
Int. J. Business Process Integration and Management, Vol. 5, No. 4, 2011 287

Copyright © 2011 Inderscience Enterprises Ltd.

A rule-based approach to model and verify flexible
business processes

Mohamed Boukhebouze*
PReCISE Research Center,
University of Namur,
rue de Bruxelles 61, B-5000 Namur, Belgium
E-mail: mohamed.boukhebouze@fundp.ac.be
*Corresponding author

Youssef Amghar and Aïcha-Nabila Benharkat
CNRS, INSA-Lyon, LIRIS,
Université de Lyon,
UMR5205, F-69621, France
E-mail: youssef.amghar@insa-lyon.fr
E-mail: nabila.benharkat@insa-lyon.fr

Zakaria Maamar
College of Information Technology,
Zayed University,
P.O. Box 19282, Dubai, UAE
E-mail: zakaria.maamar@zu.ac.ae

Abstract: Efficient organisations need to ensure that their business processes are flexible so that
these processes can easily accommodate changes in regulations and policies. Appropriate
techniques to model and verify these processes are required. In this paper, we present a
rule-based approach, which is built upon the event-condition-action model (ECA) and supported
by a rule-based business process definition language (RbBPDL). In this approach, rules, which
specify business processes, are represented using the event-condition-action-post-condition-event
(ECAPE) model. This allows translating a process into a graph of rules that is used to check how
flexible a business process is, and estimating this process’s cost of changes. This cost is based on
a rule change cost model (R2CM) that will be presented in this paper. In addition, the ECAPE
model allows the translation of a process into a coloured Petri net, called ECAPE net, in order to
verify process functioning prior to any deployment.

Keywords: business processes modelling; reaction rule; declarative language; rule graph;
flexible modelling; business processes verification.

Reference to this paper should be made as follows: Boukhebouze, M, Amghar, Y.,
Benharkat, A-N. and Maamar, Z. (2011) ‘A rule-based approach to model and verify flexible
business processes’, Int. J. Business Process Integration and Management, Vol. 5, No. 4,
pp.287–307.

Biographical notes: Mohamed Boukhebouze is currently a Post-Doctoral Researcher at the
Faculty of Computer Science of the University of Namur. His current research interests include
business process management and web services.

Youssef Amghar is a Professor at the University of Lyon. His current research interests include
business process, and interoperability of applications.

Aïcha-Nabila Benharkat is an Associate Professor at the University of Lyon. Her research
interests include the schema matching techniques, as well as the interoperability in information
system.

Zakaria Maamar is a Professor at the College of Information Technology, UAE. His research
interests include wireless information systems, ubiquitous computing and web services.

288 M. Boukhebouze et al.

1 Introduction

1.1 Motivations

To remain efficient and competitive, organisations need to
make sure that their business processes are flexible. The
development of these processes requires appropriate models
and tools that would permit defining, deploying, and
controlling these processes. Business process management
(BPM) is about managing the whole cycle of a business
process from early stage of requirement elicitation to later
stage of deployment and maintenance. In this life cycle,
process modelling sheds the light on the best practices and
core knowledge in an organisation. For this purpose, this
modelling must be based on sound languages that provide
the right means to describe the various elements of a
process, to support the flexibility of a process by changing
only the parts that need to be changed while keeping other
parts stable (Regev et al., 2006), and to support verification
to ensure process reliability. However, these characteristics
are highly inter-related, which increases the complexity of
satisfying them all at once. Real business processes tend to
be less flexible and difficult to analyse due to continuous
changes in regulations and policies.

1.2 Issues

In the literature, imperative business process modelling
languages such as business process modelling notation
(BPMN – OMG, 2009) focus on how the various activities
in a process are ordered during execution. These languages
provide a good level of expressivity and several verification
techniques (e.g., Petri nets, PNs) have been proposed to
ensure the reliability of the processes that are defined
using imperative languages. However, the use of these
languages forces designers to describe explicitly the
execution scenarios (pre-computation of task control flows,
information flows, and work allocation schemes) in the
modelling phase, which is not very convenient. This makes
business processes rigid and difficult to maintain, which is
not in line with the dynamic nature of organisations.

Rule-based languages have been proposed to deal with
the flexibility requirement in a proper way by modelling
the logic of a process with a set of rules that comply
with declarative languages’ guidelines. Examples of
these languages include PENELOPE (Goedertier and
Vanthienen, 2006), DECLARE (Pesic et al., 2007) and
standard semantics of business vocabulary and business
rules (SBVR) (OMG, 2008). Therefore, the execution
scenarios are implicitly done in the modelling phase. This
could avoid listing all the possible scenarios of execution in
the modelling phase, which is difficult to obtain (Goedertier
and Vanthienen, 2006) and can result in rigid models.
However, the verification stage is more complex since it
requires having an execution scenario that ensures the
proper functioning of a process. In addition, automating the
process of developing execution scenarios using an implicit
declarative model is not clear (Goedertier and Vanthienen,
2006).

1.3 Contributions

In this paper, we present a rule-based approach that aims at
improving the management of business processes in terms
of flexibility and verification. This model extends the
event-condition-action (ECA) model and suggests formal
tools for verification purposes. In this approach, the logic of
a process is defined with a set of business rules that
correspond to the policies in the organisation. Each business
rule is represented using the event-condition-action-post-
condition-post-event (ECAPE) model (or formalisms). An
advantage of the ECAPE formalism is that a process can be
easily translated into a graph of rules. This graph is used to
first, look into the flexibility of a process by checking the
relationships between the rules and second, estimate cost
changes in a process using our rule change cost model
(R2CM). Another advantage of the ECAPE formalism is the
translation of a process into a new coloured PN called
ECAPE net. An ECAPE net is used to check if a process
satisfies some properties such as no Deadlock, and no
Livelock. The representation of our rule-based approach
requires a new declarative language that will offer the
necessary syntax and semantics to describe ECAPE rules
and the core elements in a business process. These elements
are participants, variables, and activities. For this reason, we
propose the rule-based business process definition language
(RbBPDL), which has an XML-based syntax to describe
business processes in declarative way.

1.4 Paper organisation

The rest of this paper is organised as follows. Section 2
contains definitions on some basic concepts and states the
particular issue that is addressed. Sections 3 and 4 detail our
proposed approach to model business processes. Section 5
discusses process change management and impact change
estimate. Section 6 explains how a process is verified in our
approach. Section 7 describes an architecture that combines
the different techniques and tools presented in this paper.
The last sections wrap up the paper in terms of related work,
conclusions, and some directions for future works.

2 Preliminaries

Prior to stating the specific issues that are dealt with in
this paper, a set of definitions on business rule, process
flexibility, and process verification are given.

2.1 Definitions

2.1.1 Type of rules

To carry out their missions, organisations manage complex
processes and need to react to changes. According to
Goedertier and Vanthienen (2006), changes could be due to
new or revised regulations and policies that organisations
have to comply with. These regulations and policies are
often expressed in terms of rules.

 A rule-based approach to model and verify flexible business processes 289

Rules are defined as high-level structured statements
that constrain, control, and influence the business logic of a
process (BRG, 2002). According to Wagner (2005), a
business rule could be categorised as follows:

1 Integrity rule identifies constraints or assertions that
must be satisfied (e.g., a customer must be registered
before submitting any order).

2 Derivation rule concerns one or more conditions and
one or several conclusions (e.g., a loyal customer
receives a 10% discount; Boukhebouze is loyal;
therefore, Boukhebouze receives a 10% discount).

3 Production rule concerns one or more conditions and
one or more actions (e.g., if the stock is low, then
execute the supply process).

4 Reaction rule consists of events to occur, conditions to
satisfy, and actions to execute (e.g., upon order receipt
and if the necessary raw materials are available, then
start production).

5 Transformation rule controls changes in a system state
(e.g., an employee’s age must be changed in an
incremental way).

It should be noted that Deontic assignment rule can be
considered as another category of business rule (Taveter and
Wagner, 2001). This rule constrains actions in terms of
obligations, permissions, and prohibitions (e.g., only the
manager has the right to grant promotions to employees).

Rules should be formalised to facilitate their use.
Unfortunately, using imperative languages such as BPMN
forces designers to implement rules based on decisions
(what process branch must be chosen) that are defined with
connectors (e.g., sequence, parallel split, exclusive choice).
Through these languages, decisions’ results determine a
process behaviour rather than how these decisions should be
modelled. Consequently, implementing changes in a process
turns out complex and prone to errors.

2.1.2 Process flexibility

By flexibility, we mean how changes are implemented in
some parts of a business process without affecting the rest
of parts neither the continuity nor the stability of these parts
(Regev et al., 2006). In a dynamic environment, businesses
need to rely on flexible process models to allow a controlled
modification of some parts of a process. According to the
taxonomy of Regev et al. (2006), all the elements of a
process are likely to be changed. A change may affect a
process’s activities (functional aspect), a control flow
(behaviour aspect), a process data (information aspect), or
protocols used in a process (operational aspect). However, a
change in a process element may require changes in other
elements and so on for the sake of guaranteeing process
coherence. To do so, the impact of a change on the rest of
the process should be examined and estimated.

2.1.3 Process verification

By verification, we mean how to ensure that process
execution happens in accordance with its modelling
plan and how to detect unanticipated situations that may
arise during the execution of this process (Russell et al.,
2006). An erroneous business process has major negative
consequences on its continuity. To assist a designer detect
errors during process specification, several techniques are
used. The verification by formal models is widely used
(e.g., PN, process algebra, etc.). There exist a good number
of works that use formal models to verify the proper
functioning of business processes (Ouyang et al., 2005;
Yang et al., 2005; Koshkina and Van Breugel, 2004; Pu et
al., 2005).

2.2 Problem statement

In this paper, we propose a rule-based approach to model
the logic of a process with a set of rules that comply with
declarative languages’ guidelines. This way of doing allows
deploying partially-specified process definitions (Lu and
Sadiq, 2007). A rule engine determines, at runtime, what to
execute by evaluating relevant rules with regard to a
certain process event. According to Lu and Sadiq (2007), a
rule-based approach externalises the process logic from the
execution environment. Consequently, the modifications in
a process definition can be made without impacting the
executing process instances. In addition, the changes (in
process logic, business regulations, or business policies) are
implemented by changing a subset of rules (e.g., modify,
insert and delete existing rules), which express the changed
process logic, the changed business regulations, or the
changed business policies. As a result, the modification in a
rule impacts only a subset of rules that are related to the
changed rule, which would lead to a decrease of the efforts
to put into this change management.

However, when it comes to complex processes, it is
important to manage the impact of a rule change on the rest
of the processes by determining which rules are impacted by
this change and estimating the overall cost of this change.
Although the evaluation of business process changes impact
is not trivial and should be carefully examined, this
evaluation is beneficial when several change alternatives are
offered and planning, organising, and managing resources to
ensure the success of these changes.

The research questions that are raised here concern:
what is the rule formalism that would offer better support to
change management impact, and how is this change impact
estimated so that BPM in terms of modelling and
verification is improved?

3 Rule-based modelling of business processes
using the ECAPE model

The objective of a rule-based approach is to describe
business processes with focus on their behaviours using a
set of connected rules. According to Giurca et al. (2006), it

290 M. Boukhebouze et al.

is advantageous to use reactive rules (ECA formalism) for
business process specification. Giurca et al. argue that rules
along with their events give a flexible way to specify a
process’s control flow. In addition, ECA rules are easier to
maintain and include other types of rules such as integrity
and derivation. However, the ECA formalism does not
cover the execution control and does not allow having an
explicit execution scenario that is needed to verify the
proper functioning of a process. To this end, we propose to
extend the ECA formalism initially defined by event,
condition, action with post-condition and post-event. The
ECAPE formalism is defined as follows:

ON <Event>
IF <Condition>
DO <Action>
Check <Post condition>
Raise <Post event>

The semantics attached to an ECAPE rule is: event
determines when a rule must be evaluated (or activated);
condition is a predicate upon which the execution of an
action depends (it can be seen as a refinement of the event);
action specifies the code to execute if the condition is
satisfied; post-condition is a predicate upon which the
validation of the rule depends (the rule is validated only
if the post-condition is satisfied); and event-triggered
(post-event) identifies the set of events that arise after the
execution of the action. Note that, if a post-condition does
not hold, cancellation mechanisms are executed in order to
cancel, if possible, the effects of the executed action. These
mechanisms do not fall within the scope of this paper.

A sequence of ECAPE rules defines the behaviour of a
process. Each rule may activate one or more rules. The
originality of the ECAPE formalism is that the set of
events triggered after the execution of a rule’s action, is
explicitly described. As a result, a sequence of rules can be
automatically deducted.

In Figure 1, we show how we look at a business process
from three different abstract plans:

Figure 1 Three plans of our rule-based modelling approach
(see online version for colours)

1 From a business plane, business processes are defined
with a set of ECAPE rules. These rules express, in a
declarative way, a business domain, policies, business
concerns, just to cite a few. We propose the RbBPDL to
formalise these rules.

2 From a behaviour plane, business processes are
translated into a graph of rules where the vertexes
represent the rules and the edges represent the
relationships between these rules. This graph is used an
input of assessing the cost of changes as defined in the
R2CM.

3 From an operational plane, business processes are
translated into an ECAPE net so that their proper
functioning is verified.

In the rest of this paper, we describe the RbBPDL that is
used to express business concerns, the graph of rules that
are used to manage process changes and the ECAPE net that
is used to express and verify the operational process.

4 The RbBPDL

To represent the ECAPE formalism as well as the
various elements of a business process, we use RbBPDL
that is XML-based and inspired by BPEL and XPDL
[Figure 2(b)]. The overall structure of RbBPDL
[Figure 2(a)] represents five elements of a business process
(see Appendix 1):

1 Participant is any person, application, web service, or
entity, which has the authority to perform an activity.

2 Variable represents pieces of information, which are
produced or handled by a business process.

3 Business activity is the process element, which must be
executed. It is a unit of work that runs in an indivisible
manner by a participant.

4 Event is an indicator that signals that a situation has
occurred and for which a response is necessary. The
event is the activator element of a rule. It specifies
when the rule should be evaluated. There are two
categories of events:

a Simple events describe the occurrence of a
predefined situation in the system such as: activity
events (start, end, cancellation, and error), process
events (error trigger), time events (timer), and
external events (reception of message signal).

b Complex events that combine simple and/or
composed events using constructors such as:
• Disjunction (e1, e2) specifies that at least one

of the two events is detected.
• Conjunction (e1, e2) specifies that the events

take place without taking into account their
occurrence order.

• Occurrence (e1, nbr_occurence) specifies
multiple occurrences of the same event.

• Sequence (e1, e2) specifies the sequence of
events.

• Not (e1, t) characterises.

 A rule-based approach to model and verify flexible business processes 291

5 Business rule is a statement that controls the logical
relationships between the activities of a process,
influencing the interactions between partners in this
process. As rules are described using the ECAPE, they
are represented as follows:
a OnEvent: all events that activate a rule.
b Precondition: predicates upon which the execution

of an action depends.
c Action: set of instructions to be executed if a

precondition is satisfied. For this, we use a set of
predefined instructions such as:
• Execute: to execute the activity by a

participant
• Cancel: to cancel the execution of the activity
• Skip: to skip the execution of the activity
• Discover: to find a service that performs a

given activity in a given registry
d Postcondition: predicate upon which the validation

of a rule depends.
e EventTriggered: the set of events triggered by the

execution of all the instructions in a rule’s action.

To illustrate our rule-based modelling approach, we provide
an illustrative example in the running example.

Figure 2 The global structure of the RbBPDL

(a) (b)

4.1 Illustrative example

In this section, we introduce the example of purchase order
process to illustrate the ECAPE and the RbBPDL. Upon
order receipt from a costumer, the calculation of the initial
price of the order and selection of a shipper are done
simultaneously. When both tasks are complete, a purchase
order is sent to the costumer. If he accepts the purchase
order, he will receive a bill for the needs of payment and
registration. During this part of the process, two constraints
need to be taken into account: customers must exist in the
company database, and bills must be issued 15 days before
delivery date.

Figure 3 represents the ECAPE rules set of the purchase
order process. For example, rule R1 expresses receiving an
order. During the occurrence of ‘receipt order’ event, this
rule is triggered and ‘check if the customer is registered in
database’ action will be executed if ‘the order is valid’
condition is satisfied. The execution of this action is

validated if ‘database connection is correct’ post-condition
is true. Having a post-condition permits to control the
execution of a rule’s action. After the validation of an
action’s outcomes, ‘costumer is checked’ event is triggered.
This latter activates three rules namely R2 (initial price
calculation), R3 (shipper selection), and R4 (reject order
when costumer is not registered). Next, the execution of
these rules’ actions activates other rules, and so on until
all the valid rules are executed. Through the explicit
description of the events that are triggered after the
execution of a rule’s action, it is possible to deduct the
sequence of rules, which permits to analyse a process. This
is shown with the right arrow in Figure 3. Note that each
rule has a post-condition, which permits to control the
execution progress of a business process.

To describe the ECAPE rules of a business process,
RbBPDL is used. Figure 4 represents an RbBPDL rule of
the purchase order process. Participants [Figure 4(a)],
variables [Figure 4(b)], business activities [Figure 4(c)], and
events [Figure 4(d)] are represented with XML tags, i.e.,
‘participants’, ‘variables’, etc. Additional details could be
added to the representation of a rule so that a complete
definition of a process’s elements is offered. These details
could concern the type and role of each participant, data
types of each variable, input/output parameters of each
activity, and type and constructors used to express the
events.

In RbBPDL, the set of rules is described in
<Business rules> part. For example, rule R1 expresses
receiving an order [Figure 4(e)]. If (<OnEvent> $
Receive_Order </OnEvent>) event occurs, the rule is
triggered to ensure that the information is valid
(<PreCondition> $ info_Costumer! = ““ </Precondition>).
<Execute> action is executed and specifies that
a given business activity must be performed
(<Operation> $Costumer_Verification </Operation>
in our example) by specifying the input/output
parameters (<InputVariableName> $ info_Costumer
</InputVariableName> and <OutputVariableName>
$CostumerRegistration </OutputVariableName>). And also
indicating which participant has the role to perform this
activity (<Performer> $Commercial_Service </Performer>)
of rule R2 will trigger the events expressed in the
<PostEvents> (in our example the event of costumer check
termination $End_Costumer_Verification). Finally, rule R2
is validated if the predicates of the post-condition expressed
in the tag <PostCondition> are true (<PostCondition >
$Database_connexion = true </PostCondition>).

However, taking into account the dynamic of the various
process elements led us look for a better model to model
business processes. For example, if the enterprise decides
not to deliver its products, rule R3 will be deleted from the
process model with minimal impact on the rest of rules.
Consequently, we deem appropriate to determinate the set
of rules that would be impacted when rule R3 is changed in
order to keep the coherence of the process and estimate the
overall cost of this change.

292 M. Boukhebouze et al.

Figure 3 CAPE rules set of the purchase order

Figure 4 One rule of the RbBPDL purchase order process (see online version for colours)

(a) (b)

(c) (d)

 A rule-based approach to model and verify flexible business processes 293

Figure 4 One rule of the RbBPDL purchase order process (continued) (see online version for colours)

(e)

In the next section, we detail our approach to manage the
change of rules and estimate the impact and cost of this
change on a business process.

5 Change management

We aim at automating the management of changes that
affect the flexibility of a business process by estimating the
impact and cost of these changes. This should help in
planning, organising, and managing the necessary resources
that would carry out the changes. This estimation is
beneficial when change alternatives are offered.

Our approach is as follows: firstly, we study the
relationship between the rules to determinate the rules that
are affected by a change in a certain rule. Secondly, we
formalise the change management of a process by
translating this later into a graph of rules. Thirdly, we
determine the impact of a rule change by using an
associated algorithm. Finally, we estimate the overall
change cost by using the R2CM that takes into account two
parameters: the nature of the relationships between rules
and the rule distance in the graph of rules.

5.1 Relationships between rules

A change in a process element may require changing
other elements that are related to this element for the sake
of process consistency. Therefore, we need to study the
relationships between the rules. We identify three
relationships between rules:

1 Inclusion relationship: shows the case of a rule (base
rule) that includes the functionality of another rule
(inclusion rule). Two rules have an inclusion
relationship between them if the completion of the base
rule’s action requires the completion of the inclusion
rule’s action. In the previous example, to calculate the
final price, the shipping price must be calculated
before.

2 Extension relationship: shows the case of a rule
(extension rule) that extends the functionality of
another rule (base rule). Two rules have an extension
relationship between them if the completion of the
extension rule’s action achieves the completion of the
base rule’s action. In the previous example, if we
suppose that a loyal custom may receives a new
discount. As a result, there is an extension relationship
between R1 (rule to identify a costumer) and R6 (rule to
calculate bill) because the functioning of R1’s action
will complete the functioning of R6’s action.

3 Cause/effect relationship: shows the case of a rule
(cause rule) that activates another rule (effect rule).
Two rules have a cause and effect relationship between
them if the execution of a rule will activate the effect
rule. As a result, the execution of a cause rule’s action
triggers a post-event, which necessarily activates the
effect rule. Thanks to this relationship, the order of
process activities can be defined by describing the
post-events based on ECAPE. In our previous example,
the performance of R1’s action (verify costumer) will
trigger end-customer – verification post-event. This
latter is the event activator of rule R2. There is a cause
and effect relationship between R1 and R2.

Note that there is a slim difference between extension
and cause/effect relationships. The extension relationship
concerns the complementarity between rules without
necessarily having an extension rule that activates a base
rule. However, the cause/effect relationship concerns the
activation rule without necessarily having a functioning
complementarily between the cause and base rules. Another
point is that the inclusion and extension relationships
are manually defined by a designer, while cause/effect

294 M. Boukhebouze et al.

relationship can be detected automatically by analysing the
events and post-event parts in rules.

The fact of defining relationships between rules allows
determining which rules must be revised in case of change.
Firstly, all base rules which have an inclusion relationship
with a changed inclusion rule must be revised by a business
process designer. In the previous example, if the enterprise
decides not to deliver its product rule R3 will be deleted
from the process model. The suppression of an inclusion
rule (R3) will affect a base rule, which requires the
completion of the inclusion rule’s action. Due to this,
human intervention is required to decide how we can
change a base rule in order to keep process coherence.
Secondly, all base rules which have an extension
relationship must be revised when an extension rule is
changed. In the previous example, if we change rule R1
(rule responsible for costumer identification), which
represents an extension rule, then base rule R6 (rule
responsible for bill calculation) must be revised. Finally, all
effect rules, which have a cause/effect relationship, must be
revised if the cause rule is changed in order to ensure the
activation of these rules. For example, the consequence of
removing rule R1 in the previous running example is the
inactivation of R2, because R1 is the cause of activating R2.
For this purpose, a designer must revise the effect rules if
the cause rule is changed.

5.2 Development of graph of rules

To formalise the flexibility management of a process model,
we propose to translate a business process into a graph of
rules. Vertices of this graph represent the rules, which are
the business process, and arcs represent the relationships
between the various rules. Three types of arcs are identified:
include arcs that correspond to inclusion relationship;
extend arcs that correspond to extension relationship, and
cause/effect arcs that correspond to cause/effect relationship
between rules. A graph of rules is formally defined as
follows:

Definition 1: A graph of rules is a directed graph Gr (R, Y)
with:

• R is a set of vertices that represent rules.

• Y is a set of arcs that represent three kinds of
relationships.
1 Yi is a subset of Y such that if yi (ri, rj) then ri is

included in rj.
2 Ye is a subset of Y such that if ye (ri, rj) then ri

extends rj.
3 Yc is a subset of Y such that if yc (ri, rj) then ri

cause the activation of rj.

The rule graph of our previous example is illustrated by
Figure 5. An inclusion arc is represented by a dashed arrow
with a small diamond head on the side of the base rule. An
extension arc is represented by a dashed arrow. Finally, a
cause/effect arc is represented by a plain arrow. Note that
two vertices can be linked by two arcs. For instance, R3 is

linked with R5 by cause arc and extend arc (because R3
cause the activation of R5 and in the same time R2 extend
R5).

Figure 5 Rules graph of the purchase order process

5.3 Change impact assessment

The graph of rules helps determine which rules are impacted
by a change in a rule. If any vertex changes, all direct
successor vertices must be revised. Formally this is defined
as follows:

Definition 2: let Gr (R, Y) be a rule graph and ri a vertex
rule such that ri ∈ R.

The set of ri direct successor neighbours is noted as
N+(ri) such that ∀rj ∈ N+(ri), ri is either inclusion, extension,
or, cause rule for the base or effect rule rj.

• We note Ni
+(ri) the set of direct ri successors such that

∀rj ∈ N+(ri), ri is an inclusion rule, for the base rule rj.

• We note Ne
+(ri) the set of direct ri successors such that

∀rj ∈ N+(ri), ri is an extension rule for the base rule rj.

• We note Nc
+(ri) the set of direct ri successors such that

∀rj ∈ N+(ri), ri is a cause rule for the effect rule rj.

• We note Nc (ri) the set of direct ri predecessors such that
∀rj ∈ N–(ri), rj is a cause rule for the effect rule ri.

• We note N*(ri) the set of direct ri neighbours such that
N*(ri) = Ni

+(ri) ∪ Ne
+(ri) ∪ Nc

+(ri) ∪ Nc
–(ri). If ri ∈ R

changes, then the designer will have to revise all rules
N*(ri).

To keep a process coherent, the change management of the
process modelling will request from a designer to revise the
N*(ri) set when a rule ri is changed. In the example of
Figure 5, rule R5 must be revised if rule R3 is deleted
because N*(R4) = {R1, R5}. The change management
notifies the designer to revise rules R1 and R5 in order to
decide how these rules can be changed. Note that we must

 A rule-based approach to model and verify flexible business processes 295

check the direct predecessor neighbours Nc
–(ri) for the

cause/effect relationship since it is not acceptable that a rule
activates a non-existing rule. For instance, if rule R3 is
deleted we will also have to revise rule R1 to ensure that this
letter does not activate a deleted rule.

However, when changing the set of direct successor
neighbour’s inclusion and extension rules (Ne

+(ri) ∪ Nc
+(ri))

the designer should revise entirely the concerned rules. This
revision may generate a cascade of rule change. Indeed, if
one rule changes, the set of inclusion and extension rules
will be revised and properly changed. This will raise the
need to revise another set of successor neighbour’s rules of
the rule that was revised. In the example, if rule R3 is
changed, then rule R5 (cause rule and inclusion rule) will be
revised. This revision consists of analysing the entire code
of rule R5 to decide how we can change the latter in order to
keep the coherence of the process. If we change rule R5 after
its revision, this results in revising rule R6. In turn, rule R6
can be changed after revision, this results into revising rules
R8 and R7. And so on, until there are no rules to revise.

In contrast, to change the set of direct successor
neighbour’s cause rules (Nc

+(ri) ∪ Nc
–(ri)) that do not

generate a cascade of the change because the designer, in
this case, the designer should only revise the event and
post-event parts of the rules that are concerned. In the
example, if we change rule R3, then rule R1 will be revised.
This revision consists of updating the post-event to ensure
that this letter does not activate a deleted rule (as we
explained above). After this update, we do not need to
revise another set of direct successor neighbour’s rules.

The following algorithm summarises the change impact
of a rule.

ChangeImpact_Procedure (Rx, stack S)
{ if NotExist(S, RX) then // test if the rule’s stack S contains the
rule RX
 { push (S, RX); // push the rule RX onto stack S }
 if NotExist(S, Nc

–(RX)) then RX
 { push (S, Nc

–(RX)); }
 if NotExist(S, Nc

+(RX)) then
 { push (S, Nc

+(RX)); }
 if Ni

+(RX) ≠ Φ then
 { ChangeImpact_Procedure (Ni

+(RX),S);
 } Else
 { if Ne

+(RX) ≠ Φ then
 {ChangeImpact_Procedure (Ne

+(RX),S);
 }
 Else
 { exit ();}}
}

It should be noted that a change cascade is not a
consequence of the change management that we propose.
Indeed, this management is not about implementing changes
but about guaranteeing process consistency. In the previous
process, rule R3’s change cascade (rules R1, R5, R6, R7, and

R8) needs to be revised in order to ensure the activation of
all the rules and the business coherence of the process as
well. In the following, we suggest how a designer is given
the possibility of assessing the efforts to put into per change.

5.4 R2CM model

In order to offer a tangible estimation of the efforts needed
to implement rule changes, R2CM is used. Change cost is
the necessary effort to modify the rules that are subject to
changes following a change in a rule. For example, if rule
R3 is deleted and rule R5 is changed in the previous
example, so the effective change effort applicable to rule R3
concerns the efforts to change rule R1 plus the efforts to
change rule R5. However, it is more beneficial to estimate
the maximum change cost before making any changes. This
will indicate to a designer the cost of a planned change. For
this reason, in the R2CM the term ‘cost of change’, denoted
by ζ(Ri), is used to designate the maximum change cost
before a change occurs.

The R2CM is based upon a rule change impact graph
which is derived from the graph of rules (Figure 6). The
new graph is defined where vertices represent rules, arcs
represent relationships between the various rules, and there
exists one vertex that represents the changed rule and
does not have predecessors. Note that, the predecessor
neighbours cause rules of the changed rule in the graph of
rules become the successor neighbours cause rules in the
change impact graph because these latter are impacted by
the rule change (in the previous example, rule R1 become a
cause rule successor on the changed rule R3).

Figure 6 the change impact graph of the rule R3 (see online
version for colours)

By using a rule change impact graph, the R2CM computes
the cost of change as a function of two parameters:

1 the distance between a changed rule and each impacted
rule in this graph

2 the nature of the relationships between a changed rule
and each affected rule in this graph.

Firstly, the overall cost of change of rule Ri is the sum of the
cost change of the rules with different distances in a rule
change impact graph. Formally, this will be defined as
follows:

296 M. Boukhebouze et al.

()
maxd

ii
i 0

CR
=

ζ = ∑ (1)

where C0 represents the cost of change of rule Ri. In the
previous example ζ(R3) = C0 + C1 + C2 + C3.

However, according to Xiao et al. (2007), the nodes
with the shortest distance are more likely to be directly
impacted by changes than the node with the longest distance
away from the changed node. Consequently, the change cost
of the rules with the shortest distance is greater than the
change cost of the rules with the longest distance. Formally,

i i–1C C= α (2)

where α is a constant which is always between zero and one
(0 < α < 1). In this way, from formulas (1) and (2) we
deduct that the overall cost of change ζ(Ri) is a geometrical
series with α as a constant ratio. The general term of this
series is given as follows:

()
maxd

0i
1CR

1
−α

ζ =
−α

 (3)

Secondly, according to the nature of the relationships
between rules, two qualifications for the change cost can be
considered:

• We qualify high change cost (CH) the effort to put into
changing inclusion and extension relationships because
the designer has to revise entirely the rules concerned.

• We qualify low change cost (CL) the effort to put into
changing a cause/effect relationship because the
designer has to revise the event and post-event part of
the rules concerned.

In this way, the rules cost change with distance i denoted by
Ci is defined as follows:

i ii i L i HC n c m c= + (4)

where ni is the number of the case rules at distance i and mi
is the number of inclusion and extension rules at distance i.
However, as explained above, the change cost of these
rules is higher then change cost of cause/effect rules.
Consequently, formula (4) becomes:

()
ii Hi iC cn m= β+ (5)

where β is a constant which is always between zero and one
(0 < β < 1).

To sum up, the R2CM estimates the effort needed to
implement the rule change by using the following formulas:

()

[] ()

max

i

d

0i

max i Hi i

1C , such that]0,1[R
1

i 1,d ,C c , such that]0,1[n m

⎧ −α
ζ = α∈⎪

−α⎨
⎪∀ ∈ = β∈β+⎩

To demonstrate the feasibility of the R2CM and to
determine α and β values, a series of experiments can be
conducted by using a set of real business processes and

studying the impact of changes on processes. The purpose is
to elaborate a consistent mathematical model of α and β (or
interval).

6 Process verification

Companies must have reliable business processes to achieve
their objectives. Reliability is a crucial issue because it lets
companies capitalise on their information systems. A formal
verification of a process is required to ensure that this
process meets all the agreed-upon requirements. In our
rule-based approach, we use formal models to identify
possible functional errors. Among the different models used
in the literature for this type of verification, we opted for
PNs (Van der Aalst, 1998). In this section, we detail how to
write an ECAPE rule using PNs. However, among the
various types of PNs, which one does support the semantics
of ECAPE rules set?

6.1 PN for business process verification

PN was introduced to model and analyse the behaviour of
systems based on a graph model. A PN is a bipartite
directed graph with two types of nodes: a place models a
condition or state of a system resource, and a transition
models an event or action that takes place within the system.
The conditions necessary to trigger an action are modelled
by arcs that connect one place to one transition. For
modelling the dynamic aspect of the system, tokens are
used. Indeed, if a place contains a token that means the
condition represented by this place is verified or indicates
the availability of a resource in case several tokens exist in
one place. One transition is fired if there are a defined
number of tokens at the input place. After firing a transition,
the tokens are consumed from input places and will be
placed at the end of all output places. Finally, a PN marking
is the distribution of tokens over the places at a given
instance.

To detect errors that a business process could contain,
several studies have exploited the strengths of PN. An
example of this is the works conducted by research team of
Eindhoven University of Technology, which proposes to
use a PN, called workflow nets (WF-nets), to validate
and verify workflows (Van der Aalst, 1998). WF-nets
require a single initial and final place, transitions represent
real activities, or routing and places represent pres
and post-conditions. However, the regular PNs miss
expressiveness since they cannot distinguish the existence
of two tokens in the same place. For this reason, several PN
extensions have been proposed. The well-known extension
is the coloured Petri net (CPN). Indeed, in this kind of net,
tokens are typed (coloured) to express the different
characteristics of resources. In this way, the pre-conditions
such as “only tokens which have of a given colour can be
are fired” can be supposed. The CPN is widely used to
verify web services composition and business process. An
example of this is the paper of Yang et al. (2005).

 A rule-based approach to model and verify flexible business processes 297

Unfortunately, the semantics of the classical PN and
CPN do not allow modelling the behaviour of ECA
rule-based process (specifically, the ECAPE rule-based
process). In classical Petri nets (or CPNs), when all the
conditions necessary for firing one transition are satisfied,
the transition may be fired but not necessarily, while in an
ECA system, it must be fired. According to Eshuis and
Dehnert (2003) the environment of classical Petri net
models closed systems because it does not influence the
firing of transitions. In contrast, an ECA system is open
because it usually needs some additional input event to
become enabled. For this reason, Eshuis and Dehnert (2003)
propose in a reactive Petri net (RPN) which considers two
type of transitions: internal transitions (Tinternal) and external
transitions (Texternal). The firing rule of Tinternal is ‘the
transition must be fired’ rather then ‘the transition can be
fired’. At the same time, the external transitions interaction
with the environment and the classical firing rule can is
preserved to ensure the stability of the PN. Therefore, RPN
has two possible states: stable and unstable. A state is stable
if no internal transition is enabled, it is unstable otherwise.
A stable state can become unstable if some external
transition fires. In an unstable state, the RPN must fire some
enabled internal transitions. By firing these transitions, a
new state is reached. If the new state is stable, the PN has
finished its reaction.

Despite possibility of using RPNs to model ECAPE
rules set, this Net is not enough. It does not explicitly
include the necessary constructions to model complex
events. We are interested in another PN called conditional
coloured Petri net (CCPN). This CPN is proposed by Li and
Marín (2004) in order to model an ECA rule for an active
database system. The particularity of this PN is the fact of
defining some new elements on CPN to characterise ECA
rules features. Especially, the complex events can be
modelled by defining new types of places and new types of
transitions. As a result, ECA rules can be easily modelled
by CCPN by considering the events and actions of one rule
as places which are inputs and outputs transition, ECA rules
themselves are mapped onto transitions and conditions are
attached to transitions. However, a CCPN cannot model
perfectly an ECAPE rules set, because each ECAPE rule
may trigger one or more rules by describing explicitly the
events triggered. As a result, the rule sequence can be
automatically deducted.

Taking into account how CCPN models complex events,
we suggest a new CPN called ECAPE net. This latter allows
rewriting formally an ECAPE rules set in order to analyse
and verify the business processes

6.2 ECAPE net

An ECAPE net is a CPN that models the ECAPE rules
execution sequence, which represents the logic of a business
process. A rule’s events are represented by places. The input
places represent events that activate one rule and the output
places represent the events triggered by the execution
of a rule action. In turn, a rule’s action is represented
by transitions. Finally, a rule’s condition (and a rule’s

post-condition) is attached to a transition (Figure 7).
However, in an ECAPE rule, an event can be primitive or
composite. In addition, a rule’s action consists of various
predefined instructions.

Figure 7 General structure of ECAPE net

Figure 8 ECAPE net elements

For this reason, we need new PN elements that would help
build composite events from primitive events and to model
an action’s instructions. Figure 8 illustrates the ECAPE
net’s elements. In this PN, there are five types of places,
two types of transitions, and two types of arcs:

• Primitive place used to represent a primitive event.

• Composite place used to represent a composite event.

• Intermediary place used specially in ANY event
constructor to build a composite event.

• Start place used to represent the first primitive event
that launches the process execution.

• End place used to represent the last primitive event that
causes the end of process execution.

• Composite transition used to generate a composite
event from primitive event. This will be explained later.

• Action transition used to represent the instructions of a
rule’s action.

• Normal arc used to represent the PN control flow.

298 M. Boukhebouze et al.

• Inhibitor arc used specially in NOT event constructor
to build negation composite events.

Now, we give a formal definition of an ECAPE net.

Definition 3: An ECAPE net is a CPN with 11-tuple
ECAPE net = (Σ, P, T, A, C, W, Activity, Cond, PstCond,
D, τ):

• Σ is a finite set of types also called colour sets.

• P is a finite set of places that model the rule’s event. P
is divided into three subsets: P = Pprim ∪ Pcomp ∪ Pinter
where Pprim, Pcomp and Pinter are set of primitive,
composite and intermediary places. Pprim contains two
subsets: Pstart ∈ Pprim and PEnd ∈ Pprim where Pstart and
PEnd are the set of start place and end place.

• T is a finite set of transitions. T is divided into two
subsets: T = Tcomp ∪ Tcopy ∪ Taction where Tcomp and
Taction are a set of composite and action transitions.
Taction is divided into four subsets: Taction = TExecute ∪
TSkip ∪ TCancel ∪ TDiscover where TExecute, TSkip, TCancel and
TDiscover are the set of Execute, Skip, Cancel, and
Discover transitions.

• A is a set of directed arcs that connects a place to a
transition and vice-versa such that A ⊆ (P × T) ∪
(T × P). A is divided into two subsets: A = Anorm ∪ Ainhi
where Anorm and Ainhi are set of normal and inhibitor
arcs.

• C is a colour function that assigns a unique colour to
each place p. The colour of a place is denoted by C(p).
C is defined from P to Σ such that: ∀p ∈ P, ∃C(p):
C(p) ∈ Σ

• W is a function that defines arcs by determining
the token’s variables that are either consumed
or produced during operation such that ∀a ∈ A,
Type(var(W(a)) = C(p(a))) and Type(var(W(a))) ⊆ Σ
where Type(var(W(a))) is a function that determines
the types of the variables in an arc. In this formula, the
first part, expresses that the types of the arc’s variables
must be compatible with the colours set of the input
place or output place. And, the second part expresses
that the token’s types must belong to the colours set of
the CPN.

• Activity is a function that is defined from Taction to an
activity name.

• Cond is a condition function that is defined from either
Taction or Tcomp to expressions such that :

()actiont T ,Type Boolean where Cond Cond(t)
function evaluates the rule’s condition;
∀ ∈ =

()compt T ,Type Boolean where Cond Cond(t)

function evaluates the condition of a composite
transition.

∀ ∈ =

• PstCond is a condition function that is defined from
Taction to expressions such that :

()actiont T ,Type Boolean where PstCond Cond(t)
function evaluates the rule’s post condition.
∀ ∈ =

• D is a time interval function that is defined from Tcomp
to a time interval [d1, d2]

• τ is a time stamp function that assigns each token
in place p a time stamp corresponding to time
event happen. t is expressed in natural clock with
the form year: month: day – hour: minute: second.
For example, a token has time stamp 2009: 02: 06 –18:
46: 16.

Note that, in ECAPE net, a token is four-tuple (p, c, data,
timestamp) where p ∈ P, c ∈ C(p) called the colour, data is
business information and timestamp specifies the natural
time when the token is placed into place p.

Before continuing to explain the ECAPE net, we will
first, define some usual functions, sets, and notions.

Firstly, M is the net marking function that is defined
from P to N (set of all natural numbers) to assign to each
place a number of tokens. We denote by M0, the initial
marking (initial state) of the PN. And we denote by Mf, the
final marking (final state) of the ECAPE net. M(p) is the
place marking function that is defined from P to N (set of all
natural numbers) to specify the number of tokens in one
place at a given state.

The state of the net may change according to the number
of tokens during the execution of the net. Indeed, A state Mn
is called reachable from M1 *

1 n(notation M M)⎯⎯→ if and
only if there is a firing sequence σ = t1t2...tn–1 such that

1 nM M .σ⎯⎯→
Secondly, we define the five following input/output sets:

• ti is the input places set of transition t such that

t {p P : (p, t) A}.= ∈ ∈i

• n ti is the input normal arc places set of transition t
where the arc that connects p to t is a normal arc such
that n normalt {p P : (p, t) A }.= ∈ ∈i

• i ti is the input inhibitor arc places set of transition t
where the arc that connects p to t is an inhibitor arc
such that i inhabitort {p P : (p, t) A }.= ∈ ∈i

• ti is the output places set of transition t such that
t {p P : (t, p) A}.= ∈ ∈i

• pi is the output transitions set place p such that

p (t T : (p, t) A).= ∈ ∈i

Finally, in an ECAPE net, a sequence S from a
node n1 (place or transition) to a node nk is a sequence
<n1, n2, ..., nk> such that <ni, ni+1> ∈ A. A sequence is
elementary if each node is unique.

 A rule-based approach to model and verify flexible business processes 299

An ECAPE net models the execution of ECAPE rules
set. To this end, we specify the firing rules of composite and
action transition of an ECAPE net.

6.2.1 Definition of the composite transition firing
rule

A composite transition is fired if there is at least one token
in all its input places, the sum of all tokens in all input
places is more then the multiplicity of normal arcs that
connect all input places to this composite transition, and all
conditions attached to the composite transition is true.
Formally, a composite transition is fired if and only if:

1 n compp t , M(p) 1∀ ∈ ≥i

2 ∀p ∈ P, M(p) ≥ W(p, tcomp)

3 Cond(tcomp) = True.

Note that a composite transition is also fired when there is
no token in the time interval [d1, d2] at the input places that
are connected with inhibitor arcs.

Figure 9 ECAPE net structures of composite events

(a) (b) (c)

(d) (e) (f)

(g)

Formally, a composite transition is fired if and only if:

1 2 i compd [d ,d], p t , M(p) 1.∀ ∈ ¬∃ ∈ ≥i As stated before, a

composite transition is used to generate a composite event:

• Conjunction event (e1 ∧ e2) expresses that both e1 and
e2 happen. Figure 9(a) shows how to generate this
event. The composite transition is fired when both e1
and e2 are marked. After firing this transition, the
composite place ec is marked.

• Disjunction event (e1 ∨ e2) expresses that e1 or e2
happen. Figure 9(b) shows how to generate this event.
In fact, one of the two composite transitions is fired
when e1 or e1 are marked. After firing one of the two
transitions, the composite place ec is marked.

• Negation event 1 1 2(e in[d ,d])¬ expresses that e1 does
not happen in the time interval [d1, d2]. Figure 9(c)
shows how to generate this event. In fact, the composite
transition is fired when e1 is not marked in the time
interval [d1, d2]. After firing this transition, the
composite place ec is marked.

• Sequence event (SEQ(e1, e2)) expresses that event e2
before event e1. Figure 9(d) shows how to generate this
event. In fact, the composite transition is fired when
both e1 and e2 are marked and if τ(e1) < τ(e2). After
firing of this transition, the composite place ec is
marked.

• Simultaneous event (SIM(e1, e2)) expresses that event
e1 happens at the same time with event e2. Figure 9(e)
shows how to generate this event. In fact, the composite
transition is fired when both e1 and e2 are marked and if
τ(e1) = τ(e2). After firing of this transition, the
composite place ec is marked.

• Occurrence event (OCC(n, e1) in [d1, d2]) expresses that
event e1 occurs n times in the time interval [d1, d2].
Figure 9(f) shows how to generate this event. In fact, a
composite transition is fired when e1 marked with n
token in the time interval [d1, d2]. After firing this
transition, the composite place ec is marked.

• Any event (ANY(m, e1, e2, …, en)) expresses that
any m events in e1, e2, …, en happen where m < n.
Figure 9(g) shows how to generate this event. In fact,
m composite transitions are fired when e1, e2, …, en
are marked. Each of these m transitions mark an
intermediary place ei. This will help limit the composite
transitions fired to m because when ei has m token, the
last composite transition is fired to generate the
composite event ec.

6.2.2 Definition of the action transition firing rule

An action transition is used to represent the instructions of a
rule’s action. It is fired if there is at least one token in all its
input places and all conditions and post-conditions attached
to it is true. Formally, an action transition is fired if and
only if:

1 actionp t ,M(p) 1∀ ∈ ≥i

2 Cond(taction) = PstCond(taction) = True.

300 M. Boukhebouze et al.

However, the skip transition (TSkip) and cancel transition
(TCancel) have some particular semantic execution.

As shown in Figure 10, the cancel transition is attached
to an Execute transition. If cancel transition is fired, all
tokens of all input places of its attached execute transition
are removed. And, cancel transition disables execute
transition. The skip transition is also attached to execute
transition. If skip transition is fired, all tokens of all input
places of its attached execute transition are removed and
one token is added into all output places of it is execute
transition. Skip transition skips execute transition.

Figure 10 Cancel and skip transition pattern

Figure 11 ECAPE net of the purchase order

Figure 11 illustrates an ECAPE net of the purchase order
process example. Here, the events are represented with
places. The composite events are generated using composite
transitions and represented by composite events. A rule’s
actions are represented with action transitions. Finally, the
rule’s conditions are attached to action transitions. We detail
the semantics of this PN execution through the following
execution scenario example. We assume that the first place
has one token when event (receive order) of rule R1 occurs.
So this place is a start place because it launches the

execution of the process. After that marking, the action
transition, which represents the execution of the action
request order of rule R1, is fired. Consequently, one token is
placed in the place, which represents post-event of rule R1
and triggered by executing R1’s action (check if the
customer is registered in database).

After that, if the condition ‘costumer is registered’ is
satisfied then the two action transitions, which represent
respectively the initial price calculation action of rule R2
and shipper selection action of rule R3, are fired. Due to this
firing, one token is placed in each output place of these
two action transitions. However, to calculate the final price,
we need to complete the execution of the initial price
calculation action and shipping price calculation action. To
model that, we use a composite event that is generated by a
composite transition as shown in the figure. This transition
is fired only if one token is placed in each input places.
According to our execution scenario, the composite
transition is fired after firing the action transition, which
represents the shipping price calculation action of rule R3
and after placing one token in the output primitive place
because one token is already placed in a place that shows
that the initial place calculation action is completed. And so
on, the token moves along the primitive places, composite
transitions, composite places and action transitions until it
reaches n end place, which represents the end process event.

After detailing the formal ECAPE net definition, we will
show how to verify the business process using this net.

6.3 Verification of process using ECAPE net

Verification ensures the correctness of a process. According
to Van der Aalst (1998), a business process definition is
correct if a set of minimal requirements or criteria is
satisfied. These criteria can be related to the structure of the
PN (so-called well-structuredness property) or to the
dynamic of the PN itself (so-called soundness property).

6.3.1 Well-structuredness property

The well-structuredness property is proposed in
Van der Aalst (1998) to formalise the need to satisfy that, in
a WF-net, every split (OR, AND, etc.) is followed by a
corresponding join of the same type. This property can be
used to verify the structure of the UML activity diagrams
and BPEL4WS code (Dehnert and Zimmermann, 2005).
However, in an ECAPE rule, the control flow is
implicitly defined and each rule has a condition and
post-condition. For this reason, in terms of ECAPE net, the
well-structuredness property is characterised by the
need to satisfy, in addition to structural properties, the
satisfiability of the predicates that represent the condition
and the post-condition of rules. An ECAPE net is
well-structuredness if the following three properties are
verified:

• supposes that:
1 an ECAPE net has at least one start place pstart and

at least one end place pend

 A rule-based approach to model and verify flexible business processes 301

2 each node of ECAPE net is on a sequence from the
Pstart place set to Pend place set.

Formally, the regular property requires to satisfy two
conditions:
1 Pstart ≠ Pend ≠ Ø
2 ∀n ∈ P ∪ T ∃ S such that n ∈ S ∧ pstart ∈ S ∧ pend

∈ C.

• Completeness property supposes that each place (or
transition) of ECAPE net is linked to, at least, one
transition (or place) except the start place and end
place. Formally, the completeness property requires to
satisfy two conditions:

1 ∀p ∈ P – Pend , ∃t ∈ T such that t p∈ i

2 ∀t ∈ T, ∃p ∈ P – Pstart such that p t .∈ i

• Satisfiability property supposes that:
1 each condition (post-condition) of one transition is

satisfied
2 for each ECAPE net path the conjunction the

condition and post-condition of transitions
t1, t2 ... tj–1 forming this path is satisfied.

Formally, the satisfiability property requires to respect
the following conditions:
1 ∀t ∈ T, Cond(t) is satisfied and PstCond(t) is

satisfied
2 ∀s ∈ Sequences,

t C
Cond(t) PstCond(t)

∈
∧ ∧├ is

satisfied such that Sequences is the set of
distinguish sequence of an ECAPE net.

The ECAPE net of the previous example (Figure 14) is
Well-structured because it is regular, complete, and each
ECAPE net sequence, the conjunction of the condition
and post-condition of transitions forming this path is
satisfied├ (costumer is registered) ∧ (IP + SP ≤ FP) ∧ (τ(e1)
< τ(e2)) is satisfied, ├ (costumer is registered) ∧ (IP + SP ≤
FP) is satisfied and ├ (costumer is not registered) is
satisfied. For this reason, the satisfiability property is
verified.

6.3.2 Soundness property

Soundness property has been introduced in Van der Aalst
(1998) to formalise the need to satisfy that, in a
well-structured PN, there are no dead transitions and neither
Deadlock nor Livelock. A dead transition occurs when all
transitions are reachable. A Deadlock occurs if a jam
happens before the condition ‘end’ is reached. Finally,
Livelock occurs if a subset of transitions are fired in an
endless cycle. Furthermore, a well-structured PN is sound if
termination is always possible and once terminated there is
no residual tokens in the places. In term of well-structured
ECAPE net, the soundness property is characterised by need
to satisfy the following conditions:

• For every state M reachable from initial state, there
exists a firing sequence leading from state M to end
state. Formally:

() ()* *
o fM M M M M∀ ⇒⎯⎯→ ⎯⎯→

• Final state is the only state reachable from initial state
with at least one token in place pend. Formally:

() ()*
0M M 0M M M 0∀ ⇒ =⎯⎯→ ∧ ≥

• There are no dead transitions in (ECAPE net, pstart).
Formally:

* t
0t T M,M M M M′ ′∀ ∈ ∃ ⎯⎯→ ⎯⎯→

The ECAPE net of the previous example (Figure 12) is
sound because, it is well-structured. Secondly, by
simulating the net, we deduce that there are no dead
transitions and neither Deadlock nor Livelock (termination
is always possible). And once terminated there are no
residual tokens in places.

Figure 12 The architecture of the BPFAMA framework
(see online version for colours)

7 The BPFAMA architecture

In this section, we describe the architecture of the business
process framework for agility of modelling and analysis
(BPFAMA), which uses ECAPE rules to model business
processes in a declarative way. BPFAMA addresses two
issues: the implementation of rules in business processes’
codes make these processes rigid and difficult to maintain,
and the lack of mechanisms to support the verification of
processes. The architecture of the BPFAMA is provided in
Figure 12. The RbBPDL is a cornstone in BPFAMA by

302 M. Boukhebouze et al.

adopting the ECAPE formalism to describe a business
process using a set of rules

In the specification phase, designers define the elements
of a new business process or redefine some elements of an
existing process in order to improve it. The BPFAMA
rules definer (which represents the business plane, see
Appendix 2) uses RbBPDL to define business processes.
One of the requirements on the rules definer is to provide a
convivial representation and easier way to model business
processes. A set of complete graphical notations (graphics
and charts) is needed to represent graphically an RbBPDL
process. We use URML notations that are proposed by
Wagner et al. (2006) to describe the rules with graphical
notations and meta-models inherited from its ancestor
UML. As a result, the BPFAMA rules definer uses URML
to graphically describe a business process and transforms
the URML representation into an RbBPDL format.

After translating a process into a graph of rules and an
ECAPE net, the BPFAMA rules behaviour analyser (which
represents the behaviour plane, see Appendix 2) ensures the
flexibility of this process by analysing its corresponding
graph of rules. Afterwards, the rules simulator (which
represents the operational plane, see Appendix 2) verifies
the process functioning by analysing the ECAPE net of this
process.

In the execution phase, a rule engine interprets the
fulfilment specification of the actions reported in the rules.
This interpretation is performed by automating the
interactions between business participants (information and
tasks) and allocating the different resources. The activation
of these rules is ensured by a complex event processing
(CEP) engine. This engine detects the predefined events
(primitive of complex events) and alerts the Rule engine
through messages. When the Rule engine receives a
message, it activates the rules according to the triggered
events. Note that, these messages are also submitted back to
the CEP engine that will treat these messages as incoming
events. This allows generating composite events. Finally,

the different log files, historic of events, and traces
compiled during the execution of rule instances over time
are stored in a specific base to be used in the diagnostic
phase.

In the diagnostic phase, a business activity monitoring
(BAM) is used to provide real-time information about the
status and results of the various rules’ actions, the various
events triggered, and the transactions. Therefore, the
enterprise is better informed and can make appropriate
decisions.

8 Related work

Our main motivations stem out of the importance of
improving BPM in terms of flexibility and verification. In
this section, we discuss two major research directions: what
is the rule formalism appropriate to manage changes in
processes and what is the impact of these changes on
processes?

First, the combination of business processes and rules
has been studied for several years. There is a good number
of research approaches that looked at the pros and cons of
this combination. These approaches could be classified into
two categories. The first approach considers that flexibility
should be an important element of the imperative definition
languages of processes. For this reason, the first category of
works proposes to encapsulate rules with web services, like
the work of Lee et al. (2003). Second category of works
proposes to extend the imperative languages in order to take
into account the rules in process model, like the work of
Van Eijndhoven et al. (2008) which suggest to uses patterns
to model the process parts that are most variable. And also,
the work of Boukhebouze et al. (2007) which proposes to
identify rules in a business process model by adding a ‘rule’
activity to BPEL.

Figure 13 Rule languages at different levels of abstraction (see online version for colours)

Source: Wagner (2005)

 A rule-based approach to model and verify flexible business processes 303

Despite the solutions provided by this approach which
respond in some way to the problem of imperative
languages rigidity, they do not guarantee complete
flexibility including the impact of the change of a rule on
the rest of the process. Moreover, experiments have shown
that organisations express their policies and regulations in
rules form using natural language or adding text annotations
in their models (Zur Muehlen et al., 2007). However, the
formulation of rules must be rigorous, concise and precise
to ensure that these rules are unambiguous, coherent, and set
out with a common business vocabulary.

In this spirit, a second approach proposes to model the
logic of the process with a set of rules using rules languages
According to Wagner (2005), the rules models can be
classified, in accordance with to MDA architecture, as
following three levels of abstraction (Figure 13).

8.1 Computation independent modelling (CIM)

Rules metamodels are proposed in the aim to define the
vocabulary used to express the rules. Indeed, the business
vocabulary definition can be textually using structured
English, as proposed by the SBVR in OMG (2008). The
business vocabulary definition can also be appeared visually
as conceptual class diagrams in UML, as proposed by
Wagner (2005). Finally, the business vocabulary definition
can formally be described as predicate logic or as ontologies
in RDF and OWL (Wagner, 2005).

8.2 Platform independent modelling (PIM)

Rigorous, concise and precise to ensure that these rules are
unambiguous rules models, supported by languages, are
proposed to formalise rule expressions. Indeed, the rules
formalism used in these models depend to what categories
of rule they represent. An example of theses languages, the
PENELOPE (Goedertier and Vanthienen, 2006) that uses
the Deontic logic to formalise the rules in terms of
obligations and authorisations that feature business
interactions. Another example is the DECLARE language
(Pesic et al., 2007) that uses temporal logic to formalise the
rules that control the execution order of the activities of a
process. Note that, some general rule markup languages are
proposed. These languages can be used for interchanging
rules between different rule languages like RuleML
(Schroeder and Wagner, 2002).

However, RuleML language is not appropriate for
defining a process since elements such as business
activities, participants, and event, just to cite a few are
excluded. Furthermore, according to Knolmayer et al.
(2000) and Lu and Sadiq (2007) the reaction rules (ECA)
are the most adapted to model rules. This is done in various
works, like the AgentWork framework of Müller et al.
(2004), where ECA rules are used for temporal workflow
management. Our work is positioned in this rule category.

Thus, the use of the ECA formalism is interesting to
model, in our framework, business processes. However, in
the aforementioned declarative process modelling languages
used this formalism, the modelling flexibility with focus on

the impact of a rule change on the rest of a process is not
well looked into. Therefore, there is a need for a more
powerful formalism that would allow a complete definition
of this relationship. This way, we opted for the use of
ECAPE formalism and RbBPDL language.

8.3 Platform specific modelling (PSM)

The execution rule models are proposed in order to
formalise the execution of the rules set as ILOG JRules.
However, these execution rule models do not allow having
an explicit execution scenario. As a result, a more powerful
paradigm is deemed appropriate in order to translate, in an
easy way, a business process into a formal model and ensure
the process verification allowing to building an execution
scenario in an automatic way. This is why we opted for the
use of ECAPE formalism and ECAPE net.

Secondly, how to analyse the impact of software change
is a research topic for several years. This is why literature
teems with proposals that attempt to answer this delicate
question. Like OMEGA project proposed in Chen et al.
(1996), which identify the propagation effects caused by
code modification in C++ program. Note that, some cost
models are proposed in order to estimate necessary effort to
a software development. An example of this is the famous
COCOMO model (Boehm, 1981). In parallel, some works
were interested in analysing the impact of a business
process changes. For instance, the work of Xiao et al.
(2007) that proposes an approach to support impact analysis
by using change impact metric. This metric is based on
distance between a changed rule and each affected rules in a
generated propagation graphs. This approach is some where,
similar to our proposed approach. However, the different
between Xiao’s approach and your, is that we proposed to
model a business process as a set of rules. This allow, in the
hand, deploying partially-specified process definitions. In
other hand, definition of this relationship between rules in
other to manage the impact of change efficacy.

9 Conclusions

In this paper, we proposed a rule-based model to address the
following two issues: the implementation of rules in
business processes makes these processes rigid and difficult
to maintain, and the lack of mechanisms to support the
verification of these processes. Our model adopted the
ECAPE formalism to describe processes with rules that are
afterwards translated into a graph of rule and an ECAPE net
to manage their flexibility and simulate their execution,
respectively. The representation of the rules is done with an
XML-based language called RbBPDL. Finally, we proposed
the BPFAMA as an integration environment of the different
elements we proposed. This environment consists of
different tools namely: rules definer; rules behaviour
analyser and rules simulator.

In term of future work, we aim to ensure the reliability
of the business process execution by using a self-healing
strategy. To this end, we will attempt to propose a

304 M. Boukhebouze et al.

self-healing strategy for the process RbBPDL on the basis
of the ECAPE format by trying to identify potential risks of
exceptions and by lunching exception handling in parallel
with the process execution to intercept the exceptions when
it take place and react in order to drive the process
execution towards a stable situation. Another future work
consists of proposing a set of ECAPE rule patterns that
allow describing recurrent problems and solutions proposed
to model a business process using the ECAPE model. The
objective is to support the re-use of ECAPE rules in distinct
process definitions.

References
Boehm, B. (1981) Software Engineering Economics, Prentice Hall,

ISBN: 0138221227.
Boukhebouze, M., Amghar, Y. and Benharkat, A.N. (2007)

‘BPFAMA: business process framework for agility of
modeling and analysis’, in ICEIS: 10th International
Conference on Enterprise Information Systems ICEIS,
Barcelona, Spain.

Business Rules Group (BRG) (2002) Defining Business
Rules, What are they Really?’, available at
http://www.businessrulesgroup.org (accessed on July 2000).

Chen, X., Tsai, W., Huang, H., Poonawala, M., Rayadurgam, S.
and Wang, Y. (1996) ‘Omega-an integrate environment for
C++ program maintenance’, in Software Maintenance
Proceedings, November, pp.114–123, CA.

Dehnert, J. and Zimmermann, A. (2005) ‘On the suitability of
correctness criteria for business process models’, Proc. 3rd
Int. Conf. on Business Process Management (BPM 2005),
September, pp.386–391, Nancy, France.

Eshuis, R. and Dehnert, J. (2003) ‘Reactive Petri nets for workflow
modeling’, in Application and Theory of Petri Nets 2003,
pp.296–315, Springer.

Giurca, A., Lukichev, S. and Wagner, G. (2006) ‘Modeling web
services with URML’, in Proceedings of SBPM2006, 11 June,
Budva, Montenegro.

Goedertier, S. and Vanthienen, J. (2006) ‘Designing compliant
business processes with obligations and permissions’,
Business Process Management Workshops Lecture Notes in
Computer Science, Vol. 4103/2006.

Knolmayer, G., Endl, R. and Pfahrer, M. (2000) ‘Modeling
processes and workflows by business rules’, in Aalst, W.M.,
Desel, J. and Oberweis, A. (Eds.): Business Process
Management, Models, Techniques, and Empirical Studies,
Lecture Notes in Computer Science, Vol. 1806, pp.16–29,
Springer-Verlag, London.

Koshkina, M. and Van Breugel, F. (2004) ‘Modeling and verifying
web service orchestration by means of the concurrency
workbench’, ACM SIGSOFT Software Engineering Notes,
September, Vol. 29, No. 5.

Lee, S., Kim, T.Y., Kang, D., Kim, K. and Lee, J.Y. (2003)
‘Composition of executable business process models by
combining business rules and process flows’, in Expert
Systems with Applications, July 2007, Vol. 33, No. 1,
pp.221–229.

Li, X. and Marín, J.M. (2004) ‘Composite event specification in
active database systems: a Petri nets approach’, in Jensen, K.
(Ed.): Proceedings of the Fifth Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools,
8–11 October, Aarhus, Denmark.

Lu, R. and Sadiq, S. (2007) A Survey of Comparative Business
Process Modeling Approaches, Business Information System
Lecture Notes in Computer Science, Vol. 4439/2007.

Müller, R., Greiner, U. and Rahm, E. (2004) ‘AgentWork: a
workflow system supporting rule-based’, Workflow
Adaptation. In Data & Knowledge Engineering, Vol. 51,
No. 2, pp.223–256

Object Management Group (OMG) (2008) ‘Semantics of business
vocabulary and business rules (SBVR)’, available at
http://www.omg.org/spec/SBVR/1.0/PDF.

Object Management Group (OMG) (2009) ‘Business process
model and notation (BPMN)’, in OMG Document Number:
dtc/2009-08-14.

Ouyang, C., Verbeek, E., Van der Aalst, W.M.P., Breutel, S.,
Dumas, M. and ter Hofstede, A.H.M. (2005) ‘WofBPEL: a
tool for automated analysis of BPEL processes’, in
ICSOC 2005, International Conference of Service-Oriented
Computing, Berlin.

Pesic, M., Schonenberg, H. and Van der Aalst, W.M.P. (2007),
‘DECLARE: full support for loosely-structured processes’, in
the Eleventh IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2007).

Pu, G., Zhao, X., Wang, S. and Qiu, Z. (2005) ‘Towards the
semantics and verification of BPEL4WS’, in Theoretical
Computer Science, July, pp.33–52, Elsevier, New Castle, UK.

Regev, G., Soffer, P. and Schmidt, R. (2006) ‘Taxonomy of
flexibility in business processes’, Seventh Workshop on
Business Process Modeling, Development, and Support in
Conjunction with CAiSE’06.

Russell, N., Van der Aalst, W.M.P. and ter Hofstede, A.H. (2006)
Exception Handling Patterns in Process-Aware Information
Systems, BPM Center Report BPM-06-04, BPMcenter.org.

Schroeder, M. and Wagner, G. (2002) ‘Languages for business
rules on the semantic web’, in Proc. of the Int. Workshop on
Rule Markup, June, Vol. 60, CEUR-WS Publication, Italy.

Taveter, K. and Wagner, G. (2001) ‘Agent-oriented business
rules: Deontic assignments’, in Proc. of Workshop on
Open Enterprise Solutions: Systems, Experiences, and
Organizations (OES-SEO2001).

Van Breugel, F. and Koshkina, M. (2006) ‘Models and verification
of BPEL’, Research report, Department of Computer Science
and Engineering, University of York, September, available at
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf.

Van der Aalst, W.M. (1998) ‘The application of Petri nets to
workflow management’, The Journal of Circuits, Systems and
Computers, Vol. 8, No. 1, pp.21–66.

Van Eijndhoven, T., Iacob, M.E. and Ponisio, M.L. (2008)
Achieving Business Process Flexibility with Business Rules,
EDOC 2008: 95-104.

Wagner, G. (2005) ‘Rule modeling and markup’, in Eisinger, N.
and Maluszynski, J. (Eds.): Reasoning Web, Vol. 3564,
pp.251–274, Springer, Msida, Malta.

Wagner, G., Giurca, A. and Lukichev, S. (2006) ‘Modeling web
services with URML’, in Proceedings of Semantics for
Business Process Management Workshop, June, Budva,
Montenegro.

Xiao, H., Guo, J. and Zou, Y. (2007) ‘Supporting change impact
analysis for service oriented business applications’,
Proceedings of the International Workshop on Systems
Development in SOA Environments (SDSOA’07), IEEE
Computer Society, Washington, DC, USA.

 A rule-based approach to model and verify flexible business processes 305

Yang, Y., Tan, Q., Yu, J. and Liu, F. (2005) ‘Transformation
BPEL to CP-nets for verifying web services composition’, in
the International Conference on Next Generation Web
Services Practices, Korea.

Zur Muehlen, M., Indulska, M. and Kamp G. (2007) ‘Business
process and business rule modeling: a representational
analysis’, 3rd International Workshop on Vocabularies,
Ontologies and Rules for The Enterprise (VORTE 2007),
Annapolis, Maryland, USA.

Notes
1 Available at http://www.workflowpatterns.com.

Appendix 1

RbBPDL expressiveness

To study the expressiveness of the RbPDL language, we check, in the following table, whether it is possible to realise a subset
of the workflow pattern1 using this language. If the language supports directly the pattern through one of its constructs, it is
rated +. If the pattern is not directly supported, it is rated.

Table A1 Support for the workflow patterns in RbBPDL

Control-flow patterns Support Explication

Sequence + Sequence pattern is supported by defining a rule’s post-event which activates another rule
Parallel split + Parallel split pattern is supported by defining a rule’s post-event with active multiple rules

simultaneously
Synchronisation + Synchronisation pattern is supported by defining the a rule activation event as conjunction of a

set of post-event rules
Exclusive choice + Exclusive choice pattern is supported by defining a rule’s post-event that activates two rules

that have two contradictory conditions
Cancel activity + Cancel activity pattern is supported by using the with the CANCEL instruction with set

‘cancel all activities’ option to false
Cancel case + Cancel case pattern is supported by using the with the CANCEL instruction with set ‘cancel

all activities’ option to true
Implicit termination + Implicit termination pattern is supported since the process is terminated when there are no

rules to trigger
Explicit termination + Explicit termination pattern is supported since the process is terminated when an event that

belongs to the end events categories is triggered

Data patterns Support Explication

Workflow data + Workflow data pattern is supported because all process variables are global variables
Task data - Not supported
Task to task + Task to task pattern is supported because the data transfer between one activity to another is

possible by using the same parameters of input/output or using the COPY instruction
Task to environment + Task to environment pattern is supported because the data transfer between one activity to an

external environment is possible by using the COPY instruction
Data transfer by value - Not supported
Data transfer by reference + Data transfer by reference pattern is supported because variables defined in the RbBDPL

instruction are the references to variables declared in <Variable> part
Task precondition + Task precondition pattern is supported using the condition of the rule
Task post-condition + Task precondition pattern is supported using the post-condition of rule

Resource patterns Support Explication

Direct allocation + Direct allocation pattern is supported by involving participants in a business activity
Deferred allocation + Deferred allocation pattern is supported using DISCOVER instruction.
Role-based allocation + Role-based allocation pattern is supported by defining the role of each participant
Delegation - Not supported

306 M. Boukhebouze et al.

Appendix 2

BPFAMA prototype

Figure 14 BPFAMA rules definer interface (see online version for colours)

Figure 15 BPFAMA rules behaviour analyser interface (see online version for colours)

 A rule-based approach to model and verify flexible business processes 307

Figure 16 ECAPE net conversion algorithm

