
Combining configuration and query rewriting for

Web service composition

Preliminary report

Michaël Mrissa, Mohand-Säıd Hacid

1 Introduction

Web services provide diverse functionalities that range from online payment
to weather forecast, flight reservation, or simply data retrieval. Composition
consists in combining several Web services into a new one in order to pro-
vide the user with advanced, value-added functionalities (travel planning,
online shopping, etc.). A composition involves several steps, which consists
in: (1) decomposing the high-level user goal into subtasks, (2) finding Web
services that implement the functionalities of each subtask, and (3) orches-
trating the interactions between composed Web services in order to achieve
the high-level goal of the composition and to fulfill user’s requirements.

Several techniques exist to compose Web services, mainly variants of
planning such as model checking or situation calculus [12]. However, these
techniques mainly focus on finding a composition without building the ex-
ecution plan. In our approach, we propose to achieve the composition by
resorting to discovery and orchestration. Discovery consists in finding indi-
vidual web services that implement functionalities required by tabtasks ex-
tracted from user’s goal. This discovery is mainly based on query rewriting,
and (2) orchestration which consists in building an ordering for web services
invocation. Orchestration is based on configuration techniques. Thus, in this
paper we investigate the combination of configuration and query rewriting
techniques in order to facilitate Web service discovery and orchestration.

In Section 2, we provide some background knowledge on query rewriting
and configuration. We also summarize the limitations of current works and
highlight the need for a combination of configuration and query rewriting.
In Section 3, we develop our proposal and show how it facilitates the com-
position task. Finally, we discuss the approach and give some insights on
future works in Section 4

1

2 Background knowledge and Related Work

The proposal developed in this paper relies on a combination of query rewrit-
ing and configuration techniques. In this section we introduce these ap-
proaches in order to provide the reader with some background knowledge
for a good understanding of this paper. At the same time we highlight the
originality of the approach we propose with respect to existing works.

2.1 Query Rewriting

Query rewriting (using views) consists in reformulating a query according to
views that are already available from the database, in order to optimize the
execution plan of the query. Query rewriting techniques have been widely
explored in the database field. A good survey of the main query rewriting
algorithms is presented in [5].

With respect to the domain of Web service composition, query rewriting
techniques have also been utilized in [8, 13]. In both works, Web services
are accessed via datalog queries. Lu et al. [8] provide a framework for
answering queries with a conjunctive plan that includes inputs and outputs
of participating Web services. In Thakkar et al. [13], a combination of inverse
rules algorithm and tuple-level filtering allows building the composition.
However, in those works, Web services are matched without taking into
account the semantic information contained in their descriptions.

With the advent of the Semantic Web, Web services are annotated with
semantic descriptions linked to ontologies, which makes their semantics ex-
plicit and machine-understandable and allows advanced reasoning about
their capabilities, inputs/outputs, etc. The most known Web service ontolo-
gies are OWL-S [9] or WSMO [2], which both provide a general ontology
for service description that support XML syntax. Then, the Web service
composition problem comes to the semantic level, which offers new oppor-
tunities for the automation of composition, using advanced techniques such
as planning [7, 11, 12].

2.2 Configuration

Configuration has been part of the Artificial Intelligence (AI) field for a
long time. Some attempts to formalize configuration have been proposed
in [3, 6, 10]. Configuration consists in finding sets of concrete objects that
satisfy the properties of a given model.

With respect to Web service composition, several techniques based on
configuration have been proposed (see, e.g., [1]).

In [1], the authors decompose the composition task into two main stages.
First, composition is performed at the abstract level, which consists in iden-
tifying which sets of Web services can satisfy the composition at the func-

2

tional level. Second, the possible sets of Web services are processed and a
valid workflow is generated. Configuration is utilized in the second step

Combining query rewriting and configuration allows separating several
concerns that come into play in the composition process. First, query rewrit-
ing allows identifying inputs, outputs and service functionalities required in
the composition. Second, configuration enables the formalization of con-
straints at different levels (domain level, composition level, and service level).
The interest of our proposal is to improve the service selection step, and in
a second time to handle service orchestration with the help of configuration
constraints. In the following, we show the main advantages of our approach
and illustrate it on a typical scenario.

3 Contribution

3.1 Running Example

To illustrate the idea, we use a running example that consists of an online
travel reservation process. For instance, a user planning to travel to some
country for a certain period needs to book a flight, to find an accommoda-
tion, and to rent a car in order to visit some interesting sites around. The
domain ontology this example relies on is presented in Fig. 1.

Figure 1: Overview of the travel ontology

We model user’s requirements for a composition with a query Q speci-
fied as a triple < I,O,C > where I (for input) denotes the input data the
user provides, which are treated as constraints that reflect the requirements

3

of the user in the query, and O (for output) denotes the unknown part of
the request, i.e. the information the user looks for, and C denotes service
categories that must be utilized to answer the query. In our example, I in-
cludes departure and return dates and locations, and O includes re-

quired information provided by three categories of Web services C (in
bold), i.e. transport (flight, train or bus ticket number and details), ac-

comodation (hotel, flat or b&b information) and vehicle rental (type of
vehicle and price).

According to our query representation and given some user input I,
the objective is to provide all the information required in O, by finding an
appropriate combination of Web services that only make use of the input I
specified in the query.

3.2 Defining a WS description language

3.2.1 Context

In this section, we define the kind of semantic Web services we consider. We
also give an informal introduction to the knowledge representation language
we use.

We will reason on the abstract descriptions of services. We do not handle
the concrete part of services.

Definition 1 A semantic Web services database OT describes the struc-
tural part of services. That is, the categories of services used in the database.

Definition 2 A service S is composed of a set of input parameters (IS)
and a set of output parameters (OS), constrained by some contents in OT

and identified with the prefix I denoting an input parameter and O denoting
an output parameter.

In our running example, we assume three categories of Web services in
the application domain (e-tourism). These categories are shown in Figure 2.

I_CheckinDate
I_CheckoutDate

I_Location

O_AccomodationDescription

O_AccomodationPrice
Accomodation

I_RetrievalDate

I_ReturnDate

O_RentalDescription

O_RentalPrice
CarRental

I_DepartureDate
I_DestinationAirport
I_DepartureAirport

O_TravelDescription

O_TravelPrice
Travel

4

Figure 2: Categories of e-tourism Web services

Several instances of these Web service categories belong to the semantic
Web service database and could implement these categories in different ways.
For instance, hotel, flat, B&B and youth hostel reservation services are
subcategories of the Accommodation category in Figure 1.

3.2.2 The ontology part

Here we specify syntax and semantics of the language for describing the
constrained vocabulary that will be used to specify OT .

Basically, the atom A ⊑ D is used in the descriptions contained in OT .

The elementary building blocks are primitive concepts (ranged over by
the letter A) and primitive roles (ranged over by R). Intuitively, concepts
describe sets and thus correspond to unary predicates while attributes de-
scribe relations and thus correspond to binary predicates.

Concepts (ranged over by D, E) are formed according to the following
syntax rule:

D,E −→ A | primitive concept
D ⊓ E | conjunction
∀R.D | universal quantification
∃R.D | existential quantification

P (f1, ..., fn) | predicate restriction

Axioms come in the form A ⊑ D. This axiom states that all instances
of A are instances of D. An ontology part of services OT consists of a set
of axioms.

Given a fixed interpretation, each formula denotes a binary or unary
relation over the domain. Thus we can immediately formulate the semantics
of attributes and concepts in terms of relations and sets without the detour
through predicate logic notation. An interpretation I = (∆I , ·I) consists of
a set ∆I (the domain of I) and a function ·I (the extension function of I)
that maps every concept to a subset of ∆I , every constant to an element
of ∆I and every attribute to a subset of ∆I × ∆I . Moreover, we assume
that distinct constants have distinct images (Unique Name Assumption).
The interpretation function can then be extended to arbitrary concepts as
shown in figure 3 (#S denotes the cardinality of the set S).

We say that two concepts C,D are equivalent if CI = DI for every in-
terpretation I, i.e., equivalent concepts always describe the same sets.
We say that an interpretation I satisfies the axiom A ⊑ D if AI ⊆ DI . If
OT is a set of axioms, an interpretation I that satisfies all axioms in OT

is called a OT -interpretation. A concept D is OT -satisfiable if there is an

5

Construct Set Semantics

(∀R.D)I {d1 ∈ ∆I | ∀d2.(d1, d2) ∈ RI ⇒ d2 ∈ DI}
(∃R.D)I {d1 ∈ ∆I | ∃d2.(d1, d2) ∈ RI ∧ d2 ∈ DI}

P (f1, . . . , fn)I {d ∈ ∆I | ∃d1, . . . , dn ∈ ∆I : fI

1
(d) = d1, . . . , f

I

n
(d) = dn and

(d1, . . . , dn) ∈ PD}
(D ⊓ E)I DI ∩ EI

Figure 3: Structural subsystem: semantics of the constructs

OT -interpretation I such that DI 6= ∅. We say that D is OT -subsumed by
E (written D ⊑OT

E) if DI ⊆ EI for every OT -interpretation I.

3.3 Query Rewriting

A query Q is defined as a conjunction of terms. Each term can be a concept
expressed in the query language L over the ontology OT . We assume
that L is a subset of the language used to describe OT and presented in
Section 3.2.2.

We identify three types of concepts in a query: inputs, outputs and
service categories. Inputs have their values provided by the user on query
submission. Outputs must be provided as an answer to the query execution,
and service categories represent the categories of services (in terms of func-
tionality) that can be utilized in order to answer the query.

To make things simple, we define Qcat as the service category part of the
query and we will use QCons to denote the constraint part. Hence, in this
context query rewriting consists first in finding Web services belonging to
the relevant categories (i.e. resolve the Qcat part of the query), and second
satisfy the query by 1) providing the required output data, and 2) requiring
overall no more data than those provided as inputs (i.e. resolve the QCons

part of the query). Let us consider the following query expressing the needs
for a travel:

Q = Travel ⊓ ∃I departureP lace ⊓ ∃I destinationP lace ⊓
∃I departureDate ⊓ ∃O TravelPrice ⊓ Accom

The inputs specified in query Q are

I departureP lace,I destinationP lace,I departureDate,I retrievalDate,
and I returnDate.

In our context, we are at design time, and thus we are looking for Web
services that once composed will provide the required functionality. Hence,
we do not specify the actual values to be sent to the resulting business

6

process afterwards. According to the query Q, a query could have values
such as (Lyon, Paris, 12/06/2010, 18/06/2010) as input data.

Accordingly, the outputs expected as a result to the query are

O TravelPrice, O AccommodationPrice ,O AccommodationDescription,
and O CarRentalPrice

In our running example, we have the following information described in
the ontology OT (see figure 1):

• Hotel ⊑ Accomodation and BedBreakfast ⊑ Accomodation and
Flat ⊑ Accomodation for the Accomodation class,

• TravelbyP lane ⊑ Travel and TravelbyTrain ⊑ Travel for the Travel
class,

• TourismCar ⊑ CarRental and BusinessCar ⊑ CarRental for the
CarRental class.

In order to rewrite our query we rely on a modified version of the bucket
algorithm presented in [5]. The bucket algorithm allows to rewrite a user
query according to existing views that relate to available data sources.

Both the query and the sources are described by select-project-join queries
that may include atoms of predicates.. . . the main idea underlying the bucket
algorithm is that the number of query rewritings that need to be considered
can be drastically reduced if we first consider each subgoal in the query in
isolation, and determine which views may be relevant to each subgoal [5].

In order to rewrite a query Q, the bucket algorithm starts by creating
a bucket for each subgoal containing the views that are relevant to the
response. Then it it considers the conjunction of the different views in
each bucket, and finally applies filtering mechanisms in order to build the
rewriting. The reader may refer to [5] for more details.

We build our proposal on an analogy between the bucket algorithm and
the Web service composition problem. In our proposal, views correspond
to service categories, predicates to constraints and subgoals to con-

cepts. Views in the original bucket algorithm correspond to service cate-
gories in our context, and they are associated with constraints related to the
service. The constraints can be expressed either directly in the request or
taken from the ontology and appended to the query.

When a user specifies an Accommodation request for example, the query
rewriting consists in selecting the service categories subsumed by the accom-
modation class, and identifies in the bucket those that satisfy the constraints
of the query.

We recursively apply the following propagation rule, where C and D are
concepts in the ontology such that D ⊑ C is an element of the ontology:

7

Algorithm 1 Propagation rule

for all C in Q do

if D ⊑ C
and D is not in Q then

Q → Q ∪ {D} \ {C}
end if

end for

At the end of the process, several combinations of services will satisfy
the Qcat part of the query, which means that the selected services satisfy
the query in terms of functionality.

The first step of our algorithm consists in creating a bucket for each
service category in the query, as shown in Table 1. Each cell of the first row
denotes the service category mentioned in the query. In the sequel, we use
Qc

cat to denote the fact that the service category c is an element of Qcat.
Cells of the next rows describe concrete services (together with their inputs
and outputs) that are subsumed by service categories of the query. Hence,
each row of table 1 contains a combination of Web services that fulfills the
Qcat part of the query.

Travel Accommodation CarRental

TravelbyPlane
⊓∃I departureAirportCode⊓
∃I destinationAirportCode⊓
∃I departureDate ⊓
∃O TravelPrice ⊓
∃O TravelDescription

Hotel
⊓∃O Accom

TravelbyTrain
⊓∃I departureTrainStation⊓
∃I destinationTrainStation⊓
∃I departureDate ⊓
∃O TravelPrice ⊓
∃O TravelDescription

Flat
⊓∃O AccommodationPrice ⊓
∃O AccommodationDescription⊓
∃O Grade

TouristCarRental
⊓∃O CarRentalPrice ⊓
∃O CarRentalDescription ⊓
∃O HasGPS ⊓
∃I returnDate

TravelbyTrain
⊓∃I departureTrainStation⊓
∃I destinationTrainStation⊓
∃I departureDate ⊓
∃O TravelPrice ⊓
∃O TravelDescription

Flat
⊓∃O AccommodationPrice ⊓
∃O AccommodationDescription⊓
∃O Grade

TouristCarRental
⊓∃O CarRentalPrice ⊓
∃O CarRentalDescription ⊓
∃I returnDate

Table 1: Contents of the buckets

To each row of the table, we apply Algorithm 2. Its primary goal is to

8

filter invalid combinations of services that do not provide all the required
output parameters specified in Q. Its secondary goal is to identify inputs
that services require and that are not provided in Q.

In this algorithm, MO represents the missing outputs and must be empty
at the end of the computation, for the combination to be valid. MI rep-
resents missing inputs, and a non-empty value indicates that at least one
service in the line requires input data that are not provided in Q. Such
information is useful, as missing inputs could be provided by other services
involved in the composition. We will get back to this issue later on.

We denote as D the concrete services utilized to rewrite Q. For each
service D, we define its inputs as Di

cons and its outputs as Do
cons.

Algorithm 2 I/O algorithm

for all row L in BC do

MI = ∅, MO = ∅
for all service D do

MI = MI ∪ {Di
cons}\Q

i
cons

MO = MO ∪ Qo
cons\{D

o
cons}

end for

if MO 6= ∅ then

some output is missing: invalid combination
remove the line from the table

else

record MI and keep the set of D as a possible solution
end if

end for

We add two columns in the BC table, in order to represent MI and MO.

3.4 Selecting instances of Web services

Once the query has been rewritten, there is a need to select concrete in-
stances of Web services, which are identified with their description files in
the Web service repository. These description files are written in OWL-S
and they refer to terms of OT in order to explicitly describe in a machine-
interpretable way the functionality the corresponding Web service provides.

Since several rewritings could be proposed, it is possible to select one of
the rewritings, to look into the repository for Web services that correspond
to the functionality, and in case none can be found, select another rewriting
until a valid combination is found.

This step ends up with several sets of Web services that, together, fulfill
the user’s requirements in terms of functionality and input/output data.
The next step, called configuration, builds on these sets of Web services,
and verifies the validity of these sets with respect to business rules of the

9

domain, constraints of the services, and user constraints.

3.5 Configuration

The configuration task consists in validating Web service composition with
the business constraints that need to be applied in each application domain.
Constraints include causality relationships between Web service invocations,
control flow constraints such as ”CarRental can only be validated if the flight
is booked”, etc. Configuration constraints may prove some rewriting to be
inefficient for the needs of the composition, in such case it is possible to
return to the instance selection step and to select another set of service
instances that satisfies the composition.

We distinguish between two types of constraints: composition level ”busi-
ness” constraints, and service level constraints.

Composition level constraints are generic and relevant to the application
domain, for example, ”if both Flight and CarRental services are called in the
composition, then CarRental can only be validated if the flight is successfully
booked”.

Configuration allows 1) decoupling business rules from generic facts in
the domain knowledge representation, thus facilitating reuse of the domain
ontology and its business exploitation in diverse ways, and 2) identifying
constraints related to Web services and homogeneously incorporating these
constraints into the composition in order to detect any inconstancies.

Query Q

1) query rewrit ing

{sets of serv ices}

BP constraints

service constraints

user constraints

2) configuration

Figure 4: Overview of the composition method

4 Conclusion

This preliminary research report shows how to adapt the bucket rewriting
algorithm to the requirements of Web service composition with the help of
additional algorithms. After providing some background on related works,
we define an ontology language for describing domain knowledge with re-
spect to Web services and we provide algorithms in order to facilitate service
selection.

10

References

[1] P. Albert, L. Henocque, and M. Kleiner. An end-to-end configuration-
based framework for automatic sws composition. In ICTAI (1), pages
351–358. IEEE Computer Society, 2008.

[2] S. Arroyo and M. Stollberg. WSMO Primer. WSMO Deliver-
able D3.1, DERI Working Draft. Technical report, WSMO, 2004.
http://www.wsmo.org/2004/d3/d3.1/.

[3] H.-J. Bürckert, W. Nutt, and C. Seel. The role of formal knowledge
representation in configuration.

[4] J. Cardoso and A. P. Sheth, editors. Semantic Web Services and Web
Process Composition, First International Workshop, SWSWPC 2004,
San Diego, CA, USA, July 6, 2004, Revised Selected Papers, volume
3387 of Lecture Notes in Computer Science. Springer, 2004.

[5] A. Y. Halevy. Answering queries using views: A survey. The VLDB
Journal, 10(4):270–294, 2001.

[6] R. Klein, M. Buchheit, and W. Nutt. Configuration as model construc-
tion: The constructive problem solving approach. Scientific Commons,
1994.

[7] A. Kumar, B. Srivastava, and S. Mittal. Information modeling for end
to end composition of semantic web services. In Y. Gil, E. Motta,
V. R. Benjamins, and M. A. Musen, editors, International Semantic
Web Conference, volume 3729 of Lecture Notes in Computer Science,
pages 476–490. Springer, 2005.

[8] J. Lu, Y. Yu, and J. Mylopoulos. A lightweight approach to seman-
tic web service synthesis. In WIRI, pages 240–247. IEEE Computer
Society, 2005.

[9] D. L. Martin, M. Paolucci, S. A. McIlraith, M. H. Burstein, D. V.
McDermott, D. L. McGuinness, B. Parsia, T. R. Payne, M. Sabou,
M. Solanki, N. Srinivasan, and K. P. Sycara. Bringing Semantics to
Web Services: The OWL-S Approach. In Cardoso and Sheth [4], pages
26–42.

[10] O. Najmann and B. Stein. A theoretical framework for configuration.
In F. Belli and F. J. Radermacher, editors, IEA/AIE, volume 604 of
Lecture Notes in Computer Science, pages 441–450. Springer, 1992.

[11] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara. Semantic
matching of web services capabilities. In I. Horrocks and J. A. Hendler,

11

editors, International Semantic Web Conference, volume 2342 of Lec-
ture Notes in Computer Science, pages 333–347. Springer, 2002.

[12] J. Rao and X. Su. A survey of automated web service composition
methods. In Cardoso and Sheth [4], pages 43–54.

[13] J. L. A. Snehal Thakkar and C. A. Knoblock. A data integration ap-
proach to automatically composing and optimizing web services. In
2004 ICAPS Workshop on Planning and Scheduling for Web and Grid
Services, June 2004.

12

