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Abstract

We describe a narrow band region approach for deformable curves and surfaces in the perspective of 2D and 3D image
segmentation. Basically, we develop a region energy involving a fixed-width band around the curve or surface. Classical
region-based methods, like the Chan-Vese model, often make strong assumptions on the intensity distributions of the
searched object and background. In order to be less restrictive, our energy achieves a trade-off between local features
of gradient-like terms and global region features. Relying on the theory of parallel curves and surfaces, we perform a
mathematical derivation to express the region energy in a curvature-based form allowing efficient computation on explicit
models. We introduce two different region terms, each one being dedicated to a particular configuration of the target
object. Evolution of deformable models is performed by means of energy minimization using gradient descent. We
provide both explicit and implicit implementations. The explicit models are a parametric snake in 2D and a triangular
mesh in 3D, whereas the implicit models are based on the level set framework, regardless of the dimension. Experiments
are carried out on MRI and CT medical images, in 2D and 3D, as well as 2D color photographs.
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1. Introduction

Segmentation by means of deformable models has been
a widely studied aspect of computer vision over the last
two decades. Since their introduction by Kass et al. [1],
deformable models have found many applications in im-
age segmentation and tracking. From an initial location,
which may be manually or automatically provided, these
models deform according to an iterative evolution algo-
rithm until they fit one or more structures of interest. The
evolution method is usually derived from the minimization
of some energy functional, including regularizing terms
for geometrical smoothness and external terms relating
the model to the data. They are powerful tools thanks
to their ability to adapt their geometry and incorporate
prior knowledge about the structure of interest.

Several implementations of these active models were
developed. Explicit deformable models represent the
evolving boundary as a set of interconnected control
points or vertices. Among these, the original 2D paramet-
ric contour and the 3D triangular mesh [2, 3] are intuitive
implementations, in which the boundary is deformed by
direct modifications of vertices coordinates. The main
drawback is that polygon and meshes do not modify
their topology naturally, i.e. techniques for detection
of topological changes must be implemented beside the
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evolution algorithm. Conversely, implicit implementa-
tions, based on the level set framework [4], handle the
evolving boundary as the zero level of a hypersurface,
defined on the same domain as the image. They are
often chosen for their natural handling of topological
changes and intuitive extensibility to higher dimensions.
Their algorithmic complexity is a function of the image
resolution, making them time-consuming. Despite the
development of accelerating methods, like the narrow
band technique [4] or the fast marching method [5], their
computational cost remains higher than their explicit
counterparts.

Deformable models, whether they are explicit or
implicit, are attached to the image by means of a local
edge-based energy or force. Since they consider only local
boundaries, classical snakes are relatively blind, in the
sense they are unable to reach boundaries if their initial
location is far from them. The increasing use of region
terms inspired by the Mumford-Shah functional [6, 7] has
proven to overcome the limitations of uniquely gradient-
based models, especially when dealing with data sets
suffering from noise and lack of contrast. Indeed, many
anatomical structures encountered in medical imaging
lend themselves to region-based segmentation. Global
statistical data computed over the entire region of interest
is a well established technique to improve the behaviour
of snakes. Early work, including the anticipating snake by
Ronfard [8] and the active region model by Ivins and Por-
rill [9], introduced the use of region terms in the evolution
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of parametric snakes. The region competition method
by Zhu and Yuille [10] was developed later, combining
aspects of snakes and region growing techniques. Many
papers have dealt with region-based approaches using the
level set framework, including the Chan-Vese model [11],
the deformable regions by Jehan-Besson et al. [12] and
the geodesic active regions by Paragios and Deriche [13].
These implementations have the advantage of adaptive
topology at the expense of computational cost. In the
context of 3D segmentation, a deformable mesh endowed
with a Chan-Vese region energy was presented in [14],
whereas Dufour et al. [15] used an implicit active surface
to perform segmentation and tracking of cells, where
computations are particularly time-expensive.

Most existing region-based deformable models segment
images according to statistical data computed over the en-
tire regions, i.e. the object of interest and the background.
These approaches have an underlying notion of homogene-
ity, in the sense that image partitions should be uniform in
terms of intensity, whether prior knowledge on the distri-
bution of pixel intensities is available [16] or not. Instead
of raw pixel intensity, higher level features like texture de-
scriptors may also be considered [17]. We now focus on
the region energy of the Chan-Vese model [11]. Let Rin be
the region enclosed by deformable curve Γ, and Rout its
complement. The energy penalizes the curve splitting the
image into heterogeneous regions, using intensity devia-
tions. In addition to length and area terms, the Chan-Vese
model has the following global data term:

EC-V
region[Γ] = λin

∫∫

Rin

(I(x)−kin)2dx

+λout

∫∫

Rout

(I(x)−kout)
2dx

(1)

where kin and kout are intensity descriptors inside and
outside the curve, respectively. By gradient descent, these
descriptors are assigned to average intensity values [11].
At the end of the segmentation process, region Rin is
expected to coincide with the target object. Hence,
although constraints on intensity deviations can be
adjusted by tuning parameters λin and λout, the global
region term is by definition devoted to segment uniform
objects and backgrounds. Let us consider the images
depicted in fig. 1, in which the object of interest is the
white cup. Ignoring the influence of illumination changes,
case (a) is the typical configuration which the Chan-Vese
model aims at, since the cup and the floor areas are nearly
constant with respect to color.

Uniformity of intensity over regions is a rather
strong assumption. However, strict homogeneity is
not necessarily a desirable property, especially for the
background. The ideal case (a) is rarely encountered
in most of computer vision applications. For instance,
when one wants to isolate a single structure from the rest

(a) (b) (c)

Figure 1: Different object configurations for different region energies

of the image in medical data, the background contains
various anatomical structures, which differ in their overall
intensities and textures. In this context, the use of local
features was already addressed in the literature. For
other work dealing with local statistics in region-based
segmentation, the reader may refer to [18, 19, 20, 21].
For the same purpose, active contours embedded with
both edge and region terms were studied in [22, 23, 24]
and extended to textured region segmentation [25]. In
cases (b) and (c), the background, made up of the floor
and the plate, is now piecewise uniform. Case (b) depicts
a particular situation where the background is uniform in
a small band around the cup boundaries. We believe that
many objects can be discriminated from the background
according to intensity features only in the vicinity of their
boundaries, which leads to the development of our first
narrow band region energy. Extending the work in [26],
we formulate our energy as the intensity variance over an
inner and an outer band around the evolving boundary.
Case (c) represents an even more general case, where
the outer band around the target object is piecewise
constant. Indeed, the cup is surrounded by the floor in
the upper half and the plate in the bottom half. The
role of our second narrow band region energy is to handle
configurations in which the outer neighborhood of the
target object presents several distinct areas.

In the paper, we first describe the theoretical frame-
work of the narrow band energy. This includes mathe-
matical derivations to yield a suitable form for the region
term, i.e. a formulation enabling natural implementation.
Our mathematical development is based on the theory of
parallel curves and surfaces [27, 28]. We endeavour to de-
velop a framework which is applicable both to 2D and 3D
segmentation. Indeed, after describing our region terms
on a planar curve, we extend them to a deformable sur-
face model. Then, in order to allow gradient descent af-
terwards, we determine the variational derivatives of the
region energies with respect to the curve, thanks to calcu-
lus of variations, and extend them to the surface model as
well. Then, we deal with numerical implementation issues,
including model structure and energy minimization. We
first present the explicit implementation, which lies in a 2D
polygonal contour and a 3D triangular mesh. These mod-
els are able to perform resampling, in order to overcome
the lack of geometrical flexibility of traditional snakes and
meshes. We also provide a level-set implementation, which
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offers the advantage of a common mathematical descrip-
tion in 2D and 3D, in addition to the topological adapt-
ability. Finally, experiments are carried out on medical
data and natural color images. For both explicit and im-
plicit implementations, the tests discuss the advantages of
our narrow band terms over other data terms including
edge energies and global region energies.

2. Active contour model

2.1. Energies

The continuous active contour model is represented as
a parameterized curve Γ with position vector c:

Γ : Ω −→ R
2

u 7−→ c(u) = [x(u) y(u)]T
(2)

where x and y are continuously differentiable with respect
to parameter u. The parameter domain is normalized:
Ω = [0, 1]. We assume that the curve is simple, i.e. non-
intersecting, and closed: c(0) = c(1). Segmentation of
an object of interest is performed by finding the curve Γ
minimizing the following energy functional:

E[Γ] = ωEsmooth[Γ] + (1 − ω)Eregion[Γ] (3)

where Esmooth and Eregion are respectively the smooth-
ness and region energies. The user-provided coefficient
ω weights the significance of the smoothness term. We
express the smoothness energy in terms of first-order
derivative, as it appears in the original snake model by
Kass et al. [1]:

Esmooth[Γ] =

∫

Ω

∥
∥
∥
∥

dc

du

∥
∥
∥
∥

2

du (4)

The first-order regularization term usually prevents the
contour to undergo large variations of its area. In our
case, it is a non desirable property, since the contour will
be initialized as a small shape inside a target object and
inflated afterwards. Once discretized as a polygon, the
contour is periodically reparameterized to keep control
points practically equidistant and to allow inflation. In
this context, resampling and remeshing techniques are
discussed in section 5.

Curve Γ splits the image domain D into an inner
region Rin and an outer region Rout, over which the
homogeneity criterion is usually expressed. The narrow
band principle, which has proven its efficiency in the
evolution of level sets [4], is used in our approach to
formulate a new region term. Instead of dealing with the
entire domains delineated by the evolving curve, we only
consider an inner and outer band both sides apart from
the curve, as depicted in fig. 2. One may note that the
bands are not limited to the snake’s initial location and
are updated during curve evolution.

Γ

Γ[−B]

Γ[B]

Bout

Bin

Figure 2: Inner and outer bands for narrow band region energy

Let Bin be the inner band domain and Bout the outer
band domain (see fig. 2), and B the band thickness, which
is constant as we move along Γ. We propose two different
region energies. Thus, in eq. (3), the region term will be
either Eregion1 or Eregion2. To obtain Eregion1, we consider
eq. (1) and we replace Rin with Bin and Rout with Bout,
which yields:

Eregion1[Γ]=

∫∫

Bin

(I(x)−kin)2dx +

∫∫

Bout

(I(x)−kout)
2dx (5)

Increased flexibility is achieved thanks to the narrow band
principle, since it does not convey a strict homogeneity
condition like classical region-based approaches. The sec-
ond energy is a generalization of the first one. Its purpose
is to handle cases where the background is locally homo-
geneous in the vicinity around the object (see fig. 1c). For
now, we express it using a local outer descriptor hout de-
pending on current position x:

Eregion2[Γ]=

∫∫

Bin

(I(x)−kin)2dx +

∫∫

Bout

(I(x)−hout(x))2dx (6)

In eq. (1), one may note that the Chan-Vese region
term is asymmetric, as region integrals are independently
weighted in order to favour minimization of intensity devi-
ation inside or outside. However, we use symmetric terms
in our approach, as it is the most common case with region-
based active contours. In what follows, we show in what
extent the narrow band principle allows easier implemen-
tation than classical region-based approaches.

2.2. Parallel curves

The theoretical background of our narrow band frame-
work is based on parallel curves, also known as ”offset
curves” [27, 28]. The curve Γ[B] is called a parallel curve
of Γ if its position vector c[B] verifies

c[B](u) = c(u) +Bn(u) (7)

where B is a real constant, corresponding to the amount
of translation, and n in the inward unit normal of Γ.
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Γ
Γ[B1]

Γ[B2]

Figure 3: Main curve (black) and two parallel curves. Small trans-
lation B1 yields regular curve (blue) whereas large translation B2

yields a curve with singulaties (red). Corresponding points on par-
allel curves are linked with dashed lines.

Hereafter, we will use the index [B] to denote all quantities
related to the parallel curve. The definition in eq. (7)
is suitable to our narrow band formulation, in the sense
that bands Bin and Bout are bounded by parallel curves
of Γ, respectively Γ[B] and Γ[−B]. This implies that both
curves are continuously differentiable and do not exhibit
singularities. Fig. 3 depicts a case where width B2,
unlike B1, is larger than the curve’s radius of curvature,
yielding singularities (also known as cusps). Afterwards,
we refer to the eroded inner region by Rin[B], bounded
by Γ[B], and the dilated inner region by Rin[−B] bounded
by Γ[−B].

Before introducing our simplification, let us recall the
notion of line integral. Given a real-valued function f de-
fined over R

2 and a domain D ⊂ R
2, we introduce the

general notation J(f,D) representing the integral of f over
domain D. If D is a region R, J(f,R) is an area integral
whereas if D is a curve Γ, J(f,Γ) is written as a line inte-
gral:

J(f,Γ) =

∫

Ω

f(c(u))

∥
∥
∥
∥

dc

du

∥
∥
∥
∥
du (8)

where the length element (or velocity)

ℓ =

∥
∥
∥
∥

dc

du

∥
∥
∥
∥

(9)

makes J(f,Γ) intrinsic, i.e. independent of the param-
eterization. This idea was first introduced in deformable
models with the geodesic active contour model [29, 30, 31].
From now on, we will use indexed notations for derivatives:

cu =
dc

du
, cuu =

d2c

du2 ... (10)

The curvature of Γ is:

κ(u) =
xuyuu − xuuyu

(x2
u + y2

u)
3

2

=
xuyuu − xuuyu

ℓ3

An important property resulting from the definition in
eq. (7) is that the velocity vector of parallel curves de-
pends on the curvature of Γ. The velocity vector of curve
Γ[B] is expressed as a function of the velocity vector of Γ,
as well as its curvature and normal. Using the identity
nu = − κcu, we have:

c[B]u
= cu +Bnu = (1 −Bκ)cu (11)

which yields, for the length element of inner parallel curve:

ℓ[B] =
∥
∥c[B]u

∥
∥ = ℓ |1 −Bκ|

The same development is valid for Γ[−B], replacing B
with −B. This is a known result in parallel curve the-
ory [32, 33]. The expressions of ℓ[B] and ℓ[−B] suggest the
smoothness condition of curves Γ[B] ans Γ[−B]. Indeed,
their length elements should remain strictly positive. This
implies a constraint on the maximal curvature of curve Γ,
i.e. the band width should not exceed the radius of cur-
vature. We should assume that Γ is smooth enough such
that:

− 1

B
< κ(u) <

1

B
, ∀u ∈ Ω (12)

If condition 12 is well verified, curves Γ[B] and Γ[−B] are
simple and regular. The impact of this assumption on
numerical implementation is discussed in section 5.

2.3. Transformation of area integral

In this section, we show that the domain integrals ap-
pearing in eq. (5) can be expressed in terms of c and B.
This conversion is mandatory for the calculation of the
variational derivative of Eregion with respect to c. More-
over, it brings a formulation suitable for implementa-
tion on explicit models. The proof is based on Green-
Riemann theorem, stating that for every region R, if
[P (x, y) Q(x, y)]T is a continuously differentiable R

2 → R
2

vector field, then:
∫∫

R

∂Q

∂x
− ∂P

∂y
dxdy =

∫

∂R

Pdx+Qdy

In order to apply the theorem on J(f,R), where f is a
real-valued function defined on the image domain D, one
should determine vector field [P Q] such that

∂Q

∂x
− ∂P

∂y
= kf(x, y)

where k is a real constant. By choosing P and Q as follows,
the previous condition is satisfied:

Q(x, y) =
1

2

∫ x

−∞

f(t, y)dt

P (x, y) = −1

2

∫ y

−∞

f(x, t)dt
(13)

Hereafter, we will rely on the following equation to trans-
form region integrals:

J(f,R) =

∫

∂R

Pdx+Qdy (14)
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B
Γ1

Γ2

(a) (b)

Figure 4: Region enclosed by two simple closed curves Γ1 and Γ2 (a)
split into infinitesimal quadrilaterals (b)

Let us consider the more general case of a band B
bounded by curves Γ1 and Γ2, as depicted in fig. 4a. Rely-
ing on eq. (14), the integral of f over B is expressed using
Green’s theorem:

J(f,B) = J(f,R1) − J(f,R2)

=

∫

Ω

x1uP (c1) + y1uQ(c1)du

−
∫

Ω

x2uP (c2) + y2uQ(c2)du

(15)

We introduce a family of curves {Γ̃(α)}α∈[0,1] interpolating

from Γ1 to Γ2. The position vector of Γ̃ is

c̃(α, u) = (1 − α)c2(u) + αc1(u)

Relying on the following equality,

c1 − c2 =

∫ 1

0

d

dα

{

(1 − α)c2 + αc1

}

dα

and using integration by parts, we transform eq. (15) and
show that J(f,B) can be directly expressed as a function
of f , c1 and c2 (a detailed derivation is provided in ap-
pendix A.1).

J(f,B) =

∫

Ω

∫ 1

0

f(c̃)(c1 − c2) × c̃udαdu (16)

This expression is intuitively understood since (1−α)c2 +
αc1 sweeps all curves between Γ1 and Γ2 as α varies from 0
to 1. The cross product corresponds to the area of the in-
finitesimal quadrilaterals spanned by (c1−c2) and c̃u, as de-
picted in fig. 4b. Relying on parallel curves, the mathemat-
ical definition of bands Bin allows us to express J(f,Bin)
in a convenient form. We apply the general result in
eq. (16) on inner band Bin, considering curves Γ and Γ[B]

instead of Γ1 and Γ2. Using a variable thickness b (see
appendix A.2 for more details), we finally obtain:

J(f,Bin) =

∫

Ω

∫ B

0

f(c + bn)ℓ(1 − bκ)dbdu (17)

The formulation for J(f,Bout) is easily obtained by re-
placing b with −b in eq. (17). This expression is especially
useful when the curve is discretized as a polygonal line, as
described in section 5.

2.4. Region energies

Thanks to the previous result, we now express our two
narrow band region energies in terms of contour, curvature
and band thickness. The first narrow band region energy,
which aims at minimizing the intensity deviation in the
two bands, is rewritten:

Eregion1[Γ] =

∫

Ω

∫ B

0

(I(c+bn) − kin)2ℓ(1−bκ)dbdu

+

∫

Ω

∫ B

0

(I(c−bn) − kout)
2ℓ(1+bκ)dbdu

(18)

For the second narrow band region energy, intensity devi-
ation should be minimized in the outer band locally along
the curve. Hence, we replace global descriptor kout of
eq. (18) by a local counterpart, which is now a function of
the position on the curve:

Eregion2[Γ] =

∫

Ω

∫ B

0

(I(c+bn) − kin)2ℓ(1−bκ)dbdu

+

∫

Ω

∫ B

0

(I(c−bn) − hout(u))
2ℓ(1+bκ)dbdu

(19)

Up to now, we have used intensity descriptors without ex-
plicitly providing their expressions. They may be consid-
ered as unknowns which will be determined during energy
minimization. Their values will be determined by calculus
of variations of the energies, described in section 4.

3. Active surface model

3.1. Energies

The active contour method approach naturally extends
to a three dimensional segmentation problem. In a con-
tinuous space, a deformable model is represented by a pa-
rameterized surface Γ.

Γ : Ω2 −→ R
3

(u, v) 7−→ s(u, v) = [x(u, v) y(u, v) z(u, v)]T

In all subsequent derivations, we will assume a closed sur-
face with a parameterization homeomorphic to a torus:

s(0, v) = s(1, v) ∀v ∈ Ω
s(u, 0) = s(u, 1) ∀u ∈ Ω

(20)

or a sphere:

s(0, v) = s(1, v) ∀v ∈ Ω
s(u1, 0) = s(u2, 0) ∀(u1, u2) ∈ Ω2

s(u1, 1) = s(u2, 1) ∀(u1, u2) ∈ Ω2
(21)

Note that these parameterizations are given only for math-
ematical transformation purpose and do not generate any
constraint on the topology of the surface once this last
one is discretized. Hence, they do not restrict numerical
implementation. The surface is endowed with the energy
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functional E. Replacing c by s in eq. (3), we obtain the
surface energy to be minimized. The smoothness term is:

Esmooth[Γ] =

∫∫

Ω2

∥
∥
∥
∥

∂s

∂u

∥
∥
∥
∥

2

+

∥
∥
∥
∥

∂s

∂v

∥
∥
∥
∥

2

dudv (22)

Considering now that image I is a R
3 → R function, the

narrow band region energy is a function of the volume
integrals over the two bands Bin and Bout:

Eregion1[Γ] =

∫∫∫

Bin

(I(x) − kin)2dx

+

∫∫∫

Bout

(I(x) − kout)
2dx

(23)

and similarly for Eregion2. As in the two dimensional case,
terms defined over bands are not computed as is. They
should undergo some mathematical transformation in or-
der to be differentiated and implemented. This is done
through the framework of parallel surfaces described in
the next section.

3.2. Parallel surfaces

In three dimensions, regions Bin and Bout are bounded
by Γ and its parallel surfaces Γ[B] and Γ[−B], respectively.
As an example, if Γ describes a sphere, Bin and Bout may
be viewed as two empty balls with thickness B.

s[B](u, v) = s(u, v) +Bn(u, v) (24)

and similarly for s[−B]. As previous, B is the constant
band thickness and n(u, v) is the unit inward normal:

n(u, v) =
su × sv

‖su × sv‖
A surface integral of f over Γ is

J(f,Γ) =

∫∫

Ω2

f(s(u, v))

∥
∥
∥
∥

∂s

∂u
× ∂s

∂v

∥
∥
∥
∥
dudv

where the area element

a(u, v) =

∥
∥
∥
∥

∂s

∂u
× ∂s

∂v

∥
∥
∥
∥

(25)

makes the surface integral J(f,Γ) independent of the pa-
rameterization. In accordance with our mathematical
derivations in the previous section, we demonstrate how
the normal vector of parallel surface can be expressed as
a function of su×sv. Moreover, we show how the various
surface curvatures intervene in this expression. To express
surface curvature, we introduce basic elements of differen-
tial geometry [34, 33]. E, F and G are the coefficients of
the first fundamental form, whereas L, M and N are the
coefficients of the second fundamental form. At a given
surface point s(u, v), we have

E = 〈su, su〉 F = 〈su, sv〉 G = 〈sv, sv〉
L = −〈nu, su〉 = 〈n, suu〉
M = −〈nu, sv〉 = −〈nv, su〉 = 〈n, suv〉
N = −〈nv, sv〉 = 〈n, svv〉

The gaussian curvature κG and mean curvature κM may
be expressed in terms of coefficients of the fundamental
forms:

κG =
LN −M2

EG− F 2

κM =
GL− 2FM + EN

2(EG− F 2)

Normal derivatives nu and nv are orthogonal to n. In the
tangential plane at point s(u, v), they can be expressed as
combinations of basis vectors su and sv according to the
Weingarten equations [34]:

nu =
FM −GL

EG− F 2
su +

FL− EM

EG− F 2
sv

nv =
FN −GM

EG− F 2
su +

FM − EN

EG− F 2
sv

(26)

which lead to the following combinations, holding mean
and gaussian curvatures:

nu×sv + su×nv = −2κMsu×sv
nu×nv = κGsu×sv

(27)

An important property, resulting from eq. (27), is that the
normal vector of parallel surface Γ[B] is colinear to the
normal vector of Γ. Its magnitude is a function of the
mean and gaussian curvatures of Γ:

s[B]u
×s[B]v

= (su +Bnu) × (sv +Bnv)

= (1 − 2BκM +B2κG)su×sv
(28)

Considering the magnitude of the previous vector, we ob-
tain the area element of the parallel surface:

a[B] = s[B]u
×s[B]v

= a
∣
∣1 − 2BκM +B2κG

∣
∣

(29)

which will be useful for expressing the simplified form of
the narrow band region energy described below.

3.3. Transformation of volume integral

Volume integrals can be converted to surface integrals
thanks to the divergence theorem, also known as Green-
Ostrogradski’s theorem. For every volumic region R, given
F(x) = [P (x) Q(x) R(x)]T a continuously differentiable
R

3 → R
3 vector field, we have:
∫∫∫

R

div(F) dV =

∫∫

∂R

〈F,N〉 dA (30)

where dA and dV are the differential area and volume
elements, respectively. N is the surface outward normal.
The divergence of vector field F is:

div(F) =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
(31)

If the boundary ∂R is parameterized by s(u, v), the surface
integral can be written:
∫∫

∂R

〈F,N〉 dA = −
∫∫

Ω2

〈

F(s(u, v)),
∂s

∂u
× ∂s

∂u

〉

dudv

(32)
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where the negative sign appears since n(u, v) is the unit
inward normal. To convert the volume integral of f into
a surface integral, one should find F such that div(F) =
f . This condition is verified by choosing P , Q and R as
follows:

P (x, y, z) =
1

3

∫ x

0

f(t, y, z)dt

Q(x, y, z) =
1

3

∫ y

0

f(x, t, z)dt

R(x, y, z) =
1

3

∫ z

0

f(x, y, t)dt

(33)

In what follows, we demonstrate how we can express the
3D region energy in terms of surface integrals. The deriva-
tion is similar in philosophy to the 2D case, since our 3D
scheme is also based on curvature. As in the 2D section,
we consider a general case of a volumic band B bounded
by surfaces Γ1 and Γ2.

J(f,B) = J(f,R1) − J(f,R2)

This theorem is based on a family of surfaces
{

Γ̃(α)
}

0≤α≤1

with position vector:

s̃(α, u, v) = (1 − α)s1(u, v) + αs2(u, v)

Using the divergence theorem in eq. (32), the volume in-
tegral over the region bounded by two surfaces Γ1 and Γ2

can be expressed as follows (details of the proof are given
in appendix A.3):

J(f,B) =

∫∫

Ω2

∫ 1

0

f(s̃) 〈s2 − s1, s̃u×s̃v〉 dαdudv (34)

In the previous expression, the scalar triple product is the
volume of the parallelepiped spanned by vectors (s2 − s1),
s̃u and s̃v. We apply this general result in our case, where
Γ1 = Γ and Γ2 = Γ[B]. Given the area element of parallel
surface in eq. (29), we write the final approximation of the
volume integral:

J(f,Bin) =
∫∫

Ω2

∫ B

0

f(s+bn) ‖su×sv‖ (1−2bκM+b2κG)dbdudv (35)

The transformation from eq. (34) to eq. (35) is detailed
in appendix A.4. Again, the volume integral over outer
band Bout is obtained by replacing b with −b. The first
narrow band region energy is found by replacing adequates
quantities in eq. (18):

Eregion1[Γ]=

∫∫

Ω2

∫ B

0

a[b](I(s[b])−kin)2dbdudv

+

∫∫

Ω2

∫ B

0

a[−b](I(s[−b])−kout)
2dbdudv

(36)

where area elements a[b] and a[−b] should be expanded ac-
cording to eq. (29). The explicit form of the second energy
may be obtained by replacing kout with surface-dependent
local descriptor hout(u, v).

4. Calculus of variations

Image segmentation is performed through numerical
minimization of the energy functional using gradient de-
scent. The negative discretized variational derivative of
the energy term is usually considered for the descent direc-
tion. In this section, we express the variational derivatives
of the energies, especially focusing on the region terms, for
both contour and surface.

4.1. Active contour

Let us consider a general energy term E, depending on
the curve position c and its successive derivatives:

E[Γ] =

∫

Ω

L(c, cu, cuu) du

The variational derivative of the energy with respect to the
curve can be computed thanks to calculus of variations [1]:

δE

δΓ
=
∂L
∂c

− d

du

{
∂L
∂cu

}

+
d2

du2

{
∂L
∂cuu

}

(37)

According to the Euler-Lagrange equation, if curve Γ is a
local minimizer of E, the previous variational derivative
vanishes. Curve evolution is achieved by iterative solving
of the Euler-Lagrange equation, by means of gradient de-
scent. It is more convenient to calculate the variational
derivative of each energy. From eq. (3), we have:

δE

δΓ
= ω

δEsmooth

δΓ
+ (1 − ω)

δEregion

δΓ

The derivative of the smoothness term is well known [1],
since eq. (37) is easily applicable on Esmooth:

δEsmooth

δΓ
= −2

d2c

du2 (38)

As regards the first narrow band region energy, it is more
conveniently differentiated when expressed with integrals
over Rin and its related regions, rather than over bands.
Therefore, the inner band term is split between Rin and the
eroded inner region Rin[B], whereas the outer band term
is split between Rin and the dilated inner region Rin[−B],
which leads to the following variational derivative:

δEregion1

δΓ
=

+
δJ
(
(I−kin)2, Rin

)

δΓ
− δJ

(
(I−kin)2, Rin[B]

)

δΓ

+
δJ
(
(I−kout)

2, Rin[−B]

)

δΓ
− δJ

(
(I−kout)

2, Rin

)

δΓ

(39)

In this way, region terms are transformed using Green’s
theorem and subsequently derived. From the appendix
in [10], we have:

δJ(f,Rin)

δΓ
= −ℓf(c)n (40)
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In appendix B, we develop the calculation of the varia-
tional derivative of the general term J(f,Rin[B]), which
results in:

δJ(f,Rin[B])

δΓ
= −ℓ(1 −Bκ)f(c[B])n

Its counterpart on the dilated region Rin[−B] is obtained
by replacing B with −B in eq. (67). This eventually leads
to:

δEregion1

δΓ
= ℓ [

−(I(c)−kin)2 + (1−Bκ)(I(c[B])−kin)2

−(1+Bκ)(I(c[−B])−kout)
2 + (I(c)−kout)

2
]
n

(41)

The energy should also be minimized with respect to inten-
sity descriptors kin and kout. These are found by solving

∂Eregion1

∂kin
= 0 and

∂Eregion1

∂kout
= 0

which yield average intensities on the inner and outer
bands:

kin =
1

|Bin|

∫

Ω

∫ B

0

I(c+bn)ℓ(1−bκ)dbdu

kout =
1

|Bout|

∫

Ω

∫ B

0

I(c−bn)ℓ(1+bκ)dbdu

(42)

Band areas |Bin| and |Bout| are expressed by considering
eq. (17) with f(x) = 1:

|Bin| =

∫

Ω

ℓ

(

B − B2

2
κ

)

du

|Bout| =

∫

Ω

ℓ

(

B +
B2

2
κ

)

du
(43)

The derivative in eq. (41) holds the term
(I(c) − kout)

2 − (I(c) − kin)2, which is clearly in ac-
cordance with the region-based segmentation principle.
Indeed, the sign of the above quantity depends on the
likeness of the current point’s intensity with respect to kin

or kout. If I(c) is closer to kin than kout, the contour
will locally expand, as it would be the case with a region
growing approach. Moreover, one may note that this term
is also found in the Chan-Vese region-based method. The
derivative holds additional curvature-dependent terms
which are addressed in section 5.

We now deal with the second region energy. From
eq. (41), we extrapolate a consistent variational derivative
of the second narrow band region term. We obtain:

δEregion2

δΓ
≈ ℓ [

−(I(c)−kin)2 + (1−Bκ)(I(c[B])−kin)2

−(1+Bκ)(I(c[−B])−hout)
2 + (I(c)−hout)

2
]
n

(44)

The local outer descriptor function hout is determined by
solving another Euler-Lagrange equation:

δEregion2

δhout
= 0

which yields the average weighted intensity along the out-
ward normal line of length B, at a given contour point:

hout(u) =

∫ B

0

ℓ(1 + bκ)I(c − bn)db

∫ B

0

ℓ(1 + bκ)db

According to the previous definition of hout, we assume
that piecewise constancy over the outer band is verified if
intensity is uniform along finite length lines in the direc-
tion normal to the object boundary. For a given point on
the contour, the length element is constant and may be
omitted, which reduces the mean intensity to:

hout(u) =
2

B(2 +Bκ)

∫ B

0

(1 + bκ)I(c − bn)db (45)

4.2. Extension to the surface

The general energy term depending on surface position
as well as its u and v-derivatives,

E[Γ] =

∫∫

Ω2

L(s, su, sv, suu, suv, svv) dudv

has the following variational derivative [35]:

δE

δΓ
=

∂L
∂s

− d

du

{
∂L
∂su

}

− d

dv

{
∂L
∂sv

}

+
d2

du2

{
∂L
∂suu

}

+
d2

dudv

{
∂L
∂suv

}

+
d2

dv2

{
∂L
∂svv

}

The variation of the smoothness term is straightforward
to calculate and is a function of the laplacian:

δEsmooth

δΓ
= −2

(
∂2s

∂u2 +
∂2s

∂v2

)

(46)

As in the 2D case, it is practical to differentiate the region
term when formulated in terms of integrals over Rin, Rin[B]

and Rin[−B]. Hence, a similar derivation as in eq. (39) is
performed. A detailed calculation of the variational deriva-
tive of a general term J(f,Rin) may be found in the ap-
pendix of [36]. It gives:

δJ(f,Rin)

δΓ
= −af(s)n

The variation of the term expressed on the eroded inner
region is extended from appendix B. In particular, the
final result of eq. (67) gives:

δJ(f,Rin[B])

δΓ
= −a(1 − 2BκM +BκG)f(s[B])n
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and similarly on the dilated inner region. Replacing the
curvature-dependent terms of eq. (41) and (44), this even-
tually leads to:

δEregion1

δΓ
= a

[
−(I(s)−kin)2 + (I(s)−kout)

2

+(1−2BκM+B2κG)(I(s[B])−kin)2

−(1+2BκM+B2κG)(I(s[−B])−kout)
2
]
n

(47)

Minimizing Eregion1 with respect to intensity descrip-
tors kin and kout, we end up with average intensities:

kin =
1

|Bin|

∫∫

Ω2

∫ B

0

a[b]I(s[b]) dbdudv

kout =
1

|Bout|

∫∫

Ω2

∫ B

0

a[−b]I(s[−b]) dbdudv

The derivative of Eregion2 may be obtained from eq. (47),
replacing kout with local descriptor hout(u, v). As in the 2D
case, minimizing Eregion2 with respect to hout, we obtain
the average intensity along outer normal line segment at
surface point s(u, v):

hout(u, v) =

3

3B(1 +B) +B3

∫ B

0

I(s[−b])(1+2bκM+b2κG)db
(48)

Once the first variations of the smoothness and region
terms are known, we are able to perform gradient descent
of the discretized energy over explicit implementations of
the curve and surface.

5. Implementation on explicit models

5.1. Polygon and mesh

To describe the discrete forms of active 2D contour and
3D surface models simultaneously, we introduce a general
framework. The contour is a discrete closed curve, whereas
the surface model is a triangular mesh built by subdividing
an icosahedron [37]. The models have a constant global
topology, their initial shape being circular and spherical,
respectively. Both are made up of a set of n vertices,
denoted pi = [xi yi]

T in 2D and pi = [xi yi zi]
T in 3D.

Each vertex pi has a set of neighboring vertices, denoted
Ni. In the 2D contour, index i is the discrete equivalent
of the curve parameter, hence Ni = {i − 1, i + 1}. For
the mesh, Ni is sorted in such a way that the kth and
(k+1)th neighbors of pi are also neighbors between them.
While the computation of tangent and normal vectors is
straightforward on the polygon, computing normals on the
mesh needs some explanation. The normal of vertex pi is
the mean computed over the normals of the neighboring
triangles [3]. The normal nt of a given triangle is the
normalized cross product between two of its edges.

nt =
(pt2 − pt1) × (pt3 − pt1)

‖(pt2 − pt1) × (pt3 − pt1)‖
(49)

pipi

pjpj
αij

βij

θij

Figure 5: Angles in the neighborhood of pi for discrete mean and
gaussian curvature estimation

where ptk , k = 1, 2, 3 are the vertices of triangle t. In
a given triangle, vertex indices should be sorted so that
the normal vector points towards the inside of the sur-
face. Since the iterative evolution algorithm described
below modifies vertex coordinates, all normals should be
updated after each iteration (when all vertices have been
moved). For the contour, the discretized length element ℓ
associated to pi is

ℓi =
‖pi − pi−1‖ + ‖pi − pi+1‖

2

For the mesh, to compute the area element associated to
pi, we use the sum of areas of its neighboring triangles:

Ai =

|Ni|∑

k=1

∥
∥(pi − pNi[k]) × (pi − pNi[k+1])

∥
∥

2

The area element is simply ai = Ai/3. The sum of area
elements equal to the sum of triangle areas, which is itself
the total mesh area. To estimate the mean and gaussian
curvatures, we use the discrete operators described in [38]
and [39].

κMi =
1

4Ai

∥
∥
∥
∥
∥
∥

∑

j∈Ni

(cotαij + cotβij)(pi − pj)

∥
∥
∥
∥
∥
∥

κGi =
1

Ai



2π −
∑

j∈Ni

θij





where αij , βij and θij are the angles formed by pi, pj and
their common neighboring vertices, as shown in fig. 5.

5.2. Reparameterization

To maintain a stable vertex distribution along the 2D
contour (or 3D surface), adaptive resampling (or remesh-
ing) is performed [3]. The contour is allowed to add or
delete vertices to keep the distance between neighboring
vertices homogeneous. It insures that every couple of
neighbors (pi,pj) satisfies the constraint:

w ≤ ‖pi − pj‖ ≤ 2w (50)

where w is the sampling between consecutive vertices.
Resampling the 2D contour is simple: when the distance
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pi

pipi

pjpj

papapa pbpbpb pn+1

Figure 6: Remeshing operations on the triangular mesh: vertex in-
serting (middle) and deleting (left)

between ‖pi − pi+1‖ exceeds 2w, the line segment is split
by creating a new vertex at coordinates (pi + pi+1)/2.
When ‖pi − pi+1‖ gets below w, vertex pi+1 is deleted
and pi is connected to pi+2.

Active surface remeshing is described in [3] and [14].
While resampling the 2D contour is rather straightforward,
remeshing the 3D active surface is carefully performed.
Adding or deleting vertices modifies local topology, thus
topological constraints should be verified. Let us consider
the couple of neighbors (pi,pj). To perform vertex adding
or deleting, pi and pj should share exactly two common
neighbors, denoted pa and pb. When ‖pi − pj‖ > 2w, a
new vertex is created at the middle of line segment pipj
and connected to pa and pb (see middle part of fig. 6).
When ‖pi − pj‖ < w, pj is deleted and pi is translated to
the middle location (see right part of fig. 6). Vertex merg-
ing prevents neighboring vertices from getting too close,
which might result in vertex overlapping and intersections
between triangles. Adding vertices allows the contour and
surface to inflate significantly while keeping a sufficient
vertex density.

5.3. Energy minimization

We give the discrete forms of quantities used in the
region energies. Over Bin, area integrals are computed
according to the following template formula, which is a
discrete implementation of eq. (17):

J(f,Bin) ≈
n∑

i=1

B−1∑

b=0

f(pi + bni)ℓi(1 − bκi) (51)

where ℓi, ni and κi are the discretized length element, nor-
mal and curvature at vertex pi, using finite differences.
A similar computation is performed over the outer band,
in which b varies from −B to −1. There are two com-
plementary techniques to address the regularity condition
in eq. (12). The first one is to prevent each vertex from
making a sharp angle with its neighbors, so that its cur-
vature κi is well bounded. Moreover, the case of a neg-
ative length element can be handled. Hence, in eq. (51),
ℓi(1−bκi) is actually computed as max(0, ℓi(1−bκi)) and
similarly on the outer band. Vertex coordinates are itera-
tively modified using gradient descent of eq. (3) with time

step ∆t:

p
(t+1)
i = p

(t)
i + ∆tf(pi) (52)

where f(pi) is the force vector, expressed in terms of the
discretization of the energy derivative at a given vertex pi:

f(pi) = −δE
δΓ

∣
∣
∣
∣
c=pi

= ωfsmooth(pi) + (1 − ω)fregion(pi)

We first consider the region force fregion (the smoothness
force is studied in the next section). To compute band
areas and means on the polygonal contour, we apply the
discretization templates in eq. (51) on expressions of areas
in eq. (43) and intensity means in eq. (42). Similarly, quan-
tities in the 3D region energy in eq. (36) are implemented.
For the first narrow band region energy, the corresponding
force on the contour is:

fregion
1
(pi) =

[
(I(pi)−kin)2 − (I(pi)−kout)

2
]
ni (53)

In addition to the squared differences between I(c) and
the average band intensities, the variational derivative in
eq. (41) also contains curvature-based terms depending on
the intensity at points c[B] and c[−B]. Actually, these
terms turn out to go against the region growing or shrink-
ing principle, as they oppose the other terms depending
on I(c). As stated in [40], the usual energy gradient may
not be consistently the best direction to take, which jus-
tifies our choice to remove side effect terms. Moreover,
by doing so, we keep the same evolution principle as the
Chan-Vese region term. In a similar way, the force result-
ing from the second narrow band region energy is:

fregion
2
(pi) =

[
(I(pi)−kin)2 − (I(pi)−µNL(pi))

2
]
ni
(54)

with

µNL(pi) = B

(

1 +
κi(B + 1)

2

) b=B∑

b=1

(1 + bκi)I(pi − bni)

5.4. Gaussian filtering

Minimizing the regularization term boils down to apply
laplacian smoothing of the contour - see eqs. (38) and (46)
- which is formalized by the following PDE:

∂c

∂t
= α

∂2c

∂u2

where α ∈ [0, 1/2]. When discretized, laplacian smoothing
only intervenes in the direct neighborhood of vertices and
is consequently limited in space. However, highly noise-
corrupted data require very strong regularity constraint
on the contour. Should the regularization be insufficient,
the contour is exposed to unstable behaviour. Hence, to
achieve more diffuse regularization, the contour is con-
volved with a gaussian kernel of zero mean and standard
deviation σ. Regularization often comes with curve shrink-
age, as studied in [41]. To avoid this unwanted effect, we
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use the two-pass method of Taubin [42]. This consists in
performing the gaussian smoothing twice, firstly with a
positive weight and secondly with a negative one. The
force, resulting from the first pass, applied on a given ver-
tex is

fsmooth(pi) =




1

σ
√

2π

k=η
∑

k=−η

exp

(

− k2

2σ2

)

pi+k



− pi

(55)
where η is the rank of neighborhood. One usually admits
that the value of the gaussian distribution is nearly zero
beyond 3σ, we choose η = 3σ. This force is used instead
of a discretization of the variational derivative in eq. (38).
A similar smoothing is performed on the deformable mesh
when working with 3D data. In eq. (55), the kth neigh-
bors of pi should then be replaced with successive rings of
neighbors - the first one being Ni - around pi. The choice
of standard deviation σ has a substantial impact on the
final segmentation result and is discussed in section 7.

5.5. Bias force

In a particular case, the formulation of fregion presents
a shortcoming. Indeed, the magnitude of fregion is low
when kin and kout are similar, since in eq. (53), the term
(I(pi)−kout)

2 − (I(pi)−kin)2 tends to 0. This situation
arise when the contour, including the bands, is initialized
inside a uniform area. However, we expect the contour
to grow if the intensity at the current vertex matches the
inner band features, whatever the value of kout. Thus, we
introduce a bias fbias expanding the boundary if I(pi) is
near kin :

fbias(pi) = −
(
1 − (I(pi) − kin)2

)
ni

This bias acts like the balloon force described in [35]. Its
influence should decrease as kin gets far from kout. To do
so, we weight fbias with a negative exponential-like coeffi-
cient γ.

γ =
1 − (kin − kout)

2

1 + ρ(kin − kout)
2

fregion+bias(pi) = γfbias(pi) + (1 − γ)fregion(pi)

(56)

where ρ should be high enough to ensure a quickly de-
creasing slope (any value above 50 turns out to be suit-
able). Hence, fbias is predominant when mean intensities
are close. Its influence decreases to the advantage of fregion
as inner and outer mean intensities become significantly
different. One may note that the bias force is also ap-
plied when using the second region force in eq. (54). Con-
sequently, our region terms maintain the same ability to
grow or retract than classical region-based active contours.
The region bias guarantees the contour has a similar cap-
ture range as other region-based models.

5.6. Implementation of Green’s and divergence theorems

Our experiments, described in section 7, include a
comparison between segmentation results obtained with
our narrow band region terms and the ones obtained
with the Chan-Vese region energy in eq. (1). The imple-
mentation of the latter on the explicit polygon and mesh
raises the difficulty of computing region integrals. The
direct solution consists in using region filling algorithms
to determine inner pixels, as in [9] and [14], which would
be computationally expensive if performed after each
deformation step. Another solution, which we chose,
is based on an discretization of Green-Riemann and
Green-Ostrogradski theorems in 2D and 3D, respectively.

In the 2D case, we consider Green’s theorem as stated
in eqs. (13) and (14). For instance, a brute-force imple-
mentation of the integral J(I,Rin) on the polygon would
yield:

J(I,Rin) ≈ 1

2

n∑

i=1

{

yi+1 − yi−1

2

xi∑

k=0

I(k, yi)

−xi+1 − xi−1

2

yi∑

l=0

I(xi, l)

}

Computing this term in this way may be time-consuming,
since intensities should be summed horizontally and
vertically at each vertex position. Nevertheless, it is
possible to compute and store the summed intensities
only once, before polygon deformation is performed. This
reduces the algorithmic complexity to O(n), whereas
narrow band region energies induce a O(nB) complexity.
Note that the additonal memory cost imputed to the
2D arrays, storing summed intensities in the x and y
directions for each pixel, is insignificant.

On the other hand, for volumetric images, the extra
memory burden caused by a similar implementation of the
divergence theorem would be problematic. In this case, in
addition to the initial image, we store a unique 3D array S
holding summed intensities in the x, y and z dimensions.
Its corresponding continuous expression is:

S(x, y, z) =

∫ z

−∞

∫ y

−∞

∫ x

−∞

I(x′, y′, z′)dx′dy′dz′

which is actually computed according to the following re-
cursive scheme:

S(x, y, z) = S(x−1, y, z) + S(x, y−1, z)

+ S(x, y, z−1) − S(x−1, y−1, z)

− S(x−1, y, z−1) − S(x, y−1, z−1)

+ S(x−1, y−1, z−1) + I(x, y, z)

As in 2D, S needs to be computed only once at the be-
ginning of the segmentation process. Then, during surface
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evolution, image primitives P , Q and R are determined by
finite differences. We provide the details for P :

P (x, y, z) =
1

3

∂2S

∂y∂z

≈ 1

3
(S(x, y, z) − S(x, y−1, z)

−S(x, y, z−1) + S(x, y−1, z−1))

For an implementation of the divergence theorem in the
context of 3D segmentation, the reader may refer to [43].

6. Level set implementation

We provide an implicit implementation of our narrow
band energies as well. In addition to topological flexibility,
the level set formulation presents the advantage of a com-
mon formulation for both 2D and 3D models. We consider
the level set function ψ : R

d → R, where d is the image
dimension. The contour or surface is the zero level set of
ψ. We define the region enclosed by the contour or sur-
face by Rin = {x|ψ(x) ≤ 0}. Instead of forces applied
on vertices, we now deal with speeds applied to function
samples. Function ψ deforms according to the evolution
equation:

∂ψ

∂t
= F (x) ‖∇ψ(x)‖ ∀x ∈ R

d (57)

where speed function F is to some extent the level set-
equivalent of the explicit energy in eq. (3), i.e. a weighted
sum of smoothness and region terms:

F (x) = ωFsmooth(x) + (1 − ω)Fregion(x)

In the level set framework, regularization is usually per-
formed with a curvature-dependent term. With this tech-
nique, for the same reasons as explained in section 5.4, the
effect is limited to the direct neighborhood of pixels. In
order to achieve a regularization as diffuse as in eq. (55),
we replace the usual curvature term with a gaussian con-
volution, as in [44]:

Fsmooth(x)=




1

σ
√

2π

∑

x′∈W3σ(x)

exp

(

−‖x′−x‖2

2σ2

)

ψ(x′)



−ψ(x)

where W is a circular window of a given radius around x:

Wη(x) = {x′| ‖x′−x‖ ≤ η}

Parameters ω and σ play the same role as in the explicit
implementation described in section 5. Areas, volumes and
average intensities upon inner and outer bands are easily
computed on the level set implementation, since a circular
window of radius B may be considered around each pixel
located on the front.

Bin = {x|ψ(x) ≤ 0 and ∃x′∈WB(x) s.t. ψ(x′) = 0}
Bout = {x|ψ(x) ≥ 0 and ∃x′∈WB(x) s.t. ψ(x′) = 0}

If it is assumed that ψ remains a signed euclidean distance
function, the narrow band region energy may be written
as:

Eregion1[ψ] =
∫∫

D

H(ψ(x)+B)(1−H(ψ(x)))(I(x)−kin)2dx

+

∫∫

D

H(ψ(x))(1−H(ψ(x)−B))(I(x)−kout)
2dx

where the Heaviside step function H is used in a similar
manner as in [45] or [46]. Unlike in the explicit case, the
regularity condition in eq. (12) has no impact on the im-
plementation of band integrals in the implicit case. Due
to the geometric nature of level sets, there is no need to
compute any length element and the curvature does not
intervene in the computation of band integrals. Indeed,
considering the sign of ψ, pixels belonging to Bin or Bout

are easily determined by dilating the front with the cir-
cular window WB . Regarding the average intensity along
outward normal lines, we rely on the curvature-based for-
mulation of the explicit curve:

hout(x) =

2

B(2 +Bκψ(x))

∫ B

0

I(x + bnψ(x))(1 + bκψ(x))db

where the unit outward normal to the front at x is:

nψ(x) =
∇ψ(x)

‖∇ψ(x)‖

This last expression is only adequate when x is located
on the zero-level front. Computed as is, to maintain nψ
normal to the front, ψ should remain a distance function.
This implies to update ψ as a signed euclidean distance
in the neighborhood of the front before estimating normal
vectors. Regardless of the dimension of ψ, the curvature
is expressed in terms of divergence:

κψ(x) = div

( ∇ψ(x)

‖∇ψ(x)‖

)

which allows to write the level-set formulation of the sec-
ond region term. From eq. (19), it follows:

Eregion2[ψ] =
∫∫

D

H(ψ(x)+B)(1−H(ψ(x)))(I(x)−kin)2dx +

∫∫

D

δ(ψ(x))

∫ B

0

(I(x+bnψ(x))−hout(x))
2
(1+bκψ(x))dbdx

For a point x located on the front, the speeds correspond-
ing to the narrow band region terms are:

Fregion1(x)= (I(x)−kout)
2 − (I(x)−kin)2

Fregion2(x)= (I(x)−hout(x))2 − (I(x)−kin)2
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On the implicit 2D contour, the curvature may be ex-
panded as

κψ =
ψxxψ

2
y − 2ψxψyψxy + ψ2

xψyy

(ψ2
x + ψ2

y)
3/2

According to [47], the mean and gaussian curvatures of the
implicit surface are:

κMψ =
ψxx(ψ

2
y + ψ2

z) + ψyy(ψ
2
x + ψ2

z) + ψzz(ψ
2
x + ψ2

y)

(ψ2
x + ψ2

y + ψ2
z)

3/2

−2
ψxyψxψy + ψxzψxψz + ψyzψyψz

(ψ2
x + ψ2

y + ψ2
z)

3/2

κGψ =

∑

(i,j,k)∈C

ψ2
i (ψjjψkk − ψ2

jk) + 2ψ

(ψ2
x + ψ2

y + ψ2
z)

2

where C = {(x, y, z), (y, z, x), (z, x, y)} is the set of circular
shifts of (x, y, z). Eventually, the reader may note that the
bias technique used in the explicit implementation is also
applied in the level set model. The level set function ψ
evolves according to the narrow band technique [4], so that
only pixels located in the neighborhood of the front are
treated.

7. Results and discussion

Regarding the results, we should first point out that the
goal of our experiments is not to compare explicit and im-
plicit implementations, since it is well accepted that both
exhibit their own advantages. These ones are typically
topological and geometrical freedom for level sets. On the
other hand, explicit approaches with polygonal snakes and
triangular meshes yield less computational cost than level
set and allow more control. The purpose of our tests is
to compare the behavior of active contours and surfaces
endowed with different data terms, on both explicit and
implicit implementations. We intend to show the interest
of the narrow band approach regardless of the implemen-
tation. To do so, the narrow band region energies are
compared with an edge term, the global region term of
the Chan-Vese model [11] as well as the combined term
by Kimmel [23]. For every data term involved, we used
the same smoothness term. Hence, the full energy is ob-
tained by replacing Eregion with the following data terms
in eq. (3). The edge term is based on the image gradient
magnitude:

Eedge[Γ] = −
∫

Ω

‖∇I(c)‖ du+ α

∫∫

Rin

dx

where α weights an additional balloon force [35] increasing
the capture range. It allows the contour to be initialized
far from the target boundaries, similarly to a region-based
contour. The following global region energy is equivalent

to the data term of the Chan-Vese model [11] described in
eq. (1):

Eglobal[Γ] = λ

∫∫

Rin

(I(x)−kin)2dx

+(2 − λ)

∫∫

Rout

(I(x)−kout)
2dx

Weights on inner and outer integrals are expressed in terms
of a single parameter λ, since the full data term is already
weighted by (1−ω). In subsequent experiments, the asym-
metric configuration (λ 6= 1) will be explicitly indicated.
Otherwise, the symmetric configuration is used. The data
term of the combined model by Kimmel [23] holds a robust
alignment term, encouraging intensity variations normal to
the curve, and a symmetric global region term:

Ecombined[Γ] = −
∫

Ω

|〈∇I(c),n〉| du

+β





∫∫

Rin

(I(x)−kin)2dx +

∫∫

Rout

(I(x)−kout)
2dx





For the edge and combined data terms, image gradient ∇I
is computed on data convolved with first-order derivative
of gaussian, where scale s is empirically chosen to yield the
most significant edges. The choice of s is a tradeoff be-
tween noise removal and edge sharpness. The variational
derivatives of the previous terms are:

δEedge

δΓ
= −∇‖∇I(c)‖ − αn

δEglobal

δΓ
= [−λ(I(c)−kin)2 + (2−λ)(I(x)−kout)

2]n

δEcombined

δΓ
= −sign(〈∇I(c),n〉)∇2I(c)n

+β[−(I(c)−kin)2 + (I(c)−kout)
2]n

We perform segmentation of visually uniform structures.
Since we are looking for perceptually homogeneous ob-
jects, segmentation quality can be assessed visually. One
can reasonably admit that the target object corresponds
to the area containing the major part of the initial region.
For all 2D datasets, the model, whether it is our explicit
contour or the level set, is initialized as a small circle
fully or partially inside the area of interest, far from
the target boundaries. Similarly, for 3D images, our
active surface and the 3D level set are initialized as small
spheres. On a given image, a common initialization is
used for all models. The initial curve is depicted for some
experiments. In all subsequent figures, explicit contours
and surfaces are drawn in red whereas implicit ones
appear in blue.

For all experiments, the regularization weight ω is set
to 0.5. The standard deviation of the gaussian smooth σ
takes its values between 1 and 2, which achieves the best
regularization for all tested images. On noisy data, we
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Global Narrow band 1

Figure 8: Left ventricle in MRI with level set

found that contours and surfaces with lower σ are prone to
boundary leaking. In addition, insufficient regularization
makes level set implementations leave spurious isolated
pixels inside and outside the inner region. Conversely,
values above 2 might prevent the surface from propagating
into narrow structures, like thin blood vessels. Moreover,
since the width of the gaussian mask is proportional to σ,
large standard deviations lead to significant increase of
computational cost, especially for 3D segmentation.

Fig. 7 shows segmentation results of the brain ventricle
in a 2D axial MRI (Magnetic Resonance Imaging) slice.
As it is the case with many medical datasets, the partially
blurred boundaries between ventricle and gray matter
prevent the extraction of reliable edges in places. For the
edge-based model, we could not find a suitable balloon
weight α and gradient scale s preventing the contour from
being trapped in spurious noisy edges inside the shape
while stopping on the actual boundaries. As regards
combined and symmetric global approaches (see columns
2 and 4), the contour did not manage to grow, as inner and
outer average intensities were not sufficiently different.
Setting λ to 0.9, we decrease the significance of inner
deviation to the benefit of outer deviation, consequently
allowing the contour to grow. As depicted in column 3,
the contour undesirably flows into the gray matter part
as soon as this area is reached, which is inconsistent with
the initialization in our context. In this column, one may
note that the drawn curves are not the final ones, but
intermediate states to illustrate the leaking effect. Indeed,
on this particular dataset, gray/white separation is the
most probable partition with respect to a global two-class
segmentation.

We also tested the snake on slices of the human
heart in short-axis view, where the shape of the endo-
cardium, i.e. the inner wall of the left ventricle, should
be recovered. The slices were extracted from 3D+T
MRI sequences. Finding the endocardium boundary is
made more complex by the presence of papillary muscles,
appearing as small dark areas inside the blood pool, as
shown in fig. 8. This requires topological changes, hence

Global Narrow band 1

Figure 9: Kidney in abdominal CT with parametric contour (top)
and level set (bottom)

only the implicit method was tested on this dataset. In
order to keep a critical eye on our approach, we draw the
attention on its equivalence with the Chan-Vese model on
this particular image. The background is not uniform but
still significantly darker than the target object. Thus, the
classical region speed manages to make the front stabilize
on the actual boundaries. Fig. 8 depicts the typical case
in which there is no particular benefit in using the narrow
band region energy.

In fig. 9 and 10, we illustrate the recovery of the kidney
and aorta inner walls, respectively, in 2D CT (Computed
Tomography) data. The global region energy makes the
contour leak outside the target object, into neighboring
structures of rather light gray intensity. Indeed, since
the black background occupies a large area of the image,
every bright grayscale is considered as a part of inner
statistics. Conversely, the narrow band energy, which
ignores the major part of the background, has a more
local view and manages to keep the contour inside the
kidney and the aorta. One may note that all segmented
objects of interest are homogeneous. It has no incidence
if we consider the inner band or the whole inner region
for the homogeneity criterion in Eregion1. Indeed, in the
region force of eq. (53), descriptor kin may be equally the
average intensity on Rin or Bin.

The band thickness B is an important parameter of
our method and should be discussed. Apart from its
impact on the algorithmic complexity - computing average
intensities µ(Bin) and µ(Bout) takes at least O(nB) oper-
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Edge Global Global (asymmetric) Combined Narrow band 1

Figure 7: Brain ventricle in 2D axial MRI, with parametric contour (top) and level set (bottom). The initial curve is drawn in black dashed
line

Global Narrow band 1

Figure 10: Aorta in abdominal CT with parametric contour (top)
and level set (bottom)

Figure 11: Succesive gaussian smoothings of an axial slice of 3D CT
data
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Figure 12: Minimal band thickness versus standard deviation of
gaussian smoothing

ations - it controls the trade-off between local and global
features around the object. If B = 1, the region energy is
as local as an edge term whereas if B goes to infinity, it
is equivalent to the global region term. The main image
property having an effect on the minimal band thickness
is the edges sharpness. Indeed, the deformable needs a
larger band as the boundaries of the target object are
fuzzy. To put this phenomenon into evidence, we apply
the active contour on an increasingly blurred image,
as depicted in fig. 11. Fig. 12 represents the requested
minimal band thickness versus the standard deviation of
gaussian smoothing. Bands thinner than the minimal one
yield boundary leakage into neighboring structures. The
original image can be segmented with a 2 pixel-wide band.
For subsequent images, increasing the band turns out to
be necessary. One may assume that the blur level of the
last image in the sequence is rarely encountered in the ap-
plications we aim at, we choose B = 10 in our experiments.

We now describe results obtained on color images,
shown in fig. 13. The initial position, which is equal for
every tested model, is indicated by a dashed circle. In
the previous experiments, the outer neighborhoods of
target objects were nearly uniform, enabling the use of
the first narrow band region energy. This condition is
not met in these datasets and we thus prove the interest
of our second narrow band region energy. The minimal
variance principle is easily extended to vector-valued
images, by rewriting the region energies with vector
quantities. Let us consider the vector-valued image I -
holding, for instance, the RGB components - and vector
descriptors kin and kout. In the inner term, the integrand
becomes ‖I−kin‖2

and similarly for the outer term. The
artificial image in the top row of fig. 13, made up of color
ellipses corrupted with gaussian noise, is segmented using
RGB values. Due to the averaging performed on the outer
region and band respectively, the global region term and
the first narrow band term split the image with respect
to the blue component, since it is the dominant color

in the background and it does not occur in the inner region.

The images depicted in the second and third row
holds perceptually color-uniform objects. They were
segmented using the UV chrominance components of
the YUV color space. Neglecting the luminance Y makes
color statistics insensitive to illumination changes in
visually uniform regions, allowing to handle highlights
and shadows properly. For other recent work on active
contours and level sets in color images, the reader may
refer to [48, 49, 50]. As previous, the second narrow
band energy does not perform any averaging on the outer
band. It preserves spatial independence in the outer
neighborhood along the curve, unlike other region terms.
One should note that objects well segmented with the
first narrow band region energy can also be segmented
with the second one, whereas the opposite is false. On
these datasets, the combined model also performs good
segmentation, as reliable edges can be extracted. The
gradient alignment energy acts as a stopping term and
hence compensates the growth induced by the region
term. Computational times imputed to the explicit
contour fall between 0.5s and 1s for 2D images, which
average size is 512 × 512, with a C++ implementation
running on an Intel Core 2 Duo 2GHz with 1Gb RAM.
On the same images, level-set implementations are twice
to third times slower.

Models endowed with global region terms are inher-
ently affected by modification of the background, even if
changes arise in areas not related to the boundary of the
object. In figures numbered from 14 to 17, we put this
phenomenon into evidence by showing the evolution of the
contour with the different data terms, on an initial image
and a tagged image. 20 iterations of gradient descent
are performed between each frame. In fig. 14, the global
region approach flows into the neighboring blue block,
since it is considered as the most different area from the
whole background. Tagging the image, and hence modi-
fying background features in a significant manner, yields
a much different behavior. In fig. 15, the homogeneity
criterion is made asymmetric by increasing λ to 1.1. In
this way, the model is less permissive with respect to inner
deviation, which limits the growth effect. On the initial
image, it turned out to be impossible to find a suitable λ
making the curve stop on the desired boundaries, as inner
and outer statistics were not sufficiently different. The
same phenomenon arises with the combined model in
fig. 16, as no tradeoff β between edge and region term
could be found to properly recover the desired object.
The purpose of this particular experiment is twofold.
On the one hand, we demonstrate that specific image
configurations prevent the use of global region terms. On
the other hand, the ability to recover a target object is
influenced by modifications external to this object, which
may be an undesirable feature for real applications.
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Global Combined Narrow band 1 Narrow band 2

Figure 13: Segmentation of color artificial image (first row) and photographs (second and third rows). The initial curve is drawn in black
dashed line

Figure 14: Evolution with symmetric global region term
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Figure 15: Evolution with asymmetric global region term (λ = 1.1)

Figure 16: Evolution with combined term

Figure 17: Evolution with first narrow band region term. The outer parallel curve Γ[−B] is drawn in black dashed line
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Global Narrow band 1

Figure 18: Slices of deformable mesh (top) and 3D level set surface
(bottom) on axial planes of a 3D abdominal CT

We eventually describe experiments made with the
active surface model on 3D CT datasets of the abdomen.
The surface is used to segment the inside of the whole
aorta, in the context of abdominal aortic aneurysm
diagnosis. It is initialized as a sphere totally inside
the vessel and inflated afterwards. These experiments
emphasize the ability of our explicit active surface to
explore tree-like structures with narrow paths while
keeping sufficient regularity. Endowed with the global
region-term, we observe the same phenomenon as with
the active contour in 2D CT images. The surface tends
to flow into neighboring structures which have a signifi-
cantly brighter intensity than the background, especially
when areas are separated by thin boundaries. On this
data, such case appears between the white blood aorta
and vertebrae. Fig. 18 shows an axial slice of a 3D
abdominal CT dataset whereas the 3D representation
appears in fig. 19. The image size is 512 × 512 × 800,
yielding a computational time of nearly 55s for the de-
formable mesh and more than 3mn for the implicit surface.

8. Conclusion

We have presented in this paper a narrow band region
approach for deformable contours and surfaces driven by
energy minimization. The approach is based on two novel
region terms, formulating a homogeneity criterion in inner
and outer bands neighboring the evolving curve or surface.
The first and second term relies on the asumption of a
respectively uniform and piecewise uniform background in

Global Narrow band 1

Figure 19: Deformable mesh (top) and 3D level set surface (bottom)
in 3D abdominal CT

the vicinity of the target object. Based on the theory of
parallel curves and surfaces, a mathematical development
was carried out in order to express the region energies in a
form allowing natural implementation on explicit models.
The distinctive feature of the 2D region term resides in
curvature. By extension, the region term employed in the
3D mesh uses mean and gaussian curvatures. The narrow
band region energy managed to overcome the drawbacks
of deformable models relying exclusively on edge terms or
global region terms. We provided explicit and level-set
based implementations in 2D and 3D. Very promising
results were obtained on grayscale and color images.

Several improvements will be considered in the near fu-
ture. First, the bias added to the region force, described in
section 5.5, comes more from empirical observations rather
than rigorous calculus of energy variations. Narrow band
region-based models have a diminished capture range and
the bias prevents the model to be stuck in a local mini-
mum when inner and outer statistics are similar. Future
work may concentrate on exploiting both global and band-
based region features, in order to dispense the use of such
bias. Moreover, further investigations will be performed
in embedding narrow region terms into more geometrically
constrained models, like the deformable generalized cylin-
der in [51]. We also plan to extend the model to temporal
segmentation, in order to track evolving objects in videos,
and to textured images [25]. Finally, automated learning
of the energy weights and band thickness, with respect to
a given class of images, could be considered.

A. Transformation of area and volume integrals

In this appendix, we provide details about the trans-
formations of area and volume integrals over 2D and 3D
bands, respectively. These transformations lead to mathe-
matical expressions which discretized forms are convenient
to implement on explicit active contours and surfaces.
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A.1. Area integral over 2D band

We give a general form for an area integral over a
band B bounded by two non-intersecting simple curves Γ1

and Γ2, as depicted in fig. 4. The curves enclose re-
gions R1 and R2, respectively. According to Green’s theo-
rem, since B = R1\R2, the integral of a R

2 → R function f
over B is:

J(f,B) = J(f,R1) − J(f,R2)

=

∫

Ω

x1uP (c1) + y1uQ(c1)du

−
∫

Ω

x2uP (c2) + y2uQ(c2)du

where P and Q are the anti-derivatives defined in eq. (13).
We gather the terms depending on P and Q:

J(f,B) =

∫

Ω

x1uP (c1) − x2uP (c2)du

+

∫

Ω

y1uQ(c1) − y2uQ(c2)du

We introduce a family of curves {Γ̃(α)}α∈[0,1] interpolating

from Γ1 to Γ2. The position vector of a given curve Γ̃(α)
is

c̃(α, u) = (1 − α)c2(u) + αc1(u)

This property allows us to write:

x1uP (c1) − x2uP (c2) =

[

x̃uP (c̃)

]α=1

α=0

=

∫ 1

0

d

dα

{

x̃uP (c̃)

}

dα

and similarly for y1uQ(c1) − y2uQ(c2). We have:

J(f,B) =

∫

Ω

∫ 1

0

d

dα

{

x̃uP (c̃) + ỹuQ(c̃)

}

dαdu

=

∫

Ω

∫ 1

0

x̃αuP (c̃) + ỹαu)Q(c̃)dαdu

+

∫

Ω

∫ 1

0

x̃u 〈c̃α,∇P (c̃)〉 + ỹu 〈c̃α,∇Q(c̃)〉 dαdu

with c̃α = c1 − c2. Integrating by parts the term
depending on P with respect to u, we obtain:

∫

Ω

x̃αuP (c̃)du =

[

x̃αP (c̃)

]u=1

u=0

−
∫

Ω

x̃α
d

du

{

P (c̃)

}

du

Since Γ1 and Γ2 are closed curves, resulting in c1(0) =
c1(1) and c1u(0) = c1u(1) and similarly for c2, the bound-
ary term vanish:

∫

Ω

x̃αuP (c̃)du = −
∫

Ω

x̃α 〈c̃u,∇P (c̃)〉 du

We apply the same derivation on the term depending onQ,
which results in:

J(f,B) =

∫

Ω

∫ 1

0

〈∇P (c̃), x̃uc̃α − x̃αc̃u〉 dαdu

+

∫

Ω

∫ 1

0

〈∇Q(c̃), ỹuc̃α − ỹαc̃u〉 dαdu

Using simplifications

∂P

∂y
= −1

2
f

∂Q

∂x
=

1

2
f,

and rewriting with cross product, the final expression of
the area integral is

J(f,B) =

∫

Ω

∫ 1

0

f(c̃)(c1 − c2) × c̃udαdu (58)

A.2. Area integral over inner band

We apply the general result in eq. (58) on inner
band Bin, considering curves Γ and Γ[B] instead of Γ1

and Γ2. Equations 7 and 11 give the substitutions:

c1 = c

c2 = c +Bn

c1u = cu
c2u = (1 −Bκ)cu

Using the identity cu × n = −n × cu = ℓ, we obtain:

(c1 − c2) × ((1 − α)c2u + αc1u)
= (c − (c +Bn)) × ((1 − α)(1 −Bκ)cu + αc)
= Bℓ(Bκ(α− 1) − 1)

Combined with eq. (16), this result yields:

J(f,Bin) =

∫

Ω

∫ 1

0

f(c+B(α−1)n)Bℓ(Bκ(α−1)−1)dαdu

Introducing a variable thickness b = B(1−α), ( dα = −
db / B ), we finally get:

J(f,Bin) =

∫

Ω

∫ B

0

f(c + bn)ℓ(1 − bκ)dbdu

A.3. Volume integral over 3D band

We give a general form for an area integral over a volu-
mic band B bounded by two non-intersecting surfaces Γ1

and Γ2, enclosing regions R1 and R2, respectively. The
mathematical derivation presented here may be consid-
ered as the 3D extension of appendix A.1. Region R2 is
fully contained into R1, such that B = R1\R2. According
to the divergence theorem described in eqs. (30) and (32),
the integral of a R

3 → R function f over B is:

J(f,B) = J(f,R1) − J(f,R2)

=

∫∫

Ω2

〈F(s2(u, v)), s2u×s2v〉 dudv

−
∫∫

Ω2

〈F(s1(u, v)), s1u×s1v〉 dudv
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where F is the vector field [P Q R]T defined in eq. (33).
Introducing a variable surface of position vector s̃(α) in-
terpolating from Γ1 to Γ2 as α varies from 0 to 1, such
that

s̃(α, u, v) = (1 − α)s1(u, v) + αs2(u, v),

we have:

〈F(s2), s2u×s2v〉 − 〈F(s1), s1u×s1v〉

=

[

F(s̃)s̃u×s̃v

]α=1

α=0

=

∫ 1

0

d

dα

{

F(s̃)s̃u×s̃v

}

dα

This yields:

J(f,B) =

∫∫

Ω2

∫ 1

0

d

dα

{

〈F(s̃), s̃u×s̃v〉
}

dαdudv

Using the product rule to expand the α-derivative, J(f,B)
is split into two terms:

J(f,B) = J1 + J2

Integral J1 depends on the partial derivatives of F:

J1 =

∫∫

Ω2

∫ 1

0

〈
dF(s̃)

dα
, s̃u×s̃v

〉

dαdudv

where dF(s̃)/dα is a vector, expressed using partial deriva-
tives of application F:

dF(s̃)

dα
=

[〈
ds̃

dα
,∇P

〉 〈
ds̃

dα
,∇Q

〉 〈
ds̃

dα
,∇R

〉]T

= ∇Fs̃α

where ∇F is the following Jacobian matrix:

∇F =










∂P

∂x

∂P

∂y

∂P

∂z
∂Q

∂x

∂Q

∂y

∂Q

∂z
∂R

∂x

∂R

∂y

∂R

∂z










=










1

3
f

∂P

∂y

∂P

∂z
∂Q

∂x

1

3
f

∂Q

∂z
∂R

∂x

∂R

∂y

1

3
f










Using matrix notation, we use the general rule

aTAb = (aTAb)T = bTAa

to rewrite the integrand of J1 with inner product notation:

〈∇Fs̃α, s̃u×s̃v〉 =
〈
s̃α,∇FT s̃u×s̃v

〉

On the other hand, integral J2 depends explicitly on F:

J2 =

∫∫

Ω2

∫ 1

0

〈

F,
d

dα

{

s̃u×s̃v

}〉

dαdudv

=

∫∫

Ω2

∫ 1

0

〈F, s̃αu×s̃v〉 + 〈F, s̃u×s̃αv〉 dαdudv

Since the scalar triple product is anti-symetrical, we have

J2 =

∫∫

Ω2

∫ 1

0

〈s̃αu, s̃v × F〉 + 〈s̃αv,F × s̃u〉 dαdudv

We integrate by parts the first and second terms with re-
spect to u and v, respectively:

J2 =

∫ 1

0

∫ 1

0

[

〈s̃α, s̃v×F〉
]u=1

u=0

dαdv

−
∫∫

Ω2

∫ 1

0

〈

s̃α,
d

du

{

s̃v×F

}〉

dαdudv

+

∫ 1

0

∫ 1

0

[

〈s̃α,F×s̃u〉
]v=1

v=0

dαdu

−
∫∫

Ω2

∫ 1

0

〈

s̃α,
d

dv

{

F×s̃u

}〉

dαdudv

The boundary terms vanish thanks to the surface param-
eterization, according to eq. (20) or (21). Expanding the
cross product derivatives, we get:

J2 = −
∫∫

Ω2

∫ 1

0

〈

s̃α, s̃uv×F + s̃v×
dF(s̃)

du

〉

dαdudv

−
∫∫

Ω2

∫ 1

0

〈

s̃α,
dF(s̃)

dv
×s̃u + F×s̃uv

〉

dαdudv

= −
∫∫

Ω2

∫ 1

0

〈s̃α, s̃v×(∇Fs̃u) + (∇Fs̃v)×s̃u〉 dαdudv

In the previous equation, the second member of the inner
product is expanded as a function of s̃u×s̃v:

s̃v×(∇Fs̃u) + (∇Fs̃v)×s̃u

=










−∂Q
∂y

− ∂R

∂z

∂Q

∂x

∂R

∂x
∂P

∂y
−∂P
∂x

− ∂R

∂z

∂R

∂y
∂P

∂z

∂Q

∂z
−∂P
∂x

− ∂Q

∂y










s̃u×s̃v

which is rewritten in a form containing the divergence of
vector field:

s̃v×(∇Fs̃u) + (∇Fs̃v)×s̃u =
(
∇FT − div(F)I

)
s̃u×s̃v

where I is the 3 × 3 identity matrix. It yields, for inte-
gral J2:

J2 =

∫∫

Ω2

∫ 1

0

〈
s̃α,
(
div(F)I −∇FT

)
s̃u×s̃v

〉
dαdudv
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As a result, J1 and J2 are now straightforward to add:

J(f,B) = J1 + J2

=

∫∫

Ω2

∫ 1

0

〈
s̃α , ∇FT s̃u×s̃v

+
(
div(F)I −∇FT

)
s̃u×s̃v

〉
dαdudv

=

∫∫

Ω2

∫ 1

0

div(F) 〈s̃α, s̃u×s̃v〉 dαdudv

Eventually we give the final expression of the volume in-
tegral:

J(f,B) =

∫∫

Ω2

∫ 1

0

f(s̃) 〈s2 − s1, s̃u×s̃v〉 dαdudv (59)

This expression is intuitively understood as the scalar
triple product is the volume of the infinitesimal paral-
lelepiped spanned by vectors s2 − s1, s̃u and s̃v.

A.4. Volume integral over 3D inner band

We apply the result in eq. (59) on surfaces Γ and Γ[B]

instead of Γ1 and Γ2, in order to provide a general ex-
pression for J(f,Bin). Thanks to equations 24 and 28, we
apply the substitutions:

s1 = s

s2 = s +Bn

s1u×s1v = su×sv
s2u×s2v =(1 − 2BκM +B2κG)su×sv

which yields, in eq. (59):

〈s2 − s1, s̃u×s̃v〉
=
〈
s[B] − s, ((1 − α)su + αs[B]u

)×((1 − α)sv + αs[B]v
)
〉

=

〈

Bn , (1 − α)2su×sv

+α(1 − α)(su×s[B]v
+ s[B]u

×sv) + α2s[B]u
×s[B]v

〉

=

〈

Bn , (1 − α)2su×sv

+α(1 − α)(2su×sv +B(su×nv + nu×sv))

+α2s[B]u
×s[B]v

〉

Thanks to eq. (27) and (28), this reduces to:

〈s2 − s1, s̃u×s̃v〉
=

〈

B
su×sv

‖su×sv‖
, (1 − α)2su×sv

+α(1 − α)(2su×sv − 2Bsu×sv)

+α2(1 − 2BκM +B2κG)su×sv

〉

=B ‖su×sv‖ (1 − 2αBκM + α2B2κG)

which yields, for J(f,Bin):

J(f,Bin) =

∫∫

Ω2

∫ 1

0

{

Bf(s+αBn) ‖su×sv‖ (1 − 2αBκM + α2B2κG)

}

dαdudv

Introducing a variable thickness b = αB, we get the final
form of J(f,Bin):

J(f,Bin) =
∫∫

Ω2

∫ B

0

f(s + bn) ‖su×sv‖ (1 − 2bκM + b2κG)dbdudv

B. Calculus of variations

In this section, we calculate the variational derivative
of the region term J(f,Rin[B]) with respect to contour po-
sition c.

B.1. Variational derivative: general expression

We consider the general energy functional, depending
on the parallel curve Γ[B]

E =

∫

Ω

L(c[B], c[B]u
)du

As is, the variational derivative of E with respect to posi-
tion vector c is difficult to write, but it is straightforward
to express it with respect to the parallel position vector
c[B]:

δE

δΓ[B]
=

∂L
∂c[B]

− d

du

{
∂L

∂c[B]u

}

The purpose here is to express δE/δc as a function of
δE/δc[B], for a general energy term L. To some extent,
we design a chain rule for the variational derivatives of
parallel curve-based energies. In what follows, a partial
derivative containing vector quantities should be under-
stood as a matrix:

∂a

∂b
=






∂ax
∂bx

∂ay
∂bx

∂ax
∂by

∂ay
∂by






The partial derivative of a scalar quantity with respect to
a position vector (or a derivative of this position vector)
is the column vector:

∂L
∂c

=

[
∂L
∂x

∂L
∂y

]T

We expand the partial derivatives of L with the chain rule.
First, we differentiate with respect to c:

∂L
∂c

=
∂c[B]

∂c

∂L
∂c[B]

(60)
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and cu:

∂L
∂cu

=
∂c[B]

∂cu

∂L
∂c[B]

+
∂c[B]u

∂cu

∂L
∂c[B]u

which yields

d

du

{
∂L
∂cu

}

=

(
∂c[B]

∂cu

)

u

∂L
∂c[B]

+
∂c[B]

∂cu

(
∂L
∂c[B]

)

u

+

(
∂c[B]u

∂cu

)

u

∂L
∂c[B]u

+
∂c[B]u

∂cu

(

∂L
∂c[B]u

)

u

(61)

With respect to cuu, we have:

∂L
∂cuu

=
∂c[B]u

∂cuu

∂L
∂c[B]u

which gives:

d2

du2

{
∂L
∂cuu

}

=

(
∂c[B]u

∂cuu

)

uu

∂L
∂c[B]u

+2

(
∂c[B]u

∂cuu

)

u

(

∂L
∂c[B]u

)

u

+
∂c[B]u

∂cuu

(

∂L
∂c[B]u

)

uu
(62)

Gathering (60), (61) and (62), we obtain:

δE

δΓ
=

∂L
∂c[B]

−
(
∂c[B]

∂cu

)

u

∂L
∂c[B]

︸ ︷︷ ︸

(1)

− ∂c[B]

∂cu

(
∂L
∂c[B]

)

u
︸ ︷︷ ︸

(2)

+

((
∂c[B]u

∂cuu

)

uu

−
(
∂c[B]u

∂cu

)

u

)
∂L

∂c[B]u
︸ ︷︷ ︸

(3)

+

(

2

(
∂c[B]u

∂cuu

)

u

−
∂c[B]u

∂cu

)(

∂L
∂c[B]u

)

u
︸ ︷︷ ︸

(4)

+
∂c[B]u

∂cuu

(

∂L
∂c[B]u

)

uu
︸ ︷︷ ︸

(5)

(63)

All derivatives of c[B] and c[B]u
appearing in eq. (63) are

expanded in the Frenet basis, where any vector x may be
expressed as a combination of tangent and normal vectors:

x = 〈x, t〉 t + 〈x,n〉n

We have:

∂c[B]

∂x
= [1 0]T

∂c[B]

∂y
= [0 1]T

∂c[B]

∂xu
=
Byu

ℓ2
t

∂c[B]

∂yu
= −Bxu

ℓ2
t

(
∂c[B]

∂xu

)

u

=B

(
xuκ

ℓ
− yuℓu

ℓ3

)

t +
Byuκ

ℓ
n

(
∂c[B]

∂yu

)

u

=B

(
yuκ

ℓ
+
xuℓu

ℓ3

)

t − Bxuκ

ℓ
n

∂c[B]u

∂xu
=

(
xu
ℓ

+B

(
xuκ

ℓ
− yuℓu

ℓ3

))

t − yu
ℓ

(1 −Bκ)n

∂c[B]u

∂yu
=

(
yu
ℓ

+B

(
yuκ

ℓ
+
xuℓu

ℓ3

))

t +
xu
ℓ

(1 −Bκ)n

∂c[B]u

∂xuu
=
Byu

ℓ2
t

∂c[B]u

∂yuu
= −Bxu

ℓ2
t

(
∂c[B]u

∂xuu

)

u

=B

(
xuκ

ℓ
− yuℓu

ℓ3

)

t +
Byuκ

ℓ
n

(
∂c[B]u

∂yuu

)

u

=B

(
yuκ

ℓ
+
xuℓu

ℓ3

)

t − Bxuκ

ℓ
n

Incidentally, the following relation is verified:

(
∂c[B]u

∂cu

)

u

=

(
∂c[B]u

∂cuu

)

uu

The previous forms allow us to expand the underbraced
terms in eq. (63):

(1)=
∂L
∂c[B]

− Bℓu

ℓ2

〈
∂L
∂c[B]

, t

〉

n

−Bκ
〈

∂L
∂c[B]

, t

〉

t +Bκ

〈
∂L
∂c[B]

,n

〉

n

(2)=−B
ℓ

〈(
∂L
∂c[B]

)

u

, t

〉

n

(3)=0

(4)=(Bκ−1)

〈(

∂L
∂c[B]u

)

u

, t

〉

t +
Bℓu

ℓ2

〈(

∂L
∂c[B]u

)

u

, t

〉

n

−(1+Bκ)

〈(

∂L
∂c[B]u

)

u

,n

〉

n

(5)=−B
ℓ

〈(

∂L
∂c[B]u

)

uu

, t

〉

n

We factorize:

δE

δΓ
=(1−Bκ)

〈

∂L
∂c[B]

−
(

∂L
∂c[B]u

)

u

, t

〉

t

+(1+Bκ)

〈

∂L
∂c[B]

−
(

∂L
∂c[B]u

)

u

,n

〉

n

− Bℓu

ℓ2

〈

∂L
∂c[B]

−
(

∂L
∂c[B]u

)

u

, t

〉

n

+
B

ℓ

〈(
∂L
∂c[B]

)

u

−
(

∂L
∂c[B]u

)

uu

, t

〉

n

which is rewritten using the variational derivative of E
with respect to c[B]. We have the general formula,
which relates the variational derivatives with respect to c
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and c[B]:

δE

δΓ
=(1−Bκ)

〈
δE

δΓ[B]
, t

〉

t + (1+Bκ)

〈
δE

δΓ[B]
,n

〉

n

− Bℓu

ℓ2

〈
δE

δΓ[B]
, t

〉

n +
B

ℓ

〈(
δE

δΓ[B]

)

u

, t

〉

n

(64)

B.2. Variational derivative: region integral over Rin[B]

The considered energy is now the area integral of any
function f over the region enclosed by curve Γ[B], ex-
pressed as a line integral using Green’s theorem:

E = J(f,Rin[B]) =

∫

Ω

x[B]u
P (c[B]) + y[B]u

Q(c[B])du

Its variational derivative with respect to c[B] is easily de-
termined from eq. (40), considering c[B] instead of c. One
may find the complete mathematical derivation in the ap-
pendix of [10].

δE

δΓ[B]
= f(c[B])

[
y[B]u
−x[B]u

]

= −ℓ(1 −Bκ)f(c[B])n (65)

Expression 64 needs the derivative of (65). Using the re-
lation nu = − ℓκt, we get:

(
δE

δΓ[B]

)

u

=− d

du

{

ℓ(1−Bκ)f(c[B])

}

n

+ ℓ2κ(1−Bκ)f(c[B])t

(66)

We substitute eqs. (65) and (66) into 64. Since 〈n, t〉 = 0,
this reduces to:

δE

δΓ
=(1+Bκ)

〈
−ℓ(1−Bκ)f(c[B]),n

〉
n

+
B

ℓ

〈
d

du

{

− ℓ(1−Bκ)f(c[B])

}

n

+ℓ2κ(1−Bκ)f(c[B])t , t

〉

n

which eventually leads to:

δE

δΓ
= −ℓ(1−Bκ)f(c[B])n (67)
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