
Multiresolution control of curves and surfaces

with a self-similar model

Houssam Hnaidi, Eric Guérin and Samir Akkouche

LIRIS - Université Claude Bernard Lyon 1

May 28, 2009

Abstract

This paper presents two self-similar models that allow the control of curves and

surfaces. The first model is based on IFS (Iterated Function Systems) theory and

the second on subdivision curve and surface theory. Both of these methods employ

the detail concept as in the wavelet transform and allow the multiresolution control

of objects with control points at any resolution level.

In the first model, the detail is inserted independently of control points, re-

quiring it to be rotated when applying deformations. On the contrary, the second

method describes details relative to control points, allowing free control point de-

formations.

Modelling examples of curves and surfaces are presented, showing manipula-

tion facilities of the models.

1

1 Introduction

Controlling generated objects has always been important in computer graphics, to allow

easy modelling and fast deformation processes. Free forms (Bézier curves, splines,

NURBS) are pioneers in this domain, allowing the user to control them using control

points.

To expand this concept at different scales, the concept of multiresolution has ap-

peared. Subdivision surfaces [1] have successfully introduced a model capable of mul-

tiresolution editing. Based on this principle, a great deal of research has been conducted

to model or control curves and surfaces with a compression goal, for instance.

In addition, wavelet theory has been introduced in signal processing, including for

compression purposes. This theory uses the principle of multiresolution decomposition

of a signal into a low-resolution version that combines it with detail information. This

decomposition principle can be applied to subdivision theory for compression purposes

but also for multiresolution editing.

Subdivision surfaces and wavelet representations are well adapted to smooth shapes.

When natural and rough objects need to be represented, however, the use of fractal

models is recommended. Unfortunately, fractal models are difficult to control. Some

have attempted to transpose the free form concept to fractals [2]. To the authors’ knowl-

edge, no fractal model permits the multiresolution control of the generated object.

In this paper, two self-similar (intrinsically fractal) models that allow the multires-

olution control of the generated curves and surfaces are presented. The first one is

based on IFS (Iterated Function Systems) theory, in particular projected IFS. The sec-

ond model employs the subdivision principle used in subdivision surfaces. In both

cases, the detail concept similar to the concept employed in wavelet theory is used.

This article first presents a review of the related work, then we introduce our con-

tribution and the results for the two models.

2

2 Related Work

Bézier curves, B-splines and NURBS are used intensively in computer graphics when

global control over a curve or a surface is needed. These models cannot be directly

applied if the user wishes to modify the shape at different scales.

Several models have been proposed to satisfy this need. Finkelstein et al. [3] intro-

duced a multiresolution representation of curves based on wavelets. This representa-

tion can support several operations on curves: smoothing, detail-preserving deforma-

tion and tolerance-based approximation. Elber [4] introduced a system that allows the

multiresolution control over a linearly constrained NURBS curve.

Biermann et al. [5] proposed a cut-and-paste method based on a multiresolution

subdivision. It allows the partial transfer of one surface on another.

In [6], a method localising the refinement effect is presented. This method uses

a controlled hierarchical subdivision and aims at manipulating a surface from editing

points.

In [7], a method allowing the user to cut-and-paste one surface on another at any

hierarchical level is presented, making it possible to add details in a surface without

increasing its complexity.

[8] presents a new interactive mesh editing approach. Large meshes are first sim-

plified, then subdivided into sub-meshes interactively. Each sub-mesh can be edited

with geometrical transformations. Finally, the mesh is reconstructed entirely.

[9] introduces a curvature based multiresolution representation for 2-D polygonal

curves. It represents all the detail coefficients by lengths and angles in order to preserve

the orientation of the details during deformation.

All of these models have a common feature: they are designed to treat smooth

objects. In nature, objects are not smooth. They can be represented by fractal mod-

els [10, 11], which are usually split into two categories: stochastic and deterministic

models. Only the latter can be potentially used in a context where the user seeks con-

3

trol. L-systems [12] and IFS [13] are examples of such models.

IFS is a powerful tool for analysis and synthesis of fractal objects. Zaïr [2] intro-

duced a variant of this model that could control curves and surfaces interactively, called

projected IFS. This model is an adaptation of free forms. In classical free forms, blend-

ing functions are made of polynomials, whereas in projected IFS, they are computed

with IFS. Guérin [14,15] employed this model to approximate curves and surfaces with

a distance minimisation formalism.

Several studies have used constraints to control the generation of self-similar ob-

jects. Blanc-Talon [16] introduced an interpolation system with spline-based approxi-

mation. Coefficients of subdivision matrices are computed from global and local geo-

metrical constraints. This process can generate fractal curves whose fractal dimension

is reproduced from an initial given curve. Belhadj [17] introduced an algorithm based

on fractals that can generate DEM (digital elevation maps) that conform to constraints.

The user can choose global features and morphology, local details and can see the re-

construction interactively. Stachniak [18] presented a method that employs a stochastic

search to identify local modifications. These modifications can deform the fractal ter-

rain and conform to a set of constraints. The results show that the method can integrate

multiple constraints while preserving the natural aspect of the terrain.

3 Contribution

The goal of this paper is to propose a model that can combine a fractal shape with a

detail concept such as that used in wavelet transform [19,20]. To this end, we introduce

a general formalism that leads to two approaches. The first approach is based on pro-

jected IFS, whereas the second uses the subdivision concept. The following presents

this general formalism:

PJ+1 = ϕ(PJ)⊕ψ(PJ ,δPJ) (1)

4

where PJ represents the object at the resolution level J and δPJ is the detail associated

with this level. This operation is called multiresolution synthesis (see Fig. 1). With this

formalism, an object PN can be represented by its version at a given resolution level J

and associated details δPJ , . . . ,δPN−1. When successively combined, the resolution N

can be reconstructed.

P0 PJ PJ+1 PJ+2 PN

δPJ
δPJ+1 δPJ+2

Figure 1: Multiresolution synthesis

Each term PJ , δPJ , ϕ(PJ), ψ(PJ ,δPJ) and ⊕ will be defined in each approach.

In both approaches, we will introduce an invertible formula, able to perform the

so-called analysis operation (see Fig. 2). Given an object at a resolution level N, anal-

ysis decomposes it into a multiresolution representation combining detail information

δP0, . . . ,δPN−1 and the low- resolution version P0.

PN PJ+2 PJ+1 PJ P0

δPJ+2 δPJ+1 δPJ

Figure 2: Multiresolution analysis

3.1 An Approach Based on Projected IFS

First, classical IFS theory definitions and projected IFS definitions will be reviewed.

3.1.1 IFS

IFS theory can be defined as follows.

5

Let (X,d) be a metric space. The function f : X→X is called contraction mapping

if and only if there is some real number 0 < s < 1 such that ∀x,y ∈X : d(f (x), f (y)) <

sd(x,y).

Let (X,d) be a complete metric space. An IFS is a finite set T = {T0, ...,TN−1} of

contractions on X [13].

To each IFS T is associated a unique non-empty compact A of (X,d) such that:

A = T A

= T0A∪ . . .∪TN−1A

A is called the attractor of T and is denoted A(T), Ti belongs to a contractive function

class.

Σ = {0, ...,N−1} is called the alphabet associated with T .

Let Σ∗ be the set of finite words of Σ and Σw the set of infinite words of Σ. We can

state (see Barnsley [13]):

Let θ = θ1θ2θ3 . . . ∈ Σw. For all λ ∈ X the following limit:

lim
j→∞

Tθ1 . . .Tθ j λ

is defined and is independent of λ.

We can now define an address function φ that maps from an infinite word θ of Σ to

a point of the attractor:

φ : Σ
ω → X

θ 7→ φ(θ) = lim
j→∞

Tθ1 . . .Tθ j λ

where λ can be any value in X and θ = θ1 . . .θ j . . . ,.

An example of IFS is the Cantor set (Fig 3). We can generate this set by using two

6

contraction mappings T0 = 1
3 x and T1 = 1

3 x + 2
3 where the metric space is defined by

X = [0,1] and d the euclidean distance.

Figure 3: Seven iterations of the Cantor set IFS.

3.1.2 Projected IFS

The projected IFS is a model derived from the free-form model (like Bézier curves)

where both fundamental notions of control points and blending functions are present.

To build fractal blending functions, barycentric space and coordinates are used.

Let J be an index set for example {0,1,2,3}. From now on the space X is a barycen-

tric space associated with J and is defined by:

{
(λ j) j∈J|∑

j∈J
λ j = 1

}

where λ j ∈ R. For example λ = (0.5,0.2,0.2,0.1) belongs to the barycentric space

associated with J = {0,1,2,3}.

We now have to set an iteration semi-group that operates on this barycentric space.

The simplest solution consists in using barycentric column matrices. A matrix T has a

barycentric columns if:

∑
j∈J

Ti j = 1,∀i ∈ J

Let P = (p j) j∈J be a control polygon. Fig (4) shows an example of such a control

polygon with J = {0,1,2,3}.

This choice makes it possible to project the IFS attractor A(T) by means of the

7

Figure 4: Projected IFS example with its control polygon.

control polygon:

PA(T) = {Pλ |λ ∈ A(T)}

= {Pφ(θ) |θ ∈ Σ
ω}

where Pλ is the projection of a barycentric point λ through a control polygon P:

Pλ = ∑
j∈J

λ j p j

.

3.1.3 Detail Insertion

In this section, we present a version of Eq. (1) that makes use of projected IFS.

Let us define the following series, which is used to construct and display projected

8

IFS:

(Sn)n∈N =

S0 = {P}

Sn+1 = SnT ,∀n ∈ N

Sn is a finite set of polygons that can be constructed recursively as a tree:

Sn = PT n =
{
PTθ1 . . .Tθn | |θ|= n

}
where |θ| is the length of the word θ.

Let us denote Tθ = Tθ1 . . .Tθn and Pθ = PTθ. It can be stated that:

Pθi = PTθTi

= PθTi where i ∈ Σ

Inspired by the work of Tosan [21], a detail can be added to the formula Pθi =PθTi

such that:

Pθi = PθTi +δPθUi where i ∈ Σ (2)

where δPθUi is an ordered list of displacement vectors obtained by multiplying the

detail vector δPθ with a matrix Ui that we call the detail displacement matrix.

We now need to define the addition (+) between a polygon and an ordered list of

vector.

Definition 1 (displacement of a polygon with an ordered list of vectors) Let P be a

polygon and Q be an ordered list of vectors such that the number of vertices n of P

equals to the number of vectors of Q, let this number be n. P + Q is defined as a new

polygon having n vertices and calculated as follows:

P+Q = {Pi +Qi}i=0,...,n−1

9

where Pi +Qi is a point whose coordinates are the sum of each coordinate of Pi and Qi.

(see Fig. 5)

p0

p1

p2

p3

p0 +q0

p1 +q1 p2 +q2

p3 +q3

q0

q1
q2

q3

Figure 5: Displacement of a polygon.

We can now define PJ+1, PJ , ϕ(PJ), ψ(PJ ,δPJ) and ⊕ in Eq. (1) for this model.

We set PJ = {Pθ}|θ|=J, θ∈Σ? , then PJ+1 = {Pθi}|θ|=J, i∈Σ, θ∈Σ? . Here we consider

that PJ represents an ordered set of polygons, for instance if J = 2 and Σ = {0,1} then

P2 = (Pθ){|θ|=2} = (P00,P01,P10,P11).

ϕ(PJ) is defined by:

ϕ(PJ) = {PθTi}|θ|=J, i∈Σ, θ∈Σ?

and we define ψ(PJ ,δPJ) as:

ψ(PJ ,δPJ) = {δPθUi}|θ|=J, i∈Σ, θ∈Σ?

we finally define ⊕ as:

Let (Pi)i=0,...,m−1 be an ordered set of m polygons and (Qi)i=0,...,m−1 be an ordered set

of m ordered lists of vectors. We define ⊕ by:

(Pi)i=0,...,m−1⊕ (Qi)i=0,...,m−1 = (Pi +Qi)i=0,...,m−1

where Pi + Qi is the displacement of polygon Pi with an ordered list of vectors Qi as

defined in definition (1).

10

We can now write:

(Pθi) = (PθTi)+(δPθUi) where |θ|= J, i ∈ Σ, θ ∈ Σ
?

If we consider a n vertices polygon, N transformations, and each vertex is defined

in Rd , then the dimension of matrix Ti is n× n, Ui is n.(N− 1)× n, Pθ is d× n, and

δPθ is d×n.(N−1).

The matrix dimensions are chosen such that an invertible system will be obtained.

When considering the formula Pθi = PθTi +δPθUi for all i ∈ Σ we have:

Pθ0 = PθT0 +δPθU0

...
...

...

PθN−1 = PθTN−1 +δPθUN−1

We can now write the previous formulas in a matrix formalism:

(Pθ0| . . . |PθN−1) = (Pθ|δPθ)

 T0 . . . TN−1

U0 . . . UN−1

if we set:

R =

 T0 . . . TN−1

U0 . . . UN−1

then the formula becomes:

(Pθ0| . . . |PθN−1) = (Pθ|δPθ)R

The so-called inverse formula is:

(Pθ|δPθ) = (Pθ0| . . . |PθN−1)R−1

11

The matrix R can be compared to a synthesis filter and R−1 is similar to an analysis

filter used in the wavelet transform (Figs. 1-2).

3.1.4 Results

We used this model to apply transformations on curves. To achieve this, the model

(the R matrix) has been optimised with respect to the curve using a non-linear method

(Levenberg-Marquardt [22]) to minimise the distance between the original curve and

the curve generated with our model.

Figure (7) shows an example of the deformation of a curve with a four control

points and two transformations model. The intermediate steps are:

• optimise matrices Ti and Ui (i ∈ {0,1} in this case) with respect to the curve;

(Fig. 6 shows the T0,T1,U0 and U1 optimisation result)

• analyse the curve: obtain the control polygon and detail coefficients;

• move a control point and compute the associated affine transformationM;

• extract L(M), the linear part (rotation and scaling) ofM;

• apply L(M) on the detail vectors;

• display the deformed curve.

T0 =

+0.92 +0.46 +0.27 +0.16
+0.32 +1.31 +1.12 +0.79
−0.22 −0.74 −0.47 +0.11
−0.02 −0.03 +0.08 −0.06

(a)

T1 =

−0.05 −0.08 −0.19 −0.24
+0.32 −0.21 −0.40 +0.16
+0.74 +0.79 +0.88 −0.06
−0.01 +0.50 +0.71 +1.14

(b)

U0 =

+1.48 −1.21 +1.06 −0.80
−0.18 −0.20 +2.02 −2.20
−0.66 +0.24 +0.48 −0.38
+1.44 −0.61 +1.29 +0.17

(c)

U1 =

+0.53 −0.67 −1.05 +0.23
−0.18 −0.32 +0.05 −0.96
+1.23 −1.43 +1.49 −1.25
+0.09 −0.73 +1.62 −1.27

(d)

Figure 6: Transformation and detail displacement matrices.

12

Figure 7: Global deformation steps.

13

This approach is a simple way to perform the analysis and synthesis but has the

disadvantage of requiring the optimisation step. This step has a high computing cost,

because of the non-linear minimisation. This cost is even higher when working with

surfaces. This model presents a hierarchical representation of the object with details,

but local deformations are not possible. Another approach that addresses these draw-

backs was therefore used.

3.2 An Approach Based on Subdivision

The approach introduced in this section can perform local deformations with no op-

timisation cost. This approach is based on the subdivision surface principle [1, 23].

Subdivision surfaces are used in many research fields: surface editing [24], surface

approximation [25], etc. Adding details to subdivision surfaces has already been ad-

dressed for compression purposes [26] and multiresolution editing [3, 4].

We use the subdivision surface with the detail principle for multiresolution editing

of curves and surfaces. The novelty of this approach is that several masks are employed

to gain in control over the curve or the surface: these masks can be fractal.

Here, two similar models are presented: one for curves and another for surfaces.

3.2.1 Curves

Let PJ be an ordered set of points PJ = (PJ
i)i=0,...,mJ−1 in R2, the minimum number

of points allowed for our model is 4. If we have mJ = 2J +3 points at resolution J, then

the rule for calculating the growth is: mJ+1 = 2J+1 +3 for resolution J +1.

The definition of the sum ⊕ is the same as in definition (1), one must simply consider

that a polygon is an ordered set of points.

The function ϕ maps to an ordered set of points. For the sake of simplicity, we will set

it as ϕ = ϕ(PJ). If PJ has mJ points, then ϕ has mJ+1 components.

14

P0
0

P0
1

P0
2

P0
3

(a)

P1
0

P1
1

P1
3

P1
4

ϕ2

(b)

P1
0

P1
1

P1
3

P1
4

P1
2

ψ2R

(c)

P1
0

P1
1

P1
2

P1
3

P1
4

(d)

P2
0

P2
1

P2
3

P2
5

P2
6

ϕ2
ϕ4

(e)

P2
0

P2
1

P2
3

P2
5

P2
6

P2
2

P2
4

ψ2

ψ4

(f)

P2
0

P2
1

P2
2
P2

3

P2
4 P2

5

P2
6

(g)

Figure 8: Multiresolution synthesis steps:
(a) Initial points at level J = 0.
(b) Computing ϕ2 by applying the mask.
(c) Detail ψ2 added to ϕ2.
(d) New points at level J = 1.
(e) Computing ϕ2 and ϕ4 by applying the mask.
(f) Details ψ2, ψ4 added to ϕ2, ϕ4 respectively.
(g) New points at level J = 2.

15

ϕ(PJ) is defined by:

ϕ(PJ) = (ϕk)k=0,...,mJ+1−1

and we have PJ = (PJ
i)i=0,...,mJ−1. Then each component ϕk is defined by:

ϕk =

1
2 (PJ

i +PJ
i+1) if k = i = 0∨ (i = mJ−2∧ k = 2i)

PJ
i if k = 2i−1∧0 < i < mJ−1

M(PJ
i , . . . ,PJ

i+3) if k = 2i+2∧ i < mJ−3

whereM is a mask containing a single column and four rows in this case. This mask

plays an important role because it determines the nature of the deformation applied

over a curve. For instance, this mask can imply fractal or smooth deformations.

Before the function ψ can be defined, we have to determine δPJ . An important point

here is the size of δPJ : we know that PJ has mJ = 2J +3 points; then δPJ has mJ−3 =

2J vectors.

Now, if we denote ψ in the same way as ϕ, we have ψ = ψ(PJ ,δPJ) and ψ =(ψk)k=0,...,mJ+1−1

and each component ψk is defined by:

ψk =

0 if k = 0∨ k = 2(mJ−1)−2

0 if k = 2i−1∧0 < i < mJ−1

R(PJ
i+1,PJ

i+2)δPJ
i if k = 2i+2∧ i < mJ−3

whereR(PJ
i+1,PJ

i+2) is a frame similar to the one used by Forsy et al. [6], constructed

using the two points PJ
i+1 and PJ

i+2 as follows:

Let P and Q be two points, the frameR(P,Q) is defined by:

R(P,Q) = (~u,~v) where ~u =
−→
PQ
‖PQ‖

and ~u⊥~v

This representation has the important advantage of being able to retain the object’s

16

shape when applying rotations or translations to control points.

The steps needed to compute a new point are detailed in (Fig. 8). The analysis step

is rather simple to perform. It consists in keeping points having an odd index and using

those with an even index to compute the detail using a local frame inversion:

δPJ
i = (R(PJ

i+1,PJ
i+2))

−1(PJ+1
k −M(PJ

i , . . . ,PJ
i+3)) with k = 2i+2∧ i < mJ−3

To compute extreme points, the formula is inverted as follows:

PJ

0 = 2∗PJ+1
0 −PJ

1

PJ
m j−1 = 2∗PJ+1

2∗(mJ−1)−2−P
J
mJ−2

Results

Fig. 9 shows how our model is used to locally perform deformation on a curve.

A preliminary analysis step is applied on the curve to obtain detail vectors. Then the

curve can be deformed at any resolution level.

(a) (b)

Figure 9: Multiresolution editing. (a) With 11 control points. (b) With 19 control
points (the level immediately after 11 control points).

Fig. 10 shows how our model can keep local specificities of the curve using the

local frame representation of the detail.

17

Figure 10: Conservation of local specificities.

3.2.2 Surfaces

In this section, two cases will be presented. The first treats height field surfaces and the

second treats three-dimensional surfaces. The processing of these two cases is actually

the same. The difference is only in detail processing: whereas the details in the first

case are represented by scalar values, they are represented by three-component vectors

in the second case.

Height Field Surface

Here PJ is an ordered set (grid) of scalars PJ = (PJ
i j)i=0,...,m−1, j=0,...,n−1 where m =

2U + 3 and n = 2V + 3 and (J = min(U,V)). The minimum grid size accepted by our

model is a grid with four rows and four columns of scalars. The rule that increases the

number of data in each row and each column of the grid, develops as follows: If a grid

has (2U +3)×(2V +3) scalars in the Jth level, then a grid with (2U+1 +3)×(2V+1 +3)

scalars in the J +1th level will result.

The sum ⊕ is defined as follows:

Let P = (Pi j)i=0,...,m−1, j=0,...,n−1 and Q = (Qi j)i=0,...,m−1, j=0,...,n−1 two ordered grids of

scalars of the same size m×n, we define P⊕Q to be a new ordered grid having m×n

18

scalars. It is computed as follows:

P⊕Q = (Pi j +Qi j)i=0,...,m−1, j=0,...,n−1

Because the formulas that define the functions ϕ and ψ are long and complex to write,

they will be explained using Figs. 11(a)-11(b)-11(c). (For formulas see Appendix A).

The result of ϕ and ψ functions is a scalar grid. If PJ has (2U + 3)× (2V + 3)

scalars then each function of ϕ and ψ has (2U+1 +3)× (2V+1 +3) scalars where (J =

min(U,V)). Indeed, we use the fact that each one of ϕ and ψ is a grid only in the

theoretical definitions; in the implementation a more efficient data structure is used to

improve storage and computation time.

We use several masks to calculate the J + 1th level from the Jth level. The ad-

vantage is to have greater control on the form generated with these masks. Another

advantage with our model is that the analysis (from the J + 1th level to the Jth level)

is carried out swiftly by removing data from the grid and then calculating the details

associated with these data.

Figure (11(a)) shows how to calculate new scalars in even columns and even rows

of the grid at the J + 1th level except for the first and last column/row; the black balls

represent the places of scalars in the grid at the Jth level used to calculate the new

scalar. In this case, we employ a (4× 4) mask. The new scalar will be the result of

convolution between the mask and the scalars represented by the black balls added to

the associated details. The placement of the new scalar compared to those above is

shown in Fig. 11(a) by red ball.

Figure (11(b)) explains how we calculate the scalars in even columns and odd rows.

We employ a (3× 4) mask in this case. As in the previous case, the new scalar will

be the result of convolution between the mask and the scalars represented by the black

balls added to the associated details. The placement of the new scalar compared to

former scalars is shown in Fig. 11(b) by a blue ball. A similar method is used to

19

calculate the scalars that existed in the odd columns and even rows. The difference is

that the mask size becomes (4×3) and that the scalars used in convolution are the same

size as the mask (four rows and three columns).

Figure (11(c)) uses the same method to calculate the scalars in the first or the last

row and even columns. The new scalar is represented by a green ball. The mask size

used in this case is (2×4). It will be a (4×2) mask to calculate the scalars in the first

or the last column and even rows.

All the other scalars have no associated detail, and they are calculated quickly by

using fewer data than in the previous cases. For example, in Fig. 12, which represents

a completed transition from a (4× 7) grid to a (5× 11) grid, all the black balls of the

right grid have the same scalar values as the corresponding balls in the left grid.

Results

Figure (13) shows how this model can be used for multiresolution modelling of a

terrain. We initialise the terrain as a height field surface having a null altitude through-

out. Then we analyze it using our masks to find the associated multiresolution model

(control points and detail). In (13(b)) a gorge is created at a resolution level and a

mountain is added at another resolution level (13(c)). Fractal masks has been used

such that deformations are fractal too.

Figure (14) shows the rendering of a height field terrain modelled by our method.

Three-dimensional Surface:

This section discusses the three-dimensional surface, which is defined by a grid of

control points (as the B-Spline surfaces).

The handling steps of this surface type are the same as in the example of a height

field surface, with the only difference being that in the previous case details are dis-

placements on the Z axis, represented by scalar values, whereas in this case the de-

tails are three-dimensional vectors represented according to a local frame R (as in the

20

+

δPJ

M4×4(PJ)

PJ+1

(a)

+

δPJ

M4×3(PJ)

PJ+1

(b)

+

δPJ

M4×2(PJ)

PJ+1

(c)

Figure 11: Principle of multiresolution synthesis for surfaces (transition from the
J level to the J +1 level).
(a) A (4×4) mask is used to compute new scalars (even columns and rows).
(b) A (3×4) mask is used to compute new scalars (even columns, odd rows).
(c) A (2×4) mask is used to compute new scalars (even columns, first row).

21

Figure 12: Complete transition from level J to J +1.

curve). We define R by using the control grid points (for greater detail see Appendix

B).

Results

Figure (15) shows the rendering of a three-dimensional terrain modelled by our

method.

4 Conclusion

This article presented two self-similar models to perform multiresolution editing on

curves or surfaces. The first model was based on projected IFS: it is a fractal model

integrating the detail concept. Although this model is effective for curves, it increases

in complexity for surfaces. For this reason we introduced a second model, which com-

bines the principle of subdivision surface and the principle of detail. It can handle

smooth shapes as well as rough ones depending on the masks used. To increase its ca-

pacity to control shapes, this model employs several masks to perform each synthesis

or analysis step.

22

(a) Initialisation

(b) Creation of a gorge

(c) Creation of a mountain

Figure 13: Terrain modelling steps.
23

Figure 14: Rendering of a height field terrain.

Figure 15: Rendering of a 3D terrain.

24

References

[1] E. Catmull and J. Clark. Recursively generated b-spline surfaces on arbitrary

topological meshes. Computer Aided Design, 10(6):350–355, Septemper 1978.

[2] Chems Eddine Zaïr and Eric Tosan. Fractal modeling using free form techniques.

Comput. Graph. Forum, 15(3):269–278, 1996.

[3] Adam Finkelstein and David Salesin. Multiresolution curves. In SIGGRAPH,

pages 261–268, 1994.

[4] Gershon Elber. Multiresolution curve editing with linear constraints. J. Comput.

Inf. Sci. Eng., 1(4):347–355, 2001.

[5] Henning Biermann, Ioana M. Martin, Fausto Bernardini, and Denis Zorin. Cut-

and-paste editing of multiresolution surfaces. ACM Trans. Graph., 21(3):312–

321, 2002.

[6] David R. Forsey and Richard H. Bartels. Hierarchical b-spline refinement. In SIG-

GRAPH ’88: Proceedings of the 15th annual conference on Computer graphics

and interactive techniques, pages 205–212, New York, NY, USA, 1988. ACM.

[7] Marryat Ma and Stephen Mann. Multiresolution editing of pasted surfaces. In

Mathematical Methods for Curves and Surfaces: Oslo 2000, pages 273–282,

Nashville, TN, USA, 2001. Vanderbilt University.

[8] Frutuoso G. M. Silva and Abel J. P. Gomes. Interactive editing of multiresolution

meshes. In SIBGRAPI, pages 202–209, 2004.

[9] Stefanie Hahmann, Georges-Pierre Bonneau, Baptiste Caramiaux, and M. Cornil-

lac. Multiresolution morphing for planar curves. Computing, 79(2-4):197–209,

2007.

25

[10] B.B. Mandelbrot J.W. Van Ness. Fractal brownian motions, fractal noises, and

applications. SIAM Review, (10):422–437, 1968.

[11] Przemyslaw Prusinkiewicz and James Hanan. Lindenmayer systems, fractals, and

plants. Lecture Notes in Biomathematics, 75, 1989.

[12] Aristid Lindenmayer. Mathematical models for cellular interactions in develop-

ment ii. simple and branching filaments with two-sided inputs. Journal of Theo-

retical Biology, 18(3):300–315, March 1968.

[13] Michael Barnsley. Fractals everywhere. Academic Press, 1988.

[14] Eric Guérin, Eric Tosan, and Atilla Baskurt. A fractal approximation of curves.

Fractals, 9(1):95–103, mar 2001.

[15] Eric Guérin, Eric Tosan, and Atilla Baskurt. Modeling and approximation of

fractal surfaces with projected IFS attractors. In M. M. Novak, editor, Emergent

Nature, Fractal 2002 proceedings, pages 293–303. World Scientific, mar 2002.

[16] Jacques Blanc-Talon. Self-controlled fractal splines for terrain reconstruction. In

CTME/GIP, Arcueil, 1997.

[17] Farès Belhadj. Terrain modeling: a constrained fractal model. In Afrigraph, pages

197–204, 2007.

[18] Szymon Stachniak and Wolfgang Stuerzlinger. An algorithm for automated frac-

tal terrain deformation. In Computer Graphics and Artificial Intelligence, May

2005.

[19] Y. Meyer. Les ondelettes. In Contributions to nonlinear partial differential equa-

tions, Vol. II (Paris, 1985), volume 155 of Pitman Res. Notes Math. Ser., pages

158–171. Longman Sci. Tech., Harlow, 1987.

26

[20] Stéphane Mallat. A theory for multiresolution signal decomposition: The wavele-

trepresentation. IEEE Trans. Pattern Anal. Mach. Intell., 11(7):674–693, 1989.

[21] E. Tosan, I. Bailly-Salins, I. Stotz, G. Gouaty, and Y. Weinand. Modelisation

iterative de courbes et surfaces : aspect multiresolution. In Groupe de travail en

Modelisation Geometrique journee de Valenciennes, pages 55–69, mars 2007.

[22] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical

Recipes in C : The Art of Scientific Computing, chapter Nonlinear Models. Cam-

bridge University Press, 1993.

[23] D. Doo and M. Sabin. Behaviour of recursive division surfaces near extraordinary

points. Computer Aided Design, 10(6), 1978.

[24] Andrei Khodakovsky and Peter Schröder. Fine level feature editing for subdivi-

sion surfaces. In Symposium on Solid Modeling and Applications, pages 203–211,

1999.

[25] Mark Halstead, Michael Kass, and Tony DeRose. Efficient, fair interpolation

using catmull-clark surfaces. In SIGGRAPH ’93: Proceedings of the 20th annual

conference on Computer graphics and interactive techniques, pages 35–44, New

York, NY, USA, 1993. ACM.

[26] Martin Bertram, Mark A. Duchaineau, Bernd Hamann, and Kenneth I. Joy. Gen-

eralized b-spline subdivision-surface wavelets for geometry compression. IEEE

Transactions on Visualization and Computer Graphics, 10(3):326–338, 2004.

27

Appendix A: Formulas for a height field surface

In this case, the function ϕ is defined as follows:

ϕlk =

M22 ∗

(
PJ

i j PJ
i j+1

PJ
i+1 j PJ

i+1 j+1

)
If

((i = 0 ∧ j = 0) ∨
(i = 0 ∧ j = n−2) ∨
(i = m−2 ∧ j = 0) ∨
(i = m−2 ∧ j = n−2)) ∧
(l = 2i ∧ k = 2 j)

M21 ∗

(
PJ

i j

PJ
i+1 j

)
If

 ((i = 0 ∧ 0 < j < n−1) ∨
(i = m−2 ∧ 0 < j < n−1)) ∧
(l = 2i ∧ k = 2 j−1)

M12 ∗

(
PJ

i j PJ
i j+1

)
If

 ((j = 0 ∧ 0 < i < m−1) ∨
(j = n−2 ∧ 0 < i < m−1)) ∧
(l = 2i−1 ∧ k = 2 j)

PJ

i j If

(
(0 < i < m−1 ∧ 0 < j < n−1) ∧
(l = 2i−1 ∧ k = 2 j−1)

)

M24 ∗

(
PJ

i j . . . PJ
i j+3

PJ
i+1 j . . . PJ

i+1 j+3

)
If

 ((i = 0 ∧ j < n−3) ∨
(i = m−2 ∧ j < n−3)) ∧
(l = 2i ∧ k = 2 j +2)

M42 ∗

PJ

i j PJ
i j+1

...
...

PJ
i+3 j PJ

i+3 j+1

 If

 ((j = 0 ∧ i < m−3) ∨
(j = n−2 ∧ i < m−3)) ∧
(l = 2i+2 ∧ k = 2 j)

M34 ∗

 P
J
i−1 j . . . PJ

i−1 j+3

PJ
i j . . . PJ

i j+3

PJ
i+1 j . . . PJ

i+1 j+3

 If

(
((0 < i < m−1 ∧ j < n−3)
(l = 2i−1 ∧ k = 2 j +2)

)

M43 ∗

PJ

i j−1 PJ
i j PJ

i j+1
...

...
...

PJ
i+3 j−1 PJ

i+3 j PJ
i+3 j+1

 If

(
((0 < j < n−1 ∧ i < m−3) ∧
(l = 2i+2 ∧ k = 2 j−1)

)

M44 ∗

PJ

i j . . . PJ
i j+3

...
. . .

...
PJ

i+3 j . . . PJ
i+3 j+3

 If

(
((i < m−3 ∧ j < n−3) ∧
(l = 2i+2 ∧ k = 2 j +2))

)

where PJ
i j is a scalar value, and (M22,M21,M12,M34,M43,M44) are the different

masks used in the model. The function ψ is defined as follows:

28

ψlk =

0 If

((i = 0 ∧ j = 0) ∨
(i = 0 ∧ j = n−2) ∨
(i = m−2 ∧ j = 0) ∨
(i = m−2 ∧ j = n−2)) ∧
(l = 2i ∧ k = 2 j)

0 If

 ((i = 0 ∧ 0 < j < n−1) ∨
(i = m−2 ∧ 0 < j < n−1)) ∧
(l = 2i ∧ k = 2 j−1)

0 If

 ((j = 0 ∧ 0 < i < m−1) ∨
(j = n−2 ∧ 0 < i < m−1)) ∧
(l = 2i−1 ∧ k = 2 j)

0 If

(
(0 < i < m−1 ∧ 0 < j < n−1) ∧
(l = 2i−1 ∧ k = 2 j−1)

)

vδPJ
i j If

 ((i = 0 ∧ j < n−3) ∨
(i = m−2 ∧ j < n−3)) ∧
(l = 2i ∧ k = 2 j +2)

hδPJ

i j If

 ((j = 0 ∧ i < m−3) ∨
(j = n−2 ∧ i < m−3)) ∧
(l = 2i+2 ∧ k = 2 j)

vδPJ

i j If

(
(0 < i < m−1 ∧ j < n−3) ∧
(l = 2i−1 ∧ k = 2 j +2)

)

hδPJ
i j If

(
(0 < j < n−1 ∧ i < m−3) ∧
(l = 2i+2 ∧ k = 2 j−1)

)

dδPJ
i j If

(
(i < m−3 ∧ j < n−3) ∧
(l = 2i+2 ∧ k = 2 j +2)

)

where (hδPJ
i j,vδPJ

i j,dδPJ
i j) are scalar values and they represent vertical, horizontal and

diagonal details, respectively.

Appendix B: Formulas for a three-dimensional surface

In this case, the function ϕ is defined as in the height field surface (Appendix A).

However, here PJ
i j is a point with three coordinates. Like the curve, the function ψ is

defined as follows:

29

ψlk =

0 If

((i = 0 ∧ j = 0) ∨
(i = 0 ∧ j = n−2) ∨
(i = m−2 ∧ j = 0) ∨
(i = m−2 ∧ j = n−2)) ∧
(l = 2i ∧ k = 2 j)

0 If

 ((i = 0 ∧ 0 < j < n−1) ∨
(i = m−2 ∧ 0 < j < n−1)) ∧
(l = 2i ∧ k = 2 j−1)

0 If

 ((j = 0 ∧ 0 < i < m−1) ∨
(j = n−2 ∧ 0 < i < m−1)) ∧
(l = 2i−1 ∧ k = 2 j)

0 If

(
(0 < i < m−1 ∧ 0 < j < n−1) ∧
(l = 2i−1 ∧ k = 2 j−1)

)

R4

(
PJ

i j+1 PJ
i j+2

PJ
i+1 j+1 PJ

i+1 j+2

)
vδPJ

i j If

 ((i = 0 ∧ j < n−3) ∨
(i = m−2 ∧ j < n−3)) ∧
(l = 2i ∧ k = 2 j +2)

R4

(
PJ

i+1 j PJ
i+1 j+1

PJ
i+2 j PJ

i+2 j+1

)
hδPJ

i j If

 ((j = 0 ∧ i < m−3) ∨
(j = n−2 ∧ i < m−3)) ∧
(l = 2i+2 ∧ k = 2 j)

R6

 P
J
i−1 j+1 PJ

i−1 j+2

PJ
i j+1 PJ

i j+2

PJ
i+1 j+1 PJ

i+1 j+2

vδPJ
i j If

(
(0 < i < m−1 ∧ j < n−3) ∧
(l = 2i−1 ∧ k = 2 j +2)

)

R6

(
PJ

i+1 j−1 PJ
i+1 j PJ

i+1 j+1

PJ
i+2 j−1 PJ

i+2 j PJ
i+2 j+1

)
hδPJ

i j If

(
(0 < j < n−1 ∧ i < m−3) ∧
(l = 2i+2 ∧ k = 2 j−1)

)

R4

(
PJ

i+1 j+1 PJ
i+1 j+2

PJ
i+2 j+1 PJ

i+2 j+2

)
dδPJ

i j If

(
(i < m−3 ∧ j < n−3) ∧
(l = 2i+2 ∧ k = 2 j +2)

)

where (hδPJ
i j,vδPJ

i j,dδPJ
i j) are vectors with three coordinates and they represent ver-

tical, horizontal and diagonal details, respectively, and

R4 : (R3)4 −→ (R3)3

and

R6 : (R3)6 −→ (R3)3

30

are functions that automate the computation of local frames by using 4 or 6 points. The

frame is composed of three perpendicular vectors: two of them are in an approximate

plane that minimizes the distance to the 4 or 6 given points, and the third is the normal

of this plane.

31

