modified the final decision
whether a pixel is FG or BG. The set of background
Gaussians is determined by directly thresholding w

σ .
The decision on the pixels FG/BG label is set accord-
ingly, additionally integrating a global model described
in the next section.

3. Spatio-temporal regularization

In our method the decisions on the pixels’ FG/BG labels
are taken jointly using a global energy function. They
are driven by a measure ∆i for each pixel i correspond-
ing to the deviation from the best matching background
distribution:

∆i =
|yi − µi|

σi
(1)

where yi is the pixel’s grayvalue and µi and σi are, re-
spectively, the mean and the standard deviation of the
best matching BG distribution.

The global energy function includes a data attached
term involving ∆i, a Potts model [7] regularizing spa-
tial interactions as well as a Potts model for temporal
interactions. Equation (2) first gives the model assum-
ing zero motion in the spatio-temporal cube. For sim-
plicity, we index the pixels in the spatio-temporal cube
with a single index instead of three indices:

E(x, y) = αd
∑
i

Ed(∆i, xi)

+ αs
∑
i∼j

δ(xi, xj)

+ αt
∑
ioj

δ(xi, xj)

(2)

where xi are the binary labels denoting the fore-
ground/background decisions for pixels i, i∼j indicates
that i and j are spatial neighbors and i o j indicates
that i and j are temporal neighbors. The different α
are weights and δ denotes the Kronecker delta given as
δ(a, b) = 1 if a=b and 0 otherwise. The data attached
term Ed is given as:

Ed(∆i, xi) =
{

∆i if xi = 0
2D −∆i if xi = 1 (3)

This choice of Ed results in thresholding ∆i using a
fixed threshold D if the regularizing Potts model is re-
moved, i.e. the Potts model serves as an improving reg-
ularizer of existing methods based on thresholding.

With motion present in the cube, the temporal reg-
ularizer is sub optimal. We therefore include a dense
motion vector field ui with horizontal and vertical com-
ponents (ui,x, ui,y) into the global model:

E(x, y,u) = αd
∑
i

Ed(∆i, xi)

+ αs
∑
i∼j

δ(xi, xj)

+ αt
∑
i

δ(xi, xi→ui
)

+ αm
∑
i∼j

Em(ui,uj)

+ αm
∑
ioj

Em(ui,uj)

(4)

where the notation i→ui indicates the index of the site
we get when the motion vector ui is applied to site
i, in the frame following the frame of i. The expres-
sionEm(ui,uj) is an energy functional punishing mis-
aligned motion vectors. The two components in each
motion vector ui take values in [−T, T ], T being small
(3-5 pixels), which is feasible since motion is usually
not significant between subsequent fames.

The energy function given in (4) is in general dif-
ficult to minimize due to the complex interactions be-
tween x and u. Instead of solving it approxima-
tively, for instance using energy truncation and the α-
expansion algorithm [6], or QPBO [5], which often
leads to poor results, we prefer to perform some ap-
proximations of the function in order to able to solve it
exactly. In particular, we remove the motion vectors ui
from the optimization and calculate them from the input
images using approximate optical flow. Consequently,
in the optimization over x the terms in (4) involvingEm
are constant and can be omitted, and the other terms are
either unary in x or submodular:

x̂ = arg min
x

αd
∑
i

Ed(∆i, xi)

+ αs
∑
i∼j

δ(xi, xj)+

+ αt
∑
i

δ(xi, xi→ui)

(5)

The minimization can thus be carried out efficiently
with graph cuts using Kolmogorov et al.’s graph con-
struction method for binary labels [6]. Since the motion
vectors ui in the temporal term of the Potts model are
constant, they only determine the placement of the n-
edges in the st-graph.



Calculating the motion vectors ui from the cube of
input images yi corresponds to a dense optical flow
problem, so existing methods can be applied (e.g. Sand
and Teller [10]), but they are painfully slow. We de-
cided to calculate approximate optical flow using a sim-
ilar global energy function as for the calculation of the
xi, roughly based on the last 3 expressions of eq. (4).

Another approximation is motivated by the goal of
efficient minimization with graph cuts. We completely
separate the horizontal and vertical components of each
motion vector, which means that there are no edges in
the graph between the nodes of ui,x and ui,y , so the
optimization of both parts will be carried out indepen-
dently. This is possible by choosing L1 (the Manhattan
distance) for the motion vector distance functional Em
and by replacing the respective unknown motion vector
component by a minimum over the possible values in
the data attached term:

û = arg min
u

αt
∑
i

min
a∈[1,T ]

|yi − yi→[ ui,x
a

]|

+ αt
∑
i

min
a∈[1,T ]

|yi − yi→[ a
ui,y

]|

+ α0

∑
i

|ui,x|+ α0

∑
i

|ui,y|

+ αm
∑
i∼j
|ui,x−uj,x|+ |ui,y−uj,y|

(6)
The first two terms are the data attached terms, they
favor constant grayvalue in the motion direction. The
terms corresponding to the (small) weight α0 slightly
favor zero motion, they are necessary since the mini-
mum expressions in the data attached terms tend to de-
crease the differences in energy between different la-
bels. The second order terms favor homogeneous mo-
tion in a spatial and temporal neighborhood. They in-
volve multiple labels per variable and are not necessar-
ily submodular, so they cannot be solved using Kol-
mogorov’s graph construction method. However, the
labels are linearly ordered and the energy potentials
are convex in label differences, the function can there-
fore be minimized using Ishikawa’s graph construction
method [3] which results in 2T+1 binary labels for each
pixel, one for each possible motion label.

4. Experimental results

We evaluated the proposed method on our dataset con-
taining difficult scenes with several moving people. The
approximate optical flow works quite well given the
approximations made to achieve the desired speedup.
Figure 1 shows a part of a pair of consecutive frames
together with a motion magnitude image as well as a
zoom into the head part showing the motion vectors.

Figure 1. Approx. dense opt. flow: From
left to right: 1st frame, 2nd frame, motion
magnitude, zoom into the vector field.

Figure 2 shows some results of the FG/BG segmenta-
tion on our dataset. As can be seen, the new method pro-
duces significantly cleaner and preciser images. More
importantly, the result in the second row shows that the
method is able to correct bursts of illumination changes,
which disturb the original GMM only method. Note
that postprocessing, e.g. with mathemathical morphol-
ogy, will not be able to clean up the noise. A video with
more details in animated gif format is available online2.

Although the convex prior in the optical flow algo-
rithm theoretically should tend to oversmooth motion
vector field, this is not confirmed experimentally and
does not seem to hinder the performance of the method.

The parameters and weights used in the experiments
were the following: D=3, T=4 (9 motion labels),
αd=1, α0=0.2, αs=2, αt=4, αm=3. The block size
is 2 frames, better results can be achieved with longer
blocks with the cost of higher computational complex-
ity.

We use the graph cut implementation by Boykov and
Kolmogorov [1] available on V. Kolmogorov’s website
and a Matlab wrapper implemented by Miki Rubinstein.
The rest of the method has been implemented in Matlab
and has not been optimized. Runtime complexity could
be improved tremendously by recoding the method in
C/C++ and by using the dynamic graph cuts method by
Kohli and Torr, which uses the solution of a previous
frame to accelerate the optimization step of the current
frame [4]. Currently the GMM method without regu-
larization runs in 0.8s per 320×240 frame, whereas the
proposed version runs in 3s per frame. Most of the time
is spent in the Matlab code, the run time spent on the
graph cuts optimization (C++) is negligible.

5. Conclusion

We presented a new BG subtraction method which inte-
grates information from approximated optical flow for
a spatial and temporal regularizer. The algorithm cal-
culates the exact solution of a global energy function

2http://liris.cnrs.fr/christian.wolf/vids/bgsuboflow.gif
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Figure 2. Results on our dataset containing several moving people.

taking segmentation decisions for a short block of the
spatio-temporal cube. The method has been tested on a
dataset of videos containing several moving people and
is able to significantly improve existing methods
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