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1 Introduction 

1.1 Motivations 

To remain efficient and competitive, organisations need to 
make sure that their business processes are flexible. The 
development of these processes requires appropriate models 
and tools that would permit defining, deploying, and 
controlling these processes. Business process management 
(BPM) is about managing the whole cycle of a business 
process from early stage of requirement elicitation to later 
stage of deployment and maintenance. In this life cycle, 
process modelling sheds the light on the best practices and 
core knowledge in an organisation. For this purpose, this 
modelling must be based on sound languages that provide 
the right means to describe the various elements of a 
process, to support the flexibility of a process by changing 
only the parts that need to be changed while keeping other 
parts stable (Regev et al., 2006), and to support verification 
to ensure process reliability. However, these characteristics 
are highly inter-related, which increases the complexity of 
satisfying them all at once. Real business processes tend to 
be less flexible and difficult to analyse due to continuous 
changes in regulations and policies. 

1.2 Issues 

In the literature, imperative business process modelling 
languages such as business process modelling notation 
(BPMN – OMG, 2009) focus on how the various activities 
in a process are ordered during execution. These languages 
provide a good level of expressivity and several verification 
techniques (e.g., Petri nets, PNs) have been proposed to 
ensure the reliability of the processes that are defined  
using imperative languages. However, the use of these 
languages forces designers to describe explicitly the 
execution scenarios (pre-computation of task control flows, 
information flows, and work allocation schemes) in the 
modelling phase, which is not very convenient. This makes 
business processes rigid and difficult to maintain, which is 
not in line with the dynamic nature of organisations. 

Rule-based languages have been proposed to deal with 
the flexibility requirement in a proper way by modelling  
the logic of a process with a set of rules that comply  
with declarative languages’ guidelines. Examples of  
these languages include PENELOPE (Goedertier and 
Vanthienen, 2006), DECLARE (Pesic et al., 2007) and 
standard semantics of business vocabulary and business 
rules (SBVR) (OMG, 2008). Therefore, the execution 
scenarios are implicitly done in the modelling phase. This 
could avoid listing all the possible scenarios of execution in 
the modelling phase, which is difficult to obtain (Goedertier 
and Vanthienen, 2006) and can result in rigid models. 
However, the verification stage is more complex since it 
requires having an execution scenario that ensures the 
proper functioning of a process. In addition, automating the 
process of developing execution scenarios using an implicit 
declarative model is not clear (Goedertier and Vanthienen, 
2006). 

1.3 Contributions 

In this paper, we present a rule-based approach that aims at 
improving the management of business processes in terms 
of flexibility and verification. This model extends the  
event-condition-action (ECA) model and suggests formal 
tools for verification purposes. In this approach, the logic of 
a process is defined with a set of business rules that 
correspond to the policies in the organisation. Each business 
rule is represented using the event-condition-action-post-
condition-post-event (ECAPE) model (or formalisms). An 
advantage of the ECAPE formalism is that a process can be 
easily translated into a graph of rules. This graph is used to 
first, look into the flexibility of a process by checking the 
relationships between the rules and second, estimate cost 
changes in a process using our rule change cost model 
(R2CM). Another advantage of the ECAPE formalism is the 
translation of a process into a new coloured PN called 
ECAPE net. An ECAPE net is used to check if a process 
satisfies some properties such as no Deadlock, and no 
Livelock. The representation of our rule-based approach 
requires a new declarative language that will offer the 
necessary syntax and semantics to describe ECAPE rules 
and the core elements in a business process. These elements 
are participants, variables, and activities. For this reason, we 
propose the rule-based business process definition language 
(RbBPDL), which has an XML-based syntax to describe 
business processes in declarative way. 

1.4 Paper organisation 

The rest of this paper is organised as follows. Section 2 
contains definitions on some basic concepts and states the 
particular issue that is addressed. Sections 3 and 4 detail our 
proposed approach to model business processes. Section 5 
discusses process change management and impact change 
estimate. Section 6 explains how a process is verified in our 
approach. Section 7 describes an architecture that combines 
the different techniques and tools presented in this paper. 
The last sections wrap up the paper in terms of related work, 
conclusions, and some directions for future works. 

2 Preliminaries 

Prior to stating the specific issues that are dealt with in  
this paper, a set of definitions on business rule, process 
flexibility, and process verification are given. 

2.1 Definitions 

2.1.1 Type of rules 

To carry out their missions, organisations manage complex 
processes and need to react to changes. According to 
Goedertier and Vanthienen (2006), changes could be due to 
new or revised regulations and policies that organisations 
have to comply with. These regulations and policies are 
often expressed in terms of rules. 
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Rules are defined as high-level structured statements 
that constrain, control, and influence the business logic of a 
process (BRG, 2002). According to Wagner (2005), a 
business rule could be categorised as follows: 

1 Integrity rule identifies constraints or assertions that 
must be satisfied (e.g., a customer must be registered 
before submitting any order). 

2 Derivation rule concerns one or more conditions and 
one or several conclusions (e.g., a loyal customer 
receives a 10% discount; Boukhebouze is loyal; 
therefore, Boukhebouze receives a 10% discount). 

3 Production rule concerns one or more conditions and 
one or more actions (e.g., if the stock is low, then 
execute the supply process). 

4 Reaction rule consists of events to occur, conditions to 
satisfy, and actions to execute (e.g., upon order receipt 
and if the necessary raw materials are available, then 
start production). 

5 Transformation rule controls changes in a system state 
(e.g., an employee’s age must be changed in an 
incremental way). 

It should be noted that Deontic assignment rule can be 
considered as another category of business rule (Taveter and 
Wagner, 2001). This rule constrains actions in terms of 
obligations, permissions, and prohibitions (e.g., only the 
manager has the right to grant promotions to employees). 

Rules should be formalised to facilitate their use. 
Unfortunately, using imperative languages such as BPMN 
forces designers to implement rules based on decisions 
(what process branch must be chosen) that are defined with 
connectors (e.g., sequence, parallel split, exclusive choice). 
Through these languages, decisions’ results determine a 
process behaviour rather than how these decisions should be 
modelled. Consequently, implementing changes in a process 
turns out complex and prone to errors. 

2.1.2 Process flexibility 

By flexibility, we mean how changes are implemented in 
some parts of a business process without affecting the rest 
of parts neither the continuity nor the stability of these parts 
(Regev et al., 2006). In a dynamic environment, businesses 
need to rely on flexible process models to allow a controlled 
modification of some parts of a process. According to the 
taxonomy of Regev et al. (2006), all the elements of a 
process are likely to be changed. A change may affect a 
process’s activities (functional aspect), a control flow 
(behaviour aspect), a process data (information aspect), or 
protocols used in a process (operational aspect). However, a 
change in a process element may require changes in other 
elements and so on for the sake of guaranteeing process 
coherence. To do so, the impact of a change on the rest of 
the process should be examined and estimated. 

2.1.3 Process verification 

By verification, we mean how to ensure that process 
execution happens in accordance with its modelling  
plan and how to detect unanticipated situations that may 
arise during the execution of this process (Russell et al., 
2006). An erroneous business process has major negative 
consequences on its continuity. To assist a designer detect 
errors during process specification, several techniques are 
used. The verification by formal models is widely used 
(e.g., PN, process algebra, etc.). There exist a good number 
of works that use formal models to verify the proper 
functioning of business processes (Ouyang et al., 2005; 
Yang et al., 2005; Koshkina and Van Breugel, 2004; Pu et 
al., 2005). 

2.2 Problem statement 

In this paper, we propose a rule-based approach to model 
the logic of a process with a set of rules that comply with 
declarative languages’ guidelines. This way of doing allows 
deploying partially-specified process definitions (Lu and 
Sadiq, 2007). A rule engine determines, at runtime, what to  
execute by evaluating relevant rules with regard to a  
certain process event. According to Lu and Sadiq (2007), a 
rule-based approach externalises the process logic from the 
execution environment. Consequently, the modifications in 
a process definition can be made without impacting the 
executing process instances. In addition, the changes (in 
process logic, business regulations, or business policies) are 
implemented by changing a subset of rules (e.g., modify, 
insert and delete existing rules), which express the changed 
process logic, the changed business regulations, or the 
changed business policies. As a result, the modification in a 
rule impacts only a subset of rules that are related to the 
changed rule, which would lead to a decrease of the efforts 
to put into this change management. 

However, when it comes to complex processes, it is 
important to manage the impact of a rule change on the rest 
of the processes by determining which rules are impacted by 
this change and estimating the overall cost of this change. 
Although the evaluation of business process changes impact 
is not trivial and should be carefully examined, this 
evaluation is beneficial when several change alternatives are 
offered and planning, organising, and managing resources to 
ensure the success of these changes. 

The research questions that are raised here concern: 
what is the rule formalism that would offer better support to 
change management impact, and how is this change impact 
estimated so that BPM in terms of modelling and 
verification is improved? 

3 Rule-based modelling of business processes 
using the ECAPE model 

The objective of a rule-based approach is to describe 
business processes with focus on their behaviours using a 
set of connected rules. According to Giurca et al. (2006), it 



290 M. Boukhebouze et al.  

is advantageous to use reactive rules (ECA formalism) for 
business process specification. Giurca et al. argue that rules 
along with their events give a flexible way to specify a 
process’s control flow. In addition, ECA rules are easier to 
maintain and include other types of rules such as integrity 
and derivation. However, the ECA formalism does not 
cover the execution control and does not allow having an 
explicit execution scenario that is needed to verify the 
proper functioning of a process. To this end, we propose to 
extend the ECA formalism initially defined by event, 
condition, action with post-condition and post-event. The 
ECAPE formalism is defined as follows: 

ON <Event> 
IF <Condition> 
DO <Action> 
Check <Post condition> 
Raise <Post event> 

The semantics attached to an ECAPE rule is: event 
determines when a rule must be evaluated (or activated); 
condition is a predicate upon which the execution of an 
action depends (it can be seen as a refinement of the event); 
action specifies the code to execute if the condition is 
satisfied; post-condition is a predicate upon which the 
validation of the rule depends (the rule is validated only  
if the post-condition is satisfied); and event-triggered  
(post-event) identifies the set of events that arise after the 
execution of the action. Note that, if a post-condition does 
not hold, cancellation mechanisms are executed in order to 
cancel, if possible, the effects of the executed action. These 
mechanisms do not fall within the scope of this paper. 

A sequence of ECAPE rules defines the behaviour of a 
process. Each rule may activate one or more rules. The 
originality of the ECAPE formalism is that the set of  
events triggered after the execution of a rule’s action, is 
explicitly described. As a result, a sequence of rules can be 
automatically deducted. 

In Figure 1, we show how we look at a business process 
from three different abstract plans: 

Figure 1 Three plans of our rule-based modelling approach  
(see online version for colours) 

 

1 From a business plane, business processes are defined 
with a set of ECAPE rules. These rules express, in a 
declarative way, a business domain, policies, business 
concerns, just to cite a few. We propose the RbBPDL to 
formalise these rules. 

2 From a behaviour plane, business processes are 
translated into a graph of rules where the vertexes 
represent the rules and the edges represent the 
relationships between these rules. This graph is used an 
input of assessing the cost of changes as defined in the 
R2CM. 

3 From an operational plane, business processes are 
translated into an ECAPE net so that their proper 
functioning is verified. 

In the rest of this paper, we describe the RbBPDL that is 
used to express business concerns, the graph of rules that 
are used to manage process changes and the ECAPE net that 
is used to express and verify the operational process. 

4 The RbBPDL 

To represent the ECAPE formalism as well as the  
various elements of a business process, we use RbBPDL 
that is XML-based and inspired by BPEL and XPDL 
[Figure 2(b)]. The overall structure of RbBPDL  
[Figure 2(a)] represents five elements of a business process 
(see Appendix 1): 

1 Participant is any person, application, web service, or 
entity, which has the authority to perform an activity. 

2 Variable represents pieces of information, which are 
produced or handled by a business process. 

3 Business activity is the process element, which must be 
executed. It is a unit of work that runs in an indivisible 
manner by a participant. 

4 Event is an indicator that signals that a situation has 
occurred and for which a response is necessary. The 
event is the activator element of a rule. It specifies 
when the rule should be evaluated. There are two 
categories of events: 

a Simple events describe the occurrence of a 
predefined situation in the system such as: activity 
events (start, end, cancellation, and error), process 
events (error trigger), time events (timer), and 
external events (reception of message signal). 

b Complex events that combine simple and/or 
composed events using constructors such as: 
• Disjunction (e1, e2) specifies that at least one 

of the two events is detected. 
• Conjunction (e1, e2) specifies that the events 

take place without taking into account their 
occurrence order. 

• Occurrence (e1, nbr_occurence) specifies 
multiple occurrences of the same event. 

• Sequence (e1, e2) specifies the sequence of 
events. 

• Not (e1, t) characterises. 
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5 Business rule is a statement that controls the logical 
relationships between the activities of a process, 
influencing the interactions between partners in this 
process. As rules are described using the ECAPE, they 
are represented as follows: 
a OnEvent: all events that activate a rule. 
b Precondition: predicates upon which the execution 

of an action depends. 
c Action: set of instructions to be executed if a 

precondition is satisfied. For this, we use a set of 
predefined instructions such as: 
• Execute: to execute the activity by a 

participant 
• Cancel: to cancel the execution of the activity 
• Skip: to skip the execution of the activity 
• Discover: to find a service that performs a 

given activity in a given registry 
d Postcondition: predicate upon which the validation 

of a rule depends. 
e EventTriggered: the set of events triggered by the 

execution of all the instructions in a rule’s action. 

To illustrate our rule-based modelling approach, we provide 
an illustrative example in the running example. 

Figure 2 The global structure of the RbBPDL 

  
(a) (b) 

4.1 Illustrative example 

In this section, we introduce the example of purchase order 
process to illustrate the ECAPE and the RbBPDL. Upon 
order receipt from a costumer, the calculation of the initial 
price of the order and selection of a shipper are done 
simultaneously. When both tasks are complete, a purchase 
order is sent to the costumer. If he accepts the purchase 
order, he will receive a bill for the needs of payment and 
registration. During this part of the process, two constraints 
need to be taken into account: customers must exist in the 
company database, and bills must be issued 15 days before 
delivery date. 

Figure 3 represents the ECAPE rules set of the purchase 
order process. For example, rule R1 expresses receiving an 
order. During the occurrence of ‘receipt order’ event, this 
rule is triggered and ‘check if the customer is registered in 
database’ action will be executed if ‘the order is valid’ 
condition is satisfied. The execution of this action is 

validated if ‘database connection is correct’ post-condition 
is true. Having a post-condition permits to control the 
execution of a rule’s action. After the validation of an 
action’s outcomes, ‘costumer is checked’ event is triggered. 
This latter activates three rules namely R2 (initial price 
calculation), R3 (shipper selection), and R4 (reject order 
when costumer is not registered). Next, the execution of 
these rules’ actions activates other rules, and so on until  
all the valid rules are executed. Through the explicit 
description of the events that are triggered after the 
execution of a rule’s action, it is possible to deduct the 
sequence of rules, which permits to analyse a process. This 
is shown with the right arrow in Figure 3. Note that each 
rule has a post-condition, which permits to control the 
execution progress of a business process. 

To describe the ECAPE rules of a business process, 
RbBPDL is used. Figure 4 represents an RbBPDL rule of 
the purchase order process. Participants [Figure 4(a)], 
variables [Figure 4(b)], business activities [Figure 4(c)], and 
events [Figure 4(d)] are represented with XML tags, i.e., 
‘participants’, ‘variables’, etc. Additional details could be 
added to the representation of a rule so that a complete 
definition of a process’s elements is offered. These details 
could concern the type and role of each participant, data 
types of each variable, input/output parameters of each 
activity, and type and constructors used to express the 
events. 

In RbBPDL, the set of rules is described in  
<Business rules> part. For example, rule R1 expresses 
receiving an order [Figure 4(e)]. If (<OnEvent> $ 
Receive_Order </OnEvent>) event occurs, the rule is 
triggered to ensure that the information is valid 
(<PreCondition> $ info_Costumer! = ““ </Precondition>). 
<Execute> action is executed and specifies that  
a given business activity must be performed  
(<Operation> $Costumer_Verification </Operation>  
in our example) by specifying the input/output  
parameters (<InputVariableName> $ info_Costumer 
</InputVariableName> and <OutputVariableName> 
$CostumerRegistration </OutputVariableName>). And also 
indicating which participant has the role to perform this 
activity (<Performer> $Commercial_Service </Performer>) 
of rule R2 will trigger the events expressed in the 
<PostEvents> (in our example the event of costumer check 
termination $End_Costumer_Verification). Finally, rule R2 
is validated if the predicates of the post-condition expressed 
in the tag <PostCondition> are true (<PostCondition > 
$Database_connexion = true </PostCondition>). 

However, taking into account the dynamic of the various 
process elements led us look for a better model to model 
business processes. For example, if the enterprise decides 
not to deliver its products, rule R3 will be deleted from the 
process model with minimal impact on the rest of rules. 
Consequently, we deem appropriate to determinate the set 
of rules that would be impacted when rule R3 is changed in 
order to keep the coherence of the process and estimate the 
overall cost of this change. 

 



292 M. Boukhebouze et al.  

Figure 3 CAPE rules set of the purchase order 

 

Figure 4 One rule of the RbBPDL purchase order process (see online version for colours) 

  
(a) (b) 

  
(c) (d) 
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Figure 4 One rule of the RbBPDL purchase order process (continued) (see online version for colours) 

 
(e) 

 
In the next section, we detail our approach to manage the 
change of rules and estimate the impact and cost of this 
change on a business process. 

5 Change management 

We aim at automating the management of changes that 
affect the flexibility of a business process by estimating the 
impact and cost of these changes. This should help in 
planning, organising, and managing the necessary resources 
that would carry out the changes. This estimation is 
beneficial when change alternatives are offered. 

Our approach is as follows: firstly, we study the 
relationship between the rules to determinate the rules that 
are affected by a change in a certain rule. Secondly, we 
formalise the change management of a process by 
translating this later into a graph of rules. Thirdly, we 
determine the impact of a rule change by using an 
associated algorithm. Finally, we estimate the overall 
change cost by using the R2CM that takes into account two 
parameters: the nature of the relationships between rules 
and the rule distance in the graph of rules. 

5.1 Relationships between rules 

A change in a process element may require changing  
other elements that are related to this element for the sake  
of process consistency. Therefore, we need to study the 
relationships between the rules. We identify three 
relationships between rules: 

1 Inclusion relationship: shows the case of a rule (base 
rule) that includes the functionality of another rule 
(inclusion rule). Two rules have an inclusion 
relationship between them if the completion of the base 
rule’s action requires the completion of the inclusion 
rule’s action. In the previous example, to calculate the 
final price, the shipping price must be calculated 
before. 

 

2 Extension relationship: shows the case of a rule 
(extension rule) that extends the functionality of 
another rule (base rule). Two rules have an extension 
relationship between them if the completion of the 
extension rule’s action achieves the completion of the 
base rule’s action. In the previous example, if we 
suppose that a loyal custom may receives a new 
discount. As a result, there is an extension relationship 
between R1 (rule to identify a costumer) and R6 (rule to 
calculate bill) because the functioning of R1’s action 
will complete the functioning of R6’s action. 

 

3 Cause/effect relationship: shows the case of a rule 
(cause rule) that activates another rule (effect rule). 
Two rules have a cause and effect relationship between 
them if the execution of a rule will activate the effect 
rule. As a result, the execution of a cause rule’s action 
triggers a post-event, which necessarily activates the 
effect rule. Thanks to this relationship, the order of 
process activities can be defined by describing the  
post-events based on ECAPE. In our previous example, 
the performance of R1’s action (verify costumer) will 
trigger end-customer – verification post-event. This 
latter is the event activator of rule R2. There is a cause 
and effect relationship between R1 and R2. 

 

Note that there is a slim difference between extension  
and cause/effect relationships. The extension relationship 
concerns the complementarity between rules without 
necessarily having an extension rule that activates a base 
rule. However, the cause/effect relationship concerns the 
activation rule without necessarily having a functioning 
complementarily between the cause and base rules. Another 
point is that the inclusion and extension relationships  
are manually defined by a designer, while cause/effect 
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relationship can be detected automatically by analysing the 
events and post-event parts in rules. 

The fact of defining relationships between rules allows 
determining which rules must be revised in case of change. 
Firstly, all base rules which have an inclusion relationship 
with a changed inclusion rule must be revised by a business 
process designer. In the previous example, if the enterprise 
decides not to deliver its product rule R3 will be deleted 
from the process model. The suppression of an inclusion 
rule (R3) will affect a base rule, which requires the 
completion of the inclusion rule’s action. Due to this, 
human intervention is required to decide how we can 
change a base rule in order to keep process coherence. 
Secondly, all base rules which have an extension 
relationship must be revised when an extension rule is 
changed. In the previous example, if we change rule R1 
(rule responsible for costumer identification), which 
represents an extension rule, then base rule R6 (rule 
responsible for bill calculation) must be revised. Finally, all 
effect rules, which have a cause/effect relationship, must be 
revised if the cause rule is changed in order to ensure the 
activation of these rules. For example, the consequence of 
removing rule R1 in the previous running example is the 
inactivation of R2, because R1 is the cause of activating R2. 
For this purpose, a designer must revise the effect rules if 
the cause rule is changed. 

5.2 Development of graph of rules 

To formalise the flexibility management of a process model, 
we propose to translate a business process into a graph of 
rules. Vertices of this graph represent the rules, which are 
the business process, and arcs represent the relationships 
between the various rules. Three types of arcs are identified: 
include arcs that correspond to inclusion relationship; 
extend arcs that correspond to extension relationship, and 
cause/effect arcs that correspond to cause/effect relationship 
between rules. A graph of rules is formally defined as 
follows: 

Definition 1: A graph of rules is a directed graph Gr (R, Y) 
with: 

• R is a set of vertices that represent rules. 

• Y is a set of arcs that represent three kinds of 
relationships. 
1 Yi is a subset of Y such that if yi (ri, rj) then ri is 

included in rj. 
2 Ye is a subset of Y such that if ye (ri, rj) then ri 

extends rj. 
3 Yc is a subset of Y such that if yc (ri, rj) then ri 

cause the activation of rj. 

The rule graph of our previous example is illustrated by 
Figure 5. An inclusion arc is represented by a dashed arrow 
with a small diamond head on the side of the base rule. An 
extension arc is represented by a dashed arrow. Finally, a 
cause/effect arc is represented by a plain arrow. Note that 
two vertices can be linked by two arcs. For instance, R3 is 

linked with R5 by cause arc and extend arc (because R3 
cause the activation of R5 and in the same time R2 extend 
R5). 

Figure 5 Rules graph of the purchase order process 

 

5.3 Change impact assessment 

The graph of rules helps determine which rules are impacted 
by a change in a rule. If any vertex changes, all direct 
successor vertices must be revised. Formally this is defined 
as follows: 

Definition 2: let Gr (R, Y) be a rule graph and ri a vertex 
rule such that ri ∈ R. 

The set of ri direct successor neighbours is noted as 
N+(ri) such that ∀rj ∈ N+(ri), ri is either inclusion, extension, 
or, cause rule for the base or effect rule rj. 

• We note Ni
+(ri) the set of direct ri successors such that 

∀rj ∈ N+(ri), ri is an inclusion rule, for the base rule rj. 

• We note Ne
+(ri) the set of direct ri successors such that 

∀rj ∈ N+(ri), ri is an extension rule for the base rule rj. 

• We note Nc
+(ri) the set of direct ri successors such that 

∀rj ∈ N+(ri), ri is a cause rule for the effect rule rj. 

• We note Nc (ri) the set of direct ri predecessors such that 
∀rj ∈ N–(ri), rj is a cause rule for the effect rule ri. 

• We note N*(ri) the set of direct ri neighbours such that 
N*(ri) = Ni

+(ri) ∪ Ne
+(ri) ∪ Nc

+(ri) ∪ Nc
–(ri). If ri ∈ R 

changes, then the designer will have to revise all rules 
N*(ri). 

To keep a process coherent, the change management of the 
process modelling will request from a designer to revise the 
N*(ri) set when a rule ri is changed. In the example of 
Figure 5, rule R5 must be revised if rule R3 is deleted 
because N*(R4) = {R1, R5}. The change management 
notifies the designer to revise rules R1 and R5 in order to 
decide how these rules can be changed. Note that we must 
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check the direct predecessor neighbours Nc
–(ri) for the 

cause/effect relationship since it is not acceptable that a rule 
activates a non-existing rule. For instance, if rule R3 is 
deleted we will also have to revise rule R1 to ensure that this 
letter does not activate a deleted rule. 

However, when changing the set of direct successor 
neighbour’s inclusion and extension rules (Ne

+(ri) ∪ Nc
+(ri)) 

the designer should revise entirely the concerned rules. This 
revision may generate a cascade of rule change. Indeed, if 
one rule changes, the set of inclusion and extension rules 
will be revised and properly changed. This will raise the 
need to revise another set of successor neighbour’s rules of 
the rule that was revised. In the example, if rule R3 is 
changed, then rule R5 (cause rule and inclusion rule) will be 
revised. This revision consists of analysing the entire code 
of rule R5 to decide how we can change the latter in order to 
keep the coherence of the process. If we change rule R5 after 
its revision, this results in revising rule R6. In turn, rule R6 
can be changed after revision, this results into revising rules 
R8 and R7. And so on, until there are no rules to revise. 

In contrast, to change the set of direct successor 
neighbour’s cause rules (Nc

+(ri) ∪ Nc
–(ri)) that do not 

generate a cascade of the change because the designer, in 
this case, the designer should only revise the event and  
post-event parts of the rules that are concerned. In the 
example, if we change rule R3, then rule R1 will be revised. 
This revision consists of updating the post-event to ensure 
that this letter does not activate a deleted rule (as we 
explained above). After this update, we do not need to 
revise another set of direct successor neighbour’s rules. 

The following algorithm summarises the change impact 
of a rule. 

ChangeImpact_Procedure (Rx, stack S) 
{ if NotExist(S, RX) then // test if the rule’s stack S contains the 
rule RX 
 { push (S, RX); // push the rule RX onto stack S } 
   if NotExist(S, Nc

–(RX)) then RX 
  { push (S, Nc

–(RX)); } 
   if NotExist(S, Nc

+(RX)) then 
  { push (S, Nc

+(RX)); } 
   if Ni

+(RX) ≠ Φ then 
 { ChangeImpact_Procedure (Ni

+(RX),S); 
 } Else 
 { if Ne

+(RX) ≠ Φ then 
  {ChangeImpact_Procedure (Ne

+(RX),S); 
  } 
  Else 
   { exit ();}} 
} 

It should be noted that a change cascade is not a 
consequence of the change management that we propose. 
Indeed, this management is not about implementing changes 
but about guaranteeing process consistency. In the previous 
process, rule R3’s change cascade (rules R1, R5, R6, R7, and 

R8) needs to be revised in order to ensure the activation of 
all the rules and the business coherence of the process as 
well. In the following, we suggest how a designer is given 
the possibility of assessing the efforts to put into per change. 

5.4 R2CM model 

In order to offer a tangible estimation of the efforts needed 
to implement rule changes, R2CM is used. Change cost is 
the necessary effort to modify the rules that are subject to 
changes following a change in a rule. For example, if rule 
R3 is deleted and rule R5 is changed in the previous 
example, so the effective change effort applicable to rule R3 
concerns the efforts to change rule R1 plus the efforts to 
change rule R5. However, it is more beneficial to estimate 
the maximum change cost before making any changes. This 
will indicate to a designer the cost of a planned change. For 
this reason, in the R2CM the term ‘cost of change’, denoted 
by ζ(Ri), is used to designate the maximum change cost 
before a change occurs. 

The R2CM is based upon a rule change impact graph 
which is derived from the graph of rules (Figure 6). The 
new graph is defined where vertices represent rules, arcs 
represent relationships between the various rules, and there 
exists one vertex that represents the changed rule and  
does not have predecessors. Note that, the predecessor 
neighbours cause rules of the changed rule in the graph of 
rules become the successor neighbours cause rules in the 
change impact graph because these latter are impacted by 
the rule change (in the previous example, rule R1 become a 
cause rule successor on the changed rule R3). 

Figure 6 the change impact graph of the rule R3 (see online 
version for colours) 

 

By using a rule change impact graph, the R2CM computes 
the cost of change as a function of two parameters: 

1 the distance between a changed rule and each impacted 
rule in this graph 

2 the nature of the relationships between a changed rule 
and each affected rule in this graph. 

Firstly, the overall cost of change of rule Ri is the sum of the 
cost change of the rules with different distances in a rule 
change impact graph. Formally, this will be defined as 
follows: 
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( )
maxd

ii
i 0

CR
=

ζ = ∑  (1) 

where C0 represents the cost of change of rule Ri. In the 
previous example ζ(R3) = C0 + C1 + C2 + C3. 

However, according to Xiao et al. (2007), the nodes 
with the shortest distance are more likely to be directly 
impacted by changes than the node with the longest distance 
away from the changed node. Consequently, the change cost 
of the rules with the shortest distance is greater than the 
change cost of the rules with the longest distance. Formally, 

i i–1C C= α  (2) 

where α is a constant which is always between zero and one 
(0 < α < 1). In this way, from formulas (1) and (2) we 
deduct that the overall cost of change ζ(Ri) is a geometrical 
series with α as a constant ratio. The general term of this 
series is given as follows: 

( )
maxd

0i
1CR

1
−α

ζ =
−α

 (3) 

Secondly, according to the nature of the relationships 
between rules, two qualifications for the change cost can be 
considered: 

• We qualify high change cost (CH) the effort to put into 
changing inclusion and extension relationships because 
the designer has to revise entirely the rules concerned. 

• We qualify low change cost (CL) the effort to put into 
changing a cause/effect relationship because the 
designer has to revise the event and post-event part of 
the rules concerned. 

In this way, the rules cost change with distance i denoted by 
Ci is defined as follows: 

i ii i L i HC n c m c= +  (4) 

where ni is the number of the case rules at distance i and mi 
is the number of inclusion and extension rules at distance i. 
However, as explained above, the change cost of these  
rules is higher then change cost of cause/effect rules. 
Consequently, formula (4) becomes: 

( )
ii Hi iC cn m= β+  (5) 

where β is a constant which is always between zero and one 
(0 < β < 1). 

To sum up, the R2CM estimates the effort needed to 
implement the rule change by using the following formulas: 

( )

[ ] ( )

max

i

d

0i

max i Hi i

1C ,  such that ]0,1[R
1

i 1,d ,C c ,  such that ]0,1[n m

⎧ −α
ζ = α∈⎪

−α⎨
⎪∀ ∈ = β∈β+⎩

 

To demonstrate the feasibility of the R2CM and to 
determine α and β values, a series of experiments can be 
conducted by using a set of real business processes and 

studying the impact of changes on processes. The purpose is 
to elaborate a consistent mathematical model of α and β (or 
interval). 

6 Process verification 

Companies must have reliable business processes to achieve 
their objectives. Reliability is a crucial issue because it lets 
companies capitalise on their information systems. A formal 
verification of a process is required to ensure that this 
process meets all the agreed-upon requirements. In our  
rule-based approach, we use formal models to identify 
possible functional errors. Among the different models used 
in the literature for this type of verification, we opted for 
PNs (Van der Aalst, 1998). In this section, we detail how to 
write an ECAPE rule using PNs. However, among the 
various types of PNs, which one does support the semantics 
of ECAPE rules set? 

6.1 PN for business process verification 

PN was introduced to model and analyse the behaviour of 
systems based on a graph model. A PN is a bipartite 
directed graph with two types of nodes: a place models a 
condition or state of a system resource, and a transition 
models an event or action that takes place within the system. 
The conditions necessary to trigger an action are modelled 
by arcs that connect one place to one transition. For 
modelling the dynamic aspect of the system, tokens are 
used. Indeed, if a place contains a token that means the 
condition represented by this place is verified or indicates 
the availability of a resource in case several tokens exist in 
one place. One transition is fired if there are a defined 
number of tokens at the input place. After firing a transition, 
the tokens are consumed from input places and will be 
placed at the end of all output places. Finally, a PN marking 
is the distribution of tokens over the places at a given 
instance. 

To detect errors that a business process could contain, 
several studies have exploited the strengths of PN. An 
example of this is the works conducted by research team of 
Eindhoven University of Technology, which proposes to 
use a PN, called workflow nets (WF-nets), to validate  
and verify workflows (Van der Aalst, 1998). WF-nets 
require a single initial and final place, transitions represent 
real activities, or routing and places represent pres  
and post-conditions. However, the regular PNs miss 
expressiveness since they cannot distinguish the existence 
of two tokens in the same place. For this reason, several PN 
extensions have been proposed. The well-known extension 
is the coloured Petri net (CPN). Indeed, in this kind of net, 
tokens are typed (coloured) to express the different 
characteristics of resources. In this way, the pre-conditions 
such as “only tokens which have of a given colour can be 
are fired” can be supposed. The CPN is widely used to 
verify web services composition and business process. An 
example of this is the paper of Yang et al. (2005). 
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Unfortunately, the semantics of the classical PN and 
CPN do not allow modelling the behaviour of ECA  
rule-based process (specifically, the ECAPE rule-based 
process). In classical Petri nets (or CPNs), when all the 
conditions necessary for firing one transition are satisfied, 
the transition may be fired but not necessarily, while in an 
ECA system, it must be fired. According to Eshuis and 
Dehnert (2003) the environment of classical Petri net 
models closed systems because it does not influence the 
firing of transitions. In contrast, an ECA system is open 
because it usually needs some additional input event to 
become enabled. For this reason, Eshuis and Dehnert (2003) 
propose in a reactive Petri net (RPN) which considers two 
type of transitions: internal transitions (Tinternal) and external 
transitions (Texternal). The firing rule of Tinternal is ‘the 
transition must be fired’ rather then ‘the transition can be 
fired’. At the same time, the external transitions interaction 
with the environment and the classical firing rule can is 
preserved to ensure the stability of the PN. Therefore, RPN 
has two possible states: stable and unstable. A state is stable 
if no internal transition is enabled, it is unstable otherwise. 
A stable state can become unstable if some external 
transition fires. In an unstable state, the RPN must fire some 
enabled internal transitions. By firing these transitions, a 
new state is reached. If the new state is stable, the PN has 
finished its reaction. 

Despite possibility of using RPNs to model ECAPE 
rules set, this Net is not enough. It does not explicitly 
include the necessary constructions to model complex 
events. We are interested in another PN called conditional 
coloured Petri net (CCPN). This CPN is proposed by Li and 
Marín (2004) in order to model an ECA rule for an active 
database system. The particularity of this PN is the fact of 
defining some new elements on CPN to characterise ECA 
rules features. Especially, the complex events can be 
modelled by defining new types of places and new types of 
transitions. As a result, ECA rules can be easily modelled 
by CCPN by considering the events and actions of one rule 
as places which are inputs and outputs transition, ECA rules 
themselves are mapped onto transitions and conditions are 
attached to transitions. However, a CCPN cannot model 
perfectly an ECAPE rules set, because each ECAPE rule 
may trigger one or more rules by describing explicitly the 
events triggered. As a result, the rule sequence can be 
automatically deducted. 

Taking into account how CCPN models complex events, 
we suggest a new CPN called ECAPE net. This latter allows 
rewriting formally an ECAPE rules set in order to analyse 
and verify the business processes 

6.2 ECAPE net 

An ECAPE net is a CPN that models the ECAPE rules 
execution sequence, which represents the logic of a business 
process. A rule’s events are represented by places. The input 
places represent events that activate one rule and the output 
places represent the events triggered by the execution  
of a rule action. In turn, a rule’s action is represented  
by transitions. Finally, a rule’s condition (and a rule’s  

post-condition) is attached to a transition (Figure 7). 
However, in an ECAPE rule, an event can be primitive or 
composite. In addition, a rule’s action consists of various 
predefined instructions. 

Figure 7 General structure of ECAPE net 

 

Figure 8 ECAPE net elements 

 

For this reason, we need new PN elements that would help 
build composite events from primitive events and to model 
an action’s instructions. Figure 8 illustrates the ECAPE 
net’s elements. In this PN, there are five types of places, 
two types of transitions, and two types of arcs: 

• Primitive place used to represent a primitive event. 

• Composite place used to represent a composite event. 

• Intermediary place used specially in ANY event 
constructor to build a composite event. 

• Start place used to represent the first primitive event 
that launches the process execution. 

• End place used to represent the last primitive event that 
causes the end of process execution. 

• Composite transition used to generate a composite 
event from primitive event. This will be explained later. 

• Action transition used to represent the instructions of a 
rule’s action. 

• Normal arc used to represent the PN control flow. 
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• Inhibitor arc used specially in NOT event constructor 
to build negation composite events. 

Now, we give a formal definition of an ECAPE net. 

Definition 3: An ECAPE net is a CPN with 11-tuple 
ECAPE net = (Σ, P, T, A, C, W, Activity, Cond, PstCond, 
D, τ): 

• Σ is a finite set of types also called colour sets. 

• P is a finite set of places that model the rule’s event. P 
is divided into three subsets: P = Pprim ∪ Pcomp ∪ Pinter 
where Pprim, Pcomp and Pinter are set of primitive, 
composite and intermediary places. Pprim contains two 
subsets: Pstart ∈ Pprim and PEnd ∈ Pprim where Pstart and 
PEnd are the set of start place and end place. 

• T is a finite set of transitions. T is divided into two 
subsets: T = Tcomp ∪ Tcopy ∪ Taction where Tcomp and 
Taction are a set of composite and action transitions. 
Taction is divided into four subsets: Taction = TExecute ∪ 
TSkip ∪ TCancel ∪ TDiscover where TExecute, TSkip, TCancel and 
TDiscover are the set of Execute, Skip, Cancel, and 
Discover transitions. 

• A is a set of directed arcs that connects a place to a 
transition and vice-versa such that A ⊆ (P × T) ∪  
(T × P). A is divided into two subsets: A = Anorm ∪ Ainhi 
where Anorm and Ainhi are set of normal and inhibitor 
arcs. 

• C is a colour function that assigns a unique colour to 
each place p. The colour of a place is denoted by C(p). 
C is defined from P to Σ such that: ∀p ∈ P,  ∃C(p): 
C(p) ∈ Σ 

• W is a function that defines arcs by determining  
the token’s variables that are either consumed  
or produced during operation such that ∀a ∈ A, 
Type(var(W(a)) = C(p(a))) and Type(var(W(a))) ⊆ Σ 
where Type(var(W(a))) is a function that determines 
the types of the variables in an arc. In this formula, the 
first part, expresses that the types of the arc’s variables 
must be compatible with the colours set of the input 
place or output place. And, the second part expresses 
that the token’s types must belong to the colours set of 
the CPN. 

• Activity is a function that is defined from Taction to an 
activity name. 

• Cond is a condition function that is defined from either 
Taction or Tcomp to expressions such that : 

( )actiont T ,Type Boolean where Cond Cond(t)
function evaluates the rule’s condition;
∀ ∈ =

 

( )compt T ,Type Boolean where Cond Cond(t)

function evaluates the condition of a composite 
transition.

∀ ∈ =

 

• PstCond is a condition function that is defined from 
Taction to expressions such that : 

( )actiont T ,Type Boolean where PstCond Cond(t)
function evaluates the rule’s post condition.
∀ ∈ =

 

• D is a time interval function that is defined from Tcomp 
to a time interval [d1, d2] 

• τ is a time stamp function that assigns each token  
in place p a time stamp corresponding to time  
event happen. t is expressed in natural clock with  
the form year: month: day – hour: minute: second.  
For example, a token has time stamp 2009: 02: 06 –18: 
46: 16. 

Note that, in ECAPE net, a token is four-tuple (p, c, data, 
timestamp) where p ∈ P, c ∈ C(p) called the colour, data is 
business information and timestamp specifies the natural 
time when the token is placed into place p. 

Before continuing to explain the ECAPE net, we will 
first, define some usual functions, sets, and notions. 

Firstly, M is the net marking function that is defined 
from P to N (set of all natural numbers) to assign to each 
place a number of tokens. We denote by M0, the initial 
marking (initial state) of the PN. And we denote by Mf, the 
final marking (final state) of the ECAPE net. M(p) is the 
place marking function that is defined from P to N (set of all 
natural numbers) to specify the number of tokens in one 
place at a given state. 

The state of the net may change according to the number 
of tokens during the execution of the net. Indeed, A state Mn 
is called reachable from M1 *

1 n(notation M M )⎯⎯→  if and 
only if there is a firing sequence σ = t1t2...tn–1 such that 

1 nM M .σ⎯⎯→  
Secondly, we define the five following input/output sets: 

• ti  is the input places set of transition t such that 

t {p P : (p, t) A}.= ∈ ∈i  

• n ti  is the input normal arc places set of transition t 
where the arc that connects p to t is a normal arc such 
that n normalt {p P : (p, t) A }.= ∈ ∈i  

• i ti  is the input inhibitor arc places set of transition t 
where the arc that connects p to t is an inhibitor arc 
such that i inhabitort {p P : (p, t) A }.= ∈ ∈i  

• ti  is the output places set of transition t such that 
t {p P : (t, p) A}.= ∈ ∈i  

• pi  is the output transitions set place p such that 

p (t T : (p, t) A).= ∈ ∈i  

Finally, in an ECAPE net, a sequence S from a  
node n1 (place or transition) to a node nk is a sequence  
<n1, n2, ..., nk> such that <ni, ni+1> ∈ A. A sequence is 
elementary if each node is unique. 
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An ECAPE net models the execution of ECAPE rules 
set. To this end, we specify the firing rules of composite and 
action transition of an ECAPE net. 

6.2.1 Definition of the composite transition firing 
rule 

A composite transition is fired if there is at least one token 
in all its input places, the sum of all tokens in all input 
places is more then the multiplicity of normal arcs that 
connect all input places to this composite transition, and all 
conditions attached to the composite transition is true. 
Formally, a composite transition is fired if and only if: 

1 n compp t , M(p) 1∀ ∈ ≥i  

2 ∀p ∈ P, M(p) ≥ W(p, tcomp) 

3 Cond(tcomp) = True. 

Note that a composite transition is also fired when there is 
no token in the time interval [d1, d2] at the input places that 
are connected with inhibitor arcs. 

Figure 9 ECAPE net structures of composite events 

 
(a) (b) (c) 

 
(d) (e) (f) 

 
(g) 

Formally, a composite transition is fired if and only if: 

1 2 i compd [d ,d ], p t , M(p) 1.∀ ∈ ¬∃ ∈ ≥i  As stated before, a 

composite transition is used to generate a composite event: 

• Conjunction event (e1 ∧ e2) expresses that both e1 and 
e2 happen. Figure 9(a) shows how to generate this 
event. The composite transition is fired when both e1 
and e2 are marked. After firing this transition, the 
composite place ec is marked. 

• Disjunction event (e1 ∨ e2) expresses that e1 or e2 
happen. Figure 9(b) shows how to generate this event. 
In fact, one of the two composite transitions is fired 
when e1 or e1 are marked. After firing one of the two 
transitions, the composite place ec is marked. 

• Negation event 1 1 2( e in[d ,d ])¬  expresses that e1 does 
not happen in the time interval [d1, d2]. Figure 9(c) 
shows how to generate this event. In fact, the composite 
transition is fired when e1 is not marked in the time 
interval [d1, d2]. After firing this transition, the 
composite place ec is marked. 

• Sequence event (SEQ(e1, e2)) expresses that event e2 
before event e1. Figure 9(d) shows how to generate this 
event. In fact, the composite transition is fired when 
both e1 and e2 are marked and if τ(e1) < τ(e2). After 
firing of this transition, the composite place ec is 
marked. 

• Simultaneous event (SIM(e1, e2)) expresses that event 
e1 happens at the same time with event e2. Figure 9(e) 
shows how to generate this event. In fact, the composite 
transition is fired when both e1 and e2 are marked and if 
τ(e1) = τ(e2). After firing of this transition, the 
composite place ec is marked. 

• Occurrence event (OCC(n, e1) in [d1, d2]) expresses that 
event e1 occurs n times in the time interval [d1, d2]. 
Figure 9(f) shows how to generate this event. In fact, a 
composite transition is fired when e1 marked with n 
token in the time interval [d1, d2]. After firing this 
transition, the composite place ec is marked. 

• Any event (ANY(m, e1, e2, …, en)) expresses that  
any m events in e1, e2, …, en happen where m < n.  
Figure 9(g) shows how to generate this event. In fact,  
m composite transitions are fired when e1, e2, …, en  
are marked. Each of these m transitions mark an 
intermediary place ei. This will help limit the composite 
transitions fired to m because when ei has m token, the 
last composite transition is fired to generate the 
composite event ec. 

6.2.2 Definition of the action transition firing rule 

An action transition is used to represent the instructions of a 
rule’s action. It is fired if there is at least one token in all its 
input places and all conditions and post-conditions attached 
to it is true. Formally, an action transition is fired if and 
only if: 

1 actionp t ,M(p) 1∀ ∈ ≥i  

2 Cond(taction) = PstCond(taction) = True. 
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However, the skip transition (TSkip) and cancel transition 
(TCancel) have some particular semantic execution. 

As shown in Figure 10, the cancel transition is attached 
to an Execute transition. If cancel transition is fired, all 
tokens of all input places of its attached execute transition 
are removed. And, cancel transition disables execute 
transition. The skip transition is also attached to execute 
transition. If skip transition is fired, all tokens of all input 
places of its attached execute transition are removed and 
one token is added into all output places of it is execute 
transition. Skip transition skips execute transition. 

Figure 10 Cancel and skip transition pattern 

 

Figure 11 ECAPE net of the purchase order 

 

Figure 11 illustrates an ECAPE net of the purchase order 
process example. Here, the events are represented with 
places. The composite events are generated using composite 
transitions and represented by composite events. A rule’s 
actions are represented with action transitions. Finally, the 
rule’s conditions are attached to action transitions. We detail 
the semantics of this PN execution through the following 
execution scenario example. We assume that the first place 
has one token when event (receive order) of rule R1 occurs. 
So this place is a start place because it launches the 

execution of the process. After that marking, the action 
transition, which represents the execution of the action 
request order of rule R1, is fired. Consequently, one token is 
placed in the place, which represents post-event of rule R1 
and triggered by executing R1’s action (check if the 
customer is registered in database). 

After that, if the condition ‘costumer is registered’ is 
satisfied then the two action transitions, which represent 
respectively the initial price calculation action of rule R2 
and shipper selection action of rule R3, are fired. Due to this 
firing, one token is placed in each output place of these  
two action transitions. However, to calculate the final price, 
we need to complete the execution of the initial price 
calculation action and shipping price calculation action. To 
model that, we use a composite event that is generated by a 
composite transition as shown in the figure. This transition 
is fired only if one token is placed in each input places. 
According to our execution scenario, the composite 
transition is fired after firing the action transition, which 
represents the shipping price calculation action of rule R3 
and after placing one token in the output primitive place 
because one token is already placed in a place that shows 
that the initial place calculation action is completed. And so 
on, the token moves along the primitive places, composite 
transitions, composite places and action transitions until it 
reaches n end place, which represents the end process event. 

After detailing the formal ECAPE net definition, we will 
show how to verify the business process using this net. 

6.3 Verification of process using ECAPE net 

Verification ensures the correctness of a process. According 
to Van der Aalst (1998), a business process definition is 
correct if a set of minimal requirements or criteria is 
satisfied. These criteria can be related to the structure of the 
PN (so-called well-structuredness property) or to the 
dynamic of the PN itself (so-called soundness property). 

6.3.1 Well-structuredness property 

The well-structuredness property is proposed in  
Van der Aalst (1998) to formalise the need to satisfy that, in 
a WF-net, every split (OR, AND, etc.) is followed by a 
corresponding join of the same type. This property can be 
used to verify the structure of the UML activity diagrams 
and BPEL4WS code (Dehnert and Zimmermann, 2005). 
However, in an ECAPE rule, the control flow is  
implicitly defined and each rule has a condition and  
post-condition. For this reason, in terms of ECAPE net, the  
well-structuredness property is characterised by the  
need to satisfy, in addition to structural properties, the 
satisfiability of the predicates that represent the condition 
and the post-condition of rules. An ECAPE net is  
well-structuredness if the following three properties are 
verified: 

• supposes that: 
1 an ECAPE net has at least one start place pstart and 

at least one end place pend 
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2 each node of ECAPE net is on a sequence from the 
Pstart place set to Pend place set. 

Formally, the regular property requires to satisfy two 
conditions: 
1 Pstart ≠ Pend ≠ Ø 
2 ∀n ∈ P ∪ T ∃ S such that n ∈ S ∧ pstart ∈ S ∧ pend 

∈ C. 

• Completeness property supposes that each place (or 
transition) of ECAPE net is linked to, at least, one 
transition (or place) except the start place and end 
place. Formally, the completeness property requires to 
satisfy two conditions: 

1 ∀p ∈ P – Pend , ∃t ∈ T such that t p∈ i  

2 ∀t ∈ T, ∃p ∈ P – Pstart such that p t .∈ i  

• Satisfiability property supposes that: 
1 each condition (post-condition) of one transition is 

satisfied 
2 for each ECAPE net path the conjunction the 

condition and post-condition of transitions  
t1, t2 ... tj–1 forming this path is satisfied. 

Formally, the satisfiability property requires to respect 
the following conditions: 
1 ∀t ∈ T, Cond(t) is satisfied and PstCond(t) is 

satisfied 
2 ∀s ∈ Sequences, 

t C
Cond(t) PstCond(t)

∈
∧ ∧├  is 

satisfied such that Sequences is the set of 
distinguish sequence of an ECAPE net. 

The ECAPE net of the previous example (Figure 14) is 
Well-structured because it is regular, complete, and each 
ECAPE net sequence, the conjunction of the condition  
and post-condition of transitions forming this path is 
satisfied├ (costumer is registered) ∧ (IP + SP ≤ FP) ∧ (τ(e1) 
< τ(e2)) is satisfied, ├ (costumer is registered) ∧ (IP + SP ≤ 
FP) is satisfied and ├ (costumer is not registered) is 
satisfied. For this reason, the satisfiability property is 
verified. 

6.3.2 Soundness property 

Soundness property has been introduced in Van der Aalst 
(1998) to formalise the need to satisfy that, in a  
well-structured PN, there are no dead transitions and neither 
Deadlock nor Livelock. A dead transition occurs when all 
transitions are reachable. A Deadlock occurs if a jam 
happens before the condition ‘end’ is reached. Finally, 
Livelock occurs if a subset of transitions are fired in an 
endless cycle. Furthermore, a well-structured PN is sound if 
termination is always possible and once terminated there is 
no residual tokens in the places. In term of well-structured 
ECAPE net, the soundness property is characterised by need 
to satisfy the following conditions: 

• For every state M reachable from initial state, there 
exists a firing sequence leading from state M to end 
state. Formally: 

( ) ( )* *
o fM M M M M∀ ⇒⎯⎯→ ⎯⎯→  

• Final state is the only state reachable from initial state 
with at least one token in place pend. Formally: 

( ) ( )*
0M M 0M M M 0∀ ⇒ =⎯⎯→ ∧ ≥  

• There are no dead transitions in (ECAPE net, pstart). 
Formally: 

* t
0t T M,M  M M M′ ′∀ ∈ ∃ ⎯⎯→ ⎯⎯→  

The ECAPE net of the previous example (Figure 12) is 
sound because, it is well-structured. Secondly, by 
simulating the net, we deduce that there are no dead 
transitions and neither Deadlock nor Livelock (termination 
is always possible). And once terminated there are no 
residual tokens in places. 

Figure 12 The architecture of the BPFAMA framework  
(see online version for colours) 

 

7 The BPFAMA architecture 

In this section, we describe the architecture of the business 
process framework for agility of modelling and analysis 
(BPFAMA), which uses ECAPE rules to model business 
processes in a declarative way. BPFAMA addresses two 
issues: the implementation of rules in business processes’ 
codes make these processes rigid and difficult to maintain, 
and the lack of mechanisms to support the verification of 
processes. The architecture of the BPFAMA is provided in 
Figure 12. The RbBPDL is a cornstone in BPFAMA by 
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adopting the ECAPE formalism to describe a business 
process using a set of rules 

In the specification phase, designers define the elements 
of a new business process or redefine some elements of an 
existing process in order to improve it. The BPFAMA  
rules definer (which represents the business plane, see  
Appendix 2) uses RbBPDL to define business processes. 
One of the requirements on the rules definer is to provide a 
convivial representation and easier way to model business 
processes. A set of complete graphical notations (graphics 
and charts) is needed to represent graphically an RbBPDL 
process. We use URML notations that are proposed by 
Wagner et al. (2006) to describe the rules with graphical 
notations and meta-models inherited from its ancestor 
UML. As a result, the BPFAMA rules definer uses URML 
to graphically describe a business process and transforms 
the URML representation into an RbBPDL format. 

After translating a process into a graph of rules and an 
ECAPE net, the BPFAMA rules behaviour analyser (which 
represents the behaviour plane, see Appendix 2) ensures the 
flexibility of this process by analysing its corresponding 
graph of rules. Afterwards, the rules simulator (which 
represents the operational plane, see Appendix 2) verifies 
the process functioning by analysing the ECAPE net of this 
process. 

In the execution phase, a rule engine interprets the 
fulfilment specification of the actions reported in the rules. 
This interpretation is performed by automating the 
interactions between business participants (information and 
tasks) and allocating the different resources. The activation 
of these rules is ensured by a complex event processing 
(CEP) engine. This engine detects the predefined events 
(primitive of complex events) and alerts the Rule engine 
through messages. When the Rule engine receives a 
message, it activates the rules according to the triggered 
events. Note that, these messages are also submitted back to 
the CEP engine that will treat these messages as incoming 
events. This allows generating composite events. Finally, 

the different log files, historic of events, and traces 
compiled during the execution of rule instances over time 
are stored in a specific base to be used in the diagnostic 
phase. 

In the diagnostic phase, a business activity monitoring 
(BAM) is used to provide real-time information about the 
status and results of the various rules’ actions, the various 
events triggered, and the transactions. Therefore, the 
enterprise is better informed and can make appropriate 
decisions. 

8 Related work 

Our main motivations stem out of the importance of 
improving BPM in terms of flexibility and verification. In 
this section, we discuss two major research directions: what 
is the rule formalism appropriate to manage changes in 
processes and what is the impact of these changes on 
processes? 

First, the combination of business processes and rules 
has been studied for several years. There is a good number 
of research approaches that looked at the pros and cons of 
this combination. These approaches could be classified into 
two categories. The first approach considers that flexibility 
should be an important element of the imperative definition 
languages of processes. For this reason, the first category of 
works proposes to encapsulate rules with web services, like 
the work of Lee et al. (2003). Second category of works 
proposes to extend the imperative languages in order to take 
into account the rules in process model, like the work of 
Van Eijndhoven et al. (2008) which suggest to uses patterns 
to model the process parts that are most variable. And also, 
the work of Boukhebouze et al. (2007) which proposes to 
identify rules in a business process model by adding a ‘rule’ 
activity to BPEL. 

 

Figure 13 Rule languages at different levels of abstraction (see online version for colours) 

 
Source: Wagner (2005) 
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Despite the solutions provided by this approach which 
respond in some way to the problem of imperative 
languages rigidity, they do not guarantee complete 
flexibility including the impact of the change of a rule on 
the rest of the process. Moreover, experiments have shown 
that organisations express their policies and regulations in 
rules form using natural language or adding text annotations 
in their models (Zur Muehlen et al., 2007). However, the 
formulation of rules must be rigorous, concise and precise 
to ensure that these rules are unambiguous, coherent, and set 
out with a common business vocabulary. 

In this spirit, a second approach proposes to model the 
logic of the process with a set of rules using rules languages 
According to Wagner (2005), the rules models can be 
classified, in accordance with to MDA architecture, as 
following three levels of abstraction (Figure 13). 

8.1 Computation independent modelling (CIM) 

Rules metamodels are proposed in the aim to define the 
vocabulary used to express the rules. Indeed, the business 
vocabulary definition can be textually using structured 
English, as proposed by the SBVR in OMG (2008). The 
business vocabulary definition can also be appeared visually 
as conceptual class diagrams in UML, as proposed by 
Wagner (2005). Finally, the business vocabulary definition 
can formally be described as predicate logic or as ontologies 
in RDF and OWL (Wagner, 2005). 

8.2 Platform independent modelling (PIM) 

Rigorous, concise and precise to ensure that these rules are 
unambiguous rules models, supported by languages, are 
proposed to formalise rule expressions. Indeed, the rules 
formalism used in these models depend to what categories 
of rule they represent. An example of theses languages, the 
PENELOPE (Goedertier and Vanthienen, 2006) that uses 
the Deontic logic to formalise the rules in terms of 
obligations and authorisations that feature business 
interactions. Another example is the DECLARE language 
(Pesic et al., 2007) that uses temporal logic to formalise the 
rules that control the execution order of the activities of a 
process. Note that, some general rule markup languages are 
proposed. These languages can be used for interchanging 
rules between different rule languages like RuleML 
(Schroeder and Wagner, 2002). 

However, RuleML language is not appropriate for 
defining a process since elements such as business 
activities, participants, and event, just to cite a few are 
excluded. Furthermore, according to Knolmayer et al. 
(2000) and Lu and Sadiq (2007) the reaction rules (ECA) 
are the most adapted to model rules. This is done in various 
works, like the AgentWork framework of Müller et al. 
(2004), where ECA rules are used for temporal workflow 
management. Our work is positioned in this rule category. 

Thus, the use of the ECA formalism is interesting to 
model, in our framework, business processes. However, in 
the aforementioned declarative process modelling languages 
used this formalism, the modelling flexibility with focus on 

the impact of a rule change on the rest of a process is not 
well looked into. Therefore, there is a need for a more 
powerful formalism that would allow a complete definition 
of this relationship. This way, we opted for the use of 
ECAPE formalism and RbBPDL language. 

8.3 Platform specific modelling (PSM) 

The execution rule models are proposed in order to 
formalise the execution of the rules set as ILOG JRules. 
However, these execution rule models do not allow having 
an explicit execution scenario. As a result, a more powerful 
paradigm is deemed appropriate in order to translate, in an 
easy way, a business process into a formal model and ensure 
the process verification allowing to building an execution 
scenario in an automatic way. This is why we opted for the 
use of ECAPE formalism and ECAPE net. 

Secondly, how to analyse the impact of software change 
is a research topic for several years. This is why literature 
teems with proposals that attempt to answer this delicate 
question. Like OMEGA project proposed in Chen et al. 
(1996), which identify the propagation effects caused by 
code modification in C++ program. Note that, some cost 
models are proposed in order to estimate necessary effort to 
a software development. An example of this is the famous 
COCOMO model (Boehm, 1981). In parallel, some works 
were interested in analysing the impact of a business 
process changes. For instance, the work of Xiao et al. 
(2007) that proposes an approach to support impact analysis 
by using change impact metric. This metric is based on 
distance between a changed rule and each affected rules in a 
generated propagation graphs. This approach is some where, 
similar to our proposed approach. However, the different 
between Xiao’s approach and your, is that we proposed to 
model a business process as a set of rules. This allow, in the 
hand, deploying partially-specified process definitions. In 
other hand, definition of this relationship between rules in 
other to manage the impact of change efficacy. 

9 Conclusions 

In this paper, we proposed a rule-based model to address the 
following two issues: the implementation of rules in 
business processes makes these processes rigid and difficult 
to maintain, and the lack of mechanisms to support the 
verification of these processes. Our model adopted the 
ECAPE formalism to describe processes with rules that are 
afterwards translated into a graph of rule and an ECAPE net 
to manage their flexibility and simulate their execution, 
respectively. The representation of the rules is done with an 
XML-based language called RbBPDL. Finally, we proposed 
the BPFAMA as an integration environment of the different 
elements we proposed. This environment consists of 
different tools namely: rules definer; rules behaviour 
analyser and rules simulator. 

In term of future work, we aim to ensure the reliability 
of the business process execution by using a self-healing 
strategy. To this end, we will attempt to propose a  
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self-healing strategy for the process RbBPDL on the basis 
of the ECAPE format by trying to identify potential risks of 
exceptions and by lunching exception handling in parallel 
with the process execution to intercept the exceptions when 
it take place and react in order to drive the process 
execution towards a stable situation. Another future work 
consists of proposing a set of ECAPE rule patterns that 
allow describing recurrent problems and solutions proposed 
to model a business process using the ECAPE model. The 
objective is to support the re-use of ECAPE rules in distinct 
process definitions. 
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Appendix 1 

RbBPDL expressiveness 

To study the expressiveness of the RbPDL language, we check, in the following table, whether it is possible to realise a subset 
of the workflow pattern1 using this language. If the language supports directly the pattern through one of its constructs, it is 
rated +. If the pattern is not directly supported, it is rated. 

Table A1 Support for the workflow patterns in RbBPDL 

Control-flow patterns Support Explication 

Sequence + Sequence pattern is supported by defining a rule’s post-event which activates another rule 
Parallel split + Parallel split pattern is supported by defining a rule’s post-event with active multiple rules 

simultaneously 
Synchronisation + Synchronisation pattern is supported by defining the a rule activation event as conjunction of a 

set of post-event rules 
Exclusive choice + Exclusive choice pattern is supported by defining a rule’s post-event that activates two rules 

that have two contradictory conditions 
Cancel activity + Cancel activity pattern is supported by using the with the CANCEL instruction with set 

‘cancel all activities’ option to false 
Cancel case + Cancel case pattern is supported by using the with the CANCEL instruction with set ‘cancel 

all activities’ option to true 
Implicit termination + Implicit termination pattern is supported since the process is terminated when there are no 

rules to trigger 
Explicit termination + Explicit termination pattern is supported since the process is terminated when an event that 

belongs to the end events categories is triggered 

Data patterns Support Explication 

Workflow data + Workflow data pattern is supported because all process variables are global variables 
Task data - Not supported 
Task to task + Task to task pattern is supported because the data transfer between one activity to another is 

possible by using the same parameters of input/output or using the COPY instruction 
Task to environment + Task to environment pattern is supported because the data transfer between one activity to an 

external environment is possible by using the COPY instruction 
Data transfer by value - Not supported 
Data transfer by reference + Data transfer by reference pattern is supported because variables defined in the RbBDPL 

instruction are the references to variables declared in <Variable> part 
Task precondition + Task precondition pattern is supported using the condition of the rule 
Task post-condition + Task precondition pattern is supported using the post-condition of rule 

Resource patterns Support Explication 

Direct allocation + Direct allocation pattern is supported by involving participants in a business activity 
Deferred allocation + Deferred allocation pattern is supported using DISCOVER instruction. 
Role-based allocation + Role-based allocation pattern is supported by defining the role of each participant 
Delegation - Not supported 
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Appendix 2 

BPFAMA prototype 

Figure 14 BPFAMA rules definer interface (see online version for colours) 

 

Figure 15 BPFAMA rules behaviour analyser interface (see online version for colours) 
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Figure 16 ECAPE net conversion algorithm 

 

 
 


