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Abstract. We introduce an approach which combines ACO (Ant Colony
Optimization) and IBM ILOG CP Optimizer for solving COPs (Com-
binatorial Optimization Problems). The problem is modeled using the
CP Optimizer modeling API. Then, it is solved in a generic way by a
two-phase algorithm. The first phase aims at creating a hot start for the
second: it samples the solution space and applies reinforcement learning
techniques as implemented in ACO to create pheromone trails. During
the second phase, CP Optimizer performs a complete tree search guided
by the pheromone trails previously accumulated. The first experimental
results on knapsack, quadratic assignment and maximum independent
set problems show that this new algorithm enhances the performance of
CP Optimizer alone.

1 Introduction

Combinatorial Optimization Problems (COPs) are of high importance for the
scientific world as well as for the industrial world. Most of these problems
are NP-hard so that they cannot be solved exactly in polynomial time (unless
P = NP ). Examples of NP-hard COPs include timetabling, telecommunication
network design, traveling salesman problems, Multi-dimensional Knapsack Prob-
lems (MKPs), and Quadratic Assignment Problems (QAPs). To solve COPs, two
main dual approaches may be considered, i.e., Branch and Propagate and Bound
(B&P&B) approaches, and metaheuristic approaches.

B&P&B approaches combine an exhaustive tree-based exploration of the
search space with constraint propagation and bounding techniques which re-
duce the search space. These approaches ensure to find an optimal solution in
bounded time. As a counterpart, they might need exponential computation time
in the worst case [1, 2]. Constraint Programming (CP) is one of the most popular
generic B&P&B approaches for solving COPs modeled by means of constraints:
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it offers high-level languages for modeling COPs and it integrates constraint
propagation and search algorithms for solving them in a generic way. Hence,
solving COPs with CP does not require a lot of programming work. CP is usu-
ally very effective when constraints are tight enough to eliminate large infeasible
regions by propagating constraints. However, as it is generally based on B&P&B
approach, it fail to found a high solution quality with an acceptable computa-
tional time limit.

Metaheuristics have shown to be very effective for solving many COPs. They
explore the search space in an incomplete way and sacrifice optimality guaran-
tees, but gets good solutions in reasonable computational times. However, solving
a new problem with a metaheuristic usually requires a lot of programming work.
In particular, handling constraints is not an easy task and requires designing ap-
propriate incremental data structures for quickly evaluating constraint violations
before making a decision.

Many metaheuristics are based on a local search framework such that the
search space is explored by iteratively perturbing combinations. Among others,
local search-based metaheuristics include simulated annealing [3], tabu search
[4], iterated local search [5], and variable neighborhood search [6]. To ease the
implementation of local search-based algorithms for solving COPs, Van Henten-
ryck and Michel have designed a high level constraint-based language, named
Comet [7]. In particular, Comet introduces incremental variables, thus allow-
ing the programmer to declaratively design data structures which are able to
efficiently evaluate neighborhoods.

In this paper, we propose a generic approach for solving COPs which com-
bines CP Optimizer —a B&P&B-based solver developed by IBM ILOG— with
the Ant Colony Optimization (ACO) metaheuristic [8]. ACO is a constructive
approach (and not a local search-based one): it explores the search space by it-
eratively constructing new combinations in a greedy randomized way. ACO has
shown to be very effective to quickly find good solutions to COPs, but it suffers
from the same drawbacks as other metaheuristics, i.e., there are no optimality
guarantees and quite a lot of programming is required to solve new COPs with
ACO.

By combining ACO with CP Optimizer, we take the best of both approaches.
In particular, we use the CP Optimizer modeling API to describe the problem to
solve. Hence, to solve a new COP with our approach, one only has to model the
problem to solve by means of a set of constraints and an objective function to
optimize, and then ask the solver to search for the optimal solution. This search
is decomposed in two phases. In a first phase, ACO is used to sample the space
of feasible solutions and gather useful information about the problem by means
of pheromone trails. During this first phase, CP Optimizer is used to propagate
constraints and provide feasible solutions to ACO, while in a second phase, it
performs a complete B&P&B to search for the optimal solution. During this
second phase, pheromone trails collected during the first phase are used by CP
Optimizer as value ordering heuristics, allowing it to quickly focus on the most



promising areas of the space of feasible solutions. In both phases, we also use
impacts [9] as an ordering heuristic.

Let us point out that our main objective is not to compete with state-of-
the-art algorithms which are dedicated to solving specific problems, but to show
that ACO can significantly improve the solution process of a generic B&P&B
approach for solving COPs. For this, we chose CP Optimizer as our reference.

The rest of this paper is organized as follows. In Section 2, we recall some
definitions about COP, CP, and ACO. Section 3 describes the CPO-ACO algo-
rithm. In section 4, we give some experimental results on the multidimensional
knapsack problem, the quadratic assignment problem and the maximum inde-
pendent set problem. We conclude with a discussion on some other related work
and further work.

2 Background

2.1 COP

A COP is defined by a tuple P = (X,D,C, F ) such that X = {x1, . . . , xn}
is a set of n decision variables; for every variable xi ∈ X, D(xi) is a finite
set of integer values defining the domain of xi; C is a set of constraints; and
F : D(x1)× . . .×D(xn) −→ R is an objective function to optimize.

An assignment A is a set of variable-value couples denoted < xi, vi > which
correspond to the assignment of a value vi ∈ D(xi) to a variable xi. An assign-
ment A is complete if all variables of X are assigned in A; it is partial otherwise.
An assignment is inconsistent if it violates a constraint and it is consistent other-
wise. A feasible solution is a complete consistent assignment. A feasible solution
A of P is optimal if for every other feasible solution A′

of P , F (A) ≤ F (A′
) if

P is a minimization problem or F (A) ≥ F (A′
) if P is a maximization problem.

2.2 Complete B&P&B approaches

B&P&B approaches solve COPs by building search trees: at each node, one
chooses a non-assigned variable xi and, for each value vi ∈ D(xi), one creates
a new node corresponding to the assignment of xi to vi. This tree search is
usually combined with constraint propagation and bounding techniques. Con-
straint propagation filters variable domains by removing inconsistent values with
respect to some local consistency such as, for example, arc consistency. Bound-
ing techniques compute bounds on the objective function and prune the nodes
for which this approximation is worse than the best feasible solution found so
far. When constraint propagation or bounding techniques detect a failure, one
backtracks to the last choice point to explore another branch. This method is
effective and generic, although it fails to solve some COPs for which constraint
propagation and bounding techniques are not able to reduce the search space to
a reasonable size.



Algorithm 1: Generic ACO framework for solving a COP (X,D,C, F )
Initialize pheromone trails1

while Stopping criteria not reached do2

for Each ant do Construct a complete assignment3

Update pheromone trails4

2.3 Impact-Based search strategies

In constraint programming, as soon as a value vi is assigned to a variable xi,
constraint propagation removes part of the infeasible space by reducing the do-
mains of some variables. Refalo [9] has defined the impact of the assignment
xi = vi as the proportion of search space removed. He has defined the impact
of a value as the average of its observed impacts and the impact of a variable
as the average of the impact of its remaining values. He has shown that these
impacts may be used to define valuable ordering heuristics.

2.4 Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) [8] is one of the most successful strands of
swarm intelligence. Algorithm 1 describes the generic ACO framework: at each
cycle, each ant builds an assignment in a greedy randomized way using pheromone
trails to progressively bias probabilities with respect to previous constructions;
then pheromone trails are updated. We describe the main steps of this algo-
rithm in the next paragraph, with a focus on COPs described by means of a
tuple (X,D,C, F ) so that the goal is to find the best feasible assignment.

Pheromone trails: Pheromone is used to guide the search and a key point lies in
the choice of the components on which pheromone is laid. When the COP is de-
fined by a tuple (X,D,C, F ), one may associate a pheromone trail τ(xi, vi) with
every variable xi ∈ X and every value vi ∈ D(xi). Intuitively, this pheromone
trail represents the desirability of assigning xi to vi. Such a pheromone structure
has shown to be effective to solve, for example, QAPs [10], CSPs [11], and car
sequencing problems [12].

Pheromone trails are used to intensify the search around the best assignments
built so far. In order to balance intensification and diversification, Stützle and
Hoos have proposed in [10] to bound pheromone trails between two parameters
τmin and τmax so that the relative difference between pheromone trails is limited.
Also, pheromone trails are initialized to τmax at the beginning of an ACO search.

Construction of assignments by ants (line 3): Each assignment is built in a
greedy randomized way: starting from an empty assignment, one iteratively
chooses a non assigned variable and a value to assign to this variable, until
all variables have been assigned. The next variable to assign is usually chosen
with respect to some given ordering heuristic (e.g., in increasing order for the



QAP or the car sequencing problem, or with respect to the min-domain heuristic
for CSPs). Once a non assigned variable xi has been chosen, the value vi ∈ D(xi)
to assign to xi is chosen with respect to probability:

p(xi, vi) =
[τ(xi, vi)]α · [η(xi, vi)]β∑

vj∈D(xi)
[τ(xi, vj)]α · [η(xi, vj)]β

(1)

where η(xi, vi) is the heuristic factor associated with the assignment of xi to vi.
The definition of this factor depends on the considered application, and usually
evaluates the impact of this assignment on the objective function. α and β are
two parameters that allow the user to balance the influence of pheromone and
heuristic factors in the transition probability.

The way constraints are handled may be different from a COP to another. For
loosely constrained COPs, such as QAPs [10], maximum clique problems [13], or
MKPs [14], constraints are propagated after each variable assignment in order to
remove inconsistent values from the domains of non assigned variables, so that
ants always build feasible solutions. However, when constraints are tighter so
that it is actually difficult to build feasible solutions, constraint violations may
be integrated in the heuristic factor and in the objective function so that ants
may build inconsistent assignments [11].

Pheromone updating step (line 4): Once each ant has constructed an assignment,
pheromone trails are updated. In a first step, all pheromone trails are decreased
by multiplying them by a factor (1− ρ), where ρ ∈ [0; 1] is the evaporation rate.
This evaporation process allows ants to progressively forget older constructions
and to emphasize more recent ones. In a second step, some assignments are
rewarded by laying pheromone trails. These assignments may be the best of the
cycle and/or the best since the beginning of the search. The goal is to increase
the probability of selecting the components of these assignments during the next
constructions. The pheromone is laid on the trails associated with the rewarded
assignments. When pheromone trails are associated with variable/value couples,
pheromone is laid on the variable/value couples of the assignment to reward. The
quantity of pheromone laid usually is proportional to the quality of the rewarded
assignment. This quantity is often normalized between 0 and 1 by defining it as
a ratio between the value of the assignment to reward and the optimal value (if
it is known) or the best value found since the beginning of the search.

3 Description of CPO − ACO

ACO has shown to be very effective for quickly finding good solutions to many
COPs. However, designing ACO algorithms for new COPs implies a lot of pro-
gramming: if procedures for managing and exploiting pheromone are very similar
from a COP to another so that one can easily reuse them, solving a new COP
implies to write procedures for propagating and checking problem dependent
constraints. Hence, a first motivation for combining ACO with CP is to reuse



Algorithm 2: Phase 1 of CPO −ACO
Input: a COP P = (X,D,C, F ) and a set of parameters

{tmax1 , dmin , itmax , α, β, ρ, τmin , τmax ,nbAnts}
Output: A feasible solution Abest and a pheromone matrix

τ : X ×D → [τmin ; τmax ]
foreach xi ∈ X and foreach vi ∈ D(xi) do τ(xi, vi)← τmax1

repeat2

/* Step 1: Construction of nbAnts feasible solutions */

foreach k ∈ {1, . . . ,nbAnts} do3

Construct a feasible solution Ak using CP Optimizer4

/* Step 2: Evaporation of all pheromone trails */

foreach xi ∈ X and foreach vi ∈ D(xi) do5

τ(xi, vi)← max(τmin , (1− ρ) · τ(xi, vi))6

/* Step 3: Pheromone laying on good feasible solutions */

Let Abest be the best assignment built so far (including the current cycle)7

foreach k ∈ {1, . . . ,nbAnts} do8

if ∀l ∈ {1, . . . ,nbAnts},Ak is at least as good as Al then9

foreach < xi, vi >∈ Ak do10

τ(xi, vi)← min(τmax , τ(xi, vi) + 1
1+|F (Ak)−F (Abest)|

)11

if Abest is strictly better than all feasible solutions of {A1, ...,AnbAnts} then12

foreach < xi, vi >∈ Abest do τ(xi, vi)← min(τmax , τ(xi, vi) + 1)13

until time spent ≥ tmax1 or number of cycles without improvement of14

Abest ≥ itmax or average distance of {A1, ...,AnbAnts} ≤ dmin ;
return Abest and τ15

the numerous available procedures for managing constraints. Moreover, combin-
ing ACO with CP optimizer allows us to take the best of these two approaches:

– During a first phase, CP Optimizer is used to sample the space of feasible
solutions, and pheromone trails are used to progressively intensify the search
around the best feasible solutions.

– During a second phase, CP Optimizer is used to search for an optimal solu-
tion, and the pheromone trails collected during the first phase are used to
guide CP Optimizer in this search.

3.1 First phase of CPO − ACO

Algorithm 2 describes the first phase of CPO − ACO, the main steps of which
are described in the next paragraphs.

Pheromone structure : The pheromone structure is used in order to pro-
gressively intensify the search around the most promising areas, i.e., those that
contain the best feasible solutions with respect to the objective function. This
pheromone structure associates a pheromone trail τ(xi, vi) with each variable



xi ∈ X and each value vi ∈ D(xi). Each pheromone trail is bounded between
two given bounds τmin and τmax , and is initialized to τmax (line 1) as proposed
in [10]. At the end of the first phase, the pheromone structure τ is returned so
that it can be used in the second phase as a value ordering heuristic.

Construction of assignments : At each cycle (lines 2-14), each ant calls CP
Optimizer in order to construct a feasible solution (line 4). Note that during this
first phase, we do not ask CP Optimizer to optimize the objective function, but
simply to find feasible solutions that satisfy all the constraints.

CP Optimizer is used as a black-box with its default search parameters and
each new call corresponds to a restart [9]. In particular, CP Optimizer propagates
constraints using predefined procedures, and when an inconsistency is detected,
it backtracks until finding a feasible solution that satisfies all constraints.

However, variable and value ordering heuristics procedures are given to CP
Optimizer. The procedure that chooses the next variable xi to assign is based on
the variable impact heuristic of [9], i.e., it chooses the variable with the highest
impact. The procedure that chooses the next value vi to be assigned to xi is
defined according to ACO: vi is randomly chosen in D(xi) w.r.t. probability

p(vi) =
[τ(xi, vi)]α · [1/impact(vi)]β∑

vj∈D(xi)
[τ(xi, vj)]α · [1/impact(vj)]β

where impact(vi) is the observed impact of value vi as defined in [9], and α
and β are two parameters that weight the pheromone and impact factors respec-
tively. Hence, during the first cycle, values are randomly chosen with respect to
impacts only as all pheromone trails are initialized to the same value (i.e., τmax ).
However, at the end of each cycle, pheromone trails are updated so that these
probabilities are progressively biased with respect to past constructions.

It is worth mentioning here that our CPO-ACO framework is designed to
solve underconstrained COPs that have a rather large number of feasible solu-
tions (such as, for example, MKPs or QAPs): when solving these problems, the
difficulty is not to build a feasible solution, but to find the feasible solution that
optimizes the objective function. Hence, on these problems CP Optimizer is able
to build feasible solutions very quickly, with very few backtracks. Our CPO-ACO
framework may be used to solve more tightly constrained COPs. However, for
these problems, CP Optimizer may backtrack a lot (and therefore need more
CPU time) to compute each feasible solution. In this case, pheromone learning
will be based on a very small set of feasible solutions so that it may not be very
useful and CPO-ACO will simply behave like CP Optimizer.

Pheromone evaporation : Once every ant has constructed an assignment,
pheromone trails are evaporated by multiplying them by (1− ρ) where ρ ∈ [0; 1]
is the pheromone evaporation rate (lines 5-6).



Pheromone laying step: At the end of each cycle, good feasible solutions (with
respect to the objective function) are rewarded in order to intensify the search
around them. Lines 8-11, the best feasible solutions of the cycle are rewarded.
Lines 12-13, the best feasible solution built so far is rewarded if it is better than
the best feasible solutions of the cycle (otherwise it is not rewarded as it belongs
to the best feasible solutions of the cycle that have already been rewarded).
In both cases, a feasible solution A is rewarded by increasing the quantity of
pheromone laying on every couple < xi, vi > of A, thus increasing the probability
of assigning xi to vi. The quantity of pheromone added is inversely proportional
to the gap between F (A) and F (Abest).

Termination conditions: The first phase is stopped either if the CPU time
limit tmax1 has been reached, or if Abest has not been improved since itmax

iterations, or if the average distance between the assignments computed during
the last cycle is smaller than dmin , thus indicating that pheromone trails have
allowed the search to converge. We define the distance between two assignments
with respect to the number of variable/value couples they share, i.e., the distance
between A1 and A2 is |X|−|A1∩A2|

|X|

3.2 Second phase of CPO − ACO

At the end of the first phase, the best constructed feasible solution Abest and
the pheromone structure τ are forwarded to the second phase. Abest is used to
bound the objective function with its cost. Then, we ask CP Optimizer to find
a feasible solution that optimizes the objective function F : in this second phase,
each time CP Optimizer finds a better feasible solution, it adds a constraint to
bound the objective function with respect to its cost, and it backtracks to find
better feasible solutions, or prove the optimality of the last computed bound.

Like in the first phase, CP Optimizer is used as a black-box with its default
search parameters, and it uses impacts as variable ordering heuristic. However,
the value ordering heuristic is defined by the pheromone structure τ : given a
variable xi to be assigned, CP Optimizer chooses the value vi ∈ D(xi) which
maximizes the formula: [τ(xi, vi)]α · [1/impact(vi)]β .

Note that we have experimentally compared different other frameworks which
are listed below:

– We have considered a framework where, at the end of the first phase, we only
return Abest (which is used to bound the objective function at the beginning
of the second phase) and we do not return the pheromone structure (so
that the value ordering heuristic used in the second phase is only defined
with respect to impacts). This framework obtains significantly worse results,
showing us that the pheromone structure is a valuable ordering heuristic.

– We have considered a framework where, during the first phase, the sampling
is done randomly, without using pheromone for biasing probabilities (i.e., α
is set to 0). This framework also obtains significantly worse results, showing
us that it is worth using an ACO learning mechanism.



– We have considered a framework where, during the second phase, the value
ordering heuristic is defined by the probabilistic rule used in the first phase,
instead of selecting the value that maximizes the formula. This framework
obtains results that are not significantly different on most instances.

4 Experimental evaluation of CPO-ACO

4.1 Considered problems

We evaluate our CPO-ACO approach on three well known COPs, i.e., Multi-
dimensional Knapsack problem (MKP), Quadratic Assignment Problem (QAP)
and the Maximum Independent Set (MIS).

The Multidimensional Knapsack problem (MKP) involves selecting a subset of
objects in a knapsack so that the capacity of the knapsack is not exceeded and
the profit of the selected objects is maximized. The associated CP model is such
that

– X = {x1, . . . , xn} associates a decision variable xi with every object i;
– ∀xi ∈ X, D(xi) = {0, 1} so that xi = 0 if i is not selected, and 1 otherwise;
– C = {C1, . . . , Cm} is a set ofm capacity constraints such that each constraint
Cj ∈ C is of the form

∑n
i=1 cij · xi ≤ rj where cij is the amount of resource

j required by object i and rj is the available amount of resource j;
– the objective function to maximize is F =

∑n
i=1 ui · xi where ui is the profit

associated with object i.

We have considered academic instances with 100 objects which are available at
http://people.brunel.ac.uk/˜mastjjb/jeb/orlib/mknapinfo.html. We have consid-
ered the first 20 instances with 5 resource constraints (5-100-00 to 5-100-19); the
first 20 instances with 10 resource constraints (10-100-00 to 10-100-19) and the
first 20 instances with 30 resource constraints (30-100-00 to 30-100-19).

The Quadratic Assignment Problem (QAP) involves assigning facilities to loca-
tions so that a sum of products between facility flows and location distances is
minimized. The associated CP model is such that

– X = {x1, . . . , xn} associates a decision variable xi with every facility i;
– ∀xi ∈ X, D(xi) = {1, . . . , n} so that xi = j if facility i is assigned to location
j;

– C only contains a global all different constraint among the whole set of
variables, thus ensuring that every facility is assigned to a different location;

– the objective function to minimize is F =
∑n
i=1

∑n
j=1 axixj bij where axixj is

the distance between locations xi and xj , and bij is the flow between facilities
i and j.

We have considered instances of the QAPLIB which are available at
http://www.opt.math.tu-graz.ac.at/qaplib/inst.html.



The Maximum Independent Set (MIS) involves selecting the largest subset of
vertices of a graph such that no two selected vertices are connected by an edge
(this problem is equivalent to searching for a maximum clique in the inverse
graph). The associated CP model is such that

– X = {x1, . . . , xn} associates a decision variable xi with every vertex i;
– ∀xi ∈ X, D(xi) = {0, 1} so that xi = 0 if vertex i is not selected, and 1

otherwise;
– C associates a binary constraint cij with every edge (i, j) of the graph.

This constraint ensures that i and j have not been both selected, i.e., cij =
(xi + xj < 2).

– the objective function to maximize is F =
∑n
i=1 xi.

We have considered instances of the MIS problem which are available at
http://www.nlsde.buaa.edu.cn/∼kexu/benchmarks/graph-benchmarks.htm.

4.2 Experimental settings

For each problem, the CP model has been written in C++ using the CP Opti-
mizer modeling API. It is worth mentionning here that this CP model is straight-
forwardly derived from the definition of the problem as given in the previous
section: it basically declares the variables together with their domains, the con-
straints, and the objective function.

We compare CPO-ACO with CP Optimizer (denoted CPO). In both cases,
we used the version V2.3 of CP Optimizer with its default settings. However, for
CPO-ACO, variable and value ordering heuristics are given to CPO (see Section
3). For CPO, variable and value ordering heuristics are defined with respect to
impacts as proposed in [9].

For all experiments, the total CPU time has been limited to 300 seconds on
a 2.2 Gz Pentium 4. For CPO-ACO, this total time is shared between the two
phases as follows: tmax1 = 25% of the total time (so that phases 1 cannot spend
more than 75s); dmin = 0.05 (so that phase 1 is stopped as soon as the average
distance is smaller than 5%); and itmax = 500 (so that phase 1 is stopped if Abest
has not been improved since 500 cycles). The number of ants is nbAnts = 20;
pheromone and impact factors are respectively weighted by α = 1 and β = 2;
and pheromone trails are bounded between τmin = 0.01 and τmax = 1.

However, we have not considered the same pheromone evaporation rate for
all experiments. Indeed, both MKP and MIS have 0 − 1 variables so that, at
each cycle, one value over the two possible ones is rewarded, and ACO converges
rather quickly. For the QAP, all domains contain n values (where n is equal to
the number of variables) so that, at each cycle, one value over the n possible ones
is rewarded. In this case, we speed-up the convergence of ACO by increasing the
evaporation rate. Hence, ρ = 0.01 for MKP and MIS whereas ρ = 0.1 for QAP.

For both CPO and CPO-ACO, we performed 30 runs per problem instance
with a different random-seed for each run.



Results for the MKP
CPO CPO −ACO

Name # I # X avg (sd) >avg >t−test avg (sd) >avg >t−test

5.100-* 20 100 1.20 (0.30) 0% 0% 0.46 (0.23) 100% 100%

10.100-* 20 100 1.53 (0.31) 0% 0% 0.83 (0.34) 100% 100%

30.100-* 20 100 1.24 (0.06) 5% 0% 0.86 (0.08) 95% 85%

Results for the QAP
CPO CPO −ACO

Name # I # X avg (sd) >avg >t−test avg (sd) >avg >t−test

bur* 7 26 1.17 (0.43) 0% 0% 0.88 (0.43) 100% 57 %

chr* 11 19 12.11 (6.81) 45% 9% 10.99 (6.01) 55 % 45 %

had* 5 16 1.07 (0.89) 0% 0% 0.54 (1.14) 100% 60 %

kra* 2 30 17.46 (3.00) 0% 0% 14.99 (2.79) 100% 100%

lipa* 6 37 22.11 (0.82) 0% 0% 20.87 (0.75) 100% 100%

nug* 15 20 8.03 (1.59) 7% 0% 5.95 (1.44) 93 % 80 %

rou* 3 16 5.33 (1.15) 33% 0% 3.98 (1.00) 67 % 67 %

scr* 3 16 4.60 (2.4) 33% 0% 5.12 (2.60) 67 % 0 %

tai* 4 16 6.06 (1.35) 25% 25% 4.84 (1.25) 75 % 50 %

Results for the MIS
CPO CPO −ACO

Name # I # X avg (sd) >avg >t−test avg (sd) >avg >t−test

frb-30-15-* 5 450 9.83 (1.86) 0% 0% 9.46 (2.00) 80% 20%

frb-35-17-* 5 595 11.62 (2.05) 60% 0% 11.82 (2.31) 40% 0%

frb-40-19-* 5 760 13.47 (1.92) 20% 0% 12.85 (2.22) 80% 20%

frb-45-21-* 5 945 15.40 (2.43) 0% 0% 14.35 (1.82) 100% 80%

frb-50-23-* 5 1150 16.24 (2.32) 20% 0% 15.84 (2.00) 80% 20%

frb-53-24-* 5 1272 18.15 (2.55) 0% 0% 16.86 (1.84) 100% 80%

frb-56-25-* 5 1400 17.85 (2.37) 20% 0% 16.89 (1.08) 80% 40%

frb-59-26-* 5 1534 18.40 (2.44) 40% 0% 18.37 (2.16) 60% 20%

Table 1. Comparison of CPO and CPO-ACO on the MKP, the QAP and the MIS.
Each line successively gives: the name of the class, the number of instances in the class
(#I), the average number of variables in these instances (#X), the results obtained by
CPO (resp. CPO-ACO), i.e., the percentage of deviation from the best known solution
(average (avg) and standard deviation (sd)), the percentage of instances for which CPO
(resp. CPO-ACO) has obtained better average results (>avg), and the percentage of
instances for which CPO (resp. CPO-ACO) is significantly better w.r.t. the statistical
test.



4.3 Experimental results

Table 1 gives experimental results obtained by CPO and CPO-ACO on the
MKP, the QAP and the MIS. For each class of instances and each approach,
this table gives the percentage of deviation from the best known solution. Let
us first note that CPO and CPO-ACO (nearly) never reach the best known
solution: indeed, best known solutions have usually been computed with state-of-
the-art dedicated approaches. Both CPO and CPO-ACO are completely generic
approaches that do not aim at competing with these dedicated approaches which
have often required a lot of programming and tuning work. Also, we have chosen
a reasonable CPU time limit (300 seconds) in order to allow us to perform a
significant number of runs per instance, thus allowing us to use statistical tests.
Within this rather short time limit, CPO-ACO obtains competitive results with
dedicated approaches on the MKP (less than 1% of deviation from best known
solutions); however, it is rather far from best known solutions on many instances
of the QAP and the MIS.

Let us now compare CPO with CPO-ACO. Table 1 shows us that using
ACO to guide CPO search improves the search process on all classes except
two. However, this improvement is more important for the MKP than for the
two other problems. As the two approaches have obtained rather close results on
some instances, we have used statistical tests (t-test with α = 0.05) to determine
if the results are significantly different or not. For each class, we report the
percentage of instances for which an approach has obtained significantly better
results than the other one (column >t−test of table 1). For the MKP, CPO-ACO
is significantly better than CPO for 57 instances, whereas it is not significantly
different for 3 instances. For the QAP, CPO-ACO is significantly better than
CPO on a large number of instances. However, CPO is better than CPO-ACO on
one instance of the class tai* of the QAP. For the MIS, CPO-ACO is significantly
better than CPO on 35% of instances, but it is not significantly different on all
other instances.

5 Conclusion

We have proposed CPO-ACO, a generic approach for solving COPs defined by
means of a set of constraints and an objective function. This generic approach
combines a complete B&P&B approach with ACO. One of the main ideas behind
this combination is the utilization of the effectiveness of (i) ACO to explore the
search space and quickly identify promising areas (ii) CP Optimizer to strongly
exploit the neighborhood of the best solutions found by ACO. This combination
allows us to reach a good balance between diversification and intensification
of the search: diversification is mainly ensured during the first phase by ACO;
intensification is ensured by CP optimizer during the second phase.

It is worth noting that thanks to the modular nature of IBM ILOG CP Opti-
mizer that clearly separates the modeling part of the problem from its resolution
part, the proposed combination of ACO and CP was made in natural way. Hence,



the CPO-ACO program used was exactly the same for the experiments on the
different problems used in this work.

We have shown through experiments on three different COPs that CPO-ACO
is significantly better than CP Optimizer.

5.1 Related Works

Recent research has focused on the integration of ACO in classical branch and
bound algorithms, but most of them were applied on specific problems and/or
proposed a combination based on an incomplete search.

In particular, B.Meyer has proposed in [15] two hybrid algorithms where
the metaheuristic Ant Colony Optimization (ACO) was coupled with CP. In
his work, Meyer has proposed a loose coupling where both components run in
parallel, exchanging only (partial) solutions and bounds. Then, he has proposed
a tight coupling where both components collaborate in an interleaved fashion so
that, the constraint propagation was embedded in ACO in order to allow an ant
to backtrack when an association of a value v with a given variable fails. However,
the backtrack procedure was limited at the level of the last chosen variable. This
means that, if all the possible values of the last chosen variable have been tried
without success, the search of an ant ends with failure. The results of this work
show on the machine scheduling problem with sequence-dependent setup time
that the tight coupling is better. But unfortunately, the proposed tight coupling
is not based on a complete search and in the both proposed algorithms; the
author has assumed that the variable ordering is fixed.

Also, we have proposed in [12] an hybrid approach, denoted Ant-CP, which
combines ACO with a CP solver in order to solve constraint satisfaction prob-
lems (without objective function to optimize). Like CPO-ACO, Ant-CP uses the
CP modeling language to define the problem, and ants use predefined CP proce-
dures to check and propagate constraints. However, unlike CPO-ACO, Ant-CP
performs an incomplete search which never backtracks.

5.2 Further work

There are several points which are worth mentioning as further improvements
to CPO-ACO. At the moment, CPO-ACO works well (if we compare it with CP
Optimizer) on the problems for which finding a feasible solution is relatively easy.
In this paper, we have applied CPO-ACO on three different problems without
using problem-dependent heuristics. We plan to study the interest of adding
problem-dependent heuristics, that may improve the efficiency of CPO-ACO
and allow it to become competitve with state-of-the-art approches.

Parameter tuning is another interesting topic. For the moment the parame-
ters of CPO-ACO are roughly tuned using our experience, but we believe that an
adaptive version which dynamically tunes the parameters during the execution
should significantly increase the algorithm’s efficiency and robustness.
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5. H.R.Lourenço, O.Martin, T.Stützle: Iterated local search. In F. Golver and G.

Kochenberger, editors, Handbook of Metaheuristics, volume 57 of International
Series in Operations Research Management Science. Kluwer Academic Publisher
pages 321–353.
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10. Stützle, T., Hoos, H.: MAX −MIN Ant System. Journal of Future Generation
Computer Systems 16 (2000) 889–914

11. C.Solnon: Ants can solve constraint satisfaction problems. IEEE Transactions on
Evolutionary Computation 6(4) (2002) 347–357

12. M.Khichane, P.Albert, C.Solnon: Integration of aco in a constraint programming
language. 6th International Conference on Ant Colony Optimization and Swarm
Intelligence (A ANTS2008) (5217) (2008) 84–95

13. Solnon, C., Fenet, S.: A study of aco capabilities for solving the maximum clique
problem. Journal of Heuristics 12(3) (2006) 155–180

14. Alaya, I., C. Solnon, Ghedira, K.: Ant Colony Optimization for Multi-objective
Optimization Problems. In: 19th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), IEEE Computer Society (2007) 450–457

15. B.Meyer: Hybrids of constructive meta-heuristics and constraint programming: A
case study with ACO. In Chr. Blum, M.J.Blesa, A. Roli, and M. Sampels, editors,
Hybrid Metaheuristics-An emergent approach for optimization. Springer Verlag,
New York (2008)


