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Abstract— Automatic 2.5D face landmarking aims at locating
facial feature points on 2.5D face models, such as eye corners,
nose tip, etc. and has many applications ranging from face
registration to facial expression recognition. In this paper, we
propose a rotation invariant 2.5D face landmarking solution
based on facial curvature analysis combined with a generic
2.5D face model and make use of a coarse-to-fine strategy for
more accurate facial feature points localization. Experimented
on more than 1600 face models randomly selected from the
FRGC dataset, our technique displays, compared to a ground
truth from a manual 3D face landmarking, a 100% of good nose
tip localization in 8 mm precision and 100% of good localization
for the eye inner corner in 12 mm precision.

I. INTRODUCTION

The use of 3D face models has emerged as a major
face recognition solution in the last years to deal with
unsolved issues, e.g. lighting and pose variations, in 2D face
recognition solutions [8]. While the use of 2.5D or 3D face
models instead of 2D texture face images can theoretically
overcome the difficulty of lighting conditions, the head pose
is still a challenge in 3D face recognition solutions [2], [6].
In such a context, 3D face landmarks, in particular nose tip
and eye corners, are often used in the existing approaches
for 3D face models normalization and registration. They can
also be used for other applications including for instance face
tracking, face expression recognition, etc.

The most of the existing works in the literature for 2.5D or
3D face landmarking are based on facial geometry analysis,
making use of some a priori knowledge of face configuration.
These solutions are unfortunately mostly 2.5D face rotation
dependent. In this paper, we propose a rotation invariant 2.5D
face landmarking solution based on facial curvature analysis
combined with a generic 2.5D face model and make use
of a coarse-to-fine strategy for more accurate facial feature
points localization. An alternative approach also developed
within our team is based on a statistical model learned from a
dataset. However, this approach assumes that 3D face models
are in a normalized frontal pose. In order to objectively assess
the quality of an automatic feature point localization solution,
we have manually landmarked feature points, including nose
tip, inner eye corners, extern ones, etc., on the whole FRGC
1.0 and FRGC 2.0 datasets. Experiments on a significant
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subset of the FRGC dataset and compared with the manually
labeled landmarks, our automatic face landmarking solution
displays a 100% of good localization for the nose tip in 8
mm precision and 100% of good localization for the eye
inner corner in 12 mm precision.

The rest of this paper is organized as follows. Section
II overviews the related work. Section III describes our
curvature analysis-based algorithm. Section IV presents the
ground truth of manually labeled feature points on the FRGC
datasets [14] and experimental results. Section V concludes
the paper and gives some hints on future work.

II. RELATED WORK

2.5D face landmarking has gained increasing interest in
the last years thanks to its diverse applications in face nor-
malization, face registration, etc. Most of the existing works
embed some a priori knowledge on face configuration into
the algorithm and make use of facial geometry-based analysis
to localize geometrically salient feature points such as nose
tip, eye corners, etc. All these works can be categorized by
their way of using curvature analysis, resulting in a rotation
sensitive or not solutions.

Many works make use of HK classification. Chang et al.
in [3] used method based on Mean and Gaussian curvatures.
While HK-Classification is rotation invariant, the way they
analyze it with assumption that the face model is in a frontal
position to localize the nose tip and eye inner corners,
makes their technique sensitive to roll and yaw rotation.
HK-Classification was also used by Colombo et al. in [5]
for locating the same three main face points. However, their
validation step is based on correlation with a template of
a cropped face around the three main points, makes their
solution very sensitive to yaw and pitch rotations. Moreover,
a depth map used as template is very sensitive to spikes
which may significantly change depth map appearance. An-
other work proposed by Sun et al. in [15] also relies on HK
classification for automatic facial pose estimation. Pose is
estimated by locating the three main points as well. They
proposed to localize correct eye regions using statistical
distances between the eyes and to remove clusters which
have less number of points. Removing concave regions in
such a way may simply lead to the removal of the eye
regions.

Other works are based on the shape index, for example:
Colbry et al. [4] and Lu et al. [10]. They analyzed the shape
index values to find feature points of the face. Nevertheless,
they assume that the eyes are above the nose in the face scan



and therefore the major axis of the scanned image must be
vertical.

There also exist many other works making use of par-
ticular curvature signature to embed into the algorithm
some a priori knowledge on facial geometric configuration.
Faltemier et al. proposed in [8] ”Rotated Profile Signatures”
for nose tip detection. In their approach, the face model is
rotated around the y axis, the intersection of the 3D model
and (x,y) plane in the right gives them a profile signature.
This profile is then compared with two known templates to
localize the nose tip. Despite of reported results (100% nose
tip localization in 10mm precision for frontal faces), their
algorithm is not invariant to the roll rotation (along z-axis).
Also, the use of skin color detection to remove non skin color
vertexes could also be source of errors due to the illumination
variability. A very similar work was proposed by Lu et al.
[11]. Their approach is based on the simple assumption that
the nose tip should have the highest z value in a frontal
position. The face model is then rotated around y axis at a fix
step and the point with the largest value in the z-axis in each
rotation is considered as the nose tip candidate. Verification
stage based on vertical profile in the nose tip point gives them
correct result, nevertheless verification based on the vertical
line is not invariant to the roll rotation.

Alternative method for the nose tip localization was pro-
posed by Mian et al. [12]. They slice horizontally the face
and consider a moving circle centered on each slice point.
The maximum of the triangle altitude formed by the center of
the circle and its intersections with the slice indicate the nose
tip candidates. The point having maximum triangle altitude
is considered as the nose tip. Horizontal slicing used in this
approach makes it sensitive to roll rotation.

Jahanbin et al. [9] proposed to locate facial feature points
using ”gabor jets”. The general appearance of each fiducial
point is modeled by ”gabor jets” extracted from several
manually marked examples. At localization stage which is
based on ”bunch graph matching”, the search area of each
feature point is constrained by penalizing the deformation
of a graph connecting the fiducials through an optimization
algorithm. However, they imposed the constraints that the
nose is expected at the center, inner corner of left eye
located above and to the left of the nose tip, thus discarding
this method from rotation invariant. A significant work was
proposed by D’Hose et al. [6]. 3D face landmarks in their
work are located by using the Gabor decomposition to filter
and amplify curvature information. They perform Gabor
filtering in vertical and horizontal directions and localize
the nose tip candidates based on these two Gabor filters’
responses. Finally, an ICP matching is performed between
the template of a nose region and nose tip candidate and the
best matching delivers nose tip location on the face. They
report a 99.89% and 99.37% of correct nose tip localization
in respectively 20 mm and 10 mm precision.

As we can see from this overview, most of these works
are face rotation sensitive, thus considerably limiting their
use in real-life applications which generally require the least
possible constraint. In our work, we make use of facial

Fig. 1. Schema of our algorithm for automatic main points localization.

curvature analysis and embed some a priori knowledge
on face configuration into the algorithm to localize facial
feature points based on their salient geometrical properties.
Meanwhile, in order to have a rotation invariant solution, we
further make use of a generic face model generated from a
set of 2.5D face models in IV2 dataset. Moreover, a coarse-
to-fine strategy is also applied for more accurate feature point
localization.

III. FACE MAIN POINTS LOCALIZATION ALGORITHM

Our algorithm for automatic feature point localization is
based on facial curvature analysis and makes use of a coarse-
to-fine search strategy and consists of two main steps. At a
coarse search step, candidate points for the three most salient
facial feature points (nose tip and the two inner eye corners)
are first identified based on curvature analysis and generic
model fitting. At a fine search step, a generic face model is
used to locate other feature points within the neighborhood
of the projection of the ones from the generic face model.
But first of all, 2.5 face scans are usually noisy and thus need
to be cleaned up in a preprocessing step. Figure 1 sketches
these steps which are detailed in the subsequent subsections.



A. 2.5D models pre-processing

2.5D face models delivered so far by various scanners
usually are corrupted by impulse noise and holes. To reduce
influence of the underlying face model quality on face
landmarking algorithm, holes and spikes need first to be
removed.

The most popular technique to remove impulse noise
(spikes) is the median filter. This method removes noise but
also tends to affect fine details in many cases. To avoid
changes in correct vertexes, we have used in our work a
decision-based median filtering technique which applies the
median filter only on vertexes classified as potential spikes
after a thresholding operation. This method can efficiently
remove all the spikes without touching properly scanned
points.

Once all the spikes are removed, we also need to fill
holes which often occur in 3D face scans. Our method for
removing this kind of discontinuity consists of fitting a mean
square surface to the border of the hole, the hole border being
located by searching vertexes having less than 8 neighbors.
In comparison with linear or cubic interpolation, our method
takes into account all the directions of the surface changes
and it is more convenient for 3D models.

B. Curvature analysis-based coarse search

The aim of this coarse search step is to localize feature
point candidates on a 2.5D face model. In order to achieve
rotation invariant feature point localization, we make use of
Mean and Gaussian curvature analysis and classification [1]
and we are targeting the three most salient feature points
from the geometric perspective, namely the nose tip and
the two inner eye corners. Indeed, the nose tip appears as
a convex point on a facial surface while the two inner eye
corners as concave points.

The range data of a 2.5D face model is thus first segmented
into regions of homogeneous shapes according to HK clas-
sification (tab. I). The HK classification labels each vertex
into basic geometric shape class (tab. I), using the sign of the
mean (eq. 1) and the Gaussian (eq. 2) curvature [16] which
can be respectively computed by the following equations on
a 2.5D surface:
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where fx, fy, fxx, fyy, fxy are the first and second derivatives
of a surface f in (x,y) [16], [5].

Since our surface representation is discrete, the partial
derivatives need to be estimated based on a surface equation
derived from the neighborhood of a point. The problem of
finding the surface equation can be represented as:

AW = Y, (3)

K < 0 K = 0 K > 0
H < 0 Hyperbolic Cyl. convex Ellip. convex
H = 0 Hyperbolic Planar Impossible
H > 0 Hyperbolic Cyl. concave Ellip. concave

TABLE I
HK-CLASSIFICATION [16].

where matrix A contains x and y values, W is a matrix of
the coefficients from the estimated function and matrix Y
contains function results.

However, this curvatures approximation is very sensitive
to the noise because of the second derivatives. Such noise
sensitiveness can be reduced by varying the extent of the
neighborhood size. Figure 3 shows the HK-Classifications
achieved in varying the neighborhood size. As we can see,
large neighborhood used in surface equation estimation hides
noise and also helps to find most marked out points.

In our experiments we fix the neighborhood size to 25
mm in geodesic distance (based on observations of the
curvatures decomposition) which is more appropriate in such
computations because it takes into account the facial surface
shape. Recall that geodesic distance between point A and B
is defined as sum of Euclidean distances between points in
the shortest path between points A and B on the underlying
surface.

To localize the three most salient facial feature points,
namely the nose tip and the two eye inner corners, the
concave and the convex regions of the nose and the eyes
respectively are first searched. Each region can be localized
according to HK-Classification. To reduce number of regions
to be considered, the Gaussian curvature is also thresholded
with K > 0.001 for the nose and K > 0.00005 for the eyes
regions (figure 2b). The thresholding process and curvatures
calculation is derived from articles [5], [3], [13] with small
changes in thresholds values. The main difference between
our method and other methods is in main points extraction
from convex and concave regions and face validation based
on geometrical generic face model.

In each located region (figure 2b), the most representative
point in term of concavity or convexity is then identified. As
can be seen in table I, changes in Gaussian curvature result
in shape changes and maximum Gaussian curvature in each
region gives maximum convex or concave point. Such point
will be labeled as landmark candidate in the convex regions
for the nose tip and in the concave regions for the eye inner
corners.

C. Generic face model-based fine search step

Once the landmark candidates were generated for the three
most salient feature points (nose tip and the two eye inner
corners), we proceed to a fine search step in order to sort
out the true three main feature points and to localize other
feature points by making use of a generic face model. In the
following, we describe our generic face model and its use for
locating first the true three main points and the other ones
from a model projection.



Fig. 2. Main points localization algorithm: a) HK-Classification, b) nose and eyes regions, c) (coarse localization) the nose tip point and the inner corners
of eyes points, d) generic model aligment, e) fine adjusting of points

Fig. 3. The HK-Classification with different neighborhood in the curvature
calculation between 5 mm(left top) and 40 mm(right bottom) (elliptical con-
cave: red, elliptical convex: green, hyperbolic concave: yellow, hyperbolic
convex: blue).

1) Generic face model building: Our generic face model
(figure 4) is built on 40 models randomly selected from
the IV21 data set. The generic model is composed from 9
main face points which positions have been calculated based
on selected 2.5D facial models. These models were first
manually landmarked for 9 feature points. Next, all models
were translated and rotated to a frontal position having the
nose tip as the origin. Fusion of all models relay on mean
main point position calculation in 3D space. The generic
model is further normalized so that the distance between
the two eye inner corners is 1 mm. Model was made from 9
points based on our observations of curvatures decomposition
on a face. We choose those points which can be described in
curvature space (all of them belongs to convex or concave
regions).

2) The three main feature points identification: The cal-
culated generic face model is now used to sort out the true
three main feature points (the nose tip and the two inner
eye corners) from the set of candidate landmarks resulted
from the curvature analysis (section III-B). As our 2.5D face
model can be in arbitrary position and we do not have any
priory information about it, the basic idea is to consider all
combinations of any three landmark candidates (the nose tip

1IV2 - French biometric data base created in cooperation of few labora-
tories.

Fig. 4. Generic model made based on 40 models from IV2 data set (x,y
projection, red points - main three points - inner corners of the eyes and
the nose tip).

candidate and the inner corners of the eyes candidates).
To select true main three points from points, candidates

selection step needs to be performed. Selection step is
based on error calculation between generic model in certain
position and face surface. To calculate error between generic
model and facial surface, for each combination of landmarks
candidates (we are taking under consideration, with one
assumption that one of eyes have to be above the nose,
always two points from the eyes candidates and one from the
nose candidates) we are moving whole generic model above
the face surface and calculating sum of distances for all
generic model points to the closest points on the face surface.
The movement is based on the rotation and the translation
founded by SVD algorithm based on the three main points
from the generic model (red points on fig. 4) and considered
landmarks candidates. Singular Value Decomposition algo-
rithm [17], [7], [18] is a matrix decomposition algorithm
which has been used iteratively in the ICP (Iterative Closest
Point) algorithm. Algorithm let us to find fine translation and
rotation between objects in correspondence based on their
covariance matrix.

To be invariant to the scale, the generic model has been
scaled based on the distance between concave points (the
eyes candidates) under the consideration.

The smallest error between generic model and face surface
under specific position identifies the true main feature points
thanks to the associated manually labeled landmarks on the
generic model (fig. 2c).

3) Other feature points localization: The aim of our work
is to locate nine feature points on a 2.5D face model (fig.
4). Once the three main feature points have been located, we



proceed to localize the other feature points. For this purpose,
we project these manually labeled feature points from the
generic face model onto the 2.5D face model, using the same
rotation and translation computed previously by SVD. The
closest points on the 2.5D face model to the generic model
point will became the landmark candidates and succeed their
labels (figure 2d).

A coarse-to-fine search strategy is again applied here by
a local search to deliver the better accurate location of
the projected feature points. Indeed, the two corners of the
lips, the two outer nose corners and the inner eye corners
can be characterized as concave points within a certain
neighborhood resolution. As we can see on figure 3, that
smaller neighborhood uncovers details on the surface like the
lips corners or the nose corners. To localize them precisely,
we calculate curvatures using a smaller neighborhood around
these points in the surface approximation. In our work, 15
mm neighborhood size is chosen for the lips while 10 mm
neighborhood size is chosen for the nose, figure 2e based on
observations of HK-Classification (figure 3) decomposition
in different neighborhood size of investigated point. The
vertex having its maximum Gaussian curvature gives us the
most concave point in the concave region and is labeled as
final anchor point.

IV. EXPERIMENTS AND DISCUSSION

Our 3D face landmarking solution was benchmarked on
a significant subset from FRGC datasets 1.0 and 2.0 [14].
To set out the ground truth, the whole FRGC datasets were
manually marked out by our team. As we can see in figure 5,
these manually labeled anchor points include the eye and lips
corners, the nose corners and its tip, and also upper and lower
points at the eyelid and lips middle for future investigation.
These manually labeled landmarks are available to the
public for research purpose. The quality of these manual
landmarks was also assessed using randomly selected 3D
models on which 10 people were asked to manually label the
previously defined anchor points. We then computed mean
error and standard deviation for each landmark which is
summarized in Table II. As we can see from the table, the
biggest manual errors as expected were made on landmarks
not precisely defined such as right and left corners of nose
while nose tip was among the anchor points labeled with the
least errors. This experiment shows that each feature point
for different person does not locate accurately at the same
place, therefore anchor point on a 3D face model should be
considered more as a region than an exact point.

In this work we have chosen 9 prominent feature points
from the curvature viewpoint to assess our automatic 3D
face landmarking solution. For this purpose, more than 1600
of models from FRGC datasets were randomly selected.
While many of these face models have facial expressions
(FRGCv2), all of them are in roughly frontal position. In
order to test robustness of our solution as compared to
rotation, each selected 3D face model was rotated randomly
in yaw (from -90 to 90 degrees), pitch (from -45 to 45

Anchor Point Mean Error Standard Deviation
Left Eye Left Corner 2.9531 1.4849

Left Eye Right Corner 2.4194 1.0597
Left Eye Upper Eyelid 2.0387 1.3755

Left Eye Bottom Eyelid 1.9424 0.8507
Right Eye Left Corner 2.0473 1.0770

Right Eye Right Corner 2.7559 1.5802
Right Eye Upper Eyelid 2.1080 1.6449

Right Eye Bottom Eyelid 1.8362 0.8105
Left Corner Of Nose 3.8023 1.9839

Nose Tip 1.9014 1.0474
Right Corner Of Nose 4.4974 2.1489
Left Corner Of Lips 1.9804 1.1045

Right Corner Of Lips 1.9891 1.1905
Upper Lip 3.0414 1.5292

Bottom Lip 2.0628 1.3052

TABLE II
MEAN ERROR AND STANDARD DEVIATION OF MANUAL ANCHOR POINTS

BASED ON 10 MODELS AND 10 SAMPLES PER MODEL.

Fig. 5. Manual main points in FRGC dataset.

degrees) and roll (from -30 to 30 degrees) before applying
our automatic 3D face landmarking.

Figure 6 shows the localization results by our algorithm.
Accumulative precision is displayed together with localiza-
tion accuracy rate given in mm precision.

As we can see, the best result was achieved for the nose tip
localization with a 100% accuracy in 8 mm precision while
the eye inner corners were localized with a 100% accuracy
for left inner eye corner in 12 mm precision and 13 mm
precision for the right inner eye corner. Therefore, the inner
eye corners were located with more than 99% accuracy in a
10 mm precision.

With an accuracy of 88.75% for left lips corner and
87.45% for right lips corner in 20m precision, our algorithm
displays the worst localization results which are mainly
caused by facial expressions, mouth movement, etc. Fair
localization is achieved for other feature points with respec-
tively 99.62% and 99.87% accuracies for the left and right
eye outer corners in 20 mm precision, and 98.2% and 99.0%
accuracies for the left and right nose corners. The whole
results curves can be seen on figure 6.

A major application of 3D face landmarking is 3D face
registration and normalization. Thus rotation robustness of



Fig. 6. Precision curves for all points (precision in mm).

a 3D face landmarking solution is important as it relaxes
constraints on the input 2.5D or 3D face model, making 3D-
based face processing techniques closer to realistic applica-
tion requirements. In our work, such a rotation invariance
was made possible thanks to curvature-based analysis and
the use of a generic 3D face model. As compared to [8], [6],
our approach achieves higher precision in nose tip and eye
inner corners localization while automatically providing up
to nine 3D face landmarks.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a rotation invariant 2.5D
face landmarking algorithm which makes use of curvature
analysis combined with a generic face model and applies
a coarse-to-fine strategy for accurate localization of nine
feature points, including the nose tip and eye inner and outer
corners. The experiments carried out on a randomly selected
models from FRGC dataset showed the effectiveness of our
technique assessed in terms of locating precision in mm as
compared to manually labeled landmarks.

As many other curvature analysis-based techniques in the
literature, our algorithm embeds some a priori knowledge
on 2.5D face geometry, especially the most salient feature
points such as the nose tip and the inner eye corners. While
our approach is made rotation invariant thanks to curvature
based analysis and the use of a generic model, accurate
localization of a landmark is sensitive to its curvature
saliency, making difficult precise locating of less salient face
landmarks. Alternatively, a learning-based approach based
on a statistical model, also developed within our team, can
be used. However, such an approach assumes that the face
models for learning and testing are in a frontal position.
These two approaches, curvature analysis-based and learning
based, are thus complementary.

In our future work, we are moving toward 2.5D face pose
estimation and face landmarking on partial 2.5D face models.
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