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Abstract Preparing a facial mesh to be animated re-

quires a laborious manual rigging process. The rig spec-

ifies how the input animation data deforms the surface

and allows artists to manipulate a character. We present

a method that automatically rigs a facial mesh based

on Radial Basis Functions (RBF) and linear blend skin-

ning approach. Our approach transfers the skinning pa-

rameters (feature points and their envelopes, ie. point-

vertex weights), of a reference facial mesh (source) -

already rigged - to the chosen facial mesh (target) by

computing an automatic registration between the two

meshes. There is no need to manually mark the cor-

respondence between the source and target mesh. As a

result, inexperienced artists can automatically rig facial

meshes and start right away animating their 3D char-

acters. Last, we show how a rigged facial mesh is ready

to be animated driven by motion capture data.

1 Introduction

Modeling 3D faces is becoming more and more auto-

matic and common with systems based on photos [1]

or on user-friendly interactions [2]. Consequently, many

applications in the area of games or virtual reality offer

to novices the capacity to generate or customize a 3D

facial avatar. Indeed, avatar with better capacity to rep-

resent his owner in the virtual community will provide a

better immersion. However, setup a facial mesh in order

to animate it requires fastidious manual rigging to spec-

ify how the input animation data deforms the surface.

We aspire a system that automatize this task to make

animation more accessible for children, educators, re-

searchers, and other non-expert animators. Notice that

Address(es) of author(s) should be given

we address the missing portion of automatically rig a

face, we do not target the motion transfer issue.

Since rigging fully automatically a facial mesh is

already a challenging problem, we have chosen to fo-

cus on a traditional approaches for the real-time facial

mesh deformation: Linear blend skinning (LBS) [3], also

known as skinning or enveloping or skeletal subspace

deformation [4]. Indeed, with Blendshape [5] which con-

sists on morph between key meshes, they remains the

most popular methods used in practice in realtime 3D

engines. We avoid blendshape-based methods because

manipulating and transferring the key shapes are far

less tractable than skinning parameters.

Skinning binds controllers with a mesh in order to

deform the mesh according to the controllers deforma-

tions. Usually, these controllers are bones or skeleton

for the body and feature points (FP) or landmarks for

the face (as the ones defined by the Facial Definition

Parameters of the MPEG4 standard [6]). A vertex may

be influenced by several FP . In this paper, we call

skinning parameters: the FP and their influences on

the mesh vertices (point-vertex influences or weights).

In order to prove the concept of transferring parame-

ters, we focus only on the common skinning technique,

in the same way the Pinocchio system [7] did for auto-

matically rig a character. Nevertheless, more accurate

skinning techniques based on examples [8–10] may also

be considered as an extension of our work as long as

they are based on FP and on weights parameters.

Usually, the rigging process to create realistic and

expressive human face animation means that an user

has to manually place the FP on the face and specify

which parts of the face are attached to which points.

[11] shows that only the landmarks positioning can

take around 2 minutes. We have designed our technique

on usage simplicity, automatism and aim at provid-
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Fig. 1: Overview of our method. We rig a target mesh

by transferring the skinning parameters from a refer-

ence mesh previously rigged (source). We firstly com-

pute a landmark correspondence to transfer the FP.

Followed, by a dense registration to transfer the point-

vertex influences.

ing real-time animation. We propose a method which

takes as input a mesh of face (target) and provides by

transfer as output a FP set and the associated point-

vertex influences without human intervention. These

skinning parameters are transferred from a reference

mesh (source) already rigged. Comparing to previous

transfer approaches focusing on face [12], our main con-

tribution is the automatic registration which provides a

landmark correspondence between the two meshes (See

Section 5). Once a 3D target mesh is rigged, it may be

directly animated by any FP-based animations coming

for instance from a simple motion capture system based

on webcam as illustrated in our results (See Figure 9).

Since our rigging is based only on common skinning,

it may also be used by any 3D engines and major 3D

Softwares like 3D Studio Max or Maya.

2 Related Work

Our problem is related to a wide range of sub-problems

for which it is not reasonably possible to be exhaus-

tive. First, we overview approaches working on semi-

automatic rigging of characters. Second, since our ap-

proach is based on transfer we review some of surface

registration methods which count a wide range of ap-

proaches.

2.1 Automatic Rigging

Previous research on character rigging (body or face)

has mostly provided tools to help professional anima-

tors. For instance, Maya, 3D Studio Max or Blender

software assign bone-vertex influences (weights) of skin-

ning based solely on the vertex proximity to the bone

and thus let the user to improve the result. Few meth-

ods have targeted fully automatic approaches except

the Pinocchio system [7] proposing an easy, automatic

rigging of 3D body characters based on a simulation

of heat diffusion of each bone. Our work follows the

same goal for the case of face than what Pinocchio pro-

posed on character body. We differ by the fact we pro-

pose a transfer-based approach more suitable to face

whereas they propose a more procedural approach dedi-

cated to body. Indeed, for instance the case of the upper

lip which are independent to the move of near FP of

the lower lip are more easily treated by transfer. In the

case of face, Costa-Teixeira et al. in [12] proposed a

method dedicated to professional animators to trans-

fer the rigging from one face to another after comput-

ing a registration based on landmarks manually posi-

tioned. Our approach follows the same principle but

our registration provides automatically the landmark

correspondence on both models avoiding manual inter-

vention. Since we aim to create animations on the fly,

automating the landmark positioning process becomes

crucial.

2.2 Surface Correspondence and Registration

Finding a correspondence between two surfaces repre-

sented by meshes is central to various aspects of com-

puter graphics: modeling from 3D scanner/range im-

ages, compression, information transfer, texturing or

morphing. Given a source and a target surface, the goal

of the surface registration is to find a transformation

that optimally transforms points from the source sur-

face to the target surface. Registration methods can
take different forms depending on the nature of the

data: static objects vs deformable dynamic objects, sur-

face represented by range images vs meshes, manufac-

tured objects vs human bodies vs faces. Our problem

of automatically transfer facial animation parameters

has to be classified on the problem of registering two

different instances of static objects of the same family:

variation of face.

Our approach is related to range images registration

methods [13], often addressed by variant of the Iterative

Closest Points algorithm [14], in the sense we compute

the first part of the registration using a depth image

representation of the surface which may be seen as a

range image. Nevertheless, we differ because our input

data are not two views of a same static object. The

two depth images are frontal view of two different face

models. Thus, even if they share the same nature of face

they may slightly differ.

Non rigid registrations in the case of low deforma-

tion is a common problem in body/face motions cap-
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(a) Depth images (b) Preprocessing (c) Watershed segmentation (d) Seed registration

Fig. 2: One step of our landmark based registration is as follow: (a) the two depth images of the meshes (which

can be computed as a Z-buffer). (b) The depth images are preprocessed in order to raise specific features, here we

have computed a Laplacian filter. (c) The transformed depth images are segmented by the watershed algorithm,

yellow points are the watershed seeds (the local maxima). (d) Using the segmented regions, our algorithm registers

watershed seeds and add them to the landmark list (red points). The algorithm iterates with different preprocessing

on the depth images.

tures which may try to fit a template [15] model to

scanned surface. In the case of face, methods [16,5] are

often based on variational approaches minimizing an er-

ror criteria based on surfaces differences. [17] employs

a morphable shape model, which is computed from a

database of laser-scans faces. These approaches sup-

port the presence of holes and poorly sampled data and

provide a quit good dense correspondence between the

two surfaces. Nevertheless, their performances depend

strongly on the similitude between the model and the

database. Thus, for the sake of generality, we preferred

working on an approach without a priori on the surfaces

which allows to register two cartoon faces as illustrated

on Figure 5 (c) and (d). Notice that in this context, it

is often convenient [18,19] to work in the 2D parameter

domain of the surface. Similarly, we base our registra-

tion on 2D representation to efficiently deal with meshes

of various resolutions and to take advantage of several

image-based descriptors computation.

Registrations of surfaces with large variations is

tricky to solve in a fully automatic manner. The case

of articulated body with large variation of curvature

seems more trackable as testifies the recent work [20]

which works greatly and fully automatically on artic-

ulated models. For facial models, the problem often

solved by human-input is conveniently defined in two

levels. The large scale correspondence is often given

by human-provided landmark points [21,12], on both

models. And, the dense registration which defines the

correspondence for each surface point is computed by

low-deformation non-rigid registration based on radial

basis functions RBF as described by Noh et al. in [22] in

the context of deformations transfer. We use a similar

approach which has proven to work for the dense reg-

istration but we automatize the large scale part where

user provides landmarks.

3 Overview

Starting with a facial mesh, creating and placing by

hand each component of the rig quickly becomes im-

practical when complexity grows. Our method auto-

matically registers a reference facial mesh (source) to

the facial mesh to rig (target) in order to transfer the

rigging parameters with no human intervention. The

reference facial mesh was previously rigged by the skin-

ning method: FP and the point-vertex fitting are set.

The transferred parameters are the FP positions and

the point-vertex influences which link the mesh to the

FP. The result is a rigged facial mesh ready to be

animated by skinning. The transfer is done in four

phases of registration/transfer as shown on Figure 1.

The method we present addresses the correspondence

issue using a new approach registering the result of a

sequence of watershed segmentations described on Sec-

tion 5. Then, these landmarks are used to transfer the

FP from the source to the target. The third phase (Sec-

tion 6) computes a dense registration which associates

each vertex of the target mesh to a surface point of the

source mesh. And finally, the point-vertex influences are

transferred.

4 Radial Basis Functions for Mapping Between

Meshes

Both surface registration and skinning parameters

transfer use Radial Basis Functions (RBF). RBF allow

to compute a regression between two sets of scattered

data. In our cases, RBF are used to define a transforma-

tion from a source to a target surfaces by interpolating

source and target points sets. Let suppose we have two

points sets, a source one X and a target one Y , with
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(a) (b) (c) (d) (e) (f)

Fig. 3: A sequence of the watershed segmentation/registration process. The red points are registered watersheds

seeds which are kept as landmarks whereas the yellow ones are not used. Each step corresponds to a preprocessing

on the depth image. On (a) and (b), the preprocessing is a Gaussian filter with different radius. On (c) and (d),

the preprocessing is a Laplacian filter followed by a Gaussian filter with different radius. On (e) and (f), the

preprocessing is a vertical and horizontal anti-symmetric filters.

a correspondence between points: ith point of X corre-

sponds to ith point of Y . The RBF are of the form:

y = F (x) =

N∑
i=1

wiϕ (||x− xi||)

with y ∈ Y a learning point in the target space, x ∈ X a

point in the source space, N the size of the both points

sets, ϕ the radial function, wi the weights for the ith

point and F the interpolation function we want to learn.

Learning the interpolation (i.e. finding weights for each

source points and for each axe) consists on solving three

linear systems of N equations, if points are in 3D. [22]

provides good explanations of how the system can be

solved. More details about the use of RBF are given in

Section 5 and Section 6. Intuitively, once the learning

is computed we can use the RBF to transform a 3D

point Psource from the source space to the target space,

we note Ptarget = RBF (Psource).

5 Surface Correspondence and Feature-Points

Transfer

The first issue of our transfer approach is the computa-

tion of the landmark correspondence on both meshes.

This delicate task is in charge of registering main areas

of the faces which may be tricky if the anthropomet-

ric lengths are slightly different. We propose a general

framework on Section 5.1.1 which may be refined by any

kind of surface descriptors as explained on Section 5.1.2.

To find this landmark correspondence, our approach

runs a sequence of watershed segmentation/registration

steps performed on depth images. We have chosen to

register the two faces using a depth images representa-

tion for several reasons. We start from the observation

that a frontal part of a face is 2.5D, so the depth image

representation should keep the important information

for registration. Depth image allows to be easily inde-

pendent on the mesh resolution which is essential for the

usefulness of the method. A low polygon facial model

may be registered with a high polygon model. Compar-

ing to complex remeshing, computing the depth map

representation of a face can be done easily using for

instance the result of a frontal projection (for instance

the Z-buffer of an orthogonal rendering). Notice that

cylindrical projection may also be used. And finally,

working on regular 2D grid (image) is more convenient

and more efficient in computation time than working

directly on the mesh. It allows us to take advantage of

several image-based descriptors.

Each segmentation/registration step adds new land-

marks to the set. The landmarks registered are some

seeds of the watershed segmentation regions. Fig-

ure 2 shows one step of preprocessing, segmentation

and landmark registration. Since the segmentations

are computed using the global image information, our

method can localize the landmark correspondence more

accurately than local detection/grouping methods as

for instance the SIFT descriptor algorithm would have

done be selecting only landmarks on the border (See

Figure 5.(a)). The assumption of our method is that

objects of a same family, in our case human face vari-

ation, will provide mostly similar segmentation. Then,

segmentation is more easy to register as shown by our

criteria described on Section 5.1.1 than registering di-

rectly meshes. Good arguments around this are given in

[23] in the context of using segmentation for matching

images.

Our approach runs iteratively a sequence of regis-

tration steps which differ by the preprocessing done on

the depth images before the segmentation. This pre-

processing consists of computing specific descriptor on

the source and target depth images in order to combine

the advantages of several descriptors. Each descriptor

raises some particular locations of the two surfaces like

edges or symmetric areas. Figure 3 shows the sequence

of registration with different preprocessing. This pre-

processing is related to the classical problem of com-
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puting a good descriptors and may be augmented by

an descriptor.

5.1 Automatic Landmark Correspondence

Determination

At the beginning of the sequence, any landmark are de-

fined. After each step, a RBF transformation is recom-

puted with the whole set of landmarks. Each step of the

watershed sequence/registration adds some landmarks

which are watershed seeds registered with a watershed

seed of the other surface using the two segmented re-

gions and the RBF computed at the previous step.

5.1.1 One Step of Watershed Segmentation

The concept of watersheds comes from the field of to-

pography, referring to the division of a landscape in

several basins or water catchment regions. Consider two

oceans on both sides of a mountain. On rainy days, all

the drops of rain that fall on one side of the mountain

flow into one ocean, while rain falling on the other side

of the division will flow into the other ocean. From this

point of view, we can consider an image and in par-

ticular our depth image as a topographic surface [24]

where each pixel is a point situated at some altitude as

a function of its gray level. We will see in the next Sec-

tion that the depth image may be preprocessed in order

to bring up desired features before being used as topo-

graphic surface. To segment the surface represented by

the depth image, we gradually immerse the surface in

a water container. Previously, a hole has been made in

each of the local minima. The water will begin to flow

through the holes, first through those with less altitude

but gradually reaching those with a greater altitude.

So in the end every point will be assigned to a mini-

mum and the surface will be divided into its catchment

basins. The local minimum point of each basin is the

representant of the basin we call the seed. In term of

depth image, the seed is a 2D pixel position and each

pixel is assigned to a watershed which is a segmented

region of pixels.

In this section, we assume that k steps of the

sequence of watershed segmentation/registration has

already be done and has provided a set of land-

marks. These landmarks define the transformation

RBF src−>tar
k , just noted RBF, which transforms a

point of the source image to the target image. By in-

verting the landmarks, we compute RBF tar−>src
k noted

RBF−1. We consider the next step of the sequence, the

k + 1th watershed segmentation/registration. The wa-

tershed segmentation computes on the two depth im-

ages, two sets of regions with their associated seeds

Source Target

P
src

i P
src

j

WS
src

i
WS

tar

j

Fig. 4: During the step k + 1 of our iterative registra-

tion, two segmented regions (watersheds) match if their

seed falls into the converse watershed after being trans-

formed by the RBF of the step k.

(See Figure 2). A seed of the source segmentation will

be selected as landmark if it can be associated with a

seed of the target segmentation. The correspondence

criteria between two watershed is described on Fig-

ure 4. Two watersheds WSsrc
i and WStar

j match if the

seed P src
i (resp. P src

i ) falls into the watershed WStar
j

(resp. WSsrc
i ) after being transformed by the RBF

(resp. RBF−1) defined by the previous steps. i.e. if

RBF (P src
i ) ∈ WStar

j and RBF−1(P tar
j ) ∈ WSsrc

i we

add P src
i and P tar

j to the set of landmarks defining the

correspondence. For instance, on Figure 4, the bottom

right watershed regions match, top ones not. At the

end of this step, we recompute the RBF with the added

landmarks for the next step. This criteria is fast to com-

pute and has the advantage to quickly registers similar

regions. According to our tests, it is enough efficient to

not considering an other criteria more complicated to

compute.

5.1.2 Sequence of Segmentation as a Descriptor

Problem

The watershed segmentation applied on depth image

combined with the fast to compute criteria to register

regions has the advantage to provide a global approach

which can be easily iterated with different preprocess-

ing. Indeed, with this approach our goal is to take ad-

vantage of various descriptors to catch different regions

of a face, for instance regions of high curvature or of

high symmetry, etc.. Thus, in this Section, we propose

different preprocessing to apply on the depth images.

which is related to the classical issue of choosing per-

tinent descriptors for image or surface registration [26,

13]. Since our approach is based on a sequence of reg-

istrations, as many descriptors as needed can be used.

Nevertheless, the choose of descriptors order have to be
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(a) SIFT de-
scriptors

(b) (c) (d)

Fig. 5: On (a), the landmarks selected by the SIFT descriptors algorithm [25], only on the border, are not enough

accurate to guaranty a good registration. On (b), (c) and (d), our sequence of segmentations/registrations provides

a set of 2D pair of landmarks on both depth images. The reprojection of these 2D landmarks on the 3D surface

is used to define the 3D RBF transformation from the source mesh to the target one. (c) and (d) illustrates our

registration on cartoon faces.

from coarse to fine, for instance see the progression of

descriptor described on Figure 3.

The first idea of preprocessing is to apply Gaussian

filter on the depth images to remove the issue of small

regions during the segmentation. This will register the

global appearance (local maxima) of the face, mainly

the nose and often the forehead (See Figure 3 (a) and

(b)). It is also possible to invert the depth in order to

register local minima points like the ones localized on

the border of the eye near the up of the nose. The Lapla-

cian will register edges in general like border of the face

or of the nose (See Figure 3 (c), (d) and (e)). Since

a face included many horizontal or vertical symmet-

ric regions, an interesting descriptor is the symmetric

one.This list is not exhaustive and reader may define

other interesting descriptors. In practice, our different

steps of preprocessing are the ones described Figure 3

with which we have computed results of Figure 7.

5.2 Feature Points Transfer

The sequence of watershed segmentations/registrations

previously described provides as output two sets of final

landmarks defining a correspondence as illustrated on

Figure 5. These data are used to map the two faces,

they are used as learning points for a RBF interpolation

RBF src−>tar
final as described in Section 4. We use this

RBF to transfer each FP position of the source face

to the target face. Figure 7 illustrates this process on

several targets. The error values describe the difference

between the transferred FP positions and the manually

positioning ones (See Section 7 for more details).

6 Transfer of Point-Vertex Influences

Rigging the target mesh with common skinning tech-

niques requires to attach each vertex to one or more FP

with influence values. As for the FP, we perform this

task by transferring this information from the source

mesh.

We then define a dense registration which associates

each vertex V of the target mesh to a point P of the

source surface, meaning P is a 3D position on a triangle

of the source mesh and is not necessary a vertex.

6.1 Dense Surface Registration

In order to do densely register the two meshes, we use

the transformation RBF tar−>src
final defined by the land-

marks from the mesh to rig (target) to the reference

mesh (source). Because the set of landmarks is not suf-

ficient to reflect every details of the mesh, this transfor-

mation does not match precisely the two meshes, mean-

ing it does not guaranty that all transformed vertices
fall onto the surface (See Figure 8 on the left). Before

computing a dense registration, we crop the target head

to the face. The goal is to work only with the vertices of

the face, since back-head vertices will not be influenced

by facial FP. Every removed vertices will be attach to

the root head bone. This results in a decrease of compu-

tational cost, and avoid possible registration errors due

to a lack of landmark points away from the face. The

crop is done automatically, using the distance between

the vertex and the nearest landmarks which has to be

less than a distance dependant on the anthropometric

measures of the face. In our case, we found empirically

that the distance between the two eyes is a good value.

To get the dense registration, each vertex V of the

cropped target mesh is transformed by the RBF inter-

polation: V ′ = RBF tar−>src
final (V ). Then, each interpo-

lated target vertex V ′ is projected on the source mesh

and falls into a point P on the triangle tsrc which de-

fines our dense registration as illustrated on Figure 8

on the right. Since a head geometry is somehow close
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Fig. 6: The top row shows how some point-vertex influ-

ences on the reference face. The bottom row shows the

transferred FP influences on the target face.

to a sphere, we apply a spherical projection with the

head root bones as projection center.

6.2 Feature Points Influences Transfer

Each target vertex V is registered with a point P on

a source triangle tsrc defined by the three vertices:

tsrc = (V1, V2, V3). We compute the FP influences of

V by interpolating the ones of the vertices V1, V2 and

V3 according to the position P on tsrc. The interpola-

tion is done with the Inverse Distance Weighting (IDW)

:

IDWVi∈{tsrc} (Vi) =
1

||Vi − P ||
× 1∑3

k=1
1

||Vk−P ||

FP influences values of tsrc are blend using IDW co-

efficients to get FP influences of V . Figure 6 shows an

example of influences transfer for some FP.

Sometimes conflicts happened for vertices influ-

enced by the wrong side of the mouth, for example,

a top lip vertex could be influenced by a bottom lip

points. This problem does not occur around the eyes if

we assume that target faces are in a neutral pose, with

opened yes. However, it could be solved in a same way

than for the lips. For each vertex influenced by a lip

FP, we compute its geodesic distance with the current

FP and with the mouth symmetric one. If this distance

is lower for the opposite FP than for the current FP,

influence is swapped. Notice, that we assume that the

target mesh is enough dense to be properly animated,

otherwise a mesh refinement may be applied.

7 Results

We have tested our registration and skinning transfer

on several facial models, which are human variation

with a large scale of characteristics (See Figure 7). To

illustrate the capacity of our transfer to deal with differ-

ent mesh resolutions, the 3D mesh models count from

about thousand triangles to several tens of thousand

triangles. Some models are the whole head and some

are only the face. Some models are computer gener-

ated, others are scanned faces (the three on the bottom

right). The only constraint we ask to the models is that

the face has to look in the Z axis direction to be able

to compute the depth image of the frontal view. We

also tested our registration on cartoon faces illustrated

on Figure 5 (c) and (d). To measure the quality of the

landmark correspondence computation, we have manu-

ally defined a FP set for each 3D mesh. These sets are

composed by twenty points set on representative posi-

tions for animation: around the nose, the mouth and

each eyes (see red points on Figure 7.(a)). We define

an error criteria (see error values on Figure 7) by sum-

ming the distance between each FP of the transferred

rig and the manually set ones normalized by the diag-

onal Diagbbox of the manually set ones bounding box:

error =

nFP∑
i=1

FPmanual
i −FPtransferred

i

Diagbbox

Notice that the result of the automatic FP transfer

may be manually edited if the user feels the need, with-

out changing the rest of the method. Our results on

Figure 7, 9 and on the provided video are not manually

adjusted.

Computing the depth image representation of the

mesh is instantaneous using the GPU capacity by us-

ing the Z-buffer of the frontal view. The landmark cor-

respondence determination is computationally depen-

dant on the depth image resolution and on the number

of steps in the sequence of segmentation/registrations.

Usually in our tests, we used depth images of 512×512

with the segmentations/registration described on Fig-

ure 3. Landmarks computation takes about 20s on a

Athlon X2 3800+ with 2Go of RAM. The dense reg-

istration is computationally dependent on the number

of triangles of the two meshes. Our implementation,

not optimized, takes for instance about 3s for a models

with 1800 triangles or a minute for a mesh with 12000

triangles. Once the dense registration is done, the skin-

ning parameters transfer is instantaneous. And finally

to illustrate our results, Figure 9 shows an animation

applied on faces automatically rigged by our method in

a minute without human intervention. The animation

is provided on the fly by a motion capture system using
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(a) source (b)

error=1.50

8208 triangles

(c)

error=1.73

22626 triangles

(d)

error=1.06

12684 tri.

(e)

error=1.41

22352 triangles

(f)

error=1.35

22498 triangles

(g)

error=1.60

1630 triangles

(h)

error=1.17

22636 triangles

(i)

error=1.18

25000 triangles

(j)

error=1.50

33000 triangles

(k)

error=1.25

55000 triangles

Fig. 7: Examples of FP set transfer. The mesh on the left is the source (reference) model which was previously

rigged including setting of the red FP. On the right, the blue FP are automatically transferred on the mesh to

rig from the source mesh. To measure the quality of the registration we have manually set the FP on the target

meshes and compute an error value as describe in Section 7

a simple webcam and the Lucas-Kanade [27] computer

vision marker tracker. Notice that any other motion

capture system may be used and that the markers on

the face may be different than the FPusing retargeting

adaptation [28].

8 Conclusion

We have proposed a fully automatic method to rig and

animate a facial mesh by transferring the FP and the

skinning influences from a reference mesh previously

rigged. We have tested our approach on several meshes

and provided an error criteria to evaluate the quality

of the landmark correspondence determination which

is the most sensitive part of our approach. Animations

of faces rigged by our method prove the viability of

such an automatic transfer approach. By using depth

image representation of the mesh we have been able to

use image approach to 3D problem, which make the

implementation more easier, let use several descriptors

with an approach based on segmentation, and allows to

easily deal with mesh of different resolutions. Indeed,

running a re-meshing, several preprocessing and seg-

mentation on two input meshes would have taken more

computation time if we have kept a classical mesh rep-

resentation.

As future work, we would like to extend the evalua-

tion of our approach by computing an error more dedi-

cated to animation. For instance, we could measure the

difference between the transferred point-vertex influ-

ences to the ones defined by an artist. Although regis-

tering faces of the same class is possible, fully automatic

transfer of rigging from a generic reference human face

to a large range of faces like cartoon or animals is still

delicate because of the landmark correspondence issue.

A solution would be to rig several types of reference

faces (human, cartoon, animal, etc.) as preprocess and

when a new face has to be rigged the transfer could be

done from the nearest reference face. Indeed, we have

test our registration approach only on human face vari-

ation but nothings prevents to use it with any surface

with similar characteristics.
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Fig. 8: Illustration of the dense registration based on the landmark correspondence. The two left images show the

two meshes to register with their FP. The third image shows the superposition of the two meshes (target mesh

in wireframe). The fourth image shows the superposition of the source mesh on the target mesh transformed only

by the RBF interpolation. The right image shows the dense registration after the spherical projection, each target

vertex is associate to a triangle of the source mesh.

Fig. 9: First line, motion capture animation. Second line, reference model previously rigged. Third and fourth lines,

the animation is applied on a face automatically rigged by our method, i.e. rigging parameters are transferred

from the reference model.
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