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ABSTRACT 
 
In this paper, we propose a kernel-based approach to 
improve the retrieval performance of CBIR systems by 
learning a distance metric based on class probability 
distributions. Unlike other metric learning methods which 
are based on local or global constraints, the proposed 
method learns for each class a nonlinear kernel which 
transforms the original feature space to a more effective 
one. The distances between query and database images are 
then measured in the new space. Experimental results show 
that our kernel-based approach not only improves the 
retrieval performances of kernel distance without learning, 
but also outperforms other kernel metric learning methods. 
 

Index Terms— Similarity search, kernel functions, 
CBIR, k  nearest neighbor search 
 

1. INTRODUCTION 
 
Content-based image retrieval has received much interest in 
the last decades due to the large digital storage and easy 
access to images on computers and through the World Wide 
Web [1]. A common scheme used in CBIR is to first 
automatically extract from images a set of features (color, 
texture, shape, etc.) structured into descriptors (indexes). 
These indexes are then used in a search engine to compare, 
classify, rank, etc. the database content. 
The two determining factors for image retrieval 
performances are on one hand the considered features to 
describe the images, and on the other hand the distance used 
to measure the similarity between a query and images in the 
database. It is well known that for a specific set of features, 
the performance of a content-based image retrieval system 
depends critically on the similarity or dissimilarity measure 
in use. Distance learning can be considered as one of the 
most interesting issue to improve the performances of CBIR 
systems and also to reduce the semantic gap.  

Different learning strategies, such as supervised, 
unsupervised and semi-supervised distance metric learning 

are used to define a suitable similarity measurement for 
content-based image retrieval.  

The supervised approach can be divided into two 
categories: In the first one the distance metric is learned in a 
global sense, i.e., to satisfy all the pairwise constraints 
simultaneously. A review of various learning methods of 
this category can be found in [2]. In the second approach, 
distance metric is learned in a local sense, satisfying only 
local pairwise constraints.  Several authors [3], [4], used this 
approach to learn appropriate distance metrics for NNk −  
classifier. Particularly, in [5], a Quasiconformal Kernel for 
nearest neighbor classification is proposed which adjusts the 
Radial Basis function by introducing weights based on both 
local consistency of class labels and labeling uncertainty. In 
[6], the authors propose a technique that computes a locally 
flexible distance metric using SVM. As proposed in [7] and 
[5], Bermejo et al [6] attribute then some weights to the 
features, based on their relevance to the class conditional 
probabilities for each query. Hoi et al. [8], propose a simple 
and efficient algorithm to learn a full ranked Mahalanobis 
distance metric. This approach constructs a metric in kernel 
space, based on a weighted sum of class covariance 
matrices.  

The main idea of unsupervised distance metric learning 
methods is to learn low-dimensional manifold where 
distances between most of observed data are preserved. 
These methods can be divided into nonlinear and linear 
approaches. The most popular methods for nonlinear 
unsupervised dimensionality reduction are ISOMAP [9], 
Locally Linear Embeding (LLE)[10], and Laplacian 
Eigenamp (LE) [11]. ISOMAP preserves the geodesic 
distances between any two data points, while LLE and LE 
focus on the preservation of the local neighbor structure. 
The well-known algorithms for the unsupervised linear 
methods are the Principal Component Analysis (PCA) [12], 
Multidimensional Scaling (MDS) [13] and the Independent 
components analysis (ICA) [14].  

For semi-supervised methods, emerging distance metric 
learning techniques are proposed. For example, Relevance 
Component Analysis (RCA) learns a global linear 
transformation by using only the equivalent constraint [15]. 



Discriminate Component Analysis (DCA) improves the 
RCA by incorporating the negative constraints [8]. More 
recently, Hong et al. proposed a kernel-based distance 
metric learning method for content-based image retrieval 
[16].  

In this paper, we introduce a new semi-supervised metric 
learning for content-based image retrieval. A good distance 
metric would lead to tight and well-separated clusters in the 
projected space. In our idea, this can be quantified by the 
use of a new criterion, which is the ratio between class 
probabilities of the vectors that are respectively different 
and similar to the query. The criterion resembles the one 
used in Adaptive Quasiconformal kernel (AQK) [5], except 
that we compute a metric learning in a semi supervised 
setting, while AQK assumes that labels are already known. 
The proposed method maps data vectors into a kernel space 
and learns relevant and irrelevant features’ vectors from 
classification knowledge using class probability 
distributions. Based on Quasiconformal transformed 
kernels, the proposed learning process generates for each 
class a suitable similarity model by accumulating 
classification knowledge collected over multiple query 
sessions. 

The next section presents the kernel-based similarity 
model used in this paper. The proposed semi-supervised 
metric learning strategy is described in section 3. Section 4 
deals with our experimental results before concluding. 
 

2. KERNEL-BASED SIMILARITY MODEL 
 
We propose in this investigation a nonlinear similarity 
measurement based on learning relevant and irrelevant 
features from classification knowledge. The learning 
process allows the system to compute, for each class a 
suitable kernel function for similarity measure. Gaussian 
radial basis function (GRBF) is used as a kernel defined by: 
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where δ  is a scaling parameter  and a  and b are two 
vectors in the input space. The distance between a  and b is 
defined as the inner product of )(aΦ  and ),(bΦ  where Φ is 
the function that maps the vectors a and b from an input 
space χ to a high dimensional feature space .F  The inner 
product between two vectors a and b , 

),()(),( bakba =ΦΦ ,  can be considered as a measure of 
their similarity. Therefore the distance between a and b is 
defined as:  
 

),(),(2),()(),(),( bbkbakaakbabadist +−=ΦΦ=       (2)          
 

The advantage of the kernel-based similarity is the ability 
to create a new kernel function derived from the existing 

similarity model depending on the considered application. 
Based on Quasiconformal transformed kernels [5] we can 
modify the similarity measurement (kernel) in order to 
reduce the distance around relevant features and to expand 
the distance around irrelevant ones. The new kernel 
function is defined as: 
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where )(ac is a positive function (explained in 3.3).  
 

3. SEMI-SUPERVISED METRIC LEARNING 
STRATEGY 

 
The proposed semi-supervised metric learning strategy 
comprises three steps. We first map the input vectors into a 
feature space using Kernel Principal Component Analysis 
(KPCA) [9], and, in the second step, the best parameters of 
the KPCA are estimated to well-separated clusters in the 
projected space. In the final step, we learn the similarity 
model from data and apply the NNk − search.  
In the next sub-section, we introduce the three steps method. 
 
3.1 Step 1: Kernel Principal Component Analysis 
(KPCA) 
 
Let ),...1( Nixi = be N  vectors in the input space χ , and 

)( ixΦ  their nonlinear mapping into a feature space F . 
KPCA finds the principal axes by diagonalizing the 
covariance matrix:   
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where T
ix )(Φ is the transpose of )( ixΦ . The principal 

orthogonal axes ),...1( MlVl = (M is the dimensionality of 
the feature  space) can be found by solving the 
eigenproblem : 

      lll VV C=λ                                        (5) 

where lV  and lλ are respectively the thl eigenvector and its 
corresponding eigenvalue. It can be shown [9] that the 
solution of the above eigenproblem lies in the span of the 
data, i.e:  
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where ),...,( 1 pNpp ααα =  are found by solving the 
eigenproblem [9] : 
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Figure 1.  Principal Components for different values of δ and d  
 

where K  is the Gram matrix defined by: 
)(),(, jiji xxK ΦΦ=  

where Nji ,...1, =  are respectively the row and the column 
indices of K . The eigenvectors lV are sorted in a decreasing 
order according to the magnitudes of their corresponding 
eigenvalues lλ , and the first eigenvectors are selected as the 
basis, that are used to map data vectors into the feature 
space. 
For any input vector px , the thl  principal component ly~  of  

)( pxΦ  is given by:  
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In KPCA, the nonlinear mapping )(xΦ  into the kernel 
space is determined by the nonlinear function k (RBF in our 
case). In the next section, we show that by simply changing 
the values of δ and d , where δ  is the scaling parameter of 
the GRBF and d  is the dimensionality of the feature space, 
we obtain series of functions which approximate differently 
the nonlinearity of the original data in the feature space. The 
optimal kernel function obtained is then used as a similarity 
measurement. 
 
3.2 Step 2 : KPCA parameters estimation 
 
As described previously, KPCA deals with nonlinear 
transformation via nonlinear kernel functions. In the used 
kernel function (GRBF), there are two parameters d  and 
δ that must be predetermined, knowing that they have 
significant impact on image representation in feature space. 
Ideally, compact and informative image representation will 

facilitate the retrieval process. To show the influence of the 
two parameters d  and δ  on data structure and the 
classification task, an illustrative example is given in the 
figure 1.  
For this, set of three classes is used; each one consists of 40 
vectors with dimensionality 15. The first image on each row 
represents the original data (1.a and 1.e). In the first row, we 
present the first and the second principal components 
obtained by KPCA using respectively, from left to right, the 
values 0.01, 2 and 20 for δ , and a fixed value of 2=d . We 
can see from these figures that the kernel parameter δ  has a 
significant effect on the class separability. When increasing 
δ  until a certain value, better separation of the class vectors 
is obtained (1.c). In our case, for 2=δ  the best separation 
is reached, while for a large value of δ  (in our case 

20=δ ), 2 classes are obtained instead of 3 classes.  
In the second row, we fixe 1=δ  and we plot the three 
eigenvectors, obtained from KPCA, corresponding to the 
three largest eigenvalues. Thus, we have the 2nd, 3rd and 4th 
eigenvectors in figure 1.f (with 4=d ), the 5th, 6th and 7th 
eigenvectors in figure 1.g (with 7=d ), and the 8th, 9th, and 
10th  eigenvectors in figure 1.h (with 10=d ). We see that 
the top principal eigenvectors (figure 1.f and 1.g), capture 
the major data variance allowing a better data 
representation, while the remaining ones (figure 1.h) 
correspond to the less significant variance. Finally the 
choice of d and δ  values is crucial as it can widely 
influence the success or the failure of the retrieval systems. 
Our idea is to find a good distance metric which can be used 
not only to measure similarity between data, but also to 
propose a new representation of them. We propose in this 
investigation a learning strategy for the parameters d  
andδ , which allow to obtain a maximum of both class 
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separability and statistical variance. The goal of the first 
condition is to find a nonlinear transformation that leads to 
an optimal distance metric which allows to maximize the 
inter-class variance and to minimize the intra-class variance 
in the feature space. Therefore, it offers an effective data 
representation that supports more accurate search strategies. 
This condition can be evaluated by the class separability 
criterion defined as follows:  
Let ),...1()( Nixi =Φ  be the N  vectors in the feature space, 

il be the number of vectors (descriptors) that belong to class 
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all vectors N . The average within-cluster distances wS , 
which correspond to intra-class variance, and the average 
between-cluster distances bS , which correspond to the inter-
class variance, can be calculated by:   
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The idea is to find the non linear transformation (kernel 
function which depends on d  and δ ) that maximizes the 
following criterion: 
                                 wb SS /=γ                                          (9) 
The goal of the second condition is to select the value of the 
dimensionality d , corresponding to the number of 
eigenvectors which capture the major statistical variation in 
the data. The issue of selecting d  eigenvectors, with 

'dd < , 'd is the dimensionality of the original data, has been 
addressed in many works [17]. In our case, we select 
d eigenvectors in order to capture 98% of the variance, i.e:  
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To find the values of d and δ  that satisfy  the two criteria 
defined previously, we propose to project the original data 
in a feature space with KPCA using different values of 
d and δ . An empirical selection is used to determine the 
initial values of d  and δ .  
In a first step, we select all the couples whose γ  value 
verifies:           

max, %98 γγ δ ≥d                  (11) 
 
In the second step, we select, among all the couples selected 
in the first step, those whose statistical variance ρ  verifies: 

      max, %98 ρρ δ ≥d                              (12) 

Finally we keep among the obtained couples those having 
the lowest value of d and δ . Experimental results (section 
4.1) show that the learning strategy used to select the values 
of ),( δd achieved the highest performances 
 
3.3 Step 3: learning and searching mechanisms 
 
In this step, the non-linear similarity models are learned 
from user feedback and NNk − search is then applied based 
on those models.  Note that the first step of the retrieval 
process (ie before applying the metric learning process) is 
based on the GRBF, using the optimal kernel parameters 
that we have been found through the strategy described in 
subsection 3.2 

To perform our semi-supervised metric learning, we 
create a new kernel k

~
form the previous one (Equation (3)), 

and hence a new kernel distance: 
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 The idea is to create for each class, a kernel function that 
expand the distance around descriptors whose class 
probability distributions are different from the query and 
contract the distance around descriptors whose class 
probability distribution is similar to the query. Our aim is to 
make the space around features farther from or closer to the 
query, related to their class probability distributions.  

)(xc  can be computed as follows: 
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S denotes the number of similar descriptors, and 
D denotes the number of dissimilar descriptors. The set of 

similar S  and dissimilar D images are used to create a 
suitable similarity model, they can be computed as follows: 

 A set of w   images are randomly selected from each 
class so as to be used as queries. As described in figure (2), 
for each query iQ  )1( wtoi = , a two step mechanism is 
processed. First, the system returns the top NNk −  images 
using the similarity model defined by Equation (2), and 
based on the classification knowledge, the system identifies 

{ }Niii ssS ,,...1,=   and { }Miii ddD ,,...1,=  respectively as the set 
of similar and dissimilar images. The second step consists of 
selecting from the set iS , bN  images that will be used as 
query stimulating the NNk − search and producing two 
new sets { }Nbii SS ,,...1, and { }Nbii DD ,,...,1,   of similar  and 
dissimilar images. Finally, we define the sets S and D as: 

 



{ }
Nbj

wi
jiSS

==
=

=

1
,1

, , { }
Nbj

wi
jiDD

==
=

=

1
,1

,  

Then we compute the suitable similarity model 
according to equations (13) and (14) for an efficient image  
retrieval. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Fonctional diagram of the proposed semi-

supervised metric learning. 
 

4. EXPERIMENTAL RESULTS 
 
Experiments are based on the well-known coil-100 image 
database of Columbia University [18]. It contains 7200 
images belonging to 100 different classes. Each class 
contains 72 objects generated by rotating the object at an 
interval of 5 degree (figure 3). To describe coil-100 
database images, we use color and shape descriptors 
because they are well adapted to this database.  

For color descriptor, we use LAB histogram [18] 
quantized upon 192 bins, RGB dominant colors, spatial 
coherency, and percentage of colors [20] upon a vector of 
25 bins. Angular Radial Transform (ART) [21] is used as 
shape descriptor, which is well adapted to COIL-100 
database, as each image contains one single object. The 
final image descriptor is a vector of 252 components (217 
for color and 35 for shape) 

Two experiments are conducted in this section, the first 
one deals with KPCA parameters estimation strategy, and 
the second one evaluate our semi-supervised metric learning 
on the Coil-100 database. 

 
4.1 Kernel distance evaluation 
 

To evaluate the performance of the proposed strategy, 
the recall and precision parameters are used. We first apply 
the learning strategy described previously to find the best 
value of ),( δd . Thus, we build the optimal kernel function 
(GRBF)), which allows not only to best approximate the 
non-linearity in the feature space using KPCA, but also to 
best measure the similarity between two vectors and 
therefore, between their corresponding images.  

Figure 4.a and 4.b show respectively γ  and ρ  
parameters variations for different values of d  (lines) and 

δ  (columns) where darkness corresponds to low values of 
each parameter. The areas bellow the curves in figures 4.a 
and 4.b correspond respectively to the values of d  and 
δ which verify equations (11) and (12). The optimal values 
of d  and δ  are located around the intersection point of the 
two curves, illustrated by a circle in figure 4.c. In our tests, 
the optimal values are )11,61( == δd .  

In the second experiment, we have compared the 
similarity search quality using the kernel function for 
different values of the couple ),( δd  (optimal and non 
optimal). The retrieval quality was also compared with the 
use of Euclidian distance .The comparison results in term of 
average recall and precision are given in figure 5. We can 
see that different kernel metric parameters values involve 
different retrieval performances and the best results are 
obtained, as expected, when the optimal parameters values 
are used. We can also notice that for particular values of the 
kernel parameters )12,55( == δd , the performances of 
Euclidian and Kernel approaches are similar, and therefore 
the corresponding curves overlap. 

 
4.2 Semi-supervised learning strategy evaluations 

 
In this experiment, we compare the retrieval performances 
obtained with our semi-supervised metric learning and those 
obtained when using kernel distance without learning. Our 
approach is also compared to Mahalanobis distance learning 
with kernel DCA [8]. This method uses the pairwise 
similarity constraints to learn Mahalanobis distance, which 
consists on assigning large weight to relevant features and 
low weights to irrelevant ones. It tends to maximize the total 
intra-class variance and to minimize the total inter-class 
variance.  
To measure the retrieval performance, a set of 600 images 
are randomly selected from the database and are used as 
queries. Figure 6 (a) and 6 (b) shows the retrieval results on 
the Coil-100 database.  
We can see that our semi-supervised metric learning 
improves significantly the retrieval performance and 
outperforms kernel metric and Mahalanobis metric learning 
with DCA.  
Another scenario to compare the image retrieval 
performance is to use metric learning. We split Coil-100 
database into two sets, 80% of total images for training and 
20% for testing. Figure 6 (b) presents the retrieval results, 
and we can see that our method still outperforms kernel 
metric, and Mahalanobis metric learning with kernel DCA. 
 

5. CONCLUSION 
 

In this paper, we have proposed an efficient semi-
supervised metric learning method to boost the retrieval 
performance continuously by accumulating classification 
knowledge collected over multiple query session. Not only  
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Fig. 3. An example of images (a) and classes (b) of COIL-100 database 
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Figure 5. Recall and precision curves under different δ and d values using coil-100 database 
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(a)         (b) 
  Figure 6.  (a) Retrieval results on the coil-100 database. (b) Retrieval results on the coil-100 database based on a  

separate set of query images 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Retrieval results on Coil-100 database using for the 1st row, semi-supervised metric learning, for the 2nd row the 
Mahalanobis metric learning with KDCA and for the 3rd row kernel distance without learning 

 
does our method based on Quasiconformal kernels improves 
the retrieval performance of kernel distance, it also 
outperforms the Mahalanobis metric learning with kernel 
DCA due to it higher flexibility in metric learning. As 
future work, we aim to address the main limitation of this 
approach which resides in the higher computational time. 
Other possible research direction is to apply the kernel-
based metric learning to other pattern recognition tasks. 
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