
Component-Based Model Synthesis for Low Polygonal Models

Nicolas Maréchal∗
Université de Lyon, CNRS
Université Lyon 1, LIRIS,

UMR5205, F-69622, France

Éric Galin†
Université de Lyon, CNRS
Université Lyon 2, LIRIS,

UMR5205, F-69676, France

Éric Guérin‡
Université de Lyon, CNRS
Université Lyon 1, LIRIS,

UMR5205, F-69622, France

Samir Akkouche§
Université de Lyon, CNRS
Université Lyon 1, LIRIS,

UMR5205, F-69622, France

Figure 1: An area of Central Park with trees generated with our method from an initial model.

ABSTRACT

This paper presents a method for semi-automatically generating a
variety of different objects from an initial low polygonal model.
Our approach aims at generating large sets of models with small
variants with a view to avoiding instance replications which pro-
duce unrealistic repetitive patterns. The generation process consists
in decomposing the initial object into a set of components. Their
geometry and texture are edited and the modified components are
then combined together to create a large set of varying models. Our
method has been implemented in the Twilight 2 development frame-
work of Eden Games and Widescreen Games and successfully ex-
perimented on different types of models.

Keywords: Example-based modeling, components, procedural,
variety

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—

1 INTRODUCTION

With the rapid growth of computing power, the demand for more
realistic sceneries has increased considerably. Modeling complex
landscapes is an important problem in computer graphics. The
challenge stems not only from the complexity of the geometry and
texture of the shapes (including the many surface details such as
cracks, erosion or patina produced by aging and weathering) but
also from the diversity of objects in a scene. Instantiation tech-
niques that are used to handle memory demanding scenes often lead
to unrealistic replication effects which reveals the synthetic nature
of the scene. Thus, there is a need for techniques that automatically
generate variations of objects.

Several techniques for adding details [3] and generating defects
on objects [33] have been proposed and play an important part in

∗e-mail: nicolas.marechal@liris.cnrs.fr
†e-mail: eric.galin@liris.cnrs.fr
‡e-mail: eric.guerin@liris.cnrs.fr
§e-mail: samir.akkouche@liris.cnrs.fr

the overall realism of a natural scene. Procedural generation tech-
niques have been successfully developed for generating variations
of terrains [19], plants [24, 22] and buildings or cities [18, 4]. Those
methods suffer from several limitations. In general, procedural gen-
eration methods rely on numerous and complex rules which are dif-
ficult to control. Most existing techniques are specific to a restricted
category of objects. It is difficult to conform to a given artistic style
desired by an artist, which is essential in the entertainment industry.

In contrast, example-based approaches [21, 29] have been pro-
posed for generating a variety of models from sample images or
objects. Most existing techniques produce high resolution models
with many triangles, in particular when blending or connecting the
differents parts of the original models into a seamless topologically
consistent mesh [12].

In this paper, we focus on low polygonal objects that are used in
video games development like the ones generated by SpeedTree®1

or using retopology techniques as in 3D-Coat2. The amount of
VRAM memory available on architectures like Xbox 360 and
Playstation ® 3 is relatively small (512MB and 256MB respectiv-
elly), which prevents artists from relying on highly detailed proce-
dural generation methods.

Therefore, we propose an original technique suited for video
games designers that semi-automatically synthesizes a vast variety
of objects from an initial textured model. Our method proceeds
in three steps. The initial model is first decomposed into a set
of components. The geometry and texture of the components are
then edited to create a larger set of modified components, which are
eventually combined to synthesize a variety of final models. The
geometry generation process consists in cutting the initial object
into components which are edited and modified to create an atlas of
geometry. The texture generation process consists in adding texture
details to the original texture of the object. Those details are com-
pacted into an atlas of texture components and may be combined to
create a large variety of textures.

The main contributions of our paper are as follows. We present a
generic technique for semi-automatically synthesizing hundreds or
thousands of different objects from an initial low polygonal model
of arbitrary type, geometry, topology and texture (Figure 4, 14) with

1http://www.speedtree.com/
2http://www.3d-coat.com/



a very small memory overhead. Our method can be applied to any
kind of model and does not depend on the technique used to pro-
duce the original object as in [6]. Our component decomposition
and editing steps guarantees that modified components will contin-
uously and seamlessly match during the assembly process. Our at-
las texture generation and compacting process also guarantees that
the texture components will seamlessly match, and avoids the mod-
ification of the parameterization of the objects.

Note that we did not investigate a method for automating the
decomposition of any kind of model into components. The main
reason for this is that the way objects are decomposed into compo-
nents is not only sensitive to the geometry and texture of the object,
but also depends on its very nature. Moreover, artists demand to
have a very tight control over the overall process.

Because of its efficiency and the small memory overhead needed
to synthesize thousands of objects, our method can be used in ap-
plications where memory constraints are very strong. This is the
case in particular in the video game industry that needs techniques
for generating and rendering variations of objects with coarse tes-
sellation in real time.

The remainder of this paper is organized as follows. In Section 2,
we present an overview of related work. In Section 3, we present
geometric and texture characteristics of video games objects. In
Section 4 and 5, we detail our algorithms for generating geome-
try and texture components. Eventually, we present our results in
Section 6 before concluding in Section 7.

2 RELATED WORK

Several approaches exist for generating variations of objects. Our
work relates to several research fields including procedural model-
ing of geometry and example-based geometric modeling.

2.1 Procedural generation techniques
Grammar-based generation techniques such as L-Systems [24, 20,
28, 22] and geometric rule-based methods [30] have been success-
fully used to generate plants and simulate their growth. More re-
cently, grammar-based techniques [18, 32, 16, 23] as well as sketch-
ing [5] methods have been used for creating buildings and cities.

While those methods provide some realism and editability, they
require some expertise for effective use. In particular they require
considerable effort to replicate unexpected local structural modifi-
cations or to create a specific desired shape. Although those meth-
ods can synthesize a vast variety of realistic objects, every differ-
ent model is represented individually which is memory demanding
and impractical for creating and rendering large sceneries with hun-
dreds or thousands of different models in real time. Approximate
instancing [9] and stochastic simplification of aggregate details [7]
can be used to simplify large scenes while preserving the overall
appearance. Alternatively, large sceneries with hundreds of thou-
sands of plant instances can be generated by using aperiodic tiling
so as to avoid repetition and aliasing artifacts [10].

2.2 Example-based synthesis
Those methods [29, 21] aim at creating a variety of shapes from a
set of initial argument models. Interpolation techniques and mor-
phing have been successfully used to create variations [27, 14, 1].
The challenge is to finely tune the correspondences between the
initial and final objects so as to generate geometrically consistent
interpolated models, which is impractical when applied to objects
with a completely different or very complex geometry such as trees.
Moreover, models generated by such interpolation methods are not
adapted to a low polygon context and cannot be instantiated.

Funkhouser et al. [12] proposed a method for creating new 3D
objects from parts of previously existing ones stored in a database.
Parts are obtained by cutting objects with given user strokes. A
contour is found and can be refined by new user strokes if necessary.

Object parts are identified with the help of the mesh connectivity.
A new object is obtained by assembling parts with fillets between
parts contour and eventually smoothing them to have a seamless
connection.

When dealing with low polygonal models used in video games,
automatically cutting objects into parts is a very complex task be-
cause of the lack of connectivity information between triangles
(Figure 2). Moreover, to keep instantiating parts possible and to
have a low memory overhead, we cannot join parts by adding a
smoothing fillet.

Merrell [17] recently proposed a procedural method for gener-
ating different geometric models from an initial model based on
example-based texture synthesis techniques [31, 11]. The method
consists in cutting the initial model into pieces by a three dimen-
sional grid, and then assembling them into different arrangements
while preserving continuity in the matching process. Because of
the decomposition along a three dimensional grid, this method is
restricted to a limited set of objects.

3 CHARACTERISTICS OF VIDEO GAMES OBJECTS

Real-time rendering combined with low memory constraints of
video games consoles play an important part in the way objects are
created by artists. This section presents the geometry and texture
constraints encountered with low polygonal objects.

3.1 Low polygonal models

Figure 2: A textured and wireframe view of a birch (745 vertices and
628 faces) and a closeup showing connectivity problems.

In video games, large scenes must be rendered in real-time with
hundreds of objects and low memory capacity. Therefore, objects
designed by artists must be created with a reduced number of ver-
tices and faces. For example, the birch in Figure 2 is composed of
only 745 vertices and 628 faces including several billboards repre-
senting the leaves. To reach this low polygons number, artists often
model objects as a polygon soup or as a set of disconnected and self
intersecting small meshes (Figure 2). Artists do spend an enormous
amount of time carefully modeling and texturing the object to get
beautiful results without visual artefacts.

Moreover, modeling objects in this way makes it very diffi-
cult to automatically decompose them into components by using
traditional segmentation methods [2] because of connectivity and
self intersection problems. In Section 4, we present a framework
adapted to this kind of objects.

3.2 Texture repetition
Because of the low memory constraint, artists rely on small texture
tiles to texture an entire object. Thus, the texture is repeated several
times on the object (tiling). Figure 3 shows a branch textured with
a small bark texture tile and the corresponding texture coordinates.
This is performed by using (u, v) texture coordinates beyond the
unity interval [0, 1]2, which enable the artist to seamlessly texture a
surface with a small tileable texture image (although at the cost of
some visible repetitive patterns).



Figure 3: Repetition of a texture tile.

Since the amount of information that can be carried by vertices
is limited, it is crucial to keep and use the same texture coordinates
as the ones provided by the artist when editing the texture. In Sec-
tion 5, we propose a technique that enables us to avoid repetitive
patterns while preserving the existing texture coordinates onto the
object.

4 GENERATION OF GEOMETRY VARIETY

The component-based generation of geometry variety consists of
three steps: first we decompose the input model into components,
then we edit and modify them to create an atlas of components and
finally we combine the modified components to create new variants
of the initial model (Figure 4). Let n denote the number of com-
ponents composing the initial object. Our system helps the user
to decompose a given initial textured mesh O into components de-
noted Fi such that:

O =

n[
i=1

Fi

The components Fi are modified to create variety components sets
stored into an atlas. We denote F k

i the kth modification of Fi and
Fi the whole set of models. The atlas F stores the components
variations Fi and allows us to generate a set of appearance varying
objects V by assembling components F k

i . An object Õ ∈ V is
defined by:

Õ =

n[
i=1

F k
i

Let #Fi denote the number of components contained in the set
Fi. Our approach allow us to generate a large number of varying
objects with a reduced number of components.

#V =

nY
i=1

#Fi (1)

4.1 Decomposition into components
The decomposition step splits an initial textured mesh object O
into components Fi. A component is a piece of the initial object
obtained by cutting. Our technique allows the use of any cutting
method. In our implementation, the user can choose between two
methods (Figure 5):

Figure 5: Cutting path which adds vertices (left) and using existing
vertices (right).

• In the general case, the user draws a path on the surface of the
object. This method adds new vertices along existing edges
whose texture coordinates are obtained by linear interpolation
of the texture coordinates of the cut faces vertices.

• Whenever the number of vertices is limited by a real-time ren-
dering constraint, the best solution is to define a path by se-
lecting existing vertices, avoiding the creation of new ones.
We apply this method in the context of objects from video
games.

Let Rij denote the common contour that defines the connect-
ing region between two components Fi and Fj obtained by a cut-
ting operation. Figure 6 illustrates the cutting of a birch into two
components Fi and Fj and their common connecting region Rij .
During the decomposition of O, we construct a graph G associated

Figure 6: Birch cut into two components.

to O and denoted G = (N ,A) where N = {Ni} denotes the set
of nodes of the graph G andA refers to the arcs between two nodes
(Figure 7). After the decomposition step, the nodes Ni are initial-
ized with a single component Fi. An arc Aij is created between
two nodes Ni and Nj when their components Fi and Fj have a
common connecting region Rij .

Figure 7: Graph with the birch cut into five components.

4.2 Atlas of components creation
This atlas of modified components is defined by editing the mesh
of the different components Fi, introducing variety in components
denoted Fi = {F k

i }. In our system, we have implemented several
mesh editing techniques including Free Form Deformation [26, 8]
and Axial Deformation [13]. We also provide low level editing
modes, such as vertex editing which are essentiel for editing low
polygon models in the context of video game. At this stage in the
modification, all the component variants from Fi contained in Ni

must still be connected to all the component variants from Fj con-
tained in Nj when those nodes are connected in the graph G and
conversely.

When the connecting region Rij is affected by a modification of
the component Fi and/or Fj , the graph G is updated to guarantee
texture and geometry continuity between components of nodes Ni



Figure 4: Synthetic overview of the geometry generation process.

and Nj . Depending on the area where the modification is applied,
the graph is updated as follows.

4.2.1 Local modification of a component

Figure 8: Atlas update when connecting regions are not affected.

When the modification of the component Fi does not affect the
vertices of its connecting region, a new component is added to the
node Ni of G (Figure 8).

4.2.2 Deformations preserving a connecting region
A powerful way to create significant shape variations consists in lo-
cally deforming two components Fi and Fj around their connecting
region Rij while preserving the shape of connecting region Rij .
Preserving the connecting region guarantees that all the variations
of components in Ni and Nj obtained from Fi and Fj will con-
nect seamlessly. Thus, we avoid atlas splitting and maximize the
combinatory. This is particularly useful for generating variations of
branching shapes, such as trees (Figure 9) or pipes.

Figure 9: Atlas update for a solid transformation of the connecting
region.

When applying an affine transformation like a translation, rota-
tion or scaling to the whole set of vertices composing the connect-
ing region Rij of the component Fi, we store the transformations

in a frame associated to Rij which enables us to accurately connect
components together during the assembly process. For example, in
Figure 9, if component F 2

1 is selected, we must apply the frame
transformation T to F2 and F3.

4.2.3 Modification of the connecting region
In the general case, when the modification deforms the shape of the
connecting region Rij , the graph G is duplicated to create a new one
G′ where other variants ofFi andFj are removed. This extends the
possibilities by dividing the atlas (Figure 10).

Figure 10: Atlas update for a modification affecting the connecting
region.

Figure 11: Fully cyclic graph obtained from the decomposition of a
rock into four pieces.

In some cases, the graph associated to an object can be fully
cyclic without terminal nodes (Figure 11). Applying a solid trans-
formation to a connecting region of a fully cyclic object makes the
assembly impossible and introduces cracks. Consequently, we for-
bid this type of modification in our implementation and thus guar-
antee the assembling property of all components.

4.2.4 Identical connecting regions
After the decomposition step, we check if identical connecting re-
gions exist between components or at both ends of a component.
Then, the user has the ability to edit the initial graph by adding



local cycles between nodes that have matching connecting regions.
Thus, some components can be repeated several times as with shape
grammars [18] (Figures 12 and 13).

Figure 12: Components having the same connecting region at both
ends and the associated graph.

To control how many times a component can be repeated, a max-
imum repetition number is associated to each local cycle of the
graph by the user. This prevents infinite loop during assembly. This
repetition possibility increases considerably the number of varia-
tions that can be generated.

In our implementation, we restrict the addition of local cycles on
tree like graphs. Hence, affine transformations of the connecting
region of components in a local cycle can be made without any
risks of cracks (Figure 12). Note that terminal nodes (F1 and F3 in
Figure 12 and F1 and F4 in Figure 13) cannot be in a local cycle.
In our implementation, we forbid the addition of local cycles when
terminal nodes are concerned.

Figure 13: A complex graph with many user edited local cycles, and
a set of buildings generated with this graph.

4.3 Assembly

This step generates a final new object Õ by traversing the graph
G and selecting a component F k

i at each node Ni. Components
are assembled such that connecting regions Rij should match so
as to guarantee seamless geometry and texture continuity between
components.

During this assembly stage, it is necessary to recalculate the po-
sition of some components in the case of an affine transformation
being applied to the connecting region. To achieve that and guaran-
tee the continuity between components, we apply the frame trans-
formation of the connecting region to all the components of the
sub-tree.

In our implementation, the choice of the components F k
i of

Õ can be made manually by the user, or randomly. The manual
method gives more accuracy, but is rather limited when a large
number of objects has to be generated like in the forest synthesis

case (Figure 1). Since the modifications applied to components are
mostly slight, the assembly gives slightly modified objects. There-
fore, automatic selection of them gives very acceptable results.

As shown in section 3.1, the initial objects may have self-
intersecting parts (Figure 2). Moreover, new self-intersections may
be introduced in the generated objects during the assembly process.
To solve this problem, we first detect the initial self-intersections in
the initial object and label intersecting faces with the same identi-
fier. Note that a face can have multiple labels since it can intersect
with other faces. Whenever a new object is generated, we detect
the intersections between the faces of the new model, and the ob-
ject is rejected if two intersecting faces are labeled with different
identifiers.

5 COMPONENT-BASED GENERATION OF TEXTURE VARIETY

Given an initial object O with its texture denoted as T , we propose
a method that generates an atlas of texture components that may be
combined and assembled to create different texture maps onto the
object. The originality of our approach is that we do not need to
modify the texture coordinates on the mesh. This is crucial in the
video game industry where only a limited number of information
such as texture coordinates may be stored for every vertex.

Our method proceeds in three steps. First, we add details to the
initial texture T by directly painting on the object. We create a new
small texture component Tk for each modification. The second step
arranges texture components Tk in a set of texture components at-
lases. The variety of textures is obtained by selecting and combin-
ing texture components in the atlases (Figure 14).

Figure 15: Texture component Tk = (Pk, Mk, Ck ) obtained after a
local modification.

5.1 Texture modification process
This step consists in applying successive modifications on the tex-
ture of the object. In our system, we modify the texture by painting
directly on its faces. Each modification is stored in a new texture
component (Figure 15).

The painted region defines a texture component denoted as Tk =
(Pk, Mk, Ck ). Pk refers to a pixel mask that defines the modified
region in the texture domain. Ck denotes the cluster of faces that
contains references to the modified faces of the object. Mk is a
larger pixel mask such that Pk ⊂ Mk which contains the modified
faces Ck projected in the texture domain.

Usually, a local modification on the object results in a local mod-
ification in the texture domain. Different faces of the object may
overlap in the texture domain (Figure 16) or even a single face of
the object may contain cyclic repetitions of the texture (Figure 17).

To solve this parameterization overlapping problem, we create
new texture components whenever local modifications on different
parts of the object enter into conflict by overlaping in the texture
domain.

Another important problem is texture tiling that may occur
within a single face of the object (Figure 17) and results in an un-
desired repetition of the modification into the face itself whenever
the texture coordinates range beyond unity interval [0, 1]2. In this



Figure 14: Synthetic overview of the texture generation process.

Figure 16: Clusters overlapping.

case, we subdivide the face where the texture repetition occurs into
subfaces so that the range of texture coordinates gets into unity in-
terval. Therefore, we remove the tiling and guarantee that any local
texture modification will not produce any undesired repetition.

Figure 17: Repetition of the texture modification may occur because
of the tiling.

When the user performs n edition steps, n texture components
are created which is memory expensive. Thus, it is necessary to
reduce the number of texture components by compacting them into
texture components atlases.

5.2 Compacting process
This step merges the non-conflicting texture components Tk into
texture components atlases denoted as Ai (Figure 18).

Let Ti = (Pi, Mi, Ci) and Tj = (Pj , Mj , Cj) denote two tex-
ture components. Ti and Tj are said to be non-conflicting and can
be compacted in the same atlas provided Pi

T
Mj = ∅ and

Pj

T
Mi = ∅. This compacting method is not efficient in terms

of memory compared to methods minimizing the number of unused
pixels [15, 25] in texture components atlases. In contrast, our tech-
nique preserves the existing texture coordinates of the object and
avoids the creation of new ones for each texture component’s at-
las. This enables us to guarantee the seamless mapping of texture
components.

Figure 18: Texture components are compacted in texture compo-
nents atlases.

In our implementation, we enumerate all compacting possibili-
ties by checking intersections between each pixel mask and each
face mask of each texture component. We finally keep the set of
texture components atlases which has the smallest cardinal number.

After the compacting step, every face of the cluster Ck of the
texture component Tk is labelled with the associated texture com-
ponents atlas identifier Ai in which it has been compacted. At this
stage, pixel and face masks are no longer necessary and can be re-
moved from texture components.

5.3 Variety generation process
This step consists in choosing which modified texture components
will be mapped onto the final object (Figure 19).

In our implementation, this step is automatically performed by
associating a random probability of appearance for every texture
component. The user may also directly control which texture frag-
ments should be used for a specific model. For every selected tex-
ture component Tk, we assign the corresponding atlas identifier Ai

containing the component Tk to the faces of the cluster Ck. Faces
of the cluster are then locked so as to prevent the selection of texture
components sharing common faces. This avoids texture component
overlapping and partial replacement of a texture component by an-
other.

When displaying the object, we use the identifier associated to
each face to load the atlas containing the selected texture compo-
nents and to bind the right texture modifications on these faces us-
ing initial texture coordinates. In this way, we avoid the packing



Figure 19: Four rock variations among 24 = 16 possibilities.

of the texture atlases into a single texture that would imply texture
coordinates modifications. Moreover, in the case of an initial tilling
texture, the packing would break the ability to tile and would gen-
erate a large texture made of several copies of the initial texture.

6 RESULTS

We have implemented and integrated our algorithms as an applica-
tion in the Twilight 2 development framework of Eden Games and
Widescreen Games companies for the GENAC 2 project. Graph-
ical assets used to illustrate our results are drawn from Alone In
The Dark ™ and Test Drive Unlimited ™ video games from Eden
Games company.

Table 1 presents the characteristics of the initial objects: vertices
and faces number, memory (in kB) of the model. Table 2 reports
the number of components generated after the cutting process, the
number of variations per component, the total number of generated
objects and the memory overhead.

Model Vertices Faces Memory

Birch 745 628 328

Rock 578 1 152 146

House 568 923 186

Table 1: Models complexity and memory (in kB).

6.1 Interface

Our model has been implemented into the Twilight 2 platform of
EDEN Games. All the following operations are accessible into the
interface as a contextual menu. The user can use standard mesh
cutting and editing tools to perform the decomposition of the input
object into components. Standard cutting tools often increase the
overall complexity of the models by generating many new edges
and new faces. Therefore, our interface allows the used to select
faces either by picking one by one or with a rectangle selection
tool. At the end of the fragmentation process, the user invokes a
detach from object command and the component is created.

Deformations are then applied to the components as follows. The
user can use a variety of deformation tools, such as Free Form De-
formation [26, 8] and Axial Deformation [13], as well as low level
mesh editing commands such as removing some faces of the model
(for example it can consist of removing the foliage of a branch), or

Figure 20: Automatic generation of rocks used in a rock slide.

moving the vertices of the model (for example stretching the roof
of a building by moving its top vertices).

Throughout the decomposition and component deformation
steps, the interface prompts the atlas of fragments as a set of icons
so that the user can keep track of all the fragments that have been
created. During the assembly process, the user either selects the
fragments to generate a specific variant, or simply invokes a create
random instance command from the menu to generate a new model
randomly.

6.2 Realism
Intensive instantiation of objects creates unnatural replications. Re-
sults demonstrate that our method is efficient to remove those repli-
cations and to increase realism by generating a great number of dif-
ferent objects for a low memory overhead and few modifications.

Model Components Variations Objects Memory

Birch 6 3 729 +54%

Rock 4 8 4 096 +321%

House 7 3 2 187 +48%

Table 2: Number of objects generated and memory overhead.

Figure 1 shows an area of central park with trees generated with
our method from a single initial model. 769 different trees were
generated by combining the different components. The modifi-
cations applied to components essentially consisted in removing
branches and foliage, which explains why the memory overhead
is low (54%). In comparaison, only 51 different trees (17 species
with 3 different variation per species) were used for the game Alone
In The Dark ™.

Figure 20 shows a rock slide in Central Park. At the beginning,
this rock slide was not present in the scene and our system allowed
us to create it from a single rock. In addition to the geometric mod-
ifications that generate 256 rocks, we produced 4 texture modifi-
cations compacted in 2 texture components atlases which gave us
the ability to generate 4 096 different rocks. During the geometry
modifications, we did not remove any vertices as in the previous
example. Therefore, the memory overhead is higher (321%) than
in the birch example.

The images were generated from the assets of the video game
Test Drive Unlimited ™ which takes place on Hawaii island. The
variations of houses in a suburban environment have been designed
manually by artists who added construction elements like garden
shelters or garages to an initial construction template. Figure 21
shows different houses obtained automatically with our system.

6.3 Efficiency and usability
An important feature of our approach is that it provides a means of
generating a variety of objects from a single examplar. Our method



Figure 21: Suburban environment in Hawaii: each house is different
and has been generated from an initial model.

is agnostic to the underlying technique used to generate the origi-
nal model. Moreover, our method can generate a vast number of
slightly varying objects with only a few editing operations. For
example, three hours were necessary for a non specialist to gener-
ate the components and create 729 tree variations, including a very
short training period. This is to be compared to the 8 hours spent
by an artist in order to create a single tree. Our method permits
reducing production times and costs which are crucial in industry.

7 CONCLUSION

In this paper, we have presented an example-based method for gen-
erating many variants of an initial low polygonal model. Our re-
sults demonstrate that this technique increases the overall realism
by avoiding model replications produced by instantiation.

While our method requires some manual editing, it provides the
artist with a good control over the overall process and can be applied
to different kinds of objects. Because components can be instanti-
ated, our system is well adapted to real-time rendering constraints
and lends itself for the entertainment industry. Furthermore, it re-
duces production time and cost, which is important in an industrial
development environment.

REFERENCES

[1] M. Alexa, D. Cohen-Or, and D. Levin. As-rigid-as-possible shape
interpolation. In Proceedings of ACM SIGGRAPH, pages 157–164,
2000.

[2] M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolo, and A. Tal.
Mesh segmentation - a comparative study. In Proceedings of the IEEE
International Conference on Shape Modeling and Applications (SMI),
pages 7–18, 2006.

[3] N. A. Carr and J. C. Hart. Painting detail. ACM Transactions on
Graphics (Proc. SIGGRAPH), 23(3):845–852, 2004.

[4] G. Chen, G. Esch, P. Wonka, P. Müller, and E. Zhang. Interactive
procedural street modeling. ACM Transactions on Graphics (Proc.
SIGGRAPH), 27(3):103:1–10, 2008.

[5] X. Chen, S. B. Kang, Y.-Q. Xu, J. Dorsey, and H.-Y. Shum. Sketching
reality: Realistic interpretation of architectural designs. ACM Trans-
actions on Graphics, 27(2):11:1–15, 2008.

[6] X. Chen, B. Neubert, Y.-Q. Xu, O. Deussen, and S. B. Kang. Sketch-
based tree modeling using markov random field. ACM Transactions
on Graphics (Proc. SIGGRAPH Asia), 27(5):109:1–10, 2008.

[7] R. Cook, J. Halstead, M. Planck, and D. Ryu. Stochastic simplifi-
cation for aggregate detail. ACM Transactions on Graphics (Proc.
SIGGRAPH), 26(3):79–88, 2007.

[8] S. Coquillart. Extended free-form deformation: a sculpturing tool for
3d geometric modeling. Proceedings of ACM SIGGRAPH, 24(4):187–
196, 1990.

[9] O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, and
P. Prusinkiewicz. Realistic modeling and rendering of plant ecosys-
tems. In Proceedings of ACM SIGGRAPH, pages 275–286, 1998.

[10] A. Dietrich, G. Marmitt, and P. Slusallek. Terrain guided multi-level
instancing of highly complex plant populations. In Proceedings of
IEEE Symposium on Interactive Ray Tracing, pages 169–176, 2006.

[11] A. A. Efros and W. T. Freeman. Image quilting for texture synthesis
and transfer. In Proceedings of ACM SIGGRAPH, pages 341–346,
2001.

[12] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal,
S. Rusinkiewicz, and D. Dobkin. Modeling by example. ACM Trans-
actions on Graphics (Proc. SIGGRAPH), 23(3):652–663, 2004.

[13] F. Lazarus, S. Coquillart, and P. Jancène. Axial deformations: an
intuitive deformation technique. Computer-Aided Design, 26(8):607
– 613, 1994.

[14] A. W. F. Lee, D. Dobkin, W. Sweldens, and P. Schröder. Multires-
olution mesh morphing. In Proceedings of ACM SIGGRAPH, pages
343–350, 1999.

[15] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal
maps for automatic texture atlas generation. ACM Transactions on
Graphics (Proc. SIGGRAPH), 21(3):362–371, 2002.

[16] M. Lipp, P. Wonka, and M. Wimmer. Interactive visual editing of
grammars for procedural architecture. ACM Transactions on Graphics
(Proc. SIGGRAPH), 27(3):102:1–10, 2008.

[17] P. Merrell. Example-based model synthesis. In Proceedings of the
Symposium on Interactive 3D graphics and games, pages 105–112,
2007.

[18] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. V. Gool. Proce-
dural modeling of buildings. ACM Transactions on Graphics (Proc.
SIGGRAPH), 25(3):614–623, 2006.

[19] F. K. Musgrave, C. E. Kolb, and R. S. Mace. The synthesis and ren-
dering of eroded fractal terrains. In Proceedings of ACM SIGGRAPH,
pages 41–50, 1989.

[20] R. Měch and P. Prusinkiewicz. Visual models of plants interacting
with their environment. In Proceedings of ACM SIGGRAPH, pages
397–410, 1996.

[21] M. Okabe, S. Owada, and T. Igarashi. Interactive design of botanical
trees using freehand sketches and example-based editing. Computer
Graphics Forum (Proc. Eurographics), 24(3):487–496, 2005.

[22] W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Měch, and
P. Prusinkiewicz. Self-organizing tree models for image synthesis.
ACM Transactions on Graphics (Proc. SIGGRAPH), 28(3):58:1–10,
2009.

[23] Y. I. H. Parish and P. Müller. Procedural modeling of cities. In Pro-
ceedings of ACM SIGGRAPH, pages 301–308, 2001.

[24] P. Prusinkiewicz, M. S. Hammel, and E. Mjolsness. Animation of
plant development. In Proceedings of ACM SIGGRAPH, pages 351–
360, 1993.

[25] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe. Multi-
chart geometry images. In Proceedings of the Eurographics/ACM
SIGGRAPH Symposium on Geometry processing, pages 146–155,
2003.

[26] T. W. Sederberg and S. R. Parry. Free-form deformation of solid ge-
ometric models. Proceedings of ACM SIGGRAPH, 20(4):151–160,
1986.

[27] P.-P. J. Sloan, I. Charles F. Rose, and M. F. Cohen. Shape by example.
In Proceedings of the Symposium on Interactive 3D graphics, pages
135–143, 2001.

[28] L. Streit, P. Federl, and M. C. Sousa. Modelling plant variation
through growth. Computer Graphics Forum (Proc. Eurographics),
24(3):497–506, 2005.

[29] P. Tan, G. Zeng, J. Wang, S. B. Kang, and L. Quan. Image-based
tree modeling. ACM Transactions on Graphics (Proc. SIGGRAPH),
26(3):87:1–10, 2007.

[30] J. Weber and J. Penn. Creation and rendering of realistic trees. In
Proceedings of ACM SIGGRAPH, pages 119–128, 1995.

[31] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-structured
vector quantization. In Proceedings of ACM SIGGRAPH, pages 479–
488, 2000.

[32] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky. Instant architec-
ture. ACM Transactions on Graphics (Proc. SIGGRAPH), 22(3):669–
677, 2003.

[33] K. Zhou, P. Du, L. Wang, J. Shi, B. Guo, and H.-Y. Shum. Decorating
surfaces with bidirectional texture functions. IEEE Transactions on
Visualization and Computer Graphics, 11(5):519–528, 2005.


