Polynomial Algorithms for Subisomorphism of
nD Open Combinatorial Maps

Guillaume Damiand ®* Christine Solnon?® Colin de la Higuera

Jean-Christophe Janodet ¢ Emilie Samuel ©

& Unaversité de Lyon, CNRS
Université Lyon 1, LIRIS, UMR5205, F-69622, France

b Université de Nantes, CNRS, LINA, UMR6241, F-44000, France

¢ Université de Lyon, CNRS, Université de Saint-Etienne - Jean Monnet,
Laboratoire Hubert Curien, UMRS5516, F-42023, France

Abstract

Combinatorial maps describe the subdivision of objects in cells, and incidence and
adjacency relations between cells, and they are widely used to model 2D and 3D
images. However, there is no algorithm for comparing combinatorial maps, which is
an important issue for image processing and analysis. In this paper, we address two
basic comparison problems, i.e., map isomorphism, which involves deciding if two
maps are equivalent, and submap isomorphism, which involves deciding if a copy of
a pattern map may be found in a target map. We formally define these two problems
for nD open combinatorial maps, we give polynomial time algorithms for solving
them, and we illustrate their interest and feasibility for searching patterns in 2D
and 3D images, as any child would aim to do when he searches Wally in Martin
Handford’s books.

Key words: open combinatorial maps, isomorphism and subisomorphism, pattern
detection, 2D and 3D images

* Corresponding author.

Email addresses: guillaume.damiand@liris.cnrs.fr (Guillaume Damiand),
christine.solnon@liris.cnrs.fr (Christine Solnon), cdlh@univ-nantes.fr
(Colin de la Higuera), janodet@univ-st-etienne.fr (Jean-Christophe Janodet),
emilie.samuel@univ-st-etienne.fr (Emilie Samuel).

Preprint submitted to Computer Vision and Image Understanding17 December 2009

1 Introduction

Graphs are used in many computer graphic applications to describe images
(see, for example, [CFSV07] for a review of graph-based methods for pattern
recognition and computer vision). In particular, Region Adjacency Graphs
(RAGs) [Ros74] model images by means of vertices —corresponding to max-
imal homogeneous sets of connected pixels— and edges —corresponding to
adjacency relationships. RAGs are used in many image processing applica-
tions like, for example, segmentation, object extraction or comparison, and
image analysis [SC84,JB93,Saa94, GMBM95,LMVO01].

However, RAGs cannot model some important information contained in im-
ages. In particular, they cannot model the order in which neighbor regions
are encountered when turning around some given region, as the edges incident
to a vertex are not ordered. Also, RAGs cannot represent multi-adjacency.
Hence, two different images may be represented by the same RAG [Kov89].

To get round this default, the RAG model has been extended. For example,
[KMO95] defines the dual graph structure, which is a pair of multi-graphs that
represent multi-adjacency relations, and [JB98] defines ordered graphs, such
that edges incident to a vertex are uniquely ordered.

Several works have proposed some solutions in 2D [Dom92,Fio96,Bru96, DBF04]
and in 3D [BDDW99,Dam08] based on combinatorial maps. Indeed, com-
binatorial maps [Lie91] have many advantages: they are defined in any di-
mension; they are based on a single element called dart; they describe the
subdivision of objects in cells, and incidence and adjacency relations be-
tween cells; thus they describe the topology of objects. Actually, many works
have used combinatorial maps in 2D and 3D image processing algorithms
[BDB97,BDD01,DR02,DDO08]. However, there is no algorithm for comparing
combinatorial maps, which is an important issue for image processing and
image analysis.

Contribution and outline of the paper

In this paper, we address two comparison problems, i.e., map isomorphism,
which involves deciding if two maps are equivalent, and submap isomorphism,
which involves deciding if a copy of a pattern map may be found in a target
map. We formally define these two problems for nD open combinatorial maps.
Then we develop polynomial time algorithms for solving them, and illustrate
their efficiency for searching patterns in 2D and 3D images.

Part of this work was published in [DDLHJ"09]. Nevertheless, our previous
results were limited in 2D; moreover, the material presented in Sections 4 and

5 is totally new.

In Section 2, we recall basic definitions and notations for nD combinatorial
maps [Lie91], and from open combinatorial maps [PABL07| thus the paper is
self-contained. We use open maps to represent objects with boundaries, that
allow us to model images that have blurred or undefined regions, and to define
submap isomorphism problem.

In Section 3, we first extend the definition of map isomorphism of [Lie94] to
open combinatorial maps and give a polynomial time algorithm for solving
this problem. This algorithm is close to that of [Cor75], but we extend it
to nD open maps. Then we tackle the submap isomorphism problem and
again, we develop a polynomial time algorithm for nD open maps. We prove
the correctness and study the complexity of both algorithms. Note that from
a graph-theoretical perspective, these results imply that the subisomorphism
problem for plane graphs (that is, planar graphs that are embedded in a plane)
is solvable in polynomial time, whereas this problem is known intractable for
general graphs. However, our algorithms are restricted to connected maps,
such that there exists a path of sewn darts between every pair of darts. Thus
the last part of this section is a discussion on the isomorphism problems in
the case of non connected maps.

In Section 4, we introduce planar maps, that are 2D maps embedded in a
plane. The goal is to design a model that is close to standard pictures: im-
ages are usually drawn on the plane, thus one region, called the external or
infinite region, is distinguished and should play a particular role. Comparing
planar maps ultimately returns to the problem of comparing 2D maps and
then checking whether the external regions are matched or not. Therefore, we
essentially use the algorithms developed in Section 3, adding new constraints.
However, the knowledge of external regions allows us to optimize the efficiency
of these algorithms in practice (although the worst-case complexity does not
change).

Finally, in Section 5, we describe a large experimental study that proves the
efficiency of our procedures in practice. We first show how to use submap
isomorphism for searching for a 2D subimage into a database of 2D images.
Then we tackle the searching of a 3D submesh into a database of 3D objects.
These results show the interest of having generic definitions and algorithms
based on nD open maps. Indeed, we use the same method and algorithm in
different types of applications, with different dimensions, the corresponding
maps being open or closed.

We conclude the paper on some related works and perspectives in Section 6.

2 Combinatorial Maps

An nD cellular complex is the subdivision of an nD object into cells of di-
mensions at most n (0D corresponding to vertices, 1D to edges, 2D to faces,
3D to volumes, etc), plus incidence and adjacency relationships between cells.
Cellular complexes can be modeled with combinatorial maps, which provide a
generic definition based on a single basic element called dart. In Section 2.1,
we recall some definitions on combinatorial maps, and in Section 2.2, we give
the definition of open combinatorial maps and related notions that we use to
model cellular complexes with boundaries.

2.1 Recalls on combinatorial maps

Combinatorial maps were originally defined for 2D [Edm60,Tut63,Cor75], then
extended to 3D [AK89,Spe91] and finally to nD [Lie91]. Below, we briefly recall
the main definitions.

Definition 1 (Combinatorial map) AnnD combinatorial map, (or n-map)
is a tuple M = (D, 31, ..., [3,) where

(1) D is a finite set of darts;

(2) B is a permutation! on D;

(3) Vi: 2<i<mn, 3 is an involution? on D with no fived point3 ;

(4) Vi: 1<i<n-—-2,Vj:i+2<j<mn, [of;is an involution on D.

We note 3 for 87!, and B;; for ;0 3;. Two darts d and d’ such that d = 3;(d’)
are said to be i-sewn. Let f be a function defined on a set E, and X C F, we
denote f(X) = {f(z)|xr € X}.

Examples of 2D and 3D combinatorial maps are provided in Fig. 1 and 2.

Intuitively, 3; defines adjacency relationships between cells of dimension 7 (e.g.,
edges for 3y, faces for f,, volumes for 33). 3 is a permutation (so that (1(d)
may be different from (3;'(d)) whereas all other 3; are involutions. Indeed,
in 2D, a face is adjacent to at most one other face whereas an edge may be
adjacent to two edges of the same face: 31 (d) is the dart that follows d whereas
Br(d) = Bo(d) is the dart that precedes d. Note that (3, may contain fixed
points: in 2D, they correspond to loops, i.e. faces that are bordered by a single
dart.

1A permutation on D is a one-to-one mapping from D to D.
2 An involution f on D is a one-to-one mapping from D to D such that f = f~!.
3 A fixed point of function f is an element e such that f(e) = e.

D 1 2 3 4 5 6 | 718 9 10 | 11 |12 | 13 | 14 | 15 | 16 | 17 | 18

51 2 3 4 5 6 7111910 11 8 13 | 14 | 15 | 12 | 17 | 18 | 16
Bo | 156 | 14 | 18 | 17 | 10 | 9 | 8 | 7 6 5 12 | 11 | 16 2 1 13 4 3

Fig. 1. An example of 2D combinatorial map. Darts are represented by black arrows.
Two 1-sewn darts are drawn consecutively, and two 2-sewn darts are concurrently
drawn, in reverse orientation, with little a grey segment between them.

D|1|2|3|4]|51]6
1| 2] 3|4 |1]|8]5

Bo | o |10 | | lO1a| 6] 2| | .|| 7
Bs| 5|6 | 7|8 |1 [2]3|4]10]|9

7 8 9 10 | 11 | 12 | 13 | 14 | 15

Fig. 2. An example of a 3D combinatorial map. (a) A 3D object. (b) The corre-
sponding 3D combinatorial map (external volume on the left; interior on the middle
and the right). The graphical convention is the same as in 2D. (33 is not drawn, but
(partially) given in the array.

In combinatorial maps, cells are defined by means of orbits. Given a set F,
a set {p1,...,p;} of permutations on £ and an element e € FE, the orbit
(p1,-..,pj)(e) is the set of all elements of E that can be reached from e by
composing any pi, ..., p; and their inverses prt, . ,pj_l.

The link between cells and orbits is given in Def. 2.
Definition 2 (i-cell) Let M be an n-map, and d a dart.

e The 0-cell incident to d is (Bo2, - - -, Pon)(d);
o Vi: 1<1i<n, thei-cell incident to d is {f1,...,Bi—1, Bit1,---,Bn)(d).

Hence, a cell is a set of darts.

e A O-cell corresponds to a vertex and is a set of darts that share a same origin.

In 2D, a 0-cell is obtained by the orbit (Gp2) (e.g., (Bo2)(8) = {1,8,12} in
Fig. 1). In 3D, it is obtained by the orbit (Bye, fos) (e.g., (Boz, Bo3)(3) =
{3,6,10,11,12, 13,14, 15, 16} in Fig. 2);

e A 1-cell corresponds to an edge and is a set of darts that share their end-
points. In 2D, it is obtained by the orbit (52) (e.g., (52)(8) = {7, 8} in Fig. 1).
In 3D, it is obtained by the orbit (5, 83) (e.g., (B2, 53)(2) = {2,6,9,10} in
Fig. 2);

e A 2-cell corresponds to a face. In 2D, it is obtained by the orbit (1) (e.g.,
(£1)(8) ={8,9,10,11} in Fig. 1). In 3D, it is obtained by the orbit (3, O3)
(e.g., (B, Bs)(1) = {1,2,3,4,5,6,7,8} in Fig. 2);

e A 3-cell corresponds to a volume and is obtained in 3D by the orbit (3, B2)
(e.g., (B1,P2)(5) contains the 24 darts of the internal cube in Fig. 2).

We can define the incidence and adjacency relations between cells:

e Two cells are incident if their intersection is not empty. E.g., edge (62)(7) =
{7,8} is incident to face ((3;)(8) = {8,9,10,11} in Fig. 1.

e Two i-cells are adjacent if there is an (i — 1)-cell incident to both i-cells.
E.g., faces (41)(8) and ((;)(15) are adjacent because they are both incident
to edge (52)(11) in Fig. 1.

2.2 Open combinatorial maps

In [Lie91], Lienhardt has defined generalized maps, which can be used to model
open or closed objects, thus allowing one to model objects with boundaries.
A preliminary report [PABLO7] extended the definition of nD combinatorial
maps to open nD combinatorial maps.

Open maps may contain free darts, i.e., darts that are not linked with other
darts for some dimensions. In generalized maps [Lie91], a dart is i-free when-
ever it is é-sewn with itself (i.e., 5;(d) = d). However, in combinatorial maps,
(1 may contain fixed points (in case of loops), thus such a trick is impossible
to re-use. Therefore, to denote that a dart is 1-free, a new element € is consid-
ered in addition to the set of darts, and darts can be 1-sewn with e¢. To make
things similar in every dimensions, we use the same principle for i-free darts,
with ¢ > 1. Thus, a dart d is i-free, for i € {0,...,n}, if 5;(d) = e.

However, if some darts are i-sewn with €, then ; is no longer a permutation
or an involution on D, but a partial permutation or partial involution such
that only a subset X C D of darts is linked to another subset of darts of D
whereas other darts are i-free. We formally define a partial permutation as
well as its inverse as follows.

Definition 3 (Partial permutation) Let E be a set, X C E a subset of E,

and f : X — E an injection. The partial permutation p on E induced by f is
defined by

(1) ple) = ¢
(2) Ve € E, if e € X then p(e) = f(e), otherwise p(e) = e.

The inverse p~' of this partial permutation is also a partial permutation and

15 defined by

(1) p~(e) =€;
(2) Ve € E, ife € f(X), then p~t(e) = f~!(e), otherwise p~'(e) = e.

In other words, a partial permutation of E is a bijection between two subsets
F and G of E such that the elements of F that do not belong to F' or G are
linked to e.

A partial involution is a specific partial permutation, satisfying the condition
f(f(e)) = e for any element e such that f(e) = e.

Definition 4 (Partial involution) A partial involution f on E is a partial
permutation on E such that: Ve € E, f(e) #e= f(f(e)) =e.

Since a partial involution f is a partial permutation (with an additional prop-
erty), its inverse is defined in Def. 3, and we have f~! = f. Moreover, we
can verify that, given two partial permutations f and ¢, f o g is a partial
permutation, and (fog) ™t =g to f1

We can now define open combinatorial maps.

Definition 5 (Open combinatorial map) An open nD combinatorial map
(or open n-map) is a tuple M = (D, (1, ..., [3,) where

(1) D is a finite set of darts;
(2) (i is a partial permutation on D;
i:2<1i<mn, [is a partial involution on D with no fized point;
(3) Vi: 2 <i<mn, (3 is a partial involuti D with no fized point;
1:0<i1<n—-2,Vj:3<j<n,i+2<7, B is a partial involution.
(1) Vi:0<i<n—2VYj:3<j<n, i+2<j, By is a partial involuti

Open n-maps differ from n-maps on three points: (1) f; is a partial permuta-
tion instead of a permutation; (2) other f3; are partial involutions; (3) Condi-
tion 4 is modified such that 3;; is a partial involution, and this condition must
also be satisfied for « = 0. An example of open 2-map is represented in Fig. 3.

The first two differences directly come from the fact that we can have free
darts. For the third difference, we need to add the condition on y; because 3,
is a partial involution does not imply that fy; is a partial involution (contrary
to the original definition of combinatorial maps where (3;; is an involution

13

6 4
14 / 1213|456 | 7|89 |10|11]12]13] 14
-

2 B1 | 4 3 e |6 € 1 12 | 9 | 10 | 11 8 13 | 14 7
B2 | e | 14| 4| 3] 10| 13 € € € 5 12 | 11 6 2

Fig. 3. Open combinatorial map example. Darts 3 and 5 are 1-free, and darts 1, 7,
8 and 9 are 2-free.

implies that (y; is an involution).

A combinatorial map is said to be i-open (resp. i-closed), for i € {1,...,n}, if
it contains at least one i-free dart (resp. no i-free dart). The map is said to be
open (resp. closed) if it is i-open for at least one i € {1,...,n} (resp. i-closed
for all 4 € {1,...,n}). When nothing is specified, a combinatorial map may
be either open or closed, and thus it is defined with respect to Def. 5.

From a mathematical standpoint, any combinatorial map denotes an nD cel-
lular quasi-manifold [Lie94]. As every combinatorial map can easily be con-
verted into a generalized map, this semantics still holds for our definition of
open combinatorial map.

Now let us tackle the definition of cells.

The definition of orbits given in Section 2.1 is still valid for open combinatorial
maps, since it uses “the set of all elements of E that can be reached...”, which
avoid to have € in any orbit (since € ¢ E by partial permutation definition).
For this reason, the Def. 2 of i-cells given for closed maps, is still valid for
1> 1.

For instance, in the 2-map displayed in Fig. 3, the edge incident to dart 1
is (G2)(1) = {1} (since dart 1 is 2-free) while the edge incident to dart 11 is
(B2)(11) = {11,12}. The face incident to dart 2 is (41)(2) = {2, 3}.

However, we need to modify the definition of vertices (0-cells in Def. 6).

Definition 6 (0-cell) Let M = (D, 3,...,[3,) be an n-map, and d € D. The
0-cell incident to d is the set (Boz, - - ., Bon, {Bij|Vi, j : 2 < i < 5 <n})().

The difference with the previous definition of 0-cells is that we need to add j;;
for all 2 < i < j < n in order not to miss some darts that cannot be reached
due to some free darts. Let us consider, for example, the 0-cell incident to 3 in
the closed 3-map of Fig. 2, that is, (G2, Bo3)(3) = {3,6,10,11, 12,13, 14,15, 16}.
Some darts in this orbit are reached from 3 by composing some permutations,

e.g., Bo2(Bo3(3)) = 11. Let us now consider the 3-map obtained by removing
darts 2 and 4 (i.e., dart 3 is O-free and 1-free). In this case, we have to use (a3
and 53" to reach other darts of the vertex incident to dart 3 (e.g., 3o3(3) = 11),

since 602(3) = 503(3) = ﬁgl (3) = 631 (3) = €.

In the example of the 2-map displayed in Fig. 3, the vertex incident to dart
12 is (Bp2)(12) = {8, 12}.

3 Map and Submap Isomorphism

(Sub)map isomorphism allows one to compare maps. In Section 3.1, we define
map isomorphism —which allows one to decide the equivalence of two maps—
and give a polynomial time algorithm for solving this problem. In Section 3.2,
we consider submap isomorphism —which allows one to decide of the inclusion
of a pattern map into a target map— and propose a polynomial time algorithm
for solving this problem too.

In Sections 3.1 and 3.2, we only consider connected maps in which there exists
a path of sewn darts between every pair of darts. Formally:

Definition 7 (Path) Let M = (D, [(,...,3,) be a combinatorial map. A
sequence of darts (dy,...,dy) is a path between dy and dy, if
Vi: 1 <i<]{Z, 3]1 S {0, 1, ce ,n},di+1 = 631((11)

Definition 8 (Connected map) A combinatorial map M = (D, (1, . .., 5,)
is connected if Vd € D,Vd' € D, there exists a path between d and d'.

The extension of our work to non connected maps is discussed in Section 3.3.

3.1 Map isomorphism

Lienhardt [Lie94] has defined isomorphism between two closed combinatorial
maps. We extend this definition to open combinatorial maps as follows.

Definition 9 (Map isomorphism) Two n-maps M = (D, ,...,[3,) and
M = (D', 3y,...,0,) are isomorphic if there ezists a bijection f: DU {e} —
D" U {e}, called isomorphism function, such that f(¢) = € and ¥d € D,Vi :
1<i<n, f(Bi(d) = Bi(f(d)).

The only difference with the definition of isomorphism between closed n-maps
is that we have added that f(e) = e. Indeed, if a dart is i-sewn with €, then
the dart matched to it by f must also be i-sewn with e.

[S U VI

© 00 N O Uk W N

10
11

As already mentioned in [Cor75] for 2D maps, an algorithm for deciding of the
isomorphism of two connected maps can easily be derived from this definition.
Indeed, consider Algorithm 1. We first fix a dart dy € D and, for every dart
diy, € D', we call Algorithm 2 to build a candidate matching function f and
then we check whether f actually is an isomorphism function. Algorithm 2
basically performs a traversal of M, starting from dy and using the (; functions
to discover new darts from darts that have already been discovered: initially,
fldo] is set to djy whereas f[d] is set to nil for all other darts, thus stating that
d has not yet been discovered; then, each time a dart d € D is discovered,
from another dart dj, € D such that d is i-sewn with di, then f[d] is set to the
dart d' € D’ which is i-sewn with f|[dg].

Algorithm 1: CHECKISOMORPHISM(M, M")
Input: two connected maps M = (D, 5y,...,5,) and M' = (D', 5,,...,03.)
Output: returns true iff M and M’ are isomorphic
choose dy € D
foreach dj, € D’ do

f < TRAVERSEANDBUILDMATCHING (M, M’, dy, dy)

if f is an isomorphism function then

L return TRUE

return FALSE

Algorithm 2: TRAVERSEANDBUILDMATCHING (M, M, dy, dy)

Input: two connected maps M = (D, 5y,...,5,) and M' = (D', 5, ...,0.)
and an initial couple of darts (dy,d) € D x D’

Output: returns an array f: DU {e} — D" U {e}

foreach d € D do f[d] < nil

fldo] — dy

let S be an empty stack; push dy in .S

while S is not empty do

pop a dart d from S

foreach i € {0,...,n} do

if d is not i-free and f[3;(d)] = nil then
Lf%@ﬂ*%ﬁﬁﬂ)

push G;(d) in S

flel e

return f

We get the following result:

Theorem 10 Two nD connected maps M and M’ are isomorphic
iff CHECKISOMORPHISM(M, M') returns true.

10

PROOF. This corresponds to proving that Algorithm 1 is correct.

(<) If cCHECKISOMORPHISM (M, M') returns true, then M and M’ are iso-
morphic since true is returned only if the test in line 4 succeeds.

(=) Let us suppose that M and M’ are isomorphic, so that there exists an
isomorphism function ¢ : D — D', and let us show that CHECKISOMOR-
PHISM(M, M') returns true. Let dy € D be the dart chosen at line 1 of Algo-
rithm 1. As the loop lines 2-5 iterates on every dart df, € D', there exists an
iteration of this loop for which dj, = ¢(dy). Let us show that for this iteration
TRAVERSEANDBUILDMATCHING (M, M, dy, d) returns the array f such that
Vd € D, f[d] = ¢(d) so that true is returned line 5 of Algorithm 1:

e Claim 1: When pushing a dart d in S, f[d] = ¢(d). By induction. The claim
holds for the push of line 3 as f[dy] is set to dj = ¢(do) at line 2. The claim
also holds for the push at line 9 as (1) f[5;(d)] is set to 5/(f[d]) in line 8 and
(2) fld] = ¢(d) (by induction hypothesis) and (3) ¢(d) = d' = ¢(5;(d)) =
Bi(d’") (by definition of an isomorphism function).

e Claim 2: Fvery dart d € D 1s pushed once in S. Indeed, M is connected,
so that there exists at least one path of sewn darts (dp, ...,d,) such that
d,, = d. Therefore, each time a dart d; of this path is popped from S (line
5), diy1 is pushed in S (line 9) if it has not been pushed before (through
another path). O

The time complexity of Algorithm 1 is O(n - |D| - |D’|)

Let us first show that the time complexity of Algorithm 2 is O(n-|D]). Indeed,
the for loop (lines 6-9) is iterated n times, and the while loop (lines 4-9) is
iterated |D| times as (1) exactly one dart d is removed from the stack S at
each iteration, and (2) each dart d € D enters S at most once (it enters S
only if f[d] = nil, and before entering S, f[d] is set to a dart of D’). Let
us then note that the test from line 4 of Algorithm 1 may be performed in
O(n -|D|). As Algorithm 2 and the test of line 4 are performed at most |D’|
times (once for each dart of M’), the overall time complexity of Algorithm 1
is O(n - |D| - |D)).

Note that Algorithm 1 may be optimized, without changing its worst-case
complexity. In particular, we could detect failure while building matchings by
checking between lines 7 and 8 of Algorithm 2 that there does not exist a dart
d; € D that has already been matched to [5;(f[d]): if this is the case, one can
stop the current traversal as f will not be a bijection.

11

3.2 Submap isomorphism

We now tackle the problem of submap isomorphism, the goal of which is to
decide if there exists a copy of a pattern map in a target map.

Basically, a submap is obtained from a map by keeping only a subset X of its
darts, and updating [3; functions so that every dart of X that is i-sewn with
a dart that does not belong to X becomes i-free.

Definition 11 (Submap) Given a combinatorial map M = (D, By, ..., By)
and a subset of darts X C D, the submap of M induced by X, denoted M| x
is the combinatorial map (X, v1,...,Vn) such that:

Vde X, Vi:1<i<n,if[(d) ¢ X then v;(d) = ¢; else v;(d) = Bi(d).

Note that, depending on X, the submap M| x may not satisfy condition 4 of
Def. 5 so that it may not be a combinatorial map. Hence, we shall verify, when
using Def. 11, that the subset X is such that M| x satisfies this condition.

We can now define submap isomorphism as follows.

Definition 12 (Submap isomorphism) Let M = (D, y,...,[3,) and M' =
(D', By, ..., 0) be two n-maps. M is isomorphic to a submap of M’ if there
exists a subset of darts X C D" such that M|y is isomorphic to M.

The subset X obviously satisfies condition 4 of Def. 5 since if M| y is isomorphic
to M, as M is a valid combinatorial map, its darts satisfy this condition.

The existence of a submap isomorphism implies the existence of a subisomor-
phism function which matches every dart of the pattern map to a different
dart of the target map, so that pattern darts that are i-sewn are matched to
target darts that are also i-sewn, like an isomorphism function. However, when
a pattern dart d is i-free the target dart matched to d must be either i-free, or
it must be i-sewn with a target dart which is not matched to another pattern
dart (see example in Fig. 4). This is more formally stated in Theorem 13.

Theorem 13 M is isomorphic to a submap of M’ iff there exists an injection
f:DU{e} — D' U{e}, called a subisomorphism function, such that:

(1) f(e) =€ and
(2) ¥de D,Vi: 1<i<n,

o if d is not i-free, then B.(f(d)) = f(5:(d));
o otherwise, either f(d) is i-free, orVdy, € D, f(di) # Bi(f(d))).

PROOF.

12

=

2

3
1

(a) M (b) M’ (c) M”

Fig. 4. Submap isomorphism example. M is a submap of M’ as it is obtained from
M’ by deleting darts k to r. M" is not isomorphic to a submap of M’ as the injection
[+ X — D that respectively matches darts 1 to 10 to darts a to j does not verify
Theorem 13: for example, dart 4 is 2-free and it is matched to dart d which is 2-sewn
with a dart (b) which is itself matched (i.e., f~1(b) = 2).

(=) If M is isomorphic to a submap of M’ then there exists a subset X C
D’ such that M is isomorphic to M|y. By Def. 9, there exists a bijection
f:DU{e} — X U{e} such that f(e) = e and Vd € D,Vi : 1 < i <
n, f(Bi(d)) = Bi(f(d)). Let us define function g : DU{e} — D'U{e} such that
Vd € D,g(d) = f(d) and g(€) = €, and let us show that g is a subisomorphism
function. Obviously, Vi : 1 <14 < mn, if d is not i-free, then 5/(g(d)) = g(5:(d)).
The key point is to show that if d is i-free, then either g(d) is i-free or Vdy, €
D, f(dx) # Bi(f(d))). Let us suppose that g(d) is not i-free and there exists
dr € D such that g(dy) = Bi(g(d)). As f is an isomorphism function and
g is the restriction of f to X, we have g(dx) = (i(g(d)) = g(5i(d)) so that
dr = B;(d) which is in contradiction with the fact that d is i-free.

(<) Let us suppose that there exists a subisomorphism function f : DU{e} —
D" U {e}. We must show that M is isomorphic to a submap of M’ i.e., that
there exists a subset X C D such that M is isomorphic to M|y. Obviously,
we define X = {f(d)|d € D} and function g : D — X such that g(¢) = € and
Vd e D,g(d) = f(d). O

Algorithm 3 determines if there is a submap isomorphism between two con-
nected maps. It is based on the same principle as Algorithm 1; the only dif-
ference is the test of line 4, which succeeds if f is a subisomorphism function
instead of an isomorphism function.

Correctness proofs and evidences given for isomorphism are still valid: we solve
the submap isomorphism problem with the same method as before, except that
function f is now an injection instead of a bijection.

The time complexity of this algorithm is O(n - |D| - |D’|) as TRAVERSEAND-
BUILDMATCHING is called at most |D’| times and its complexity is O(n-|D|).
Note that the subisomorphism test may be done in linear time.

Also, one may optimize Algorithm 3 in a similar way as proposed for Al-

13

oA W N -

Algorithm 3: CHECKSUBISOMORPHISM (M, M)

Input: two connected maps M = (D, (y,...,0,) and M' = (D', 31,...,0))
Output: returns true iff M is isomorphic to a submap of M’
choose dy € D
foreach d, € D' do
f < TRAVERSEANDBUILDMATCHING (M, M, dy, d,)
if f is a subisomorphism function then
L return TRUE

return FALSE

gorithm 1, without changing its worst-case complexity, by checking between
lines 7 and 8 of Algorithm 2 that there does not exist a dart d; € D that has
already been matched to S(f[d]): if this is the case, one can stop the current
traversal as f will not be an injection.

3.3 (Sub)map isomorphism of non connected maps

The algorithms given in Sections 3.1 and 3.2 have been designed for connected
maps, such that there exists a path between any pair of darts. This condition
is necessary to ensure that all darts of M are discovered during the traversal,
whatever the initial dart dg is. In this section, we discuss the extension of these
algorithms to non connected maps.

Isomorphism of non connected maps. This case is solvable in polyno-
mial time. Indeed, each non connected map may be decomposed into a set of
connected maps. Let M = {My,..., M} and M' = {Mj, ..., M],} be the sets
of connected maps that respectively compose M and M’. Obviously, M and
M’ are not isomorphic if k # k'. If k = k’, one may decide of the isomorphism
of M and M’ as follows:

(1) Build the bipartite graph G = (M, M', E) such that E associates an
edge between connected maps (M;, M) € M x M" iff M; and M; are
isomorphic;

(2) Decide if there exists a perfect matching?, thus ensuring that, for each
connected map M; € M, there exists a different connected map M; € M’
such that M; and M J’ are isomorphic.

4 A matching of a bipartite graph G = (V4, Va, E) is a subset of edges E' C E such
that each vertex is the endpoint of at most one edge. A matching E’ is perfect if
each vertex is covered ones.

14

Step (1) may be done in O(n-|D|-|D']). Step (2) may be done in O(k?), where
k is the number of connected maps that compose M. Indeed, all connected
components of the bipartite graph G are complete bipartite graphs (as the
isomorphism relationship is transitive). As a consequence, G has a perfect
matching iff, for each connected component X of G, the number of nodes of
M in X is equal to the number of nodes of M in X (or, in other words, the
number of isomorphic components is the same in M and M'). Hence, step (2)
may be achieved by a simple traversal of the bipartite graph. Note that relative
positions of the different components do not matter and cannot be detected.
Indeed a triangle inside a complex map would be isomorphic to a triangle
beside the same map.

Subisomorphism of non connected maps. If the pattern map M is
connected whereas the target map M’ is non connected, then subisomorphism
may be decided by checking that M if a submap of at least one connected
map that composes M’, and Algorithm 3 can directly be used.

Let us now focus on the case where the pattern map M is non connected
and let us show that it is N P-complete. Indeed, it may be used to solve
N P-complete tiling problems such as, for example, the two-dimensional strip
packing problem. An instance of this problem is defined by a set of n rectan-
gular items, each having a given integer width w; and height h;, and a bin of
integer width W and height H. The goal is to decide if it is possible to pack all
items in the bin without overlapping. The basic idea of the reduction of this
problem to a submap isomorphism problem is to define a first non connected
pattern map that associates a connected component with each item, and a
second connected target map corresponding to the bin, and then look for a
submap isomorphism. The tricky point comes from the fact that the images
of different connected components of the pattern map cannot be sewn in the
target map (by definition of submap isomorphism). Therefore, we modify the
sizes of the maps associated with the items and the bin. More precisely, the
pattern and target maps are defined as follows:

e The pattern map is a non connected map composed of k connected com-
ponents: for each item of width w; and height h;, we define a connected
component composed of (2 % w; — 1) X (2 % h; — 1) square faces that are
2-sewn in order to form a rectangle;

e The target map is a connected map composed of (2x W — 1) x (2x H — 1)
square faces that are 2-sewn to form a rectangle.

One can easily deduce a solution to the strip packing problem from the solu-
tion to the submap isomorphism problem, as illustrated in Fig. 5. Since each
instance of strip packing can be transformed into an instance of submap iso-
morphism problem, and since each solution of submap problem allows to find

15

Set of 4 items Solution for a bin of size 4x4

EEEEEEE
e
ik

Pattern map composed of 4 components Target map Solution of the submap isomorphism problem

Fig. 5. Instance of a strip packing problem (on the top) and its associated submap
isomorphism problem (on the bottom): the strip packing instance is defined by 4
items of sizes 1 x 2, 2 x 2, 2 x 3, and 4 x 1, and a bin of size 4 x 4. To reduce
this problem to a subisomorphism problem, we define a non connected 2D pattern
map that is composed of 4 connected components respectively composed of 1 x 3,
3x3,5x3,and 7 x 1 sewn squares, and we define a connected target map that
is composed of 7 x 7 sewn squares. The solution to the strip packing problem is
deduced from the solution to the submap isomorphism problem: the bottom left
corner of the image of each connected component in the target map (marked by
a black triangle) gives the position of the bottom left corner of the corresponding
item in the bin (also marked by a black triangle).

a solution of the strip packing problem, this shows that submap isomorphism
of non-connected maps is NP-complete.

4 Constrained Isomorphisms

In 2D image processing, the type of maps one wishes to consider have the
property that they are to be drawn on the plane, not on the sphere. We call
this type of map a planar combinatorial map. To understand this point, let
us consider the typical situation represented in Fig. 6. These two maps are
isomorphic on the sphere, which corresponds to the definitions introduced in
Section 3.1, but are not isomorphic in the plane. In other words, for these two
maps, Algorithm 3 returns true, but that is probably not what is intended in
an image processing task.

16

(a) (b)

Fig. 6. Two maps that are isomorphic but not planar-isomorphic.

Fig. 7. Isomorphisms of maps with undefined parts on a sphere versus in the plane:
on a sphere, (b) and (c) are isomorphic, and (a) is a submap of both (b) and (c).
However, in the plane (b) and (c) are not isomorphic, and (a) is a submap of (b)
but not of (c). Exterior darts are drawn in bold.

The property of being planar isomorphic is a geometrical property, i.e. it can-
not be characterized for maps without geometry. Indeed, two maps are planar
isomorphic when they are isomorphic and when the image of the exterior of
the first map is equal to the exterior of the second map.

Let us consider, for example, the two maps displayed in Fig. 7(b) and Fig. 7(c).
These maps are isomorphic but not planar isomorphic. Indeed, the image of the
exterior darts of the map in Fig. 7(b) are not exterior darts in Fig. 7(c). This
means that we have reversed the first map which is not a possible operation in
the plane. This is similar for planar submap isomorphism. In our example, the
map of Fig. 7(a) is a submap of the two maps of Fig. 7(b) and Fig. 7(c), but
it is only a planar submap of the map of Fig. 7(b) since only in this case, the
image of the exterior darts of Fig. 7(a) are still at the exterior of the second
map.

In Section 4.1, we formally define planar maps by introducing the notion of ex-

terior and infinite darts of a map. In Section 4.2, we extend (sub)map isomor-
phism to planar (sub)map isomorphism isomorphism by adding constraints on

17

[=%
A
a
o

| A ———

-------- > d
(a) (b) (c)

Fig. 8. Exteriors darts are drawn in bold, and infinite darts in dash. Darts in bold
and dash are both exterior and infinite. (a) A closed map: Inf = Fxt = {a,b,c,d, e}.
(b) A map with an open infinite face: Inf = {a,b,d} and Ext = {a,b,c,d,e, f,g}.
(¢) A map without infinite face: Inf = 0 and Ext = {a,b,c,d, e}.

exterior and infinite darts. In Section 4.3, we show how to compute exterior
and infinite darts in the case of 1-closed combinatorial maps (i.e. when all
faces are closed).

4.1 Planar maps

When considering a map drawn on the plane, a part of the plane corresponds
to the exterior of the modeled object. There are 3 cases to consider:

e If there exists an infinite (or unbounded) face, and if this infinite face is
closed, then the exterior is defined by the darts of this infinite face, as
displayed in Fig. 8(a).

e If there exists an infinite face, but this face is open, then the exterior is
defined by the darts of this open infinite face, plus the set of 2-free darts
that border the exterior, as displayed in Fig. 8(b);

e [f there does not exist an infinite face, then the exterior is defined by the
set of 2-free darts that border the exterior, as displayed in Fig. 8(c).

Hence, a planar map is defined by a map, together with a set Ext of exterior
darts, and a set Inf C Ext of darts that belong to the infinite face (called
infinite darts).

The last consideration to take into account is face orientation. Indeed, there
are two possible orientations of each planar combinatorial map: by taking 3,
such that faces are oriented clockwise (like Fig. 9(b)) or counterclockwise (like
Fig. 9(a)). Note that all the faces of a map have the same orientation, except
the infinite face which has a reversed orientation. This orientation is once
again a geometrical property, and it is required to use the same orientation
for all the considered planar maps. Thus, in this section, we suppose that the

18

4 4
(a) (b) ()

Fig. 9. Three maps which are isomorphic, but not planar isomorphic. (a) and (b)
are two maps with different orientations. (b) and (c¢) have the same orientation but
(b) has no infinite face while (c) has one.

same orientation is chosen for all the planar maps.

Definition 14 (Planar map) A planar map is a triple PM = (M, Ext, Inf)
such that (1) M = (D, 1, B2) is a combinatorial map drawn on the plane with
a given orientation; (2) Ext C D is the set of exterior darts; (3) Inf C Euxt
1s the set of infinite darts.

Note that since we only consider connected maps, there is at most one infinite
face. This is not the case for non-connected maps that may have several infinite
faces (at most one for each connected component).

4.2 Planar map isomorphism

When comparing two planar maps in order to decide if they are isomorphic,
one has to check that the isomorphism function actually matches exterior and
infinite darts, as stated in Def. 15.

Definition 15 (Planar map isomorphism) Two planar maps PM =
(M, Ext,Inf) and PM' = (M’', Ext',Inf") are planar isomorphic if there
exists an isomorphism function f between M and M’ such that f(Ext) = Ext/
and f(Inf) = Inf’.

The test on exterior darts is not enough to process all the possible cases. Let
us consider for example the maps of Fig. 9(b) and Fig. 9(c). These two maps
are isomorphic and have the same set of exterior darts, but they are not planar
isomorphic since the first one represents a square face while the second one
represents the plane minus a square. The condition on the infinite face allows
to distinguish these two cases since Inf = () in the first map, whereas Inf # ()
in the second map.

The definition of a submap is also extended to planar maps as follows.

19

Definition 16 (Planar submap) Given a planar map PM = (M, Ext, Inf)
with M = (D, 1, 32), and a subset of connected darts X C D. The planar
submap of PM induced by X is the planar map PM,x = (M, x, Ext’, Inf")
such that M| x is the submap of M induced by X, Ext’ is the set of exterior
darts of M| x and Inf" is the set of infinite darts of M x.

The way to compute Ext’ and Inf’ depends on how the combinatorial map is
linked with some geometrical elements. In particular, we show in Section 4.3
how these sets can be computed when combinatorial maps are 1-closed.

Planar submap isomorphism is now defined in a straightforward way with
respect to planar submap and planar map isomorphism.

Definition 17 (Planar submap isomorphism) A planar map PM is pla-
nar submap isomorphic to a planar map PM' if there exists a planar submap
of PM'" which is planar isomorphic to PM.

4.8 The case of 1-closed combinatorial maps

In the field of image processing, faces are either entirely represented or not
at all. Technically, this means that (; should be a permutation and not a
partial permutation. We use this property in this section to simplify handling
of exterior and infinite darts, and to show how to compute Ext and Inf sets
for the planar submap definition.

If a map is 1-closed, we have only two cases to consider: the infinite face is
either present and closed or totally absent. Therefore, we have either Inf = 0,
or Inf = Ext. Thus, we do not have to explicitly list the set of infinite darts
Inf, but we can simply use a boolean in finite which is true if the infinite
face is present and false otherwise.

For each of these two cases, the subset Ext may be defined by giving only one
dart d.,; of the set:

e When the infinite face is defined, given a dart d.,; belonging to this face, the
whole set of exterior darts corresponds to the orbit (3;)(des:). For example,
in Fig. 8(a), Exzt = ((1)(a) = {a,b,c,d, e}.

e When the infinite face is not defined, the exterior darts correspond to the
set of 2-free darts that border the exterior of the map. In this case, given
a 2-free dart d.,; that borders the exterior of the map, the whole set of
exterior darts may be computed by Algorithm 4. For example, in Fig. 8(c),
Ext = BUILDEXTERIOR(M, a, false) = {a,b,c,d, e}.

Note that in both cases, there may exist 2-free darts that are not exterior

20

B =RV L VR TR

®

darts. These 2-free darts border undefined parts of the map. Let us consider,
for example, the map displayed in Fig. 7(a): the set of exterior darts is {d, g};
the other 2-free darts, i.e., {a, b, i, j} border an undefined part inside the map.

Algorithm 4: BUILDEXTERIOR(M, deyy, in finite)

Input: a map M = (D, 31, 35), an initial exterior dart d.,; € D, and a
boolean in finite which is true if d.,; belongs to the infinite face,
false otherwise

Output: the set of all exterior darts

if infinite is true then return (3;)(de.)

Euxt — (Z); dcurr — dezt

repeat

Ext «— Ext U {deyr}
dcurr — ﬁl (dcurr)
while d.,,. is not 2-free do

L dcu'r'r — 621 (dcurr>

until dcurr = deact)
return Fuat

Theorem 18 Given (M, dey,infinite), BUILDEXTERIOR computes all the
exterior darts of M

PROOF. Asthe map is 1-closed, there are only two possible cases: the infinite
face is present and thus Ezt = Inf = ((1)(dest), or this face is not present
and in this case, the exterior darts can all be reached starting from d.,;, and
keeping all the 2-free darts that border the exterior of the map. For that, given
an exterior dart, we go to the next dart of the same face (by using 51 (deurr)),
then we jump over darts inside the map (i.e. which are not 2-free) by using
(21 (deyrr) as many time as necessary to reach a 2-free dart. We are sure that
such a dart exists because the map is connected and 1-closed. O

This algorithm has a linear time complexity with respect to the number of
darts.

We can now simplify the notation of planar maps by PM = (M, d.., in finite)
since we can retrieve Ext and Inf given d.,; and infinite, for 1-closed maps.

Note that two planar maps may be planar isomorphic only if the two sets
of exterior darts have the same cardinality and either both correspond to
an infinite face, or both correspond to a set of 2-free darts that border the
exterior of the maps. If this is not the case, one can trivially conclude that
the two planar maps are not isomorphic; otherwise, one has to search for an
isomorphism function that matches Ext and Ext’. In this later case, one may

21

o N o oA W N =

©

use the fact that darts of Ext must be matched to darts of Ezt’ to boost the
research, as described in Algorithm 5.

Algorithm 5: CHECKPLANARISOMORPHISM(PM, PM')

Input: two planar maps PM = (M, dey, infinite) and
PM' = (M, d.,,, infinite")

Output: returns true if and only if the maps are planar-isomorphic
if infinite # infinite’ then return false
Ext «— BUILDEXTERIOR(M, d.., in finite)
Ext' «— BUILDEXTERIOR(M', d.,,, in finite’)
if |Ext| # |Ext'| then return false
foreach dj, € Ext’ do

f < TRAVERSEANDBUILDMATCHING (M, M', deyt, dy)

if f is an isomorphism function between M and M' then

L return true

return false

Theorem 19 CHECKPLANARISOMORPHISM(PM, PM') returns true iff PM
and PM' are planar isomorphic.

PROOF. First, if PM and PM’ are planar isomorphic, there is an isomor-
phism function f such that f(Ezt) = Ext’ and f(Inf) = Inf’. Thus, we have
necessarily infinite = infinite’ and f(de.;) = d € Ext'. By testing all the
darts dj, € Fxt', we are sure to find this case and thus the algorithm will return
true. Second, if our algorithm returns true, we have an isomorphism function
between M and M’ such that infinite = infinite’ and f(de.:) = dy € Ext’.
Since we are in the case of 1-closed maps, this implies that f(Inf) = Inf’
and f(Ext) = Ext’ and thus PM and PM' are planar isomorphic. 0O

Remember that we are able to decide of the isomorphism of 2-maps in O(|D] -
|D’|) time. Having an information about the set of exterior darts and an
efficient way to compute these darts allows us to reduce the complexity to
O(|Ext'| - |D]). In many cases, |Ext'| is significantly smaller than |D’|. Typi-

cally, |Ezt'| = O(,/|D'|) for the lattice Z2.

Now let us re-consider the planar submap problem. By using the fact that
maps are 1-closed, we are now able to compute combinatorially Ext’ and Inf’
in the submap definition. First, we need to add a constraint in the submap
definition. Indeed, given a planar map PM = (M, Ext,Inf), the subset of
darts X C D must ensure that the submap PM| x is always 1-closed. For this
reason, for each face f of the initial map, X must either contain all the darts

22

of f, or no dart of f, but it cannot contain only some darts of f, otherwise
some darts are 1-free.

If the submap is 1-closed, then the infinite face is either totally kept in the
submap, or totally removed. This allows us to compute simply the new boolean
in finite’ of the submap. Indeed, if in finite is false, the initial map M does not
have an infinite face, and thus the submap also. Otherwise, we have Fxt = Inf
and thus d.,; € Inf. Now there are again two cases: if d.,; € X, then the
infinite face is totally selected and thus is present in the submap, otherwise
the infinite face is not selected and thus the submap does not have an infinite
face.

For d._,, there are also two cases to consider. If d.,; € X, then this dart is
present in the submap and thus it belongs to the exterior of the submap, so
that d.,, = deyt. Otherwise, we need to find a new exterior dart of the submap.
This can be achieved easily by searching a dart d € X which can be reached
from d.,; by a path of darts that uses only darts that do not belong to X
(except d of course). Indeed, such a dart belongs necessarily to the exterior of
the submap induced from X due to the fact that maps are connected. Such a
path may be found by a simple traversal of the darts of D starting from d..;
and avoiding darts of X. The key point is to ensure that we are always able to
compute the dart d,,, by using such a path. Suppose it is not the case, then

there is no path between d,.,; and one dart of X and this implies that the map
is not connected.

More formally, we define planar submap for 1-closed maps as follows.

Definition 20 (1-closed planar submap) Given a I-closed planar map
PM = (M, dey,infinite) with M = (D, 1, 52), and a subset of connected
darts X C D. The planar submap of PM induced by X is the planar map
PMx = (M, x,desw, infinite’) such that Mx is 1-closed, with:

e infinite’ = true if infinite = true and do; € X;
infinite’ = false otherwise;
L d/ext - dext Zf dext € X;

d.,, =d e X with a path (degt, . . .,d) of darts ¢ X (except d) otherwise.

ext

Algorithm 6 shows how to decide if a planar map is isomorphic to a submap of
another planar map. The basic idea is to compute subisomorphism functions
and check if they satisfy the additional planarity constraint. We may have to
compute several subisomorphism functions since it is possible that there are
different subisomorphisms, and that some of them are planar while others are
not.

Theorem 21 CHECKPLANARSUBISOMORPHISM(PM, PM') returns true
iff PM is planar isomorphic to a submap of PM’.

23

(=B B N VU

Algorithm 6: CHECKPLANARSUBISOMORPHISM(PM, PM’)

Input: two connected planar maps PM = (M, de, inf) and
PM' = (M'd,,,, inf")

Output: returns true iff PM is planar isomorphic to a submap of PM’
foreach dart dj, of M’ do
f < TRAVERSEANDBUILDMATCHING (M, M', deyt, dy)
if f is a subisomorphism function then

PM" = PM]p)

if CHECKPLANARISOMORPHISM(PM, PM") then

L return True

return False

PROOF. First, if PM is planar isomorphic to a submap of PM’, as we com-
pute all the subisomorphism functions between M and M’, we are sure to find
the one satisfying planarity constraints and thus the algorithm returns true.
Second, if our algorithm returns true, there is a subisomorphism satisfying
the planarity constraints and thus PM is planar isomorphic to a submap of
PM'. O

The complexity of the planar subisomorphism algorithm is O(|D|? - |D']).

One loop of this algorithm is done by using Algorithm 2, which complexity
(in 2D) is O(|D|). The complexity of planar submap computation is O(|D'|),
thanks to the efficient computation of infinite” and d/ . Finally the test of
planar isomorphism is achieved by using Algorithm 5, the complexity of which
is O(|Ext"|-|D|). Since the number of darts in Fxt” is smaller than the number
of darts in D", we can bound the overall complexity of one loop by O(|D|?)

since |D| = |D"|.

5 Experiments

In this section, we carry out two experiments that show the effectiveness of
our algorithms to detect patterns in images. The first challenge consists in
searching for a sub-image into a database of 2D segmented images —a typical
"Where’s Wally” challenge. The second one aims at retrieving a sub-mesh into
a database of 3D objects.

These experiments illustrate the interest of generic algorithms for submap

isomorphism. Indeed, the same procedure is used whatever the dimension of
the maps that model objects (2D, 3D or more). Moreover, we observe that the

24

Fig. 10. Examples of 2D segmented images. All images have the same size (756 x 504
pixels) and belong to one of the five following classes: (a) ARBOGREENS, (b) CHER-
RIES, (c) FOOTBALL, (d) GREENLAKE and (e) SWISSMOUNTAINS.

time required to find patterns is always challenging. All our experiments were
made on a PC with a 2.26 GHz Intel Xeon E5520 processor.

5.1 2D sub-image searching

We first consider a database containing 224 segmented 2D images® divided
into 5 classes of approximately 45 images each: ARBORGREENS, CHERRIES,
FOOTBALL, GREENLAKE and SWISSMOUNTAINS (see Fig. 10).

From these 224 images, we have randomly chosen 8 images from the database,
and manually selected the 8 sub-images (SIm1 to SIm8) that are displayed in
Fig. 11. The aim of this first experiment is to retrieve the images from which
these sub-images were extracted.

First of all, we have computed the 2D planar maps of all the images of the
database and of the 8 sub-images. To achieve this task, we used the algorithm
of Damiand, Bertrand and Fiorio presented in [DBF04]. We describe in Table 1
the characteristics of the maps that correspond to the selected sub-images, as
well as the average characteristics of the images of the database.

Let us first note that several maps are not connected. In this case, we cannot
directly use our algorithm since it assumes that the pattern map is connected.
To get round this problem, we have only kept the largest connected component

® The database of free images for research purpose is available on Internet
http://wuw.cs.washington.edu/research/imagedatabase/

25

(f) () (h)

Fig. 11. The 8 selected sub-images. (a) SIm1, from arbogreens05, size 48 x 49 pixels.
(b) SIm2, from arbogreens27, size 262 x 90 pixels. (¢) SIm3, from cherriesl4, size
193 x 129 pixels. (d) SIm4, from football05, size 83 x 112 pixels. (e) SIm5, from
footballll, size 25 x 25 pixels. (f) SIm6, from footballl6, size 89 x 42 pixels. (g) SIm7,
from greenlake06, size 48 x 54 pixels. (g) SIm8, from swissmountains22, size 82 x 48
pixels.

of each combinatorial map. This can be done by a linear traversal of the darts
of the map. Of course, it may happen that a map contains a copy of this
connected component, but not the whole pattern. However, experiments have
shown us that looking for the largest connected component is discriminant
enough: in our test suite, it never happens that a map contains a copy of a
largest connected component which comes from another image.

We present in Table 2 the results of the search of the images from which each
sub-image was extracted, using our subisomorphism procedure. These results
are described in terms of the time (in milliseconds) and of the number of darts
visited during a traversal (note that n traversals are required to decide if there
is a copy of a pattern map in a target map that has n darts).

Let us first note that images are processed very quickly: each image is pro-
cessed in 26 milliseconds, on average, so that a subimage is found in 6 seconds

26

Object | # Darts | # Vertices | # Edges | # Faces | # CC || # dBCC
SIm1 412 136 206 72 1 146
SIm2 398 134 199 81 8 108
SIm3 1542 509 771 272 5 956
SIm4 766 253 383 136 3 372
SImb 48 16 24 14 3 30
SIm6 138 46 69 25 1 45
SIm7 100 33 50 21 2 50
SIm8 108 36 54 20 1 30

DB (avg) 14509 4789 7255 2598 66 -
Table 1

Characteristics of the maps. The first 8 lines correspond to the 8 sub-images; the last
line corresponds to the images of the database (average characteristics). Each line
successively gives the number of darts, vertices, edges, faces, connected components,
and number of darts of the largest connected component.

SIm1 | SIm2 | SIm3 | SIm4 | SIm5 | SIm6 | SIm7 | SIm8

Average time 32.8 | 25.2 | 329 | 28.8 | 24.7 | 21.8 | 21.8 24

Max time 80 64 88 76 64 26 26 60
Std Dev 159 | 11.6 | 15.7 | 13.7 | 11.9 | 10.1 | 10.1 | 11.2
Total time 7304 | 5608 | 7308 | 6400 | 5496 | 4840 | 4840 | 5328

Average # darts | 56.4 24 477 | 21.9 | 23.1 | 31.8 | 31.3 | 24.8
Min # darts 39 18 25 16 19 31 28 17
Max # darts 146 108 956 372 30 45 50 30

Std Dev 8.3 6.5 61.5 | 23.6 2.2 1.4 2.1 1.7

Table 2

Experimental results of the search of a sub-image in a base of 2D images. The first 4
lines give the time in milliseconds: average, maximum and standard deviation of the
time to search for a sub-image in an image, followed by the total time of the search
in the whole base of 224 images. The last 4 lines give the number of darts visited
during a map traversal (average, minimum, maximum, and standard deviation).
Note that the maximum is always reached for the image from which the sub-image

was extracted.

27

or so in the whole database of 224 images. Actually, the number of darts vis-
ited during the search process is usually far below the theoretical bound. Let
us consider, for example, results for SIm3, that has 956 darts: the average
number of visited darts for deciding if SIm3 belongs to an image is 47.7. This
comes from the fact that we consider an optimized version of the algorithm
which checks that the matching f is an injection during the traversal, and
which stops the traversal as soon as two different pattern darts are matched
to a same target dart. Hence, on average, the algorithm visits 32 darts or
so whereas the submaps have 217 darts or so. Note that, for each submap,
the maximal number of visited darts is always equal to the number of darts of
this submap: this maximal bound is reached once, when the submap algorithm
returns true.

When the subimage is modeled by a non connected map, we only search for the
largest connected component. In all our experiments, this allows us to retrieve
only one image, from which the subimage has been actually extracted. Note
that, in some cases, the number of darts of the largest connected component
is rather small (e.g. 30 darts for SIm5 and SIm8). This shows us that the
topology of a very small part of a map is discriminant enough to characterize
the sub-image.

5.2 3D sub-mesh searching

In our second experiment, we consider 3D objects, modelled by 3D maps, in
order to illustrate the genericity of our algorithms. We consider a database of
800 objects % represented in 3D such as the four ones displayed in Fig. 12.

From these objects, we have extracted the 8 sub-objects (SMhl to SMh8)
displayed in Fig. 13. The characteristics of these 8 sub-objects, as well as the
average characteristics of the meshes of the database, are given in Table 3.

As for the previous experiments, these maps are not necessarily connected. In
this case, we select for each pattern the largest connected component and we
use this connected component to search for the pattern. Like in the 2D case,
if it may be possible that a map contains a copy of this connected compo-
nent but not the whole pattern, experimental results have shown us that the
largest connected component is discriminant enough: for the 800 objects of
the database (which model very similar objects in some cases) we always find
only one matching which corresponds to the object from which the sub-mesh
was extracted.

6 These objects are available in the Shape Retrieval Contest web page
http://www.aimatshape.net/event/SHREC/

28

Object | # Darts | # vertices | # edges | # faces | # volumes | # cc | # dBCC
SMh1 36624 1772 4813 3052 25 13 23208
SMh2 3311 155 418 276 14 7 1056
SMh3 60216 2753 7775 5018 12 6 29040
SMh4 198936 8717 23555 16578 1140 | 442 15480
SMh5 59040 2495 7410 4920 6 3 31512
SMh6 54252 2538 7097 4521 28 15 4380
SMh7 45756 2015 5824 3813 8 4 28416
SMh8 7860 335 985 655 6 3 6384

DB 179123 10652 24440 14927 2113 | 1018 -

Table 3

Characteristics of the meshes. The first 8 lines correspond to the 8 sub-meshes; the
last line corresponds to the meshes of the database (average characteristics). Each
line successively gives the number of darts, vertices, edges, faces, volumes, connected
components, and number of darts of the largest connected component.

SMh1l | SMh2 | SMh3 | SMh4 | SMh5 | SMh6 | SMh7 | SMh8
Average time 1.31 0.51 0.68 0.32 1.24 1.21 0.63 0.57
Max time 13.56 | 4.89 11.76 7.16 13.98 13.84 6.30 6.39
Std Dev 1.89 0.65 1.10 0.44 1.82 1.73 0.82 0.73
Total time 1043 407 542 252 987 964 501 453
Average # darts | 187.19 | 119.25 | 297.31 | 65.99 | 270.44 | 135.16 | 341.39 | 108.21
Min # darts 1 1 1 1 1 7 3
Max # darts 23208 | 1056 29040 | 15480 | 31512 4380 28416 6384
Std Dev 816.67 | 90.15 | 1026.47 | 546.04 | 1123.02 | 159.14 | 1001.47 | 229.57
Table 4

Experimental results of the search of a sub-mesh in a base of 3D meshes. The first
4 lines give the time in seconds: average, maximum and standard deviation of the
time to search for a sub-mesh in a mesh, followed by the total time of the search in
the whole base of 800 meshes. The last 4 lines give the number of darts visited for
each map traversal (average, minimum, maximum, and standard deviation). Note
that the maximum is always reached for the mesh from which the sub-mesh was

extracted.

29

T e
A .
1‘/ ';’iﬂ Egg ates
il
N SR
NYVWAR WRNQWY N TRREE
N R NN AR Z AR S
SHERERSEN RN NN A
SN N

e NSQINES

v
Yyl

Tl
W4

N
i
N
AW VN
!’rgsk

Fig. 12. Examples of 3D objects.

The results of our experiments are given in Table 4. Like in the 2D case,
the number of visited darts during each traversal is often far below the worst
case: the average number of visited darts is 190 whereas the sub-meshes have
17,435 darts on average. Actually, in some cases only one dart is visited. This
case occurs when the chosen initial pattern dart is free for one permutation
whereas the chosen initial target dart is not free for this permutation. Hence,
CPU times are still rather small when considering the fact that the database
contains 800 meshes that have 180,000 darts or so on average (the largest
meshes have more than one million darts). Indeed, the highest time needed to
decide if a sub-mesh belongs to a mesh is smaller than 14 seconds, and the
highest time needed to find a sub-mesh in the whole database of 800 meshes
is 1043 seconds.

In Fig. 14, we can identify more precisely the correlation between the time

needed by the submap algorithm and the size of the map in which we search
the sub-mesh. Lines are linear regressions and show the difference of the slopes

30

(a) (b) () (d)
(e) (f) (8) (h)

Fig. 13. The 8 selected sub-meshes.

between the different considered sub-meshes. In this figure, we can see a strong
correlation between the number of darts of each target map and the time re-
quired by the submap search. However, we do not have a direct link between
the slope of the linear regression and the number of darts of the biggest con-
nected component of the sub-mesh. For example, this number of darts is 23208
for SMh1 and 29040 for SMh3, but the slope associated to SMh1 is below the
slope associated to SMh3. This can be explained since the time depends not
only on the number of darts of the largest connected component, but also on
the topology of this component, i.e. on the way the darts are linked together.

6 Discussion

This paper is a first contribution to the problem of comparing combinatorial
maps. It defines the map and submap isomorphism problems, which may be
used to decide if two maps are equivalent, or if a copy of a map is included in
another map, and it describes polynomial algorithms for solving these prob-
lems. The proposed definitions and algorithms are generic and hold for any
open nD combinatorial maps, that may be used to model nD objects with
boundaries. We also introduce planar combinatorial maps, which may be used

31

Time (in seconds)

s
0 200000 400000 600000 800000 1000000 1200000 1400000 1600000

Number of darts

Fig. 14. Time in second to search each sub-mesh for each mesh of the database.
SMh1 in dark blue, SMh2 in orange, SMh3 in yellow, SMh4 in green, SMh5 in dark
red, SMh6 in light blue, SMh7 in dark green and SMh8 in light green.

to model 2D objects that are embedded on a plane such as, for example, im-
ages, and we show how to extend our algorithms to decide if two planar maps
are isomorphic. Experiments show that this work may be used to search for
patterns in 2D images or 3D meshes with very challenging CPU times.

The problem of finding a pattern in an image is an important issue that has of-
ten been tackled by modeling images with graphs such as, for example, RAGs.
If there exist rather efficient heuristics for solving the graph isomorphism prob-
lem” [McK81,SS08], this is not the case for the subgraph isomorphism prob-
lem which is computationally intractable in the general case (NP-complete),
and therefore practically unsolvable for large scale graphs. In particular, the
best performing approaches for subgraph isomorphism are usually limited to
graphs up to a few hundreds of nodes [CFSV01,ZDS10].

Interestingly, using combinatorial maps to model images allows us to have
more relevant results —as combinatorial maps model information that can-
not be modelled with classical RAGs such as multi-adjacency or the order of
neighbor regions around a region— and these results are computed much more
quickly —as the subisomorphism problem becomes polynomial.

Some polynomial algorithms have been proposed to solve particular cases of

7 The theoretical complexity of graph isomorphism is an open question: If it clearly
belongs to NP, it has not been proven to be NP-complete.

32

the subgraph isomorphism problem. In particular, Jiang and Bunke have pro-
posed polynomial algorithms for deciding of the isomorphism [JB99] and subi-
somorphism [JB9S8] of ordered graphs, i.e., graphs such that, for each vertex,
the edges incident to this vertex have a unique order. These algorithms are
based on graph traversals and our algorithms for (sub)map isomorphism may
be viewed as a generalization of this work to nD open combinatorial maps.

A number of perspectives are being looked into. In particular, (sub)map iso-
morphism is an exact decision problem which allows us to search for a pattern
in a map. We plan to develop error-tolerant methods, that are able to quan-
tify the similarity of two maps by means of the size of their largest common
submap, or by means of the cost to transform a map into another by us-
ing the edit operations defined in [DL03,BADSMO08]. We also plan to use our
(sub)isomorphism algorithms to search for patterns that occur frequently in
a database of images modelled by combinatorial maps, thus characterizing
classes of images. We have proposed in [GDS09] a signature of combinatorial
maps which is based on a map traversal similar to the one used in our isomor-
phism algorithm. This map signature may be used to decide in linear time if
a new combinatorial map already belongs to a database of map signatures.
We now plan to use this map signature and our submap algorithm in order to
find frequent patterns in a database of maps.

Acknowledgement

The authors acknowledge authors of [PABLOT], specially Pascal Lienhardt, for
all the fruitful discussions about open combinatorial maps.

References

[AK89] D. Arques and P. Koch. Modélisation de solides par les pavages. In
Proc. Pizim 89, pages 47-61, Paris, 1989.

[BADSMO08] M. Baba-Ali, G. Damiand, X. Skapin, and D. Marcheix. Insertion and
expansion operations for n -dimensional generalized maps. In Proc.
of 14th International Conference on Discrete Geometry for Computer
Imagery (DGCI), volume 4992 of LNCS, pages 141-152, Lyon, France,
April 2008. Springer-Verlag.

[BDB97] L. Brun, J.-P. Domenger, and J.-P. Braquelaire. Discrete maps : a
framework for region segmentation algorithms. In Proc. Workshop on
Graph-based Representations in Pattern Recognition, Lyon, april 1997.
IAPR-TC15. published in Advances in Computing (Springer).

33

[BDDO1]

[BDDW99]

[Bru96]

[CFSV01]

[CFSV07]

[Cor75]

[Dam08]

[DBF04]

[DDOS]

J.-P. Braquelaire, P. Desbarats, and J.-P. Domenger. 3d split
and merge with 3-maps. In Proc. Workshop on Graph-based
Representations in Pattern Recognition, pages 32—43, Ischia, Italy, may
2001. TAPR-TC15.

J.P. Braquelaire, P. Desbarats, J.P. Domenger, and C.A. Wiithrich. A
topological structuring for aggregates of 3d discrete objects. In Proc.

Workshop on Graph-based Representations in Pattern Recognition,
pages 193-202, Austria, may 1999. TAPR-TC15.

L. Brun. Segmentation d’images couleur a base Topologique. These de
doctorat, Université Bordeaux I, décembre 1996.

L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved
algorithm for matching large graphs. In Proc. Workshop on Graph-
based Representations in Pattern Recognition, pages 149-159, Ischia,
Ttaly, 2001.

D Conte, P. Foggia, C. Sansone, and M. Vento. Applied Graph Theory
in Computer Vision and Pattern Recognition, chapter How and Why
Pattern Recognition and Computer Vision Applications Use Graphs,
pages 85-135. Studies in Computational Intelligence. Springer Berlin
/ Heidelberg, 2007.

R. Cori. Un code pour les graphes planaires et ses applications. In
Astérisque, volume 27. Soc. Math. de France, Paris, France, 1975.

G. Damiand. Topological model for 3d image representation:
Definition and incremental extraction algorithm. Computer Vision
and Image Understanding, 109(3):260-289, March 2008.

G. Damiand, Y. Bertrand, and C. Fiorio. Topological model for two-
dimensional image representation: definition and optimal extraction
algorithm. Computer Vision and Image Understanding, 93(2):111—
154, February 2004.

A. Dupas and G. Damiand. First results for 3d image segmentation
with topological map. In Proc. Discrete Geometry for Computer
Imagery, volume 4992 of Lecture Notes in Computer Science, pages
507-518, Lyon, France, April 2008. Springer-Verlag.

[DDLHJ"09] G. Damiand, C. De La Higuera, J.-C. Janodet, E. Samuel,

[DLO03]

and C. Solnon. Polynomial algorithm for submap isomorphism:
Application to searching patterns in images. In Proc. of 7th
Workshop on Graph-Based Representation in Pattern Recognition
(GBR), volume 5534 of LNCS, pages 102-112, Venice, Italy, May 2009.
Springer-Verlag.

G. Damiand and P. Lienhardt. @ Removal and contraction for
n-dimensional generalized maps. In Proc. of 11th International
Conference on Discrete Geometry for Computer Imagery (DGCI),

34

[Dom92]

[DRO2]

[Edm60]

[Fio96]

[GDS09]

[GMBM95]

[JB93]

[JB9S]

[TB99)

[KMO95]

[Kovs9]

[Lie91]

volume 2886 of LNCS, pages 408-419, Naples, Italy, November 2003.
Springer-Verlag.

J.P. Domenger. Conception et implémentation du noyeau graphique
d’un environnement 2D1/2 d’édition d’images discrétes. These de
doctorat, Université Bordeaux I, avril 1992.

G. Damiand and P. Resch. Topological map based algorithms for
3d image segmentation. In Proc. Discrete Geometry for Computer
Imagery, number 2301 in Lecture Notes in Computer Science, pages
220-231, Bordeaux, France, april 2002.

J. Edmonds. A combinatorial representation for polyhedral surfaces.
Notices of the American Mathematical Society, 7, 1960.

C. Fiorio. A topologically consistent representation for image analysis:
the frontiers topological graph. In Proc. Discrete Geometry for
Computer Imagery, number 1176 in Lecture Notes in Computer
Science, pages 151-162, Lyon, France, november 1996.

S. Gosselin, G. Damiand, and C. Solnon. Signatures of combinatorial
maps. In 13th Workshop on Combinatorial Image Analysis (IWCIA),
volume 5852 of LNCS. Springer, 2009.

T. Geraud, J.F. Mangin, I. Bloch, and H. Maitre. Segmenting internal
structures in 3d mr images of the brain by markovian relaxation on
a watershed based adjacency graph. In Proc. IEEE International
Conference on Image Processing, volume 3, pages 548-551, oct 1995.

X. Y. Jiang and H. Bunke. An optimal algorithm for extracting the
regions of a plane graph. Pattern Recognition Letters, 14(7):553-558,
1993.

X. Jiang and H. Bunke. Marked subgraph isomorphism of ordered
graphs. In Proc. Advances in Pattern Recognition, volume 1451 of
Lecture Notes in Computer Science, pages 122—-131, 1998.

X. Jiang and H. Bunke. Optimal quadratic-time isomorphism of
ordered graphs. Pattern Recognition, 32(7):1273-1283, 1999.

W.G. Kropatsch and H. Macho. Finding the structure of connected
components using dual irregular pyramids. In Proc. Discrete Geometry
for Computer Imagery, pages 147-158, invited lecture, september
1995.

V.A. Kovalevsky. Finite topology as applied to image analysis.
Computer Vision, Graphics, and Image Processing, 46:141-161, 1989.

P. Lienhardt. Topological models for boundary representation: a
comparison with n-dimensional generalized maps. Computer-Aided
Design, 23(1):59-82, 1991.

35

[Lie94]

[LMVO01]

[McKS81]

[PABLO7]

[Ros74]

[Saa94]

[SC84]

[Spedl]

[SS08]

[Tut63]

[ZDS10]

P. Lienhardt. N-dimensional generalized combinatorial maps and
cellular quasi-manifolds. International Journal of Computational
Geometry and Applications, 4(3):275-324, 1994.

J. Llados, E. Marti, and J.J. Villanueva. Symbol recognition by
error-tolerant subgraph matching between region adjacency graphs.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(10):1137-1143, October 2001.

B. D. McKay. Practical graph isomorphism. Congressus
Numerantium, 30:45-87, 1981.

M. Poudret, A. Arnould, Y. Bertrand, and P. Lienhardt. Cartes
combinatoires ouvertes. Research Notes 2007-1, Laboratoire SIC E.A.
4103, F-86962 Futuroscope Cedex - France, October 2007.

A. Rosenfeld. Adjacency in digital pictures. Information and Control,
26(1):24-33, 1974.

K. Saarinen. Color image segmentation by a watershed algorithm
and region adjacency graph processing. In Proc. IEEE International
Conference on Image Processing, volume 3, pages 1021-1025, nov
1994.

M. Suk and T.H. Cho. An object-detection algorithm based on the
region-adjacency graph. Proceedings of the IEEE, 72:985-986, 1984.

J.C. Spehner. Merging in maps and in pavings. Theoretical Computer
Science, 86(2):205-232, September 1991.

S. Sorlin and C. Solnon. A parametric filtering algorithm for the graph
isomorphism problem. Constraints, 13(4):518-537, 2008.

W.T. Tutte. A census of planar maps. Canad. J. Math., 15:249-271,
1963.

S. Zampelli, Y. Deville, and C. Solnon. Solving subgraph isomorphism
problems with constraint programming. Constraints (to appear), 2010.

36

