
COST Technical Committee "Transport and Urban Development"

COST Action C21
"Urban Ontologies for an improved communication in urban civil
engineering projects" - TOWNTOLOGY Project
http://www.towntology.net/

Technical report n°7

Short Term Scientific Mission Report – Formal
Ontologies for Database Interoperability

Catherine ROUSSEY (Université de Lyon, CNRS, LIRIS

UMR 5205, Université Claude Bernard Lyon 1)

Version: 1
Preparation date: April 2009

1 Introduction
The Short Term Scientific Mission for COST Action C21 ―Urban Ontologies for an

improved communication in UCE projects – TOWNTOLOGY‖ took place from 10th
January to 10th April 2009 in Spain. The Host Institution was the lab Ontology

Engineering Group in the Facultad de Informática of the Universidad Politécnica
de Madrid, Campus de Montegancedo, Boadilla del Monte, Spain.
This scientific mission has been already useful. On the theoretical level, I have

improved my knowledge about formal ontology, spatial and time reasoning and
data integration. On the operational level, I have help to debug a formal

ontology in hydrography using the Protégé OWL tool and more particularly the
explanation workbench.

In the following report, the second section presents the aims of this mission. In
the third section, I will summarize my notes about the courses I have followed
on Description Logics and spatial and temporal reasoning. The section four

presents a small state of the art about semantic data integration; Followed by a
description of the work carried out for OWL ontology debugging and its results

and perspectives. The last sections present the future collaboration between the
two partners: OEG and LIRIS and the host institution report.

2 Aim of the STSM
Our proposal for this STSM was concerning the development of formal ontologies

dealing with geographical objects. This kind of ontologies is used in data
integration which is the evolution of database interoperability. Thus the goals of

this mission are:
• To understand how spatial or temporal knowledge are used for reasoning
purpose.

• To learn how to build a formal ontology with dedicated tool, like neon tool
suite or Protégé OWL.

• To make a state of the art in ontology for data integration.
• To evaluate some of this technique for interoperability in spatial database.

During this STSM, I had study several courses of Oscar Corcho: one about
Description Logics (Razonamiento con taxonomías) and another about Temporal

and Spatial Reasoning (Razonamiento espacial y temporal). I had work on the
development of a formal ontology in hydrographic field called HydrOntology. This
ontology has been build using Protégé OWL tool [Protégé]. Before the beginning

of my STSM a reasoner applied on this ontology will classify several concepts as
incoherent. So one of my goals was to correct them using the new Protégé

Explanation workbench. I had also started a small state of the art about how
formal ontologies are used in database interoperability.

3 Formal Ontology and Spatial reasoning
I have followed the courses of Oscar Corcho about knowledge representation
formalism and Description Logics. These courses are required to understand the
courses about spatial and temporal reasoning. During the courses we have been

trainee on Protégé OWL ontology editor tool.

3.1 Description Logics
Description logics (DLs) are a family of knowledge representation languages
which can be used to represent the concept definitions of an application domain.

DL is an extension to frames and semantic networks with formal logic-based

semantics: DL expression can be translated into first-order logic. DL has become
a cornerstone of the Semantic Web for its use in the design of ontologies. The

OWL-DL and OWL-Lite sub-languages of the W3C-endorsed Web Ontology
Language (OWL) are based on DL.
DLs describe domain knowledge in terms of concepts (classes), roles

(relationships or property) and individuals. A concept denotes the set of
individuals that belongs to it, and a role denotes a relationship between

concepts. DLs are composed of the TBox, or terminological box, containing the
class definitions and the ABox, or assertional box, containing the description of
individuals.

DLs are specific languages characterised by the constructors and axioms used to

assert knowledge about classes, roles and individuals.
The most common constructors in class definitions are:

 intersection or conjunction of concepts C1 C2,

 union or disjunction of concepts C1 C2,
 negation or complement of concepts ¬C1,

 universal restriction or value restriction R.C,

 existential restriction R.C,
 maximum cardinality ≤nR

 minimum cardinality ≥nR

The most common axioms in class, role and individual definitions are:

 subclass C1 C2

 equivalence C1 C2

 disjointness C1 C2

 subproperty R1 R2

 membership I C1

DL reasoner proposes several inference mechanisms:
1. instance checking to check if a particular instance is a member of a given

concept

2. relation checking to check if a relation/role/property hold between two
instances

3. subsumption to check if a concept is a subset of another concept
4. Concept consistency to check if there is no contradiction among the

concept definitions.

Description Logics are based on two hypotheses that are not share by Database

theory. DLs do not have the Unique Name Assumption (UNA): Thus two
concepts with different names may be allowed by some inference to be

equivalent. DLs do not have the Closed World Assumption (CWA), but rather
this type of language have the Open World Assumption (OWA). CWA means
that if proposition P cannot be proved True, then P is assumed to be False (and

vice versa). CWA is used in Database theory: If a proposition P belong to a
database, then P is true, otherwise P is false (the proposition P does not belong

to the database, thus P is false). OWA means that if a proposition P cannot be
proved True, Then P is not assumed to be false (and vice versa).

3.2 Spatial and temporal reasoning
Humans make decisions about space and time trough both quantitative and

qualitative assertions.
Quantitative assertions use numbers to represent knowledge: for example
quantitative data are the coordinate used to represent the position of an object B

at a time point. Thus quantitative reasoning is based on number computation.
Computation can find the distance between two objects or the velocity of an

object or the time point where an object A will hit an object B.

Qualitative assertions describe a particular situation based on a finite vocabulary

in which numerical quantities are avoided in favour of symbolic qualitative
values. For example using the vocabulary ―closed to‖ or ―touch‖, you can assert

that an object A is closed to an object B or an object A touch an object B. Thus a
situation is described by a set of qualitative formulae.
Qualitative reasoning can be:

 Satisfiability: find a situation where all the formulae are satisfied. Thus all
the instances are associated to a qualitative value.

 Model finding: finding the minimal description of a situation where all the
formulae are satisfied.

 Deduction: discover if a qualitative relation exists between two instances.

Notice that qualitative reasoning can not be combined with quantitative one. No

tool exists that combine these two types of reasoning. Thus if you need to do
some quantitative computation you should do it first with the appropriate tools

and after translate your data in a qualitative reasoning tools.
 Protégé enables to store some quantitative data properties but it does not

allow declaring some computation function on these data.

 SparQ is a collection of tools for Qualitative Spatial Reasoning in
applications released as free software under GNU GPL.

4 Data integration
Data integration is the process of combining data residing at different sources
and providing the user with a unified view of these data [Maurizio Lenzerini
2002]. Thus the user will have a single query interface to search among a set of

heterogeneous data sources.
Two trends of Data integration exists: ETL trend and mediation one

4.1 ETL trend
The first trend proposes to build a common database thanks to heterogeneous

one (see Figure 1). Each data source has to be process by ETL (Extraction,
Transformation, Loading) process in order to update the common database.

When a data source is updated all the ETL process has to be executed again. It is
not easy to build the common database if you have no access to the whole
database.

Figure 1: common database creation

4.2 Mediation trend
The second trend of data integration provides a uniform query interface over a

mediated schema (see figure 2). The mediated schema is a virtual database.
There exist three approaches of mediation data integration. All these approaches

used several components:
 The global schema is the mediated schema which describes all the data

accessible in all data sources.

 A local schema per data source, each of them describes the data stored in
a single data source.

 A set of mappings between local schemas and global schema.
 A wrapper per data source, which is the system that provides a way to

abstract the data from a data source and transform them in components
of the global schema. Wrappers play the role of a translator between the
local schema and the global one.

 The mediator is able to identify each different representations of the same
data stored in a data source. Thus the mediator can query each local data

source by using the associated wrapper and gather all the result. Mediator
decides how to access each data sources and in which order, normally by
making a query planning step.

Figure 2: mediated schema virtual database.

GaV: Global as View

The mediated schema is designed to be a view over the sources. This approach

called Global as View (GaV) — where "Global" refers to the global (mediated)
schema — is often used due to the simplicity involved in answering queries

issued over the global schema. A component of the global schema is associated
to queries on local data sources. The mappings define a component of the global
schema according to components of local ones. Thus a query on the global

schema is transformed into specialized queries over the data sources. However,
the obvious drawback is the need to modify the global schema and rewrite the

view whenever a new source is to be integrated and/or an existing source
changes its schema. As example of the GaV approach, we can cite:

 STIMMIS (Stanford-IBM Manager of Multiple Information Sources) project

uses the Object Exchange Model (OEM) to describe the data source and
express queries, [Chawathe & al, 1994].

 SIMS (Service and Information Management of decision System) project
use the LOOM language, [Arens & al, 1996]. SIMS use a global ontology
has a query model.

LaV: Local as View

The local data sources are considered to be a view over the (non existent) global
(mediated) schema. This approach called Local as View (LaV) — where "Local"

refers to the local data sources — is used due to the simplicity to manage update

on the data sources without changing the global schema. In this approach the
mappings define a component of a local schema according to components of

global schema. However, the drawback is to reformulate a query in terms of
global schema, using terms of local schemas. As example of the GaV approach
we can cite:

 Information Manifold (IM) was the first system that is based on the LaV
approach [Levy & al, 1996].

 Most parts of the semantic data integration system based on ontologies
are classified as LaV approach. For a survey on this type of data
integration system see [Wache & al, 2001]

Hybrid Approaches

These approaches want to combine the advantages and avoid the limitations of
GaV and LaV approaches in order to propose a solution easy to maintain if data
sources changed like in LaV approach and with scalable query formulation

procedure like in GaV approach. We can cite:
 Global Local as View (GLaV) approach proposed in [Friedman & al, 1999]

use a flexible language to combine predicates in the same first order logic
sentence.

 The Both as View (BaV) approach proposed during the AutoMed project

[McBrien and Poulovassilis, 2004].
 [Cali & al, 2002] propose a translation algorithm to turn LaV into GaV.

4.3 Related Projects

OBSERVER

OBSERVER system is an example of LaV approach using multiple ontologies.
Each local data source is modelized by a preexisting ontology: For example,

parts of Wordnet are used in [Mena & al, 1996]. Thus it requires creation of
mappings between the multiple ontologies, called inter ontology mapping. In

[Mena & al, 1996] Inter ontology mapping are based on synonymy relation
between terms. Notice that even if a global schema does not exist in this system,
at the end a common vocabulary is build, shared partially by local ontologies.

R20 and ODE Mapster

ODEMapster use the language R20 [Barrasa & al, 2004] to transform each
database record to a concept instance of an ontology. They can produce very
complex mapping: a mapping is a transformation procedure that could be applied

on certain condition (table, record, properties, values, relation transformation).
At the end the final user query the knowledge base associated to the ontology.

This approach can be considered to apply ETL technique for ontology population.

5 Formal Ontology Debugging
During the STSM, I participate to the development of a formal ontology about
hydrography called HydrOntology. I have to debug this OWL ontology with the

help of domain experts in hydrography. Debugging of inconsistent OWL
ontologies is normally a tedious and time-consuming task where a combination

of ontology engineers and domain expert is often required to understand whether
the changes to be performed in order to make the OWL ontology consistent are

actually changing the intended meaning of the original knowledge model. This

task is aided by existing ontology debugging systems, incorporated in existing
reasoners and ontology engineering tools, which ameliorate this problem but in

complex cases are still far from providing adequate support to ontology
engineers, due to lack of efficiency or lack of precision in determining the main
causes for inconsistencies.

During our debugging task, we found a set of anti-patterns commonly found in
OWL ontologies, which can be useful in the task of ontology debugging in

combination with those debugging tools.

5.1 HydrOntology

The Spanish National Geographic Institute (IGN-E) developed a common
reference model by means of a domain ontology, called HydrOntology. IGN-E

wants to build this ontology in order to facilitate the semantic harmonization of
hydrographic information among data producers at different levels (national,
regional and local).

The statistical data (metrics) and its different taxonomic relations appearing
below provide an overview of the HydrOntology characteristics.

HydrOntology is saved in the OWL format; it has 150 classes, 34 object
properties, 66 data properties and 256 axioms. Some examples of the four

taxonomic relations defined in the Frame Ontology [Farquhar & al, 1997] and the
OKBC Ontology [Chaudri & al, 1998], namely, Subclasses, Disjoint-
Decomposition, Exhaustive-Decomposition and Partitions, have been

implemented in the ontology. Further details are shown in [Vilches-Blázquez & al,
2007]. The ontology documentation is exhaustive, thus, definitions and their

definition sources can be found in each concept (class). The ontology has an
important amount of labels with alternative names (synonyms) as well as
concept and synonym provenances.

A domain expert about geographical information was trained to build an ontology
in Description Logic using Protégé tool (Protégé-OWL version 4). He built the

ontology following METHONTOLOGY, a widely-used ontology building
methodology. A detailed description of this methodology can be found in
[Gómez-Pérez & al, 2003].

HydrOntology has been developed according to the ontology design principles
proposed by [Gruber, 1995] and [Arpírez & al, 1998]. Some of its most

important characteristics are that the concept names (classes) are sufficiently
explanatory and rightly written. According to some naming conventions, each
class is written with a capital letter at the beginning of each word, while object

and data properties are written with lower case letters. At the end of the
development process 102 concepts were classified as incoherent by the classifier.

When implementing this ontology in OWL several issues arose with respect to its
consistency, given its complexity. In the first iteration of implementation, where
the domain expert took the conceptualization following Methontology’s

intermediate representations and encoded it with Protégé 4, all the classes in the
ontology were considered inconsistent. Then the process of refinement started,

using the OWL ontology debugging facilities of Protégé. Indeed, the debugging
systems used did not provide enough information about root unsatisfiable classes
or adequate (e.g., understandable by domain experts) justifications of the

reasons for their unsatisfiability. Thus, we made an effort to understand
inconsistency-leading patterns used by domain experts when implementing OWL

ontology. Moreover in several occasions during the debugging process the

generation of justifications for inconsistencies took several hours, what made

these tools hard to use.
Ontology developer needs more recommendation for debugging than those

provided by actual tools. We found out that in several occasions domain experts
were just changing axioms from the original ontology in a somehow random
manner, even changing the intended meaning of the real definitions instead of

correcting errors in their formalisations.
After several iterations, which resulted in a large number of changes to the

original implementation, the final consistent ontology could be delivered.
In this paper we propose a detailed list of such anti-patterns, compiling all the
relevant cases that we came across when helping ontology developers to debug

their ontologies.

5.2 Antipatterns
We have identified a set of patterns that are commonly used by domain experts
in their OWL implementations and that normally result in inconsistencies that

may be easy or difficult to solve by them. This set of patterns is what we call
anti-patterns, and we have categorized them in three groups:

• Logical Anti-Patterns (LAP). They represent errors that DL reasoners
detect. These are the ones for which tool support is easier to provide and hence

some support already exists.
• Non-Logical (aka Cognitive) Anti-patterns (NLAP). They represent possible
modelling errors that are not detected by reasoners (they are not logical but

model-ling errors, which may be due to a misunderstanding of the logical
consequences of the used expression).

• Guidelines (G). They represent complex expressions used in an ontology
component definition that are correct from a logical point of view, but in which
the ontology developer could have used other simpler alternatives for encoding

the same knowledge.
In the rest of this section we describe each of the anti-patterns identified in each

group, providing their name and acronym, their template logical expressions and
a brief explanation of why this anti-pattern can appear. As aforementioned, it is
important to note that LAP are identified by existing ontology debugging tools,

although the information that is provided back to the user explaining the reason
for the inconsistency is not described according to such a pattern, what makes it

difficult for ontology developers to find out where the inconsistencies are coming
from. With respect to NLAP and G, they are not currently detected by these tools
as such, although in some cases their combination may lead into inconsistencies

that are detected (although not appropriately explained) by tools. We think that
tool support for them could be a major step forward in this task.

Finally, all these anti-patterns should be seen as elementary units that cause
ontology inconsistencies. That is, they can be combined into more complex ones.

5.3 Logical Anti-Patterns

AntiPattern AndIsOr (AIO)

C1 R.C2 C3), Disj(C2,C3)1

1 This does not mean that the ontology developer has explicitly expressed that C2 and C3

are disjoint, but that these two concepts are determined as disjoint from each other by a

reasoner. We use this notation as a shorthand for C2 C3 .

This is a common modelling error that appears due to the fact that in common

linguistic usage, ―and‖ and ―or‖ do not correspond consistently to logical
conjunction and disjunction respectively [10]. For example, I want a cake with

milk and chocolate is ambiguous. Does the recipe of cake contain some chocolate

plus some milk? (Cake_Recipe (contain.Chocolate) (contain.Milk). Does the

recipe of cake contain chocolate-flavoured milk? (Cake_Recipe

contain.(Chocolate Milk)). Does the recipe of cake contain some chocolate or

some milk? (Cake_Recipe contain.(Chocolate Milk)). The domain expert
makes a confusion between the linguistic ―and‖ and the logical ―or‖. Notice that

the position of the logical ―and‖ has an importance in the semantic of an axiom.

AntiPattern EquivalenceIsDifference (EID)

C1 C2, Disj(C1,C2)

This inconsistency comes from the fact that the ontology developer wants to say
that C1 is a subclass of C2 (that is, that C1 is a C2, but at the same time it is

different from C2 since he has more information). This anti-pattern is only
common for ontology developers with no previous training in OWL modelling,
since after a short training session they would discover that they really want to

express C1 C2. This inconsistency can hide also a terminological synonymy
relation between classes like in SOE.

AntiPattern OnlynessIsLoneliness (OIL)

C1 R.C2, C1 R.C3, Disj(C2,C3)
The ontology developer has created an universal restriction to say that C1 can

only be linked with a R role to C2. Next, a new universal restriction is added
saying that C1 can only be linked with R to C3, disjoint with C2. In general, this
means that the ontology developer forgot the previous axiom

AntiPattern OnlynessIsLonelinessWithInheritance (OILWI)

C1 C2, C1 R.C3, C2 R.C4, Disj(C3,C4).

The ontology developer has added a universal restriction for class C1 without
remembering that he had already defined another universal restriction with the
same property in a parent class. This anti-pattern is a specialization of OIL.

AntiPattern OnlynessIsLonelinessWithPropertyInheritance (OILWPI)

R1 R2, C1 R1.C2, C1 R2.C3, Disj(C2,C3)
The ontology developer misunderstands the subproperty relation between roles,

thinking that it is similar to a part-of relation. This anti-pattern is a specialization

of OIL because C1 R1.C2, R1 R2 ╞ C1 R2.C2

AntiPattern UniversalExistence (UE)

C1 R.C2, C1 R.C3, Disj(C2,C3)
The ontology developer has added an existential restriction for a concept without

remembering the existence of an inconsistency-leading universal restriction for
that concept.

AntiPattern UniversalExistenceWithInheritance1 (UEWI_1)

C1 C2, C1 R.C3, C2 R.C4, Disj(C3,C4)

The ontology developer has added an existential/universal restriction in a

concept without remembering that there was already an inconsistency-leading
universal/existential restriction in a parent class, respectively. This anti-pattern is

a specialization of UE.

AntiPattern UniversalExistenceWithInheritance2 (UEWI_2)

C1 C2, C1 R.C3, C2 R.C4, Disj(C3,C4)

Same reasons as UEWI_1.

AntiPattern UniversalExistenceWithPropertyInheritance (UEWPI)

R1 R2, C1 R1.C2, C1 R2.C3, Disj(C2,C3)2
The ontology developer misunderstands the subproperty relation between roles,
thinking that it is similar to a part-of relation. This anti-pattern is a specialization

of UE because C1 R1.C2, R1 R2 ╞ C1 R2.C2.

AntiPattern UniversalExistenceWithInverseProperty1 (UEWIP_1)

C2 R-1.C1, C1 R.C3, Disj(C2,C3)

The ontology developer has added restrictions about C2 and C1 using a role and

its inverse. This antipattern is a specialization of UE because: C2 R-1.C1 ╞

C1.1 R.C2, C1.1 C1

AntiPattern SumOfSomIsNeverEqualToOne (SOSINETO)

C1 R.C2, C1 R.C3, C1 ≤1R.T, Disj(C2,C3)
This anti-pattern can also be written like this

C1 R.C2, C1 R.C3, C1 =1R.T, Disj(C2,C3)
The ontology developer has added a new existential restriction without

remembering that he has already defined another existential and a cardinality
restriction for the same concept and role. This pattern is not an elementary one
because it contains the NLAP SOS and the G DCC (presented latter), none of

these elementary antipattern cause inconsistency; nevertheless it is a good
example that a combination of NLAP and G cause inconsistencies.

5.4 Non Logical Anti-Patterns
As aforementioned, these anti-patterns are not necessarily errors, but describe

common templates that ontology developers use erroneously trying to represent
a different piece of knowledge.

AntiPattern SynonymeOfEquivalence (SOE)

C1 C2
The ontology developer wants to express that two concepts C1 and C2 are

identical. This is not useful at all in a single ontology. This is not very useful in a
single ontology that does not import others. Indeed, what the ontology developer

generally wants to represent is a terminological synonymy relation: the class C1
has two labels: C1 and C2. Usually one of the classes is not used anywhere else
in the axioms defined in the ontology.

2 Note that R1 R2, C1 R1.C2, C1 R2.C3, Disj(C2,C3) is not an antipattern.

AntiPattern OnlynessIsLonelinessWithInverseProperty (OILWIP)

C2 R-1.C1, C1 R.C3, Disj(C2,C3)
The ontology developer has created two universal restrictions using a role and its

inverse. If this antipattern is associated to the axiom C2 ≥1R-1.C1 then there is

an incoherence, because: C2 R-1.C1, C2 ≥1R-1.C1 ╞ C2 R-1.C1 ╞ C1.1 C1,

C1.1 R.C2. This combination of antipattern is a specialization of UE.

AntiPattern UniversalExistenceWithInverseProperty_2 (UEWIP_2)

C2 R-1.C1, C1 R.C3, Disj(C2,C3)
The ontology developer has added restrictions about C2 and C1 using a role and

its inverse. If this antipattern is associated to the axiom C2 ≥1R-1.C1 then there

is an incoherence, because: C2 R-1.C1, C2 ≥1R-1.C1 ╞ C2 R-1.C1 ╞ C1.1

C1, C1.1 R.C2. This combination of antipattern is a specialization of UE.

AntiPattern SumOfSom (SOS)

C1 R.C2, C1 R.C3, Disj(C2,C3)
The ontology developer has added a new existential restriction without

remembering that he has already defined another existential restriction for the
same concept and role. Although this could be ok in some cases (e.g., a child has
at least one mother and at least one father), in many cases it represents a

modelling error.

AntiPattern SumOfSomWithInheritage (SOSWI)

C1 C2, C1 R.C3, C2 R.C4, Disj(C3,C4)

The ontology developer has added an existential restriction in a concept without
remembering that he had already defined another existential restriction with the

same role in a parent class. This Anti-Pattern is a specialization of SOS.

AntiPattern SumOfSomWithPropertyInheritance (SOSWPI)

R1 R2, C1 R1.C2, C1 R2.C3, Disj(C2,C3)
The ontology developer misunderstands the subproperty relation between roles,
thinking that it is similar to a part-of relation. This Anti-Pattern is a specialization

of SOS because C1 R1.C2, R1 R2 ╞ C1 R2.C2

AntiPattern SumOfSomWithInverseProperty (SOSWIP)

C2 R-1.C1, C1 R.C3, Disj(C2,C3)

The ontology developer has created two existential restrictions using a role and

its inverse. This anti-pattern specializes SOS because: C2  R-1.C1 ╞ C1.1 C1,

C1.1  R.C2.

AntiPattern SomeMeansAtLeastOne (SMALO)

C1 R.C2, C1 ≥1R.T
The cardinality restriction is superfluous, because if there is an existential

restriction that means that the cardinality restriction using the same role is at

least equal to 1. The ontology developer had created the axiom C1 ≥1R.T first,

to say that C1 should be defined by the R role. Next, he specialized his definition
and forgot to remove the first restriction.

5.5 Guidelines
As aforementioned, guidelines represent complex expressions used in an

ontology component definition that are correct from a logical point of view, but in
which the ontology developer could have used other simpler alternatives for
encoding the same knowledge.

Guideline DisjointnessOfComplement (DOC)

C1 not C2

The ontology developer wants to say that C1 and C2 can not share instances.
Even if the axiom is correct for a logical point of view, it is more appropriate to
state that C1 and C2 are disjoint.

Guideline Domain&CardinalityConstraints (DCC)

C1 R.C2, C1 (≥2R.T) (for example)
Ontology developers with little background in formal logic find difficult to

understand that universal restriction does not imply existential one [10]. This
antipattern is a counterpart of that fact. Developers may forget that existential

restrictions contain a cardinality constraint: C1 R.C2 ╞ C1 (≥1R.C2). Thus,
when they combine existential and cardinality restrictions, they may be actually
thinking about universal restrictions with those cardinality constraints.

Guideline GroupAxioms (GA)

C1 R.C2, C1 (≥2R.T) (for example)

In order to facilitate the comprehension of complex class definition, we
recommend grouping all the restrictions of a concept that use the same role R in

a single restriction. The previous restriction becomes C1 (R.C2) (≥2R.T)

Guideline MinIsZero (MIZ)

C1 (≥0R.T)
The ontology developer wants to say that C1 can be the domain of the R role.

This restriction has no impact on the logical model being defined and can be
removed.

5.6 Future Works
A previous versions of this set of antipatterns with examples from HydrOntology

was already accepted for publication in the workshop ―Construction d’ontologies :
vers un guide des bonnes pratiques‖ Hammamet (Tunisie), 25 Mai 2009.

We are still working to propose some recommendations associated to each
antipatterns, so that we can provide better explanations of the reasons why a
specific class or set of classes of the ontology are inconsistent, and hence

improve the efficiency of the ontology debugging process.
All these anti-patterns should be seen as elementary units that cause ontology

inconsistencies. That is, they can be combined into more complex ones.
However, providing a solution for the individual ones will be a good advance to
the current state of the art, and our future work will be also devoted to finding

the most common combinations and providing recommendations for them.
We have applied this list of anti-patterns to the development of an ontology in

the hydrology domain (HydrOntology [Vilches-Blázquez & al, 2007]), resulting in
an improvement in the efficiency of the debugging process that we have not

actually measured. However, our intuition suggests that the process has been

much faster than what it would have been without the use of such anti-patterns,
that is, with the use of debugging tools alone.

Our next steps towards providing effective tools to help domain experts in their
ontology building tasks are making formal experiments with a set of inconsistent
ontologies, built by domain experts that we have been collecting in the past

year. The aim of these experiments would be to compare the time needed to
complete the debugging process with and without the use of our anti-patterns,

and the quality of the final models generated after debugging, in case that there
are differences. Finally, another piece of work that we are planning to do in the
future is to organize this list of anti-patterns into a set of debugging guidelines

for the creation of a better-specified method for ontology debugging that can be
more effective.

6 Results and Future Collaboration
Parts of the work carried out during the STSM are already accepted for
publication.

Oscar Corcho, Catherine Roussey, Luis M Vilches Blazquez. ―Catalogue of Anti-
Patterns for formal Ontology debugging‖. In Proceedings of AFIA Workshop
 ―Construction d’ontologies : vers un guide des bonnes pratiques‖ Hammamet

(Tunisie), 25 Mai 2009.

After the end of the STSM, the collaboration between OEG and LIRIS will go on
to complete the work on ontology debugging guidelines in order to provide a
more complete method and to evaluate it. We plan to propose a contribution for

K-CAP 2009 The Fifth International Conference on Knowledge Capture.

After this work on formal ontology debugging, each partners will have an
example of consistent formal ontologies dealing with geographic data. Thus we
are interested to investigate semantic data integration for geographic data bases

using formal ontologies.

7 References
[Arens & al, 1996] Y. Arens, C. Hsu, C.A. Knoblock. "Query Processing in SIMS

information mediator" in Advanced Planning Technology, editor, Austin Tate,
AAAI Press, Menlo Park, CA, 1996.
http://citeseer.ist.psu.edu/article/arens96query.html

[Arpírez & al, 1998] Arpírez JC, Gómez-Pérez A, Lozano A, Pinto HS.

―(ONTO)2Agent: An ontology-based WWW broker to select ontologies‖. In
Gómez-Pérez A, Benjamins RV (eds) ECAI’98 Workshop on Applications of

Ontologies and Problem-Solving Methods. Brighton, United Kingdom, 1998. pp
16–24

[Barrasa & al, 2004] Barrasa J, Corcho O, Gómez-Pérez A. ―R2O, an Extensible
and Semantically Based Database-to-Ontology Mapping Language‖. Second

Workshop on Semantic Web and Databases (SWDB2004). Toronto, Canada.
August 2004.

[Chaudri & al, 1998] Chaudhri VK, Farquhar A, Fikes R, Karp PD, Rice JP. ―Open
Knowledge Base Connectivity 2.0.3‖. Technical Report KSL-98-06, Knowledge

http://citeseer.ist.psu.edu/article/arens96query.html

Systems Laboratory, Stanford, CA, 1998. http://www.ai.sri.com/ okbc/okbc-2-0-

3.pdf

 [Chawathe & al, 1994] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y.
Papakonstantinou, J. Ullman, and J. Widom. "The TSIMMIS Project: Integration
of Heterogeneous Information Sources". In Proceedings of IPSJ Conference, pp.

7-18, Tokyo, Japan, October 1994.

[Cali & al, 2002] A. Cali, D. Calvanese, G. De Giacomo, M. Lenzerini. ―On the
expressive power of data integration systems‖. In Proceedings of 21st
International Conference on Conceptual Modeling (ER2002), Tampere, Finland,

October 2002. p 338–350.

[Farquhar & al, 1997] Farquhar A, Fikes R, Rice J. ―The Ontolingua Server: A
Tool for Collaborative Ontology Construction‖. International Journal of Human
Computer Studies, 46 (6), 1997: 707–727

[Friedman & al, 1999] M. Friedman, A. Levy, and T. Millstein. ―Navigational plans

for data integration‖. In Proceedings of the 16th National Conference on Artificial
Intelligence (AAAI’99), Orlando, Florida, 1999. p 67–73.

[Gómez-Pérez & al, 2003] Gómez-Pérez A, Fernández-López M, Corcho O.
―Ontological Engineering‖. Springer-Verlag, London (United Kingdom), 2003

[Gruber, 1995] Gruber TR. ―Toward principles for the design of ontologies used

for knowledge sharing‖. International Journal of Human-Computer Studies, vol
43 n.5-6, 1995.

[Levy & al, 1996] A Y. Levy, A Rajaraman, J Ordille. ―Querying Heterogeneous
Information Sources Using Source Descriptions‖ In Proceedings of the Twenty-

second International Conference on Very Large Data Bases (VLDB’ 1996)
Mumbai, India, september 1996. P 251-262

[McBrien and Poulovassilis, 2004] P.J. McBrien and A. Poulovassilis. ―Defining
Peer-to-Peer Data Integration using Both as View Rules‖. In Proceedings of

DBISP2P 2003 Revised Paper. Springer Verlag LNCS, Volume 2944, 2004, ISBN
3-540-20968-9. P 91-107.

[Mena & al, 1996] E. Mena, V. Kashyap, A. Sheth, A. Illarramendi. "OBSERVER:
An Approach for Query Processing in Global Information Systems based on

Interoperation across Pre-existing Ontologies". In Proceedings of the First IFCIS
International Conference on Cooperative Information Systems (CoopIS'96),
Brussels, Belgium, June 19-21, 1996. p14-25.

[Maurizio and Lenzerini, 2002]. Maurizio Lenzerini (2002). "Data Integration: A

Theoretical Perspective". PODS 2002: 233-246.]

[Protégé] Protégé-OWL version 4: free ontology editor developed by Stanford for

more detail http://protege.stanford.edu/

[Vilches-Blázquez & al, 2007] Vilches-Blázquez LM, Bernabé-Poveda MA, Suárez-
Figueroa MC, Gómez-Pérez A, Rodríguez-Pascual AF. ―Towntology &

http://protege.stanford.edu/

hydrOntology: Relationship between Urban and Hydrographic Features in the

Geographic Information Domain‖. In Ontologies for Urban Development. Studies
in Computational Intelligence, vol. 61, Springer, 2007. pp 73–84

[Wache & al, 2001] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G.
Schuster, H. Neumann, S. Hübner. "Ontology-Based Integration of Information A

Survey of Existing Approaches". In Proceedings of the IJCAI-Workshop
Ontologies and Information Sharing, A. Gomez-Perez, M. Gruninger, H.

Stuckenschmidt and M. Uschold (eds.), Seattle, WA, September, 2001. p 108-
117.

