
AllDifferent-based Filtering for Subgraph
Isomorphism

Christine Solnon

Université de Lyon, Université Lyon 1, CNRS, LIRIS, UMR5205 CNRS, F-69622,
France

Abstract

The subgraph isomorphism problem involves deciding if there exists a copy of a
pattern graph in a target graph. This problem may be solved by a complete tree
search combined with filtering techniques that aim at pruning branches that do not
contain solutions. We introduce a new filtering algorithm based on local all different
constraints. We show that this filtering is stronger than other existing filterings —
i.e., it prunes more branches— and that it is also more efficient —i.e., it allows one
to solve more instances quicker.

Key words: Subgraph Isomorphism, Constraint Programming, All Different
constraint

1 Introduction

Graphs are widely used in real-life applications to represent structured objects
such as, for example, molecules, images, or biological networks. In many of
these applications, one looks for a copy of a pattern graph into a target graph
[CFSV04]. This problem, known as subgraph isomorphism, is NP-complete in
the general case [GJ79].

Subgraph isomorphism problems may be solved by a systematic exploration of
the search space composed of all possible injective matchings from the set of
pattern nodes to the set of target nodes: starting from an empty matching, one
incrementally extends a partial matching by matching a non matched pattern
node to a non matched target node until either some edges are not matched
by the current matching (the search must backtrack to a previous choice point

Email address: christine.solnon@liris.cnrs.fr (Christine Solnon).

Preprint submitted to Artificial Intelligence 24 December 2009

and go on with another extension) or all pattern nodes have been matched (a
solution has been found). To reduce the search space, this exhaustive explo-
ration is combined with filtering techniques that aim at removing candidate
couples of non matched pattern-target nodes. Different levels of filtering may
be considered; some are stronger than others (they remove more nodes), but
also have higher time complexities.

In this paper, we describe and compare existing filtering algorithms for the
subgraph isomorphism problem, and we introduce a new filtering algorithm
that is stronger. We experimentally evaluate this new filtering algorithm on a
wide benchmark of instances, and we show that it is much more efficient on
many instances.

2 Definitions and notations

A graph G = (N,E) consists of a node set N and an edge set E ⊆ N × N ,
where an edge (u, u′) is a couple of nodes. The set of neighbors of a node u is
denoted adj(u) and is defined by adj(u) = {u′ | (u, u′) ∈ E}. In this paper, we
implicitely consider non directed graphs, such that (u, u′) ∈ E ⇔ (u′, u) ∈ E.
The extension of our work to directed graphs is discussed in Section 5.

A subgraph isomorphism problem between a pattern graph Gp = (Np, Ep) and
a target graph Gt = (Nt, Et) consists in deciding whether Gp is isomorphic to
some subgraph of Gt. More precisely, one should find an injective matching
f : Np → Nt, that associates a different target node to each pattern node, and
that preserves pattern edges, i.e.,

∀(u, u′) ∈ Ep, (f(u), f(u′)) ∈ Et

The function f is called a subisomorphism function.

Note that the subgraph is not necessarily induced so that two pattern nodes
that are not linked by an edge may be matched to two target nodes which
are linked by an edge. This problem is also called subgraph monomorphism
or subgraph matching in the literature.

In the following, we assume Gp = (Np, Ep) and Gt = (Nt, Et) to be the
underlying instance of subgraph isomorphism problem, and we assume without
loss of generality that Np ∩Nt = ∅. We usually denote u or u′ (resp. v or v′)
nodes of Gp (resp. Gt).

We denote #S the cardinality of a set S.

We also define N = Np∪Nt, E = Ep∪Et, np = #Np, nt = #Nt, , n = #Node,

2

ep = #Ep, et = #Et, e = #E, dp and dt the maximal degrees of the graphs
Gp and Gt, and d = max(dp, dt).

3 Filtering for subgraph isomorphism

Subgraph isomorphism problems may be modelled as constraint satisfaction
problems in a very straightforward way. In this section, we first show how to
model and solve subgraph isomorphism problems within a constraint satisfac-
tion framework. Then, we describe different filtering algorithms for subgraph
isomorphism in Sections 3.2 to 3.5, and we compare them in Section 3.6.

3.1 Modeling and solving subgraph isomorphism by means of constraints

A constraint satisfaction problem (CSP) is defined by a set of variables, such
that each variable is associated with a domain (i.e., the set of values that it
may be assigned to), and a set of constraints (i.e., relations that restrict the
set of values that may be assigned to some variables simultaneously). Solving
a CSP involves finding an assignment of values to all variables such that all
constraints are satisfied.

A subgraph isomorphism problem may be modelled as a CSP by associating
a variable (denoted xu) with every pattern node u. The domain of a variable
xu (denoted Du) contains the set of target nodes that may be matched to u.
Intuitively, assigning a variable xu to a value v corresponds to matching the
pattern node u to the target node v. The domain Du is usually reduced to the
set of target nodes the degree of which is higher or equal to the degree of u as
node u may be matched to node v only if #adj(u) ≤ #adj(v).

Constraints ensure that the assignment of variables to values corresponds to
a subisomorphism function. There are two kinds of constraints:

• edge constraints ensure that pattern edges are preserved, i.e.,

∀(u, u′) ∈ Ep, (xu, xu′) ∈ Et

• difference constraints ensure that the assignment corresponds to an injective
function, i.e.,

∀(u, u′) ∈ N2
p , u 6= u′ ⇒ xu 6= xu′

Within this framework, solving a subgraph isomorphism problem involves find-
ing an assignment of the variables that satisfies all constraints. We shall con-

3

sider that a variable is assigned whenever its domain is reduced to a singleton,
i.e., Du = {v} ⇔ xu = v.

Subgraph isomorphism problems modeled as CSPs may be solved by building
a search tree that explores all possible variable assignments until finding a so-
lution. The size of this search tree may be reduced by using filtering techniques
which propagate constraints to remove values from domains. The interested
reader may refer to [RvBW06,Lec09] for more details on the branch and prop-
agate solving process which is usually used to solve CSPs.

We describe in Sections 3.2 to 3.5 different filtering techniques that may be
used to solve subgraph isomorphism problems. Note that some of these filter-
ings (i.e., FC(Diff), GAC(AllDiff), FC(Edges), and AC(Edges)) are generic
constraint propagation techniques that may be used to solve any CSP whereas
some others (i.e., LV2002 and ILF(k)) are dedicated to the subgraph isomor-
phism problem.

3.2 Propagation of difference constraints (FC(Diff) and GAC(AllDiff))

One may filter domains by propagating the difference constraints that ensure
that the matching is an injective function. A simple forward-checking propa-
gation (denoted FC(Diff)) may be done each time a pattern node u is matched
to a target node v by removing v from the domains of all non matched nodes.
This may be done in O(np).

FC(Diff) propagates each binary difference constraint separately. A stronger
filtering may be obtained by propagating the whole set of difference constraints
in order to ensure that all pattern nodes can be assigned to different target
nodes. More precisely, achieving the generalized arc consistency of a global
AllDifferent constraint (denoted GAC(AllDiff)) removes from the domain of
every pattern node u every target node v such that, when u is matched to
v, some other pattern node cannot be matched to a target node of its do-
main without violating some difference constraints. In [Reg94], Régin has
shown how to use the matching algorithm of Hopcroft and Karp for achieving
GAC(allDiff). The time complexity of this algorithm is O(n2

pn
2
t).

Example 1 Let us consider four variables x1, x2, x3, and x4 such that D1 =
{a}, D2 = D3 = {a, b, c}, and D4 = {a, b, c, d}.

FC(Diff) removes a from the domains of x2, x3, and x4.

GAC(AllDiff) also removes a from the domains of x2, x3, and x4. It further
removes b and c from the domain of x4 as if x4 is assigned to b or c, then x2

cannot be assigned to a value different from both x3 and x4.

4

3.3 Propagation of edge constraints (FC(Edges) and AC(Edges))

One may also use edge constraints to filter domains. A simple forward checking
propagation (denoted FC(Edges)) may be done each time a pattern node u
is matched to a target node v by removing from the domain of every node
adjacent to u any target node that is not adjacent to v. This may be done in
O(dpnt).

One may go one step further and check, for every pattern edge (u, u′) and for
every node v ∈ Du, that there is at least one node v′ ∈ Du′ which is adjacent
to v. The target node v′ is called a support of the matching (u, v) for the
edge (u, u′). If a matching (u, v) has no support for an edge, then v can be
removed from Du. Such edge constraint propagation is iterated until no more
value is removed, thus achieving arc consistency of edge constraints (denoted
AC(Edges)), i.e.,

∀(u, u′) ∈ Ep,∀v ∈ Du,∃v′ ∈ Du′ , (v, v′) ∈ Et

Arc consistency has been widely studied for solving constraint satisfaction
problems, and different filtering algorithms for ensuring arc consistency have
been proposed, that have different time and space complexities. For instance,
a widely used algorithm for achieving arc consistency of a set of binary con-
straints is AC4 [MH86] whose time and space complexities are O(ck2), where
c is the number of constraints and k the maximum domain size. As a CSP
modeling a subgraph isomorphism problem has ep edge constraints and the
maximum domain size is nt, the time complexity of AC(Edges) is O(epn

2
t)

when using AC4.

Example 2 Let us consider the subgraph isomorphism problem displayed in
Fig. 1. Note that this instance has no solution as Gp cannot be mapped into
a subgraph of Gt. Let us suppose that node 3 has been matched to node E so
that D3 = {E}, and that E has been removed from the domains of all other
pattern nodes (e.g., by FC(Diff) or GAC(AllDiff)).

1

2 3 4

5

6

Pattern graph Gp

A

CB D E

F

G

Target graph Gt

Fig. 1. Instance of subgraph isomorphism problem.

5

FC(Edges) removes B, C, and F from the domains of nodes 1, 2, and 4 because
B, C, and F are not adjacent to E whereas 1, 2, and 4 are adjacent to 3.

Like FC(Edges), AC(Edges) removes B, C, and F from the domains of nodes
1, 2, and 4. It is also able to remove G from the domain of 1 as the matching
(1, G) has no support for the edge (1, 4). Indeed, none of the adjacent nodes
of G (i.e., B, F , and E) belongs to the domain of 4. For the same reasons,
AC(Edges) also removes G from the domains of 2 and 4.

3.4 Propagation of a set of edge constraints (LV2002)

Both FC(Edges) and AC(Edges) propagate each edge constraint separately. A
stronger filtering is obtained by propagating edge constraints in a more global
way, i.e., by propagating the fact that a whole set of nodes must be adjacent
to a given node. Indeed, a pattern node u may be matched to a target node
v only if the number of nodes adjacent to u is smaller or equal to the number
of target nodes that are both adjacent to v and belong to domains of nodes
adjacent to u (otherwise some nodes adjacent to u cannot be matched to nodes
adjacent to v). Hence, Larrosa and Valiente have proposed in [LV02] a filtering
algorithm (denoted LV2002) which propagates this constraint. More precisely,
they define the set

F(u, v) = ∪u′∈adj(u)(Du′ ∩ adj(v))

F(u, v) is a superset of the set of nodes that may be matched to nodes that
are adjacent to u if u is matched to v. Therefore, one can remove v from Du

whenever #F(u, v) < #adj(u). One can also remove v from Du whenever
there exists a pattern node u′ ∈ adj(u) such that Du′ ∩ adj(v) = ∅, thus
enforcing arc consistency of edge constraints. The LV2002 filtering algorithm
has a time complexity of O(n2

pn
2
t).

Example 3 Let us consider the subgraph isomorphism problem displayed in
Fig. 1. Let us suppose that node 3 has been matched to node E so that D3 =
{E}, and that E has been removed from the domains of all other pattern nodes
(e.g., by FC(Diff) or GAC(AllDiff)).

Like AC(Edges), LV2002 removes nodes B, C, F , and G from the domains of
nodes 1, 2, and 4. It is also able to remove values A and D from the domain
of 1. Indeed,

F(1, A) = (D2 ∪D3 ∪D4) ∩ adj(A) = {D,E}

F(1, D) = (D2 ∪D3 ∪D4) ∩ adj(D) = {A,E}

6

As, #F(1, A) < #adj(1) and #F(1, D) < #adj(1), both A and D are re-
moved from D1 so that the domain of 1 becomes empty and an inconsistency
is detected.

3.5 Iterated Labelling Filtering (ILF(k))

Zampelli et al have proposed in [ZDS10] a filtering algorithm (called ILF(k))
which exploits the graph structure in a global way to compute labels that are
associated with nodes and that are used to filter domains. More precisely, a
compatibility relationship is defined over the set of node labels. This compat-
ibility relationship is used to remove from the domain of a pattern node u
every target node v such that the label of u is not compatible with the label
of v.

ILF(k) is an iterative procedure that starts from an initial labeling. This ini-
tial labeling may be defined by node degrees. In this case, the compatibility
relationship is the classical ≤ order. This labeling is used to remove from the
domain of a pattern node u every target node v such that #adj(u) 6≤ #adj(v)
as u cannot be matched to v if u has more adjacent nodes than v.

This initial labeling is extended to filter more values. Given a labeling l and
a compatibility relationship � between labels of l, one defines a new labeling
l′ such that the new label l′(u) of a node u is the multiset which contains
all labels of nodes adjacent to u. The compatibility relationship �′ is such
that l′(u) �′ l′(v) if for every occurrence x of a label in l′(u) there exists a
different occurrence y of a label in l′(v) such that x � y. The key point relies
on the computation of the new compatibility relationship �′, which is done
in O(np · nt · (d5/2)) thanks to the matching algorithm of Hopcroft and Karp
(see [ZDS10] for more details).

Such labeling extensions are iterated. A parameter k is introduced, that deter-
mines the number of labeling extensions. Note that iterated labeling extensions
may be stopped before reaching this bound k if some domain has been reduced
to an empty set, or if a fixpoint is reached —such that no more value may be
filtered.

The ILF(k) procedure has a time complexity of O(min(k, np ·nt) ·np ·nt ·d5/2).

[ZDS10] also introduces a weaker filtering, called ILF*(k). The idea is to ap-
proximate, at each iteration, the label compatibility relationship by a total
order so that the next compatibility relation may be computed by sorting
the multisets and sequentially comparing them. The time complexity of this
weaker filtering is O(min(k, np · nt) · np · nt · d).

7

Example 4 Let us consider the subgraph isomorphism problem displayed in
Fig. 1. The initial degree-based labeling is the labeling l such that

• l(5) = l(6) = 2
• l(1) = l(3) = l(C) = l(E) = l(F) = l(G) = 3
• l(2) = l(4) = l(A) = l(B) = l(D) = 4

and the order over this set of labels is such that

• 2 is compatible with 2, 3, and 4,
• 3 is compatible with 3 and 4,
• 4 is compatible with 4.

Hence, one can remove the target nodes C, E, F , and G from the domains of
the pattern nodes 2 and 4.

The extension of this initial degree-based labeling is the labeling l′ such that

• l′(1) = l′(3) = l′(E) = l′(F) = {{3, 4, 4}}
• l′(2) = l′(4) = {{2, 2, 3, 3}}
• l′(5) = l′(6) = {{4, 4}}
• l′(A) = {{3, 3, 4, 4}}
• l′(B) = l′(D) = {{3, 3, 3, 4}}
• l′(C) = {{4, 4, 4}}
• l′(G) = {{3, 3, 4}}

and the order over this set of labels is such that

• {{3, 4, 4}} is compatible with {{3, 3, 4, 4}} and {{3, 4, 4}}
• {{2, 2, 3, 3}} is compatible with {{3, 3, 4, 4}} and {{3, 3, 3, 4}}
• {{4, 4}} is compatible with {{3, 3, 4, 4}}, {{4, 4, 4}} and {{3, 4, 4}}

As l′(1) is not compatible with l′(B), B is removed from D1. For the same
reasons, B, D and G are removed from the domains of nodes 1, 3, 5 and 6.

This new labeling l′ can be further extended, thus removing more values, and
finally proving the inconsistency of this instance.

3.6 Discussion

Most of the algorithms that have been proposed for solving the subgraph
isomorphism problem may be described by means of the filtering algorithms
described in Sections 3.2 to 3.5. In particular:

• McGregor [McG79] combines FC(Diff) and FC(Edges);

8

• Ullmann [Ull76] combines FC(Diff) and AC(Edges);
• Régin [R9́5] combines GAC(AllDiff) and AC(Edges);
• Larrosa and Valiente [LV02] combine GAC(AllDiff) and LV2002;
• Zampelli et al combine GAC(AllDiff), AC(Edges), and ILF(k).

These different filterings achieve different consistencies. Some of them are
stronger than others. In particular,

• GAC(AllDiff) is stronger than FC(Diff);
• LV2002 is stronger than AC(Edges) which is stronger than FC(Edges).

However, GAC(AllDiff) and FC(Diff) are not comparable with FC(Edges),
AC(Edges), LV2002, and ILF(k) as they do not propagate the same con-
straints.

The relations between ILF(k) and other filterings that propagate edge con-
straints (i.e., LV2002, AC(Edges), and FC(Edges)) depend on initial domains:
if the initial domain of every variable contains all target nodes, then ILF(k)
is stronger than LV2002, provided that the number of labeling extensions k is
greater or equal to 2 1 . However, if some domains have been reduced (which is
usually the case when the filtering is done at a node which is not at the root of
the search tree), then ILF(k) is not comparable with LV2002 and AC(Edges).

Indeed, ILF(k) does not exploit domains to filter values as labelings and com-
patibility relationships that are iteratively computed do not depend at all on
domains. To allow ILF(k) to propagate some domain reductions, the iterative
labeling extension process has been combined, before each labeling extension,
with the two following steps:

• Reduction of the target graph with respect to domains: if a target node v
does not belong to any domain, then this node and its incident edges are
discarded from the target graph.
• Strengthening of a labeling with respect to singleton domains: if a domain
Du is reduced to a singleton {v}, then nodes u and v are labeled with a
new label which is not compatible with any other label, except itself, thus
preventing other pattern nodes from being matched with v.

When adding these two steps, ILF(k) is stronger than FC(Edges). However,
it is still not comparable with LV2002 and AC(Edges).

1 k must be greater or equal to 2 if the initial labeling from which the iterative
labeling extension process is started is the empty labeling, that associates the same
label to all nodes. If the initial labeling is defined by node degrees, then one iteration
is enough to obtain a stronger consistency (see [ZDS10] for more details).

9

To propagate more domain reductions, one may start the iterative labeling
extension process from an initial labeling which fully integrates domain re-
ductions in the compatibility relation, so that if a target node v does not
belong to the domain of a pattern node u, then the label associated with v is
not compatible with the label associated with u. More formally, Zampelli et
al have defined in [ZDS10] such an initial labeling, denoted ldom , as follows:

• a different unique label lx is associated with every different (pattern or
target) node x ∈ N ;
• ∀(u, v) ∈ Np×Nt, lu is compatible with lv iff v ∈ Du and #adj(u) ≤ #adj(v).

They have shown that, in this case, ILF(k) is stronger than LV2002 provided
that k ≥ 2. However, if this filtering is stronger, it is also very expensive to
achieve as the complexity of ILF(k) highly depends on the number of different
labels. Indeed, the theoretical complexity of one iteration of ILF(k) (i.e.,O(np·
nt · d5/2)) corresponds to the worst case where all nodes have different labels.
If the number of different pattern and target labels respectively are lp and lt,
then the complexity of one iteration of ILF(k) is O(e+ lp · lt · d5/2).

4 LAD-filtering

The new filtering proposed in this paper basically exploits the fact that, for
each subisomorphism function f : Np → Nt and for each pattern node u ∈ Np,
we have:

(1) ∀u′ ∈ adj(u), f(u′) ∈ adj(f(u))
(2) ∀(u′, u”) ∈ adj(u)× adj(u), u′ 6= u”⇒ f(u′) 6= f(u”)

The first property is a direct consequence of the fact that edges are pre-
served by subisomorphism functions whereas the second property is a direct
consequence of the fact that subisomorphism functions are injections. When
considering the CSP associated with a subgraph isomorphism problem, these
two properties may be expressed by the following conditional constraint:

(xu = v)⇒ (∀u′ ∈ adj(u), xu′ ∈ adj(v) ∧ allDiff ({xu′ |u′ ∈ adj(u)}))

This conditional all different constraint may be propagated by looking for a
covering matching in a bipartite graph, as proposed by Régin in [Reg94]. Let
us recall that a matching of a graph G = (N,E) is a subset of edges m ⊆ E
such that no two edges of m share a same endpoint. A matching m ⊆ E covers
a set of nodes Ni if every node of Ni is an endpoint of an edge of m. In this
case, we shall say that m is a Ni-covering matching of G.

10

F

2

3

4

B

E

G(1,G)

G4

1

2

A

D

G(3,E)

Fig. 2. Bipartite graphs associated with (1, G) and (3, E).

For every couple of nodes (u, v) such that v ∈ Du, we define a bipartite graph
that associates a node with every node adjacent to u or v and an edge with
every couple (u′, v′) such that v′ ∈ Du′ .

Definition 1 Given two nodes (u, v) ∈ Np ×Nt such that v ∈ Du, we define
the bipartite graph G(u,v) = (N(u,v), E(u,v)) such that

• N(u,v) = adj(u) ∪ adj(v);
• E(u,v) = {(u′, v′) ∈ adj(u)× adj(v) | v′ ∈ Du′}

If there does not exist a matching of the bipartite graph G(u,v) that covers
adj(u), then the nodes adjacent to u cannot be matched to all different nodes,
and therefore v can be removed from Du.

This filtering must be iterated until either a domain becomes empty —thus
detecting an inconsistency— or reaching a fixpoint such that for every couple
(u, v) there exists a adj(u)-covering matching of G(u,v). Indeed, when v is
removed from Du, the edge (u, v) is removed from the other bipartite graphs
so that some bipartite graphs may no longer have covering matchings. A key
point for an incremental implementation of this filtering lies in the fact that
the edge (u, v) only belongs to bipartite graphs G(u′,v′) such that u′ ∈ adj(u)
and v′ ∈ adj(v) ∩D(u′).

Example 5 Let us consider the subgraph isomorphism problem displayed in
Fig. 2, and let us define initial domains with respect to node degrees, i.e.

D1 = D3 = D5 = D6 = {A,B,C,D,E, F,G}

D2 = D4 = {A,B,D}

The bipartite graph G(1,G) is displayed in the left part of Fig. 2. There does
not exist a matching of this graph that covers adj(1) because both 2 and 4
can only be matched to B. As a consequence, one can remove G from D1.
Note that on this example, the filtering LV2002 cannot remove G from D1 as
F(1, G) = (D2∪D3∪D4)∩adj(G) = {B,E, F} so that #F(1, G) ≥ #adj(1).
Note also that a simple allDiff constraint on the set of variables {x2, x3, x4}
cannot be used to remove G from D1: one has to combine this allDiff constraint

11

with the fact that, if 1 is matched to G, then 2, 3, and 4 must be matched to
nodes that are adjacent to G.

The bipartite graph G(3,E) is displayed in the right part of Fig. 2. There exists a
matching of this graph that covers adj(3) (e.g., m = {(1, G), (2, A), (4, D)}) so
that E is not removed from D3. However, once G has been removed from D1,
the edge (1, G) is removed from G(3,E) and there no longer exists a matching
that covers adj(3) (as both 1, 2, and 3 can only be matched to A and D).
Hence, E is also removed from D3.

Algorithm 1 describes the resulting filtering procedure, called LAD (Local
All Different) filtering. This procedure takes in input a set S of couples of
pattern/target nodes to be filtered. At the root of the search tree, this set
should contain all couples of pattern/target nodes, i.e., S = {(u, v) | u ∈
Np, v ∈ Du}. Then, at each choice point of the search tree, S should be
initialized with the set of all couples (u, v) such that v ∈ Du and a node
adjacent to v has been removed from the domain of a node adjacent to u since
the last call to LAD-filtering.

Algorithm 1. LAD-filtering
Input: A set S of couples of pattern/target nodes to be filtered
Output: failure (if an inconsistency is detected) or success
In case of success, domains are filtered so that ∀u ∈ Np,∀v ∈ Du, there exists
a matching of G(u,v) that covers adj(u).
while S 6= ∅ do

Remove a couple of pattern/target nodes (u, v) from S
if there does not exist a matching of G(u,v) that covers adj(u) then

Remove v from Du

if Du = ∅ then return failure
S ← S ∪ {(u′, v′) | u′ ∈ adj(u), v′ ∈ adj(v) ∩Du′}

return success

For each couple of nodes (u, v) that belongs to the set S, LAD-filtering checks
if there exists a matching of G(u,v) that covers adj(u). If this is not the case,
then v is removed from Du, and all couples (u′, v′) such that u′ is adjacent to
u, and v′ is adjacent to v and belongs to Du′ are added to S.

The key point is to efficiently implement the procedure that checks if there
exists a covering matching of G(u,v). Régin has shown in [Reg94] that one can
use the algorithm of Hopcroft and Karp [HK73] to find such a matching. The
time complexity of this algorithm is O(a

√
b) where a and b respectively are

the number of edges and nodes in the bipartite graph. As the bipartite graph
G(u,v) has #adj(u) + #adj(v) nodes and, in the worst case (if no domain has
been reduced), #adj(u) · #adj(v) edges, the complexity of checking if there
exists a covering matching of G(u,v) is O(d2 ·

√
d).

12

This complexity may be improved by exploiting the fact that the algorithm
of Hopcroft and Karp is incremental: starting from an empty matching, it
iteratively computes new matchings that contain more edges than the previous
matching, until the matching is maximal. Each iteration basically consists in
a breadth first search and is in O(d2) whereas the number of iterations is
bounded by 2 ·

√
d. However, if one starts the algorithm from a matching that

already contains k edges, and if the maximal matching has l edges, then the
number of iterations is also bounded by l − k (as the size of the matching
increases of at least one at each iteration).

We use this property to improve the time complexity of LAD-filtering. More
precisely, for each pattern node u ∈ Np and each target node v ∈ Du, we
memorize the last computed matching of G(u,v). Each time we have to check if
there still exists a covering matching of G(u,v) (because some nodes adjacent
to v have been removed from domains of nodes adjacent to u), we first update
the last computed matching by removing the corresponding edges. If no edge
has been removed from the matching, then it is still valid; otherwise, the
incremental process is started from this matching.

Theorem 1 The time complexity of LAD-filtering is O(np · nt · d4).

Proof.

• The complexity for computing a first covering matching for all bipartite
graphs is O(np · nt · d2 ·

√
d); this step is performed once, at the beginning

of the search process.
• Each time a value v is removed from a domain Du, one has to update

the matchings of all bipartite graphs G(u′,v′) such that u′ ∈ adj(u) and
v′ ∈ Du′ ∩ adj(v), i.e., of d2 bipartite graphs in the worst case, and each
update is done incrementally in O(d2).
• In the worst case, only one value is removed when updating the covering

matchings of all neighbours and there are np · nt values to remove.

Another key point is to avoid expensive copies at each choice point of the
search tree. Indeed, the space complexity of memorizing the covering match-
ings of all bipartite graphs is O(np ·nt ·d) as there are at most np ·nt bipartite
graphs, and the covering matching of G(u,v) is composed of #adj(u) edges. It
would be very expensive, both in time and memory, to create a copy of all cov-
ering matchings at each choice point, and to restore these covering matchings
after each backtrack. Hence, we do not create a copy of all covering matchings
at each choice point but simply update the current covering matchings after
each backtrack.

Theorem 2 LAD is stronger than LV2002

13

Proof. LAD is at least as strong as LV2002 because, for each pattern node
u ∈ Np and each target node v ∈ Du, if there exists a covering matching
of G(u,v), then all target nodes of this covering matching belong to the set
F(u, v) and therefore #F(u, v) ≥ #adj(u). It is actually strictly stronger: for
example, it is able to detect the inconsistency of the instance displayed in
Figure 1 whereas LV2002 is only able to reduce the domains of the variables
associated with nodes 2 and 4 to {A,B,D} whereas the domains of the other
variables are not reduced.

Theorem 3 LAD is as strong as ILF(k) when labeling extensions are started
from the initial labeling ldom and when they are iterated until reaching a fix-
point, i.e., k =∞.

Proof. The initial labeling ldom associates a unique different label with every
node, and the label of a pattern node u is compatible with the label of a target
node v iff #adj(u) ≤ #adj(v) and v ∈ Du. With such an initial compatibility
relationship, the multiset mu that contains all labels of nodes adjacent to u is
compatible with the multiset mv that contains all labels of nodes adjacent to
v iff there exists a covering matching of G(u,v) (as a label of mu is compatible
with a label of mv iff there is an edge between the corresponding nodes in
G(u,v)). When a node v is removed from a domain Du, both ILF(∞) and LAD
check, for every couple (u′, v′) ∈ adj(u)×adj(v)∩Du′ , that every node adjacent
to u′ may still be matched to a different node adjacent to v′. In both cases,
this is done in an iterative process, until a fixpoint is reached. The difference
between ILF(∞) and LAD is that ILF(∞) recomputes all matchings, for all
possible pattern/target couples, at each iteration, whereas LAD only updates
matchings that have actually been impacted by domain reductions. Hence,
LAD has a lower time complexity.

Actually, ILF(k) performs very poorly when it is started from the initial la-
beling ldom . It performs much better when it is started from an initial labeling
defined with respect to node degrees: with such an initial labeling, the num-
ber of different labels is usually strongly reduced and, therefore, the number
of compatibility relationships to compute is also strongly reduced.

5 Extension to directed graphs

LAD-filtering may be extended to directed graphs in a rather straightforward
way. In directed graphs, edges are ordered couples of nodes and, for each node
u, one distinguishes the set of successor nodes succ(u) that may be reached
by an outgoing edge (i.e., succ(u) = {u′ ∈ N | (u, u′) ∈ E}), from the set
of predecessor nodes pred(u) that may be reached from an ingoing edge (i.e.,
pred(u) = {u′ ∈ N | (u′, u) ∈ E}).

14

To extend LAD-filtering to directed graphs, one has to associate two bipartite
graphs with every couple (u, v) such that u ∈ Np and v ∈ Du:

• the bipartite graph used to check that each successor of umay be matched to
a different successor of v, i.e., Gsucc

(u,v) = (N succ
(u,v), E

succ
(u,v)) with N

succ
(u,v) = succ(u)∪

succ(v) and Esucc
(u,v) = {(u′, v′) ∈ succ(u)× succ(v) | v′ ∈ Du′}

• the bipartite graph used to check that each predecessor of umay be matched
to a different predecessor of v, i.e., Gpred

(u,v) = (Npred
(u,v), E

pred
(u,v)) with Npred

(u,v) =

pred(u) ∪ pred(v) and Epred
(u,v) = {(u′, v′) ∈ pred(u)× pred(v) | v′ ∈ Du′}

Algorithm 2 extends Algorithm 1 to directed graphs. The main difference is
that it maintains a set of triples (u, v, x) such that x ∈ {pred, succ} instead
of a set of couples (u, v). At each iteration, a triple (u, v, x) is removed from
the set, and if the graph Gx

(u,v) does not have a covering matching, then v is
removed from Du and S is updated by adding all triples (u′, v′, x′) such that
an edge has been removed from the bipartite graph Gx′

(u′,v′).

Algorithm 2. LAD-filtering
Input: A set S of triples (u, v, x) such that x ∈ {pred, succ}
Output: failure (if an inconsistency is detected) or success
In case of success, domains are filtered so that ∀u ∈ Np,∀v ∈ Du, there exist
a matching of Gpred

(u,v) that covers pred(u) and a matching of Gsucc
(u,v) that covers

succ(u).
while S 6= ∅ do

Remove a triple (u, v, x) from S
if there does not exist a matching of Gx

(u,v) that covers x(u) then
Remove v from Du

if Du = ∅ then return failure
S ← S ∪ {(u′, v′, succ) | u′ ∈ succ(u), v′ ∈ succ(v) ∩ Du′} ∪
{(u′, v′, pred) | u′ ∈ pred(u), v′ ∈ pred(v) ∩Du′}

return success

6 Experimental results

6.1 Test suite

We consider 1993 subgraph isomorphism instances that come from three dif-
ferent databases.

Scale-free database (classes sf-d-D-n and si-d-D-n) This database
has been used in [ZDS10] to evaluate ILF(k). Graphs of these instances are

15

scale-free networks that have been randomly generated using a power law
distribution of degrees P (d = k) = k−λ with λ = 2.5 (see [ZDS10] for more
details). There are 5 classes. Each of the first four classes, denoted sf-d-D-n,
contains 20 feasible instances such that the target graph has n nodes which
degrees are bounded between d andD, and the pattern graph is extracted from
the target graph by randomly selecting 90% of nodes and edges from the target
graph in such a way that the pattern graph is still connected. The fifth class,
denoted si-d-D-n, contains 20 non feasible instances that have been generated
like instances of the first four classes, excepted that 10% of new edges have
been added in pattern graphs in order to obtain infeasible instances.

GraphBase database (class LV) This database has been used in [LV02]
to evaluate LV2002. It contains 113 undirected graphs with different proper-
ties, i.e., simple, acyclic, connected, biconnected, triconnected, bipartite and
planar. We have considered the 50 first graphs. This set contains graphs rang-
ing from 10 to 128 nodes. Using these graphs, we have generated 793 instances
of the subgraph isomorphism problem by considering all couples of graphs
(Gp, Gt) that are not trivially solved, i.e., such that ep > 0, np ≤ nt and
dp ≤ dt.

Vflib database (classes bvg-n, bvgm-n, m4D-n, m4Dr-n, and r-d-
n) This database has been used in [CFSV99] to evaluate Vflib, a program
dedicated to graph and subgraph isomorphism problems. It contains 63 classes
of instances, and each class contains instances such that the target graph has
from 20 to 1000 nodes. For each class, we have only considered 4 sizes and,
for each size, we have only considered the first 10 instances. We have grouped
classes as follows (see [FSV01] for more details on the original classes):

• bvg-n (where n ∈ {100, 200, 400, 800} corresponds to the number of nodes
of the target graphs);
These classes contain fixed-valence graphs and are composed of the first

10 instances of the original classes six-by-n where x ∈ {2, 4, 6} corresponds
to the size of the pattern graph with respect to the target graph (i.e., 20%,
40%, or 60%) and y ∈ {3, 6, 9} corresponds to the valence. Hence, each class
bvg-n contains 90 instances.
• bvgm-n (where n ∈ {100, 200, 400, 800} corresponds to the number of nodes

of the target graphs);
These classes contain modified bounded-valence graphs and are composed

of the first 10 instances of the original classes six-bym-n where x ∈ {2, 4, 6}
corresponds to the size of the pattern graph with respect to the target graph
(i.e., 20%, 40%, or 60%) and y ∈ {3, 6, 9} corresponds to the valence. Hence,
each class bvgm-n contains 90 instances.

16

• m4D-n (where n ∈ {81, 256, 526, 1296} corresponds to the number of nodes
of the target graphs);

These classes contain graphs that correspond to 4D regular meshes and
are composed of the first 10 instances of the original classes six-m4D-n where
x ∈ {2, 4, 6} corresponds to the size of the pattern graph with respect to the
target graph (i.e., 20%, 40%, or 60%). Hence, each class m4D-n contains 30
instances.
• m4Dr-n (where n ∈ {81, 256, 526, 1296} corresponds to the number of nodes

of the target graphs):
These classes contain graphs that correspond to 4D irregular meshes and

are composed of the first 10 instances of the original classes six-m4Drr-n
where x ∈ {2, 4, 6} corresponds to the size of the pattern graph with respect
to the target graph (i.e., 20%, 40%, or 60%) and r ∈ {2, 4, 6} corresponds to
the degree of irregularity. Hence, each class m4Dr-n contains 90 instances.
• r-p-n (where n ∈ {100, 200, 400, 600} corresponds to the number of nodes

and p ∈ {0.01, 0.05, 0.1} corresponds to the probability of adding an edge
between two nodes).
These classes contain graphs that have been randomly generated and are

composed of the first 10 instances of the original classes six-rand-rp-n where
x ∈ {2, 4, 6} corresponds to the size of the pattern graph with respect to
the target graph (i.e., 20%, 40%, or 60%). Hence, each class r-p-n contains
30 instances.

6.2 Considered solvers

LAD LAD-filtering has been implemented in C and has been integrated in
a complete tree search. At each node of the search tree, the next pattern node
to be assigned is chosen with respect to the minDom heuristic, i.e., we choose
the non assigned pattern node that has the smallest number of target nodes
in its domain. A choice point is created for each target node that belongs to
the domain of the variable to be assigned, and these different choice points
are explored by increasing order of values. At each node of the search tree,
LAD-filtering is combined with GAC(AllDiff). This search procedure is called
LAD.

LAD is compared with ILF(k), with k ∈ {1, 2, 4}, Abscon(GAC), Abscon(FC),
and Vflib.

ILF(k) The original implementation of ILF(k) was in Gecode. We con-
sider here a new implementation in C which uses the same data structures
and the same ordering heuristics as LAD, and which is also combined with
GAC(AllDiff). This new implementation is much more efficient than the orig-

17

inal one. For example, instances of class sf5-8-1000 are solved in 0.19 seconds
with the new implementation of ILF(1) whereas they were solved in 11.2 sec-
onds with the old implementation.

We compare results obtained with different numbers of labeling extension
iterations, i.e., with k ∈ {1, 2, 4}. We do not report results with k > 4 as this
never improves the solution process.

Abscon Abscon is a generic CSP solver written in Java by Lecoutre and
Tabary (see [LT08] for more details). We consider two variants of this solver:

• Abscon(FC) performs a forward checking propagation of the constraints,
i.e., FC(Edges) and FC(Diff).
• Abscon(AC) maintains Arc Consistency of edge constraints. For the differ-

ence constraints, it maintains a consistency that is stronger than AC(Diff)
but weaker than GAC(AllDiff). It also uses symetry breaking techniques.

Both variants consider the minDom/wdeg ordering heuristic for choosing the
next variable to assign, which usually obtains better results than the minDom
heuristic [BHLS04].

Vflib Vflib [CFSV99,CFSV01] is a solver dedicated to graph and subgraph
isomorphism problems, and it is considered as the state-of-the-art for subgraph
isomorphism. It basically performs a forward checking propagation of edge
and difference constraints, but this propagation is limited to nodes that are
adjacent to already matched nodes for difference constraints. It uses specific
variable and value ordering heuristics: variable and values are chosen so that
the subgraph induced by the matched nodes is connected (except when the
pattern or the target graphs are composed of different connected components).

6.3 Experimental comparison on the problem of finding all solutions

Let us first consider the problem of finding all solutions to an instance, thus
allowing a comparison that is less dependent on value ordering heuristics.
For this first experiment, we have discarded instances that have too many
solutions. Hence, we have only considered classes from the scalefree database,
and the smallest classes of the vflib database (such that the target graph has
100 or 81 nodes).

Table 1 displays, for each class and each considered approach, the number of
instances for which all solutions have been found in less than one hour on a 2.26
GHz Intel Xeon E5520, and the average corresponding CPU time. On these

18

class Vflib Abscon(FC) Abscon(AC) ILF(1) ILF(2) ILF(4) LAD

nb time nb time nb time nb time nb time nb time nb time

sf5-8-200 16 72.45 20 1.87 20 2.5 20 0.00 20 0.02 20 0.03 20 0.02

sf5-8-600 0 - 20 138.87 20 141.52 20 0.07 20 0.15 20 0.15 20 0.29

sf5-8-1000 0 - 20 1701.13 20 1746.49 20 0.19 20 0.55 20 0.59 20 0.83

sf20-300-300 0 - 15 233.95 16 490.74 20 0.35 20 5.95 20 8.24 20 2.56

si20-300-300 0 - 6 1009.93 4 528 20 132.33 19 30.42 19 48.75 20 27.77

bvg-100 90 0.02 90 1.88 90 2.98 90 0.04 90 0.07 90 0.13 90 0.75

bvgm-100 89 6.55 90 12.69 90 14.47 90 0.48 90 0.49 90 0.48 90 0.53

m4D-81 30 0.09 30 1.28 30 1.20 30 0.03 30 0.05 30 0.05 30 0.02

m4Dr-81 90 1.65 90 5.08 90 3.17 90 0.18 90 0.19 90 0.20 90 0.18

r0.01-100 21 83.60 23 117.76 28 323.09 29 158.35 29 170.63 29 170.53 29 180.24

r0.05-100 2 513.01 22 16.17 23 67.5 23 135.81 22 107.18 22 108.99 23 19.73

r0.1-100 0 - 26 111.28 27 79.97 28 217.17 28 242 28 243.12 29 148.38

All instances 338 13.83 452 119.85 458 136.30 480 34.41 478 31.09 478 32.07 481 22.34

Table 1
Experimental comparison of success rates and CPU times: for each solver and each
class, the table displays the number of instances for which all solutions have been
found in less than one hour on a 2.26 GHz Intel Xeon E5520, and the corresponding
CPU time (average on completed runs); the last line gives the total number of
instances for which all solutions have been found and the corresponding average
CPU time.

class (#solutions) Abscon(FC) Abscon(AC) ILF(1) ILF(2) ILF(4) LAD

sf5-8-200 (1.10) 1,487 108 5 0 0 0

sf5-8-600 (1.00) 418 418 4 0 0 0

sf5-8-1000 (1.05) 557 557 7 0 0 0

sf20-300-300 (4.45) 225,768 29,795 38 13 7 0

si20-300-300 (0.00) 945,596 27,965 15,342 62 22 27

bvg-100 (218) 8,151 3,183 461 391 391 0

bvgm-100 (145,855) 3,299 42,848 641 379 222 1

m4D-81 (1,253) 1,936 332 701 669 652 23

m4Dr-81 (30,642) 2,544 23,576 1,356 1,304 1,300 12

r0.01-100 (57,291,325) 3,779 6,888,719 10,621 6,717 6,175 60

r0.05-100 (6,062,230) 27,727 649,930 2,857,279 539,522 539,167 5,243

r0.1-100 (30,501,838) 572,628 617,784 2,227,792 2,224,579 2,224,408 320,067
Table 2
Experimental comparison of the number of failed nodes (average on the completed
runs; numbers in brackets give the average number of solutions of the instances of
the class).

19

classes, LAD has solved 1 (resp. 3, 3, 23, 29, and 143) more instances than
ILF(1) (resp. ILF(2), ILF(4), Abscon(AC), Abscon(FC), and Vflib. When
comparing CPU times, we note that LAD is slower than the three variants of
ILF on classes sf-5-8-* and bvg, but these instances are easy ones and LAD
solves them in less than one second. However, on harder classes such as si20-
300-300, r0.05-100, and r0.1-100, LAD is significantly quicker than ILF. On
all classes, LAD and ILF are an order quicker than Abscon. Vflib is competitive
on classes bvg-100, m4D-81, and m4Dr-81, but it is not competitive at all on
all other classes.

Table 2 displays, for each class and each approach except Vflib, the average
number of fail nodes, i.e., the number of times an inconsistency has been
detected when propagating constraints. On some classes, such as sf5-8-*, LAD
and ILF have comparable numbers of failed nodes, and this corresponds to the
classes that are more quickly solved by ILF than by LAD. However, on some
other instances, such as r*-100, LAD explores much less nodes than ILF. The
number of fail nodes of both ILF and LAD is an order smaller than Abscon.

On some classes, Abscon(AC) has more fail nodes than Abscon(FC), but this
often corresponds to the fact that Abscon(AC) solves more instances than
Abscon(FC) and, for these harder instances, the number of fail nodes is sig-
nificantly higher than for the instances that are solved by both approaches.
However, on the two classes bvgm-100 and m4Dr-100, both approaches have
solved all instances and Abscon(AC) has more fail nodes than Abscon(FC).
When looking at results for each instance separately, we note that on most
instances Abscon(AC) has less fail nodes than Abscon(FC) but on a very few
instances it has much more fail nodes.

6.4 Experimental comparison on the problem of finding the first solution

To illustrate scale-up properties of the different approaches and compare them
on a larger set of instances, we now consider the problem of finding the first
solution (or proving inconsistency). For this comparison, we consider instances
of the LV class and the larger classes of the vflib database (such that the target
graph has more than 100 nodes).

Table 3 displays for each solver and each class the number of instances that
have been solved in less than one hour of CPU time on a 2.26 GHz Intel Xeon
E5520. These results strengthen those obtained when looking for all solutions:
LAD is able to solve more instances quicker.

Let us first consider the LV class, that contains instances with many different
features (graphs have different properties and sizes; some instances are feasible
and have many solutions, some others are inconsistent). For this class, LAD has

20

class Vflib Abscon(FC) Abscon(AC) ILF(1) ILF(2) ILF(4) LAD

nb time nb time nb time nb time nb time nb time nb time

LV 468 73.72 685 65.74 691 54.65 698 30.85 699 31.12 699 30.77 728 14.57

bvg-200 90 0.00 90 0.80 90 0.91 90 0.00 90 0.00 90 0.00 90 0.14

bvg-400 90 0.00 90 3.15 90 3.22 90 0.01 90 0.01 90 0.01 90 1.06

bvg-800 90 0.02 90 56.16 90 59.36 90 0.03 90 0.04 90 0.05 90 8.41

bvgm-200 90 0.00 90 1.05 90 0.84 90 0.00 90 0.00 90 0.00 90 0.01

bvgm-400 90 0.01 90 2.01 90 1.85 90 1.55 90 0.01 90 0.01 90 0.04

bvgm-800 90 0.03 90 12.95 90 12.69 90 0.06 90 0.04 90 0.03 90 0.19

m4D-256 29 0.00 30 2.71 30 2.16 30 0.01 30 0.01 30 0.01 30 0.04

m4D-526 23 4.11 30 91.43 30 92.51 29 9.61 30 32.93 29 30.72 30 1.71

m4D-1296 20 0.05 22 287.41 22 248.51 29 52.93 29 61.21 29 73.33 30 5.67

m4Dr-256 90 0.00 90 2.69 90 1.73 90 0.23 90 1.05 90 2.24 90 0.06

m4Dr-526 90 0.01 89 25.17 89 22.84 89 14.02 89 18.31 89 19.08 90 0.33

m4Dr-1296 90 0.06 89 201.13 89 181.60 90 6.41 90 5.46 90 5.43 90 1.63

r0.01-200 3 1735.93 30 1.93 30 1.28 28 27.48 28 44.09 28 46.49 30 0.04

r0.01-400 0 - 28 130.37 29 35.52 14 175.83 14 228.78 14 214.85 30 45.58

r0.01-600 0 - 26 291.31 26 293.23 12 428.14 9 1069.96 7 806.96 29 113.51

r0.05-200 0 - 29 31.95 30 121.47 28 125.57 28 198.68 28 198.66 30 38.28

r0.05-400 0 - 26 439.10 26 488.46 25 519.04 25 500.54 25 494.12 17 1190.88

r0.05-600 0 - 19 1521.51 20 1456.75 13 1505.51 5 2319.68 5 2304.85 1 2100.61

r0.1-200 0 - 29 74.86 30 162.16 26 320.52 26 357.70 26 351.10 21 646.31

r0.1-400 0 - 8 2315.63 8 2110.79 5 1950.67 5 1917.68 5 2070.81 1 961.35

r0.1-600 0 - 0 - 0 - 0 - 0 - 0 - 0 -

All instances 1353 29.43 1770 87.37 1780 82.83 1746 50.32 1737 51.45 1734 49.48 1787 30.55

Table 3
Experimental comparison of success rates and CPU times: for each solver, we give
the number of instances that have been solved in less than one hour on a 2.26 GHz
Intel Xeon E5520, and the average CPU time spent to solve these instances. An
instance is said to be solved either if one solution has been found or inconsistency
has been proven. The last line gives the total number of solved instances and the
corresponding average CPU time.

solved 37 (resp. 43, 47, 51, and 55) more instances than Abscon(AC) (resp.
Abscon(FC), ILF(1), ILF(2), ILF(4), and Vflib). The table below displays,
for each approach except Vflib, the average number of fail nodes when solving
instances of this class.

Abscon(FC) Abscon(AC) ILF(1) ILF(2) ILF(4) LAD

834,957 288,108 297,107 182,588 159,493 13,560

Abscon(AC) and ILF(1) have comparable number of fail nodes, and nearly

21

three times as less as Abscon(FC). ILF(2) and ILF(4) have smaller number of
fail nodes but the reduction of the search space is not enough to allow ILF(2)
and ILF(4) to become competitive. The number of fail nodes of LAD is much
smaller (more than 20 times as small as Abscon(AC) and ILF(1)).

However, the different approaches exhibit different scale-up properties on the
random classes r-p-n. Indeed, when the probability p of adding an edge is
0.01, LAD is better than Abscon which is better than ILF, whereas when
this probability is increased to 0.05 or 0.1, Abscon is better than ILF which
is better than LAD. Actually, the denser and the larger the graphs, and the
worse LAD. This comes from the fact that the complexity of LAD-filtering
is O(np · nt · d4): the degree d is 10 times bigger (on average) for the graphs
of classes r0.1-* than for those of classes r0.01-*. Therefore, when graphs are
rather sparse, it is worth filtering with LAD whereas when graphs are denser,
one has better consider a simpler filtering procedure such as AC(Edges).

Interestingly, Vflib is very efficient and exhibits very good scale-up properties
on some classes such as bvg-*, bvgm-*, and m4Dr-*. Actually, Vflib uses vari-
able and value ordering heuristics that are not used by the other approaches:
at each iteration, it chooses the next couple (u, v) of nodes to match so that
both u and v are adjacent to some nodes that have already been matched
(whenever this is possible). These ordering heuristics may explain the very
good behavior of Vflib on some instances when the goal is to find only one
solution. It may also explain the fact that it is able to solve 29 instances of the
m4D-256 class in less than 0.01 second, whereas it is not able to solve the last
instance of this class in one hour. However, on some harder classes such as LV
or r-p-n, it is able to solve much less instances than the other approaches.

7 Conclusion

We have introduced a new filtering algorithm for subgraph isomorphism that
basically ensures that all nodes adjacent to a same pattern node may be
matched to nodes that are all different and that are all adjacent to a same
target node. This filtering is stronger than LV2002. Actually, it achieves the
same consistency as the strongest variant of ILF(k), i.e., when the initial la-
beling fully integrates domain reductions and when labeling extensions are
iterated until reaching a fixpoint. However, this consistency is achieved at a
lower cost by updating matchings incrementally instead of recomputing them
from scratch at each iteration, and by updating only the matchings that are
impacted by a domain reduction instead of recomputing all matchings.

We have experimentally shown on a wide benchmark of 2000 or so instances
that this new filtering is able to solve more instances quicker, and that it

22

drastically reduces the search space so that many instances are solved without
backtracking. However, this filtering is outperformed by arc consistency on
the densest random graphs, such that edge density is greater or equal to 10%.

This filtering procedure could be easily integrated within a constraint pro-
gramming language. In particular, we plan to integrate it in our constraint-
based graph matching system [lCDC09] that is built on top of Comet [HM05].

We also plan to improve LAD-filtering by studying different strategies for
choosing, at each iteration, the next couple (u, v) that is removed from S. In
the results reported in this paper, we have considered a basic last in first out
strategy as S is implemented with a stack. However, we could use a priority
queue that orders couples with respect to the number of edges that have been
removed from the corresponding bipartite graph.

Further work will also concern the extension of this filtering procedure to
the maximum common subgraph problem, which involves finding the largest
graph that is subisomorphic to two given graphs. Indeed, the algorithm of
Hopcroft and Karp may be used to compute the maximal matching of bipartite
graphs G(u,v), thus giving a bound on the largest number of edges that may
be matched when u is matched to v.

Acknowledgements Many thanks to Yves Deville for enriching discus-
sions, to Jean-Christophe Luquet who has implemented a first version of ILF,
and to Christophe Lecoutre, who helped me in the use of Abscon. This work
was done in the context of project Sattic (Anr grant Blanc07-1_184534).

References

[BHLS04] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic
search by weighting constraints. In ECAI, page 146?150, 2004.

[CFSV99] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. Performance
evaluation of the vf graph matching algorithm. In ICIAP ’99: Proceedings
of the 10th International Conference on Image Analysis and Processing,
page 1172, Washington, DC, USA, 1999. IEEE Computer Society.

[CFSV01] Luigi Pietro Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento.
An improved algorithm for matching large graphs. In 3rd IAPR-TC15
Workshop on Graph-based Representations in Pattern Recognition, pages
149–159, 2001.

[CFSV04] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento.
Thirty years of graph matching in pattern recognition. IJPRAI,
18(3):265–298, 2004.

23

[FSV01] Pasquale Foggia, Carlo Sansone, and Mario Vento. A database of
graphs for isomorphism and sub-graph isomorphism benchmarking. In
3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern
Recognition, 2001.

[GJ79] M. Garey and D. Johnson. Computers and Intractability. Freeman and
Co., New York, 1979.

[HK73] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum
matchings in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

[HM05] P. Van Hentenryck and L. Michel. Constraint-Based Local Search. The
MIT Press, 2005.

[lCDC09] V. le Clément, Y. Deville, and C. Solnon. Constraint-based graph
matching. In 15th Conference on Principles and Practice of Constraint
Programming (CP), volume 5732 of LNCS, pages 274–288. Springer,
2009.

[Lec09] C. Lecoutre. Constraint Networks: Techniques and Algorithms.
ISTE/Wiley, 2009.

[LT08] C. Lecoutre and S. Tabary. Abscon 112: towards more robustness. In
3rd International Constraint Solver Competition (CSC’08), pages 41–48,
2008.

[LV02] Javier Larrosa and Gabriel Valiente. Constraint satisfaction algorithms
for graph pattern matching. Mathematical. Structures in Comp. Sci.,
12(4):403–422, 2002.

[McG79] J. J. McGregor. Relational consistency algorithms and their application
in finding subgraph and graph isomorphisms. Inf. Sci., 19(3):229–250,
1979.

[MH86] R. Mohr and T.C. Henderson. Arc and path consistency revisited.
Artificial Intelligence, 28:225–233, 1986.

[R9́5] Jean-Charles Régin. Développement d’Outils Algorithmiques pour
l’Intelligence Artificielle. Application à la Chimie Organique. PhD thesis,
1995.

[Reg94] J.-C. Regin. A filtering algorithm for constraints of difference in CSPs. In
Proc. 12th Conf. American Assoc. Artificial Intelligence, volume 1, pages
362–367. Amer. Assoc. Artificial Intelligence, 1994.

[RvBW06] F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint
Programming (Foundations of Artificial Intelligence). Elsevier Science
Inc., New York, NY, USA, 2006.

[Ull76] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM,
23(1):31–42, January 1976.

[ZDS10] S. Zampelli, Y. Deville, and C. Solnon. Solving subgraph isomorphism
problems with constraint programming. Constraints (to appear), 2010.

24

