
SoCQ: a Framework for Pervasive Environments
Yann Gripay, Frédérique Laforest, Jean-Marc Petit

INSA-Lyon, LIRIS, UMR5205
Université de Lyon, CNRS

Lyon, France
{yann.gripay,frederique.laforest,jean-marc.petit}@liris.cnrs.fr

Abstract—Querying non-conventional data sources is recog-
nized as a major issue in new environments and applications
such as those occurring in pervasive computing. A key issue is the
ability to query data, streams and services in a declarative way.
In this paper, we propose a framework that defines a data-centric
view of pervasive environments: the classical notion of database is
extended to come up with a broader notion, defined as relational
pervasive environment, homogeneously integrating data, streams
and active/passive services. It allows declarative definitions of
service-oriented continuous queries using a SQL-like language,
based on the so-called Serena algebra. We also tackle the design
of a Pervasive Environment Management System that handles
non-conventional data sources and service-oriented continuous
queries.

Index Terms—databases; data streams; services; continuous
queries; pervasive environments;

I. INTRODUCTION

Querying non-conventional data sources is recognized as
a major issue in new environments and applications such as
those occurring in pervasive systems. In such environments,
available data sources and functionalities are dynamic and
heterogeneous: distributed databases with frequent updates,
data streams from logical or physical sensors, and services
providing data from sensors or storage units, transforming
data or commanding actuators [1]. These data sources and
functionalities are however not homogeneously manageable
in today’s systems, which is an issue when building pervasive
applications.

Pervasive environments are in essence distributed over a
network. Discovery techniques [2] are needed to automatically
identify and use available services and data sources. We
consider an environment where such techniques exist and
allow an access to the heterogeneous services and data sources,
e.g. with UPnP technology [3].

Applications in pervasive environments should then handle
the dynamicity and heterogeneity of such environments. Perva-
sive applications can be viewed as continuous processes using
those non-conventional data sources. Continuous queries (e.g.
[4]) are queries over dynamic relations and data streams con-
tinuously updating their results, and thus a sort of continuous
process.

In this paper, we focus on the following question: How
continuous query techniques over non-conventional data
sources can make the development of pervasive applica-
tions easier? We identify three major challenges to tackle this
question:

1) Modeling pervasive environments integrating non-
conventional data sources, i.e. defining a homogeneous
representation for dynamic relations, data streams and
services; it is somehow a way to instantiate the general
notion of Data Space [5], [6], or what could be called
the Data and Service Space;

2) Defining a query language and optimization tech-
niques for continuous queries over non-conventional
data sources, in order to get closer to the behavior of
pervasive applications;

3) Designing a Pervasive Environment Management
System extending DataBase Management Systems, that
handles non-conventional data sources and continuous
queries over these data sources. Such a system should
manage both network issues and data management is-
sues.

The rest of the paper is organized as follows. In Section II,
we position our research problem within the related work. In
Section III, we expose our contributions to the first two major
challenges identified above. In Section IV, we tackle the third
and last identified major challenge and present the prototype
of the system that we have developed. We then conclude and
discuss some perspectives in Section V.

II. RELATED WORK

With the development of autonomous devices and location-
dependent functionalities, information systems tend to become
what Mark Weiser [7] called ubiquitous systems, or pervasive
systems. Pervasive systems (e.g. [1], [8], [9]) are distributed
systems of devices able to communicate with others through
network links. They offer to users access to devices and control
over their environment through various types of interfaces. The
abstraction of device functionalities allows the system to auto-
mate some of the possible interactions between heterogeneous
devices, in order to facilitate the use of the whole system,
e.g. dynamic discovery of devices [1], data and application
sharing among devices [8], [9]. In our framework, we focus on
data management for pervasive applications that use databases,
data streams and services from distributed devices. As far as
we know, bridging the gap between data management and
pervasive applications has not been fully addressed yet.

A great number of works have been realized in continuous
query definition and processing. Most of works (e.g. [4], [10],
[11]) propose an extension of SQL in order to handle both
relational databases and data streams, where data streams

are represented using relation schemas. In [12], continuous
queries can implicitly interact with devices through an external
function call. However, the relationship between functions and
devices, as well as the optimization criteria, are not explicit and
cannot be declaratively defined. In [13], the cleaning process
for data retrieved from physical sensors is defined in a declara-
tive way by a pipeline of continuous queries. It is however only
a part of pervasive applications and does not involve services.
To the best of our knowledge, query processing techniques
over non-conventional data have had few impacts on pervasive
application developments involving dynamic relations, data
streams and services. Through a homogeneous representation
for non-conventional data sources, we claim that pervasive
application development is indeed possible at the declarative
level using service-oriented continuous queries.

III. DATA MODEL

Our overall objective is to make the development of per-
vasive applications easier through database principles. We
propose a framework that allows to develop pervasive appli-
cations, or parts of pervasive applications, using continuous
query techniques.

The ad hoc development of pervasive applications is re-
placed by a more flexible and adaptable way using declarative
definitions and optimization techniques. The definition of
those continuous queries relies on a homogeneous view of
the computing environment abstracting the implementation
details of data sources and services. The proposed model and
architecture focus on the following goals:
• a seamless integration of heterogeneous distributed data

sources along with traditional databases,
• an easy development of pervasive applications involving

such data sources.
We adapt database principles in the context of pervasive

systems. We propose a data model, namely the SoCQ data
model (standing for Service-oriented Continuous Query), to
represent the heterogeneous data sources of the pervasive
environment, and to build queries over this environment that
remain compatible with traditional data sources. We extend
the relational model with new notions to handle this represen-
tation, called the relational pervasive environment. We also
define the so-called Serena algebra as the query language over
this relational pervasive environment, that can be expressed
using a SQL-like language.

In order to illustrate our work, we use a running example
called the “Temperature Surveillance” scenario. Temperature
sensors that are distributed in a building provide a data stream
of temperature values. Cameras are present in the different
rooms in order to take photos of the places when needed. The
“Surveillance” consists in analyzing the temperature streams
and sending alerts when the temperature exceeds a given
threshold for a room. The generated alerts contain a photo
of the room and are sent to the person in charge of that room
(by mail, SMS, instant messaging. . .).

In the following subsections, we describe our contributions
for the first two major challenges that we have identified (the

third and last one being tackled in Section IV):
1) Modeling pervasive environments through database

principles, to build the notion of relational pervasive
environment integrating data, streams and services;

2) Defining a query language over pervasive environ-
ments, to build Service-oriented Continuous Queries
(SoCQ queries) combining data, streams and services.

A. Modeling pervasive environments

In order to homogeneously represent data sources and other
resources from pervasive environments, we propose a model
that integrates distributed functionalities of resources within
data sources. Our model, based on the relational model, is built
on the following notions: prototypes, services and extended
relations with virtual attributes and binding patterns.

Distributed functionalities can be represented as ser-
vices implementing prototypes. For example, a webcam
and an IP camera are two services from the environ-
ment that implement a prototype takePhoto():(photo)
that takes zero input attribute and provides one output at-
tribute photo; a mail server, an instant messaging server
and a SMS gateway are three services that implement
a prototype sendMessage(address,text):(sent)
that takes two input attributes address and text
and provides one output attribute sent; and temper-
ature sensors are services that implement a prototype
getTemperature():(temperature).

Invoking a prototype on a service realizes the implied
actions, like taking a photo for a camera and sending a
message to the given address for the mail server. As invo-
cations can have an impact on the physical environment, e.g.
invoking a prototype that sends a message, we need to consider
two categories of prototypes: active prototypes and passive
prototypes. Active prototypes are prototypes having a side
effect on the physical environment that can not be neglected.
On the opposite, the impact of passive prototypes is non-
existent or can be neglected, like reading sensor data.

Those services and active/passive prototypes can be de-
scribed as follows, using a pseudo-DDL:

PROTOTYPE sendMessage(address STRING, text STRING) :
(sent BOOLEAN) ACTIVE;

PROTOTYPE takePhoto() : (photo BLOB);
PROTOTYPE getTemperature() : (temperature REAL);

SERVICE email IMPLEMENTS sendMessage;
SERVICE jabber IMPLEMENTS sendMessage;
SERVICE camera01 IMPLEMENTS takePhoto;
SERVICE webcam17 IMPLEMENTS takePhoto;
SERVICE sensor01 IMPLEMENTS getTemperature;
SERVICE sensor06 IMPLEMENTS getTemperature;
SERVICE sensor22 IMPLEMENTS getTemperature;

Prototypes can be integrated into data relations schemas
through virtual attributes and binding patterns. Virtual at-
tributes are attributes from the relation schema that do not
have a value at the tuple level. They represent input and output
attributes of prototypes. A binding pattern is associated with
a relation schema and specifies a prototype, a non-virtual at-
tribute as the service reference, and which attributes are linked
with the prototype input and output attributes. For example,
the contacts relation has five attributes: name, address,
messenger, text and sent, the two last attributes being

virtual attributes; it is associated with one binding pattern
that uses the prototype sendMessage, the service reference
attribute messenger and that links the attributes address
and text with the prototype input attributes, and the attribute
sent with the prototype output attribute. Output attribute
should be virtual attributes, whereas input attributes can also
be real (i.e. non-virtual) attributes, like the attribute address
in this example.

RELATION contacts (
name STRING,
address STRING,
messenger SERVICE,
text STRING VIRTUAL,
sent BOOLEAN VIRTUAL

)
USING BINDING PATTERNS (
sendMessage[messenger] (address, text) : (sent)

);

We call such relations, X-Relations, standing for eXtended
Relations. Virtual attributes represent possible interactions
with services: when a query needs the virtual attribute sent,
a value is required for the virtual attribute text due to the
binding pattern (the attribute address being real), and it
implies an invocation of the prototype sendMessage. The
required values for input attributes should be provided by the
query itself. The services on which the prototype is invoked
are defined by the value of the service reference attribute (here,
attribute messenger), at the tuple level.

In the following table, an example of content for the X-
Relation contacts is presented. The constants “mailer” and
“jabber” are two service references, the former for the mail
server, the latter for the instant messaging server. The star (*)
symbol reminds that virtual attributes have no value.

name address messenger text sent
nicolas nicolas@elysee.fr mailer * *
carla carla@elysee.fr mailer * *

françois francois@im.gouv.fr jabber * *

Pervasive environments being dynamic, the notion of time
needs to be explicit, in contrast with the transactional
paradigm. We represent time as a discrete and ordered domain
of timestamps (e.g. integer values). We extend our model to
integrate data sources like data streams. We call XD-Relations,
for eXtended Dynamic Relations, X-Relations that are time-
dependent: XD-Relations can be either finite (relations where
tuples can be inserted and deleted) or infinite (append-only
relations, i.e. data streams). An environment represented by
a set of XD-Relations is defined as a relational pervasive
environment.

For the whole “Temperature Surveillance” scenario, the
relational pervasive environment contains the following finite
XD-Relations: contacts as the contact list (described in
the previous examples), surveillance containing some
information about the rooms (manager, temperature thresh-
old. . .), cameras and sensors representing all services in
the environment that implement prototypes takePhoto and
getTemperature (respectively); and also one infinite XD-
Relation temperatures representing a stream of tempera-
tures (with their location) periodically sent by sensor services.

RELATION cameras (
camera SERVICE,
area STRING,
photo BINARY VIRTUAL

)
USING BINDING PATTERNS (
takePhoto[camera] () : (photo)

);

RELATION sensors (
sensor SERVICE,
area STRING,
temperature REAL VIRTUAL

USING BINDING PATTERNS (
getTemperature[sensor] () : (temperature)

);

RELATION surveillance (
area STRING,
manager STRING,
threshold REAL,
alertMessage STRING

);

STREAM temperatures (
area STRING,
temperature REAL

);

B. Defining a query language over pervasive environments

Queries over relational pervasive environments allow to
define interactions between dynamic data sources and services,
i.e. pervasive applications. Such queries are defined to be
continuous queries, i.e. queries that are executed continuously
to maintain their results up-to-date. They are called Service-
oriented Continuous Queries, or SoCQ queries. However, some
queries may be one-shot queries, i.e. queries executed once
that produce their results and do not maintain them, like
standard SQL queries in DBMS.

1) Serena algebra: SoCQ queries are based on the Serena
algebra (Service-enabled relational algebra) that defines query
operators over XD-Relations. Standard relational operators
(projection, selection, renaming, natural join) are redefined
over finite XD-Relations, and new operators are defined. Real-
ization operators (assignment αA:=B , invocation β〈p,S〉) han-
dles the transformation of virtual attributes either by providing
them a value (a constant or the value of another attribute) or
by invoking a binding pattern. Window operators W[size] and
streaming operators S[event] handles infinite XD-Relations:
window operators transform an infinite XD-Relations into a
finite XD-Relations (e.g. a relation that contains the tuples
inserted during the last 5 minutes into the stream operand),
and streaming operators transform finite XD-Relations into
infinite XD-Relations (e.g. a stream of the tuples inserted into
the relation operand).

For the “Temperature Surveillance” scenario, the behavior
send the message “Hot!” to all contacts except Carla when a
temperature exceeds 35.5°C can be expressed by the following
Serena expression using the finite XD-Relation contacts
and the infinite XD-Relation temperatures:

β〈sendMessage,messenger〉(αtext:=”Hot!”(
σname 6=”carla”(contacts) ./
σtemperature>35.5(W[1](temperatures))

))

2) Query equivalence: Without formal semantics, it is
hard to prove correctness of query formulations and query
optimization is de facto limited, operators being often seen as
“black boxes”. Logical query optimization is possible in our
setting as we can define query equivalence for SoCQ queries.
Three issues need to be addressed in the context of perva-
sive environments: time-dependence, service determinism and
impact of service invocations on the physical environment.

As a pervasive system is a dynamic system, the same service
invoked with the same input, but at two different instants in
time may lead to two different results (e.g. a service that
takes a photo). As a consequence, the same query q over the
same relational pervasive environment may lead to different

results if q is evaluated at different instants. In order to define
query equivalence, we consider a discrete time domain and we
assume that query evaluation occurs at a given time instant.
As a consequence, all service invocations in a query occur
simultaneously, from a theoretical point of view. We also
consider that services are deterministic at a given instant, so
that the invocation order has no impact on invocation results.
For example, a service that returns the number of times it
has been invoked should still return the same value for all
invocations at a given instant.

In order to reflect the impact of a query on the environment,
we define the notion of action set induced by a query against
a relational pervasive environment as the set of invocations of
active binding patterns triggered by this query, i.e. invocations
of active prototypes. Invocations of passive prototypes are
not taken into account. For instance, considering the previous
Serena expression, we want to capture the set of messages
sent by the execution of this continuous query for each time
instant. An action is described by an active prototype, a service
reference and an input data tuple for the prototype. For the
previous Serena expression, the action set at instant τ1 could
be:

Actions(τ1) = {
〈sendMessage, email, 〈nicolas@elysee.fr, ”Hot!”〉〉,
〈sendMessage, jabber, 〈francois@im.gouv.fr, ”Hot!”〉〉}.

Using this model, the evaluation of a query over a relational
pervasive environment is unambiguously defined. Two queries
over a given relational pervasive environment are equivalent
if and only if their evaluations at the same discrete time
instant lead to the same result, i.e. the same content in the
resulting XD-Relation, and the same action sets, i.e. the same
set of invocations of active binding patterns, although they
may imply different invocations of passive binding patterns.

Based on this query equivalence, rewriting rules can be
applied to queries expressed in the Serena algebra. Some
well-known rewriting rules of the relational algebra are still
pertinent and allow to reorganize the order of operators in
queries. Concerning realization operators, they can also be
reorganized, except for invocation operators associated with
active binding patterns. Invocations of binding patterns can be
reorganized only for passive binding patterns.

For example, consider the selection operator σname 6=”carla”
in the previous Serena expression: if it is moved after the
natural join, the query result and the action set are still equal,
thus forming an equivalent query; if it is moved after the
invocation operator β〈sendMessage,messenger〉, then additional
invocations of the active binding pattern sendMessage may
occur, resulting in a different action set, thus a non-equivalent
query. In the latter case, the action set could be:

Actions(τ1) = {
〈sendMessage, email, 〈nicolas@elysee.fr, ”Hot!”〉〉,
〈sendMessage, email, 〈carla@elysee.fr, ”Hot!”〉〉,
〈sendMessage, jabber, 〈francois@im.gouv.fr, ”Hot!”〉〉}.

3) Query optimization: With rewriting rules based on the
query equivalence, cost models dedicated to pervasive envi-
ronment can now be defined. One standard optimization goal
is to reduce the size of intermediary relations in queries.

Standard optimization rules, e.g. pushing selections down, can
be applied. Moreover, assignment operators and invocation
operators can be pushed up in the query tree so that the
attributes they realize remain virtual until the latest possible
level.

However, invocation operators lead to a new optimization
variable: the number of invocations. It depends on the car-
dinality of their input relation. As invocations imply costly
I/O accesses (remote invocations of services), this goal should
have a higher priority than reducing the size of intermediary
relations. Nevertheless, invocation operators for active binding
patterns limit this possibility of optimization.

4) SQL-like language: A SQL-like query language, based
on the Serena algebra, has been defined to declaratively
express SoCQ query. For example, for the “Temperature
Surveillance” scenario, the following query involves several
operators: windows (the notation [now] denotes a window
of size 1 applied on the stream temperatures), selections,
joins, realizations, streaming. This query produces a stream
of alerts (when a threshold is exceeded) while invoking the
sendMessage prototype when needed (to send messages to
area managers).

SELECT surveillance.area, surveillance.manager, contacts.sent
STREAMING UPON insertion
FROM temperatures[now], contacts, surveillance
WITH contacts.text := surveillance.alertMessage
WHERE surveillance.manager = contacts.name
AND surveillance.area = temperatures.area
AND surveillance.threshold < temperatures.temperature

USING contacts.sendMessage

SoCQ queries can also be service discovery queries: they
are dedicated queries that update an XD-Relation so that it
represents the set of all available services implementing some
given prototypes (and having some properties, e.g. the property
area for sensors). Those XD-Relations then contain one
corresponding tuple for each matching services. For example,
the XD-Relations cameras and sensors are continuously
updated by the following service discovery queries:

// XD-Relation "cameras"
DISCOVER SERVICES PROVIDING
METHOD takePhoto () : (photo BLOB) ;

// XD-Relation "sensors"
DISCOVER SERVICES PROVIDING
PROPERTY area STRING,
METHOD getTemperature () : (temperature REAL) ;

IV. IMPLEMENTATION

In this section, we tackle our third and last identified major
challenge: designing a Pervasive Environment Management
System that handles a relational pervasive environment and
enables SoCQ queries.

In order to validate our approach and conduct some ex-
periments, we have designed and developed a prototype of a
Pervasive Environment Management System (PEMS). The role
of a PEMS is to manage a relational pervasive environment,
with its dynamic data sources and set of services, and to
execute continuous queries over this environment. We also
have defined a Data Description Language for XD-Relations
(the Serena DDL) along with a SQL-like query language for
continuous queries over XD-Relations (the Serena SQL), in
order to interact with the PEMS without worrying about low-

level technical considerations like programming languages or
network protocols.

A. Design
The PEMS architecture is composed of three core modules

(Environment Resource Manager, Extended Table Manager,
Query Processor) and several distributed modules (Local Envi-
ronment Resource Managers): the deployment of the different
modules and their interactions are illustrated in Figure 1.

Network

Service Service Service

Query Processor

Extended Table
Manager

Environment
Resource Manager

PEMS GUI

DatabaseStream Stream

Local Environment
Resource Manager

Local Environment
Resource Manager

Service

PEMS Peer

PEMS CorePEMS Client

PEMS Peer

Fig. 1. Overview of the PEMS Architecture

The core Environment Resource Manager handles network
issues for service discovery and remote invocation, as well
as input of data from remote sources (data relations, data
streams). It discovers and communicates with Local Environ-
ment Resource Managers that are distributed in the network.
Services simply register to their Local Environment Resource
Manager, and are then transparently available through the core
Environment Resource Manager.

The Extended Table Manager allows to define XD-Relations
from Serena DDL statements, and to manage their data (in-
sertion and deletion of tuples).

The Query Processor allows to register queries using the
Serena SQL and to execute them in a real-time fashion. It
implements all relational operators and realization operators,
as well as the Window and Streaming operators for continuous
queries. Service invocations are handled asynchronously by the
invocation operator, relying on the core Environment Resource
Manager for actual invocations. The Query Processor also
handles service discovery queries: it continuously updates
some specific XD-Relations so that they represent the set
of services (implementing some given prototypes) that are
available through the core Environment Resource Manager,
like for the XD-Relations cameras and sensors from the
“Temperature Surveillance” scenario.

B. Prototype
A prototype of the whole architecture has been developed

in Java using the OSGi framework [14], including UPnP
technologies [3] for network issues. The three core modules
and the distributed modules are packaged as OSGi bundles.

A GUI (illustrated in Figure 1) has also been developed in
Java as an Eclipse RCP Plugin, in order to control the PEMS
(through the JMX network protocol): it allows to visualize
XD-Relations and their content, and to launch queries.

C. Experimentation

In order to experiment the “Temperature Surveillance”
scenario, we have developed an experimental environment
composed of several services: physical or simulated tempera-
ture sensors (Thermochron iButton DS1921), webcams (from
Logitech), instant messaging server (Openfire server from Jive
Software), (gateway to) SMS gateway (commercial service
from Clickatell), (gateway to) mail server. Those distributed
functionalities were wrapped as services and registered to their
Local Environment Resource Manager.

An instant messaging client (Psi) and a mail client (Mozilla
Thunderbird) are also used to receive messages, along with a
smart phone for SMS. Through the PEMS GUI, XD-Relations
have been created on the Extended Table Manager using the
Serena DDL, and continuous queries have been registered to
the Query Processor using the Serena SQL.

For the temperature surveillance scenario, four XD-
Relations have been created: three finite XD-Relations,
surveillance (indicating who is the “manager” of which
area), contacts (with an additional attribute allowing to
send a picture with a message) and cameras; and one
infinite XD-Relation temperatures. The binding pattern
sendMessage of contacts is active, whereas the binding
pattern takePhoto of cameras is passive. The continuous
query combining these four XD-Relations has been executed:
when temperature sensors (physical or simulated) are heated
over the threshold specified in surveillance, alert mes-
sages start to be sent to the “manager” of the associated area,
by mail, instant message or SMS. Using an additional service
discovery query, new temperature sensors have been dynam-
ically discovered and integrated in the temperature stream
without the need to stop the continuous query execution.

We have also experimented another scenario with RSS
feeds. A wrapper service transforms RSS feeds into real
streams so that a tuple is inserted in the stream when a new
item appears in the RSS feed (that is periodically checked).
We have tested continuous queries providing the last RSS
items containing a given word (e.g. “Obama”), with a one-hour
window, from several national and international information
websites (french newspapers “Le Monde” and “Le Figaro”,
and also from “CNN Europe”). The resulting table has been
continuously updated, when news of interest appeared and
when one-hour-old news expired. Combining this table with
the previous finite XD-Relation contacts, those news of
interest can be sent as messages to a contact.

Those two scenarios (temperature surveillance, RSS feeds)
have been successfully tested, showing the feasibility of our
approach, as well as its adaptation to different kind of data
sources and services. Further experiments need to be con-
ducted to assess the scalability and the robustness of our
proposal. Note that in the context of pervasive environment,
this is not a trivial issue since, to the best of our knowledge,
no benchmark can be used for that purpose.

V. CONCLUSION

Pervasive systems intend to take advantage of the evolving
user environment so as to provide applications adapted to
the environment resources. As far as we know, bridging the
gap between data management and pervasive applications has
not been fully addressed yet. A clear understanding of the
interplays between relational data, data streams and services is
still lacking and is the major bottleneck toward the declarative
definition of pervasive applications.

We have presented an extension of the relational model that
provides a homogeneous view on all available conventional
and non-conventional data sources, i.e. databases, data streams
and services. The integration of services into relations allows
to use a different service for each tuple (e.g. a different
messaging service for each contact in a contact list) through
the key notions of prototype, service reference, virtual attribute
and binding pattern. The SoCQ data model includes a formal
model of such extended relations, along with the Service-
enabled algebra (Serena algebra) on top of it. The issue of
side effect of service invocations has also been considered to
define query equivalence and optimization rules. A prototype
of a Pervasive Environment Management System has been
devised, demonstrating the feasibility of our approach.

Future works in this project concern the query optimization
process, including a formal definition of a cost metric specific
to pervasive environments. We are also investigating a new no-
tion of streaming binding pattern to homogeneously integrate
in our model streams provided by services.

We also aim at developing a benchmark for pervasive
environments to evaluate the performance of “hybrid queries”
involving data and services with objective indicators. This
benchmark is part of a French National Research Agency
(ANR) project called OPTIMACS, started in December 2008.

REFERENCES

[1] D. Estrin et al., “Connecting the Physical World with Pervasive Net-
works,” IEEE Pervasive Computing, vol. 1, no. 1, pp. 59–69, 2002.

[2] F. Zhu, M. Mutka, and L. Ni, “Service Discovery in Pervasive Comput-
ing Environments,” IEEE Pervasive Computing, vol. 4, no. 4, pp. 81–90,
2005.

[3] UPnP Forum, http://www.upnp.org/.
[4] J. Widom et al., “STREAM: The Stanford Stream Data Manager,” IEEE

Data Engineering Bulletin, vol. 26, no. 1, pp. 19–26, 2003.
[5] M. Franklin, A. Halevy, and D. Maier, “From Databases to Dataspaces:

a new Abstraction for Information Management,” SIGMOD Record,
vol. 34, no. 4, pp. 27–33, 2005.

[6] T. Imielinski and B. Nath, “Wireless graffiti: data, data everywhere,” in
Proceedings of VLDB’02, 2002, pp. 9–19.

[7] M. Weiser, “The Computer for the 21st Century,” Scientific American,
vol. 265, no. 3, pp. 94–104, September 1991.

[8] D. Garlan et al., “Project Aura: Toward Distraction-Free Pervasive
Computing,” IEEE Pervasive Computing, vol. 1, no. 2, pp. 22–31, 2002.

[9] R. Grimm et al., “System Support for Pervasive Applications,” ACM
Transactions on Computer Systems, vol. 22, no. 4, pp. 421–486, Novem-
ber 2004.

[10] S. Chandrasekaran et al., “TelegraphCQ: Continuous Dataflow Process-
ing for an Uncertain World,” in Proceedings of CIDR’03, 2003.

[11] Y. Yao and J. Gehrke, “Query Processing in Sensor Networks,” in
Proceedings of CIDR’03, 2003.

[12] W. Xue and Q. Luo, “Action-Oriented Query Processing for Pervasive
Computing,” in Proceedings of CIDR’05, 2005.

[13] S. R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and J. Widom,
“Declarative support for sensor data cleaning.” in Pervasive, 2006, pp.
83–100.

[14] OSGi Alliance, http://www.osgi.org/.

