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ii



To Anne . . .

who relentlessly helped me

iii



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Light Transport Problem . . . . . . . . . . . . . . . . . . . . 1

1.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 A Formalism for the Light Transport Problem . . . . . . . 3

1.2.2 New Rendering Techniques using GPUs or CPUs . . . . . 3

1.2.3 New Numerical Schemes to Compute Virtual Point Light
Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Monte-Carlo Integration . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Some Probability Theory . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Discrete Probability Theory . . . . . . . . . . . . . . . . . 7

2.2.2 General Probability Theory . . . . . . . . . . . . . . . . . 7

2.2.3 Convergence of Random Variable Families . . . . . . . . . 12

2.2.4 Laws of Large Numbers . . . . . . . . . . . . . . . . . . . 14

2.2.5 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . 15

2.3 Monte-Carlo Integration . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Advantages and Drawbacks of Monte-Carlo Integration . . 16

2.3.2 Sampling Random Variables . . . . . . . . . . . . . . . . . 17

2.3.3 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4 Variance Reduction . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Physics of Light Transport . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Geometric Quantities . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Surfaces of the Scene . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Directions and Solid Angles . . . . . . . . . . . . . . . . . 28

3.3 Radiometric Quantities . . . . . . . . . . . . . . . . . . . . . . . . 30

iv



3.3.1 Power or Flux . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.4 Spectral Radiance . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 BSDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 BRDF and BTDF . . . . . . . . . . . . . . . . . . . . . . 32

3.4.3 Light Sources . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Light Transport Equations . . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 The Rendering Equation . . . . . . . . . . . . . . . . . . . 34

3.5.2 The Measurement Equation . . . . . . . . . . . . . . . . . 35

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Monte-Carlo Rendering . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 An Appropriate Formalism for Monte-Carlo Rendering . . . . . . 37

4.1.1 The Path Integral Formulation . . . . . . . . . . . . . . . 37

4.1.2 Sampling the Path Space . . . . . . . . . . . . . . . . . . . 40

4.1.3 A ”Path Integral Formulated” (but Inefficient) Path Tracer 43

4.1.4 A ”Path Integral Formulated” (but inefficient) Bidirec-
tional Path Tracer . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Monte-Carlo Rendering by Explicitly Handling Path Lengths . . . 46

4.2.1 Subdividing the Path Space with Path Lengths . . . . . . 46

4.2.2 Standard Path Tracing . . . . . . . . . . . . . . . . . . . . 47

4.2.3 Bidirectional Path Tracing . . . . . . . . . . . . . . . . . . 48

4.2.4 Light Tracing . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.5 Metropolis Light Transport . . . . . . . . . . . . . . . . . 51

4.3 Designing Efficient Monte-Carlo Renderers . . . . . . . . . . . . . 51

4.3.1 Photon Mapping . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.2 Environment Mapping . . . . . . . . . . . . . . . . . . . . 52

4.3.3 Irradiance and Radiance Caching . . . . . . . . . . . . . . 52

4.4 Instant Radiosity . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.2 The Overmodulation Problem . . . . . . . . . . . . . . . . 54

v



4.4.3 Variance Reduction Techniques . . . . . . . . . . . . . . . 54

4.4.4 Rendering Systems Using Instant Radiosity . . . . . . . . 55

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Non-Interleaved Deferred Shading of Interleaved Sample Pat-
terns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Overview of Related Techniques . . . . . . . . . . . . . . . . . . . 58

5.1.1 Deferred Shading . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.2 Interleaved Sampling . . . . . . . . . . . . . . . . . . . . . 59

5.2 GPU-friendly Interleaved Sampling . . . . . . . . . . . . . . . . . 60

5.2.1 Naive Approaches . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.2 One-Pass G-Buffer Splitting . . . . . . . . . . . . . . . . . 61

5.2.3 Two-Pass G-Buffer Splitting . . . . . . . . . . . . . . . . . 61

5.2.4 Buffer Gathering . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Non-Interleaved Deferred Shading of Interleaved Sample Patterns 63

5.3.1 G-Buffer Creation (BC) . . . . . . . . . . . . . . . . . . . 63

5.3.2 G-buffer Splitting (BS) . . . . . . . . . . . . . . . . . . . . 65

5.3.3 Shading Computations (SSM / SNSM) . . . . . . . . . . . 65

5.3.4 Buffer Gathering (BG) . . . . . . . . . . . . . . . . . . . . 65

5.3.5 Filtering (F) . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.6 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.1 Buffer Splitting Results . . . . . . . . . . . . . . . . . . . . 67

5.4.2 Shading Results . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.3 Buffer Gathering Results . . . . . . . . . . . . . . . . . . . 68

5.4.4 Discontinuity Buffering and Filtering Results . . . . . . . . 68

5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5.1 Implementation Details . . . . . . . . . . . . . . . . . . . . 70

5.5.2 Fully Interactive Applications . . . . . . . . . . . . . . . . 70

5.5.3 Physically Based Rendering . . . . . . . . . . . . . . . . . 71

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vi



6 Interleaved Deferred Shading . . . . . . . . . . . . . . . . . . . . . 77

6.1 The Interleaved Deferred Shading Technique . . . . . . . . . . . . 77

6.2 Application to Soft Shadows . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Principle of the Technique . . . . . . . . . . . . . . . . . . 79

6.2.2 Percentage Closer Soft Shadows with Interleaved Deferred
Shading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . 82

6.3 Application to Global Illumination . . . . . . . . . . . . . . . . . 83

6.3.1 Principle of the Technique . . . . . . . . . . . . . . . . . . 84

6.3.2 Instant Radiosity and Interleaved Deferred Shading . . . . 84

6.3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . 84

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Bidirectional Instant Radiosity . . . . . . . . . . . . . . . . . . . . 86

7.1 Overview of the Approach . . . . . . . . . . . . . . . . . . . . . . 86

7.2 Bidirectional Sampling of the VPLs . . . . . . . . . . . . . . . . . 88

7.2.1 Reverse Instant Radiosity . . . . . . . . . . . . . . . . . . 88

7.2.2 Bidirectional Instant Radiosity . . . . . . . . . . . . . . . 90

7.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3.1 Handling Many Light Sources . . . . . . . . . . . . . . . . 93

7.3.2 VPL Sampling . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3.3 GPU Final Integration . . . . . . . . . . . . . . . . . . . . 94

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.4.1 Reverse and Standard IR . . . . . . . . . . . . . . . . . . . 95

7.4.2 Sampling / Resampling Performance . . . . . . . . . . . . 96

7.4.3 GPU and Overall Performance . . . . . . . . . . . . . . . . 96

7.4.4 Comparison with Importance-Driven Techniques . . . . . . 97

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8 Metropolis Instant Radiosity . . . . . . . . . . . . . . . . . . . . . 103

8.1 Overview of our Contribution . . . . . . . . . . . . . . . . . . . . 104

8.2 Metropolis Sampling for Light Transport . . . . . . . . . . . . . . 105

8.2.1 Metropolis-Hastings (MH) Algorithm . . . . . . . . . . . 105

vii



8.2.2 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.2.3 Application to Light Transport . . . . . . . . . . . . . . . 106

8.2.4 Using the Path Integral Formulation for Instant Radiosity 106

8.3 Metropolis Instant Radiosity . . . . . . . . . . . . . . . . . . . . . 107

8.3.1 Compute the Power Pc Received by the Camera . . . . . . 108

8.3.2 Generating the VPLs with a Metropolis Sampler . . . . . . 108

8.3.3 Clustering the Physical VPLs . . . . . . . . . . . . . . . . 109

8.3.4 Accumulating the VPL Contributions . . . . . . . . . . . . 110

8.3.5 MIR with Common Renderers . . . . . . . . . . . . . . . . 110

8.3.6 Handling Overmodulations due to the 1/r2 Term . . . . . 110

8.4 A VPL Multiple-try Metropolis-Hastings (MTMH) Sampler . . . 111

8.4.1 The MTMH Algorithm . . . . . . . . . . . . . . . . . . . . 111

8.4.2 Application to VPL Sampling . . . . . . . . . . . . . . . . 112

8.5 Implementation and Results . . . . . . . . . . . . . . . . . . . . . 112

8.5.1 The VPL Sampling Pass . . . . . . . . . . . . . . . . . . . 113

8.5.2 Rendering with Coherent Ray Tracing . . . . . . . . . . . 113

8.5.3 MTMH vs MH . . . . . . . . . . . . . . . . . . . . . . . . 113

8.5.4 Results with Easy Configurations . . . . . . . . . . . . . . 114

8.5.5 Results with Difficult Visibility Configurations . . . . . . . 116

8.5.6 Overall Results . . . . . . . . . . . . . . . . . . . . . . . . 117

8.6 Limitations, Discussions and Conclusion . . . . . . . . . . . . . . 118

9 Coherent Metropolis Light Transport with Multiple-Try Muta-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.1 Overview of the Algorithm . . . . . . . . . . . . . . . . . . . . . . 122

9.2 Coherent Metropolis Light Transport . . . . . . . . . . . . . . . . 125

9.2.1 MTMH Algorithm . . . . . . . . . . . . . . . . . . . . . . 125

9.2.2 Application to Metropolis Light Transport . . . . . . . . . 126

9.2.3 Summary of the Approach . . . . . . . . . . . . . . . . . . 129

9.2.4 Conceptual Differences with Metropolis Instant Radiosity . 129

9.3 Implementing Coherent Metropolis Light Transport . . . . . . . . 130

9.3.1 Designing an Effective Lens Sub-space Exploration . . . . 130

9.3.2 Making the Computations Coherent . . . . . . . . . . . . . 131

viii



9.3.3 Summary and Remarks . . . . . . . . . . . . . . . . . . . . 133

9.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.4.1 Comparison with Metropolis Light Transport . . . . . . . 134

9.4.2 Overall Performance . . . . . . . . . . . . . . . . . . . . . 135

9.4.3 Cache Simulation . . . . . . . . . . . . . . . . . . . . . . . 135

9.5 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . 137

9.5.1 Flickering Problems . . . . . . . . . . . . . . . . . . . . . . 137

9.5.2 Other Sampling Strategies . . . . . . . . . . . . . . . . . . 137

9.5.3 Implementing a Distributed Framework . . . . . . . . . . . 138

9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10 Final Summary, Conclusions and Future Work . . . . . . . . . . 141

10.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . 141

10.1.1 Another Presentation of Monte-Carlo Rendering . . . . . . 141

10.1.2 Interleaved Sampling on GPUs . . . . . . . . . . . . . . . 142

10.1.3 Variance Reduction Methods for VPL Rendering Techniques142

10.1.4 Coherent Metropolis Light Transport . . . . . . . . . . . . 142

10.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

ix



List of Figures

3.1 Surface S, Directions ω, Solid Angles σ(Λ) and Projected Solid
Angles σ⊥(Λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Geometry and Notations to generate x′ from x . . . . . . . . . . . 41

4.2 Instant Radiosity . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 The Indirect Lighting Impact . . . . . . . . . . . . . . . . . . . . 58

5.2 Regular and Interleaved Samplings . . . . . . . . . . . . . . . . . 59

5.3 Two-Pass G-Buffer Splitting . . . . . . . . . . . . . . . . . . . . . 62

5.4 Non-Interleaved Deferred Shading of Interleaved Sample Patterns 64

5.5 Box Blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Buffer Splitting Results . . . . . . . . . . . . . . . . . . . . . . . . 68

5.7 Rendering Quality . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.8 Results with Normal Maps . . . . . . . . . . . . . . . . . . . . . . 74

5.9 Fully Interactive Applications . . . . . . . . . . . . . . . . . . . . 75

5.10 Physically Based Results . . . . . . . . . . . . . . . . . . . . . . . 76

6.1 Two Different Applications using Interleaved Deferred Shading . . 78

6.2 Interleaved Deferred Shading . . . . . . . . . . . . . . . . . . . . . 80

6.3 Blocker Search Step . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Quality Differences between the Brute Force and the Interleaved
Deferred Shading Approaches . . . . . . . . . . . . . . . . . . . . 84

7.1 Standard and Reverse Instant Radiosity . . . . . . . . . . . . . . 91

7.2 Comparison of Standard Instant Radiosity and Reverse Instant
Radiosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3 Handling the Bias Problem with Sampling / Resampling . . . . . 99

7.4 The ”U” Office . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.5 Bidirectional Instant Radiosity with the ”U” Office . . . . . . . . 101

7.6 Sampling Performance . . . . . . . . . . . . . . . . . . . . . . . . 101

7.7 Overall Performance with a GPU Deferred Shading Engine . . . . 102

8.1 Path and Geometric VPLs . . . . . . . . . . . . . . . . . . . . . . 107

x



8.2 Direct and Indirect Modes . . . . . . . . . . . . . . . . . . . . . . 114

8.3 Exploration of Left and Right Contributions . . . . . . . . . . . . 115

8.4 Tests with Shirley’s Scene 10 . . . . . . . . . . . . . . . . . . . . . 116

8.5 Indirect Illumination Stress Tests . . . . . . . . . . . . . . . . . . 119

8.6 Some Images Rendered with Metropolis Instant Radiosity . . . . . 120

9.1 Multiple-Try Mutations with Metropolis Light Transport . . . . . 122

9.2 Coherent Metropolis Light Transport . . . . . . . . . . . . . . . . 124

9.3 Our Technique to Ensure Ray Coherency . . . . . . . . . . . . . . 132

9.4 Different Values of σ . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.5 The Four Scenes to Test the Coherency of our Algorithm . . . . . 139

9.6 Three 1024× 1024 pictures rendered in 10 minutes with Coherent
Metropolis Light Transport . . . . . . . . . . . . . . . . . . . . . 140

xi



List of Tables

3.1 Radiometric Quantities Commonly used in Computer Graphics . . 31

5.1 Time to Accumulate 16 Point Light Contributions . . . . . . . . . 61

5.2 Filtering Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Overview of the Performance . . . . . . . . . . . . . . . . . . . . . 70

5.4 Performance with or without Interleaved Sampling on a 7800 GT 71

5.5 Times to Obtain less than 1% RMS Error with a NVidia GeForce
6800 GT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1 Soft Shadows with several Techniques on a NVIDIA 7800 GT . . 83

6.2 Global Illumination Effects with different Techniques on a NVIDIA
7800 GT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.1 Percentage of Resampled VPLs . . . . . . . . . . . . . . . . . . . 96

7.2 Performance of our Implementation . . . . . . . . . . . . . . . . . 97

8.1 Rejection Rate with MTMH . . . . . . . . . . . . . . . . . . . . . 115

8.2 Computation Times on a Core Duo T2600. . . . . . . . . . . . . . 117

9.1 Some Cache Hit Statistics . . . . . . . . . . . . . . . . . . . . . . 136

xii



Acknowledgments

I would like to thank all the people who have helped me in one way or another
during the three years of my Ph.D. thesis. First, I would like to express my
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Abstract of the Dissertation

Interactive Light Transport with Virtual Point
Lights

by

Benjamin Segovia
Doctor of Philosophy in Computer Science

Université Lyon I, 2007

Since about twenty years, the field of computer graphics has been striving towards

increased realism. The goal is to achieve photorealistic outputs, which actually

involves to precisely describe lighting phenomena, their intrinsic models and the

light transport equations and to finally propose numerical schemes to solve them.

In the field of off-line rendering, efficient and aggressive numerical methods have

already been explored and set up. Therefore, even if there is still room for

improvement, the most challenging and appealing problems are today related to

real-time rendering which consists in ensuring to display at least 20 frames per

second with some interactivity offered to the user.

In this Ph.D. thesis, I therefore focus on the real-time or, if not possible,

interactive simulation of light transport phenomena. During the three years while

I tried to propose new ideas, I thus mainly aimed at efficiently using current

existing hardware systems, GPUs or CPUs and designing new numerical schemes

which may be easily implemented in such systems. It is finally the most common

role of numericians: making a subtle mixture of mathematical and algorithmic

methods and efficiently combining them.
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CHAPTER 1

Introduction

The goal of this Ph.D. thesis is to propose fast numerical algorithms to solve
the light transport problem with a set of virtual point lights. Our motivation is
to replace the whole incoming radiance field which is generally a quite complex
function by a simpler set of virtual point lights which illuminates the parts of
the scene seen by the camera. Once the set has been sampled, computing the
final picture becomes much easier since all lighting contributions, those due to
physical light sources or those due to light ray bounces on the surfaces of the
scene, can be obtained by checking if one point seen by the camera can see the
virtual point light.

The majority of this thesis actually focuses on two points. The first point
studies how the final image can be computed once the set of virtual point lights
is given. Two implementations are presented: the first one uses different rasteri-
zation techniques and GPUs while the second one proposes to use ray tracing and
CPUs. The second point proposes different manners to compute an effective set
of virtual point lights. Indeed, the properties of each point light (their positions,
their ”virtual” radiance outgoing functions and so on ...) are major issues. For
example, imagine that only a small part of a building is seen by the camera; if
virtual point lights are stored on surfaces of the scene which do not illuminate
the parts of the scene seen by the camera, all the computations which will be
done with those point lights will be useless. To achieve this goal, we will focus on
Monte-Carlo techniques i.e. on probabilistic numerical schemes which randomly
deposit virtual point lights on the surfaces of the scene with interesting densities.

The remainder of the chapter presents the light transport problem in an in-
formal manner and explains why light transport is an interesting challenge with
useful applications for movie productions, video games or lighting design. We
will finally sum up our contributions (already published or not).

1.1 The Light Transport Problem

Computing synthesized pictures in a fast manner is today an important challenge.
Even if major progresses have been done during the last two decades, ensuring
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high-quality and fast rendering of virtual scenes still remains an open problem.

Movie Rendering. Rendering computer-synthesized special effects or complete
scenes during movie production is strongly limited by the computation time avail-
able for each frame. This makes the developers and the artists implement more
restrictive algorithms (which, for example, do not handle correctly all lighting
phenomena like non-diffuse reflections or indirect lighting configurations) or to
correct the weakness of the numerical schemes by adding artificial light sources.
Providing new rendering techniques to improve movie rendering quality, decrease
production time or more surely, decrease production costs is therefore a major
challenge.

Lighting Design. Lighting design which concerns either the illumination of
architecture of spaces such as gardens or public squares (Architectural Lighting
Design), the overall aspect within a theater, or more generally the conception
of lights (Industrial Design) requires both exact solutions and totally predictive
behaviors of the numerical algorithms. Indeed, the lighting configurations are
often particularly awkward. We can give two classical examples. The first one
is SERRAGLAZE, a complex light redirection system which consists in two thin
sheets of acrylic incorporating microreplicated prisms bonded together to create
microscopic air pockets. This particular configuration tends to increase daylight
at the rear of the room and to provide more uniform lighting. The second exam-
ple is the classical headlight used in all cars. The light ray must often bounce
more than ten times before going out of the headlight thereby creating complex
caustics difficult to simulate. These two examples illustrate the necessity to make
robust numerical algorithms. Speed seems less important but once again, this
can lead to smaller rendering times and therefore large cost reductions.

Video Games. Contrary to lighting design, video games require a high frame
rate and the rendering quality is therefore completely bounded by the hardware
performance. Making more realistic games by improving light transport numer-
ical schemes and adapting them to the current existing hardware is therefore a
major challenge.

These problems therefore strongly motivate our work and the Ph.D. thesis
presented here.

1.2 Summary of Contributions

Our contributions fall into three areas: a revisited formalism for the light trans-
port problem to classify most of Monte-Carlo rendering techniques, new imple-
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mentations of rendering algorithms using existing hardware and new statistical
numerical schemes.

1.2.1 A Formalism for the Light Transport Problem

We will present in this section of the thesis how the light transport problem can
be formalized using the path integral formulation. Even if it is not really new,
we will expose how most Monte-Carlo algorithms can be sorted into two major
classes. We will show that this can lead to a simple understanding of all rendering
techniques which use Monte-Carlo numerical schemes.

1.2.2 New Rendering Techniques using GPUs or CPUs

In this section, we expose new rendering techniques which efficiently use either
GPUs or CPUs to perform the illumination of the scene due to a set of virtual
point lights.

Deferred Shading Techniques using Interleaved Sample Patterns. We
first show that uncorrelated light contributions or more generally uncorrelated
computations can be achieved with a GPU for nearby pixels. Two implementa-
tions are presented: The first one extends the deferred shading rendering tech-
nique in a general way such that every existing algorithm already using deferred
shading can be accelerated. The second one is more restrictive but faster and
can easily speed up common rendering techniques such as the generation of soft
shadows or the approximate rendering of indirect illumination effects.

Coherent Ray Tracing Techniques. We will also expose alternative rendering
techniques using ray tracing and CPUs. Even if most of the presented approaches
are not new, we show that performing illumination with virtual point lights and
ray tracing is more efficient that performing it with rasterization techniques on
GPUs.

1.2.3 New Numerical Schemes to Compute Virtual Point Light Sets

We present two new numerical schemes to compute an efficient set of virtual point
lights.

Bidirectional Instant Radiosity. We first present a bidirectional way to gen-
erate virtual point lights. A first part of the set is generated from the camera
while the second one is generated from the light sources. We show that this
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method provides efficient sample sets which can handle either direct or indirect
lighting configurations.

Metropolis Instant Radiosity. We then expose a new way to generate virtual
point lights by considering the virtual point light sampler as a Markovian pro-
cess with a useful invariant distribution: each virtual point light brings the same
amount of energy to the camera. This technique provides satisfactory results
with many different input layouts.

Coherent Metropolis Light Transport with Multiple-Try Mutations.
We finally present an alternative technique to solve the light transport problem
in a fast way. Indeed, even if virtualizing the radiance field with a point light set
remains very efficient, our experiments make us think that it often brings only a
partial solution. This motivates a completely different approach which does not
use virtual point lights but a set of complete light paths which can be perturbed
in a coherent and fast manner.

1.3 Thesis Organization

The first chapter presented here, motivates the other parts of this thesis, explains
why the light transport problem remains a challenging problem and summarizes
our contributions. Chapter 2 presents the mathematical roots of all numerical
methods presented in the remainder of the thesis: probability theory and Monte-
Carlo methods. Chapter 3 exposes the physics of light transport. In Chapter 4,
we show how Monte-Carlo techniques can be applied to solve the light transport
problem. Next chapters focus on our contributions which are mostly already
published. Chapters 5 and 6 present two GPU techniques to perform uncorre-
lated computations on nearby pixels. Chapters 7 and 8 explore new sampling
strategies for the generation of virtual point light sources. In Chapter 8, we
present an alternative technique: instead of tackling variance problems with vir-
tual point lights, we conversely try to make the successful algorithm, Metropolis
Light Transport, more coherent and faster. Chapter 10 concludes and exposes
some possible future work.
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CHAPTER 2

Monte-Carlo Integration

Since all the numerical schemes presented in this thesis rely on Monte-Carlo
methods, we present in this chapter some basic notions of probability theory and
a short overview of Monte-Carlo integration methods that are commonly used in
computational statistics and in Monte-Carlo rendering.

2.1 Introduction

Monte Carlo methods are a large class of computational algorithms: they are
actually statistical simulation methods which use sequences of random numbers
that, conversely to many other simulation approaches, make the simulation non-
deterministic. Today, Monte-Carlo methods are certainly ones of the most pop-
ular computational techniques. Indeed:

• Because of the repetition of algorithms and the large number of calculations
involved, Monte Carlo is suited to computer calculation;

• Conversely to deterministic numerical methods such as quadrature rules,
Monte-Carlo methods remain robust as the dimension of the problem in-
creases;

• Monte-Carlo methods do not require that the estimated quantities are
smooth. Only a measurability criterion is most of the time necessary.

For these reasons, Monte Carlo methods are today successfully used in many
different fields such as radiation transport, the simulation of the sub-nuclear
processes, financial mathematics or light transport simulation.

The name ”Monte Carlo” was actually given by Nick Metropolis (inspired by
Ulam’s interest in poker) during the Manhattan Project of World War II, because
of the similarity of statistical simulation to games of chance, and since the capital
of Monaco was the world center for gambling and casino games.

Even if most of the modern ideas related to Monte-Carlo methods was thus
invented after World War II, there are several isolated instances on earlier oc-
casions. For instance, in 1777, the Comte de Buffon performed experiments in
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which he threw a needle onto a board ruled with parallel straight lines to estimate
the value of π from observations of the number of intersections between the needle
and lines. In 1899, Lord Rayleigh showed that a one-dimensional random walk
without absorbing barriers provides a solution to a parabolic differential equa-
tion. In 1931, Kolmogorov proved the relationship between Markov stochastic
processes and integro-differential equations and therefore invented stochastic cal-
culus. In early part of the twentieth century, British statistical schools indulged
in a fair amount of unsophisticated Monte Carlo work. Even if most of this work
seems to have been first didactic and actually not used for research, original dis-
coveries were done. In 1908, Student (W.S. Gosset) used experimental sampling
to help him towards the discovery of the distribution of the correlation coefficient.
In the same year, he also used sampling to guess his so-called t-distribution. It
is however just after the creation of the first electronic computer in 1946, that
Monte-Carlo methods have been becoming popular: to design thermo-nuclear
weapons, Los Alamos scientists and more particularly, Stanislaw Ulam, John Von
Neumann and Nick Metropolis, set up the roots of all Monte-Carlo techniques
which are used today.

Historically, Monte-Carlo methods have been first used to solve problems of a
non-deterministic nature which involve random processes. For the neutron trans-
port problem where the neutron behavior is random, the use of Monte-Carlo
simulations can provide the value of physical quantities such as average neutron
fluxes. It mainly consists of simulating the microscopic physical phenomena by
generating microscopic particles and simulating their random behavior: the simu-
lation therefore replicates the non-deterministic particle trajectory. By averaging
all simulated results, one can retrieve meaningful physical quantities. Similar
approaches have been used in many other scientific areas such as financial math-
ematics where stochastic calculus is actually used to obtain the fair values of
derivatives of the stock.

Conversely, Monte-Carlo methods can also be applied to problems of a de-
terministic nature as it is done with Monte-Carlo rendering, i.e. the application
of Monte-Carlo methods to the generation of virtual pictures. The approach of-
ten called, sophisticated Monte-Carlo, simply consists in using the Monte-Carlo
background to solve difficult problems that classical deterministic approaches
cannot handle. It is for instance particularly true for high-dimensional problems
or integration problems where the integrand is not sufficiently smooth.

One can finally find more insightful discussions in the books by Hammers-
ley and Handscomb [33], by Kalos and Whitlock [43], by Shreider [73] and by
Rubinstein [69]. The book by Spanier and Gelbard [76] is a classical reference
for Monte-Carlo methods and their applications to neutron transport problems
and it is also a great source of inspiration for the application of Monte-Carlo
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techniques to the light transport problem.

2.2 Some Probability Theory

In this section, we present the basic roots of probability theory, some notions of
discrete and continuous probabilities.

2.2.1 Discrete Probability Theory

Historically, probability theory was first studied within its simplest form, i.e. the
form only involving a finite set of possible states. First, let Ω = {x1, x2, . . .} be
a sample space. Then, for x ∈ Ω, we define a probability distribution f(x) such
that:

1. f(x) ∈ [0, 1] for all x ∈ Ω

2.
∑

x∈Ω f(x) = 1

An event is then defined as any subset Λ ∈ P(Ω) of Ω and the probability P (Λ)
of event Λ is given by:

P(Λ) =
∑

x∈Λ

f(x)

The probability of the entire sample space is therefore equal to 1 and the proba-
bility of the null event is equal to 0. More generally, discrete probabilities easily
handle problems like finding the number of occurrences of an even number when
a die is rolled, the configuration of a discrete random walk on Z2, specific experi-
ments with chance games like Poker or the very popular Texas Hold’em. For our
particular application, the simulation of light transport phenomena, the discrete
probability theory is insufficient since we have to deal with continuous energy
state spaces. This leads us to introduce the general probability theory.

2.2.2 General Probability Theory

General probability theory (which includes discrete and continuous probability
theories) deals with events that occur in a general sample space. It was mostly
introduced and formalized by Kolgomorov at the beginning of the twentieth cen-
tury. Even if it may seem useless to expose general probabilities, we think that
it is important to remind the underlying definitions and theorems required to
formalize a given problem as a ”Monte-Carlo problem” which can directly be
solved by the techniques presented further in this thesis. As we show it, it is fun-
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damental to define the considered sample space (which is not necessarily trivial
in the particular case of global illumination problem), its associated measure and
finally, the functions we specifically want to integrate.

2.2.2.1 Probability Space (Ω, F , P)

We first define a sample set Ω to which is associated a σ-algebra F ∈ P(Ω) such
that:

1. Ω ∈ F

2. if Λ ∈ F then Λc ∈ F

3. if (Λn)n∈N ∈ FN, then
⋃

n∈N
Λn ∈ F

We then define a probability measure P on (Ω,F) such that:

1. P(Ω) = 1

2. if (Λ0, Λ1) ∈ F2 and Λ0 ∩ Λ1 = ∅ then P(Λ0 ∪ Λ1) = P(Λ0) ∪ P(Λ1)

3. if (Λn)n∈N ∈ FN and Λn ⊂ Λn+1, then P(
⋃

Λn) = limn→∞ P(Λn)

If a σ-algebra is associated to a given space E (for example the Borel σ-algebra,
for the real numbers, Rn or an euclidean space), we define a random variable as
a measurable function X : Ω→ E.

If X is a real random variable (i.e. E = R), we say that X has a first-order
moment if and only if

∫

Ω
|X(ω)|dP(ω) <∞. In this case, we define the expectancy

(or the mean) of X by:

E[X] =

∫

Ω

X(ω)dP(ω)

Ω may be finally considered as the ”source” of the randomness of X. As this form
does not lead to a computational expression of a random variable, it is practical
to define the distribution, the probability density function and the cumulative
distribution function notions. Before presenting them in the next subsections, we
shortly remind some important theorems from the measure theory.

Monotonous Convergence Theorem. If (Xn)n∈N is a positive increasing ran-
dom variable sequence (i.e. ∀n ∈ N, 0 ≤ Xn ≤ Xn+1) and if X∞ = limn→∞ Xn,
then:

E[X∞] = lim
n→∞

E[Xn]
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Fatou Lemma. If (Xn)n∈N is a positive random variable sequence, then:

E[lim inf
n→∞

Xn] ≤ lim inf
n→∞

E[Xn]

Dominated Convergence Theorem. If (Xn)n∈N is a positive random variable
sequence which converges towards X∞ such that P (limn→∞ Xn = X∞) = 1, and
if it exists a random variable Y such that ∀n ∈ N, P (Xn ≤ Y ) = 1, then:

E[X∞] = lim
n→∞

E[Xn]

2.2.2.2 Probability Measure and Probability Density Function

Let X : (Ω,F) → (E, E) be a random variable and PX denote the probability
measure on Ω such that:

∀A ∈ E , PX(A) = PX(X ∈ A) = P({ω ∈ A : X(ω) ∈ A})

PX is the only measure on (E, E) such that for all bounded and measurable
functions f : E → R:

E[f(X)] =

∫

E

f(x)dP(x)

dP : E → R is called the probability density function (pdf) of X.

2.2.2.3 Some Examples of Distributions

We give here some basic examples of discrete distributions on R:

• the Dirac mass δx in x ∈ R is the distribution of the random variable which
is equal to x almost everywhere;

• the Bernoulli distribution with parameter p ∈ [0, 1] defined by p δ1 + (1−
p) δ0 with δx is the Dirac mass in x.

Some classical examples of distributions on R:

• the Lebesgues measure on [0, 1] is a probability measure generally called
uniform distribution on [0, 1]. More generally, if a < b, then the uniform
law on [a, b] is defined by:

(b− a)−1
I[a,b](x)dx
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where I[a,b](x) =

{
1 if x ∈ [a, b]
0 otherwise;

• the density defined on R by 1
π
(1 + x2)−1dx is a probability measure on R

called Cauchy distribution;

• the density defined on R by: 1√
2π

e−x2/2dx is a probability measure on R (its

mass is equal to 1): it is the ”Normal distribution” on R. More generally,

for σ > 0 and m ∈ R, the density defined by 1√
2πσ2

e{
−(x−m)2

2σ2 } is a probabil-

ity measure (its mass is also equal to 1) denoted by N (m, σ2) and called
”Gaussian distribution”.

2.2.2.4 Cumulative Distribution Function (CDF) of a Random Vari-
able

If PX is the law of a real random variable X, we define its cumulative distribution
function FX by:

FX(x) = PX(]−∞, x]) = P(X ≤ x)

For example, the cumulative distribution function of the uniform distribution U
on [0, 1] is FU(x) = x if x ∈ [0, 1] and FU (x) = 0 otherwise.

2.2.2.5 Conditional and Marginal Densities

We first define two random variables X0 ∈ (Ω0,F0, P0, µ0) and X1 ∈ (Ω1,F1, P1, µ1)
and the pair (X0, X1) ∈ Ω = (Ω0, Ω1). The probability measure P of (X0, X1) is
called joint probability measure and the corresponding joint probability density
p(x, y) verifies:

∀Λ ∈ (F0,F1), P(Λ) =

∫

Λ

p(x0, x1)dµ(x0)dµ(x1)

The probability density functions p0 and p1 of X0 and X1 are called marginal
density functions of X and satisfy:

p0(x0) =

∫

Ω1

p(x0, x1)dµ(x1) and

p1(x1) =

∫

Ω0

p(x0, x1)dµ(x0)
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The conditional density p(x0|x1) is defined by:

p(x0|x1) =
p(x0, x1)

p(x1)
and satisfies:

p(x0, x1) = p(x0|x1) p(x0) = p(x1|x0) p(x1)

2.2.2.6 Moments, Expectancy and Variance

If FX is a cumulative distribution function of a given random variable X, then
the nth moment of the probability distribution is given by:

E[Xn] =

∫ ∞

−∞
xn dFX(x)

If n = 1, E[X] = µ is the expectancy of random variable X. For higher orders,
the moments are generally centered on zero and they are defined by:

µn = E[(X − µ)n]

The second central moment µ2 = σ2 = V[X] is generally called variance of
random variable X. From these definitions, we can easily show that:

∀a ∈ R, E[aX] = a · E[X] and V[aX] = a2 · V[X]

As the expectancy function E is linear, we also have:

E

[
n∑

i=0

Xi

]

=

n∑

i=0

E[Xi]

Another practical formula to compute the variance is also given by:

V[X] = E[(X − E[X])2] = E[X2] − E[X]2

Some interesting and common remarks can be finally made about moments:

• All moments do not necessarily exist. However, if the nth moment exists,
then ∀k ≤ n, the kth moment exists;

• The moments do not characterize the distribution. Indeed, two different
distributions can have equal moments;

• Variance σ2 is often replaced by the standard deviation σ =
√

σ2. It is com-
monly known as the standard deviation or the Root Mean Square (RMS)
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error.

2.2.2.7 Independent Random Variables

Two random variables X0 ∈ (Ω0,F0, P0) → (E0, E0) and X1 ∈ (Ω1,F1, P1) →
(E1, E1) are independent if and only if:

∀(Λ0, Λ1) ∈ (E0, E1), P(X0 ∈ Λ0, X1 ∈ Λ1) = P(X0 ∈ Λ0) · P(X1 ∈ Λ1)

We can also express the independence directly with distributions without involv-
ing Probability Space (Ω,F , P): two random variables X0 and X1 with distri-
butions PX0 and PX1 are said to be independent if and only if the distribution
PX0×X1 of (X0, X1) satisfies:

P(X0×X1)(Λ0, Λ1) = PX0(Λ0) PX1(Λ1)

This leads to the following necessary and sufficient condition: two random vari-
ables are independent if and only if for all bounded and measurable functions
f : E0 → R and for all bounded and measurable functions g : E1 → R,

E [f(X0) · g(X1)] = E[f(X0)] · E[g(X1)]

More particularly, if f and g are both equal to the identity function:

if X0 and X1 are independent then E[X0 ·X1] = E[X0] · E[X1]

2.2.3 Convergence of Random Variable Families

We remind here the different convergence modes of random variable sequences
and most of the theorems which ensure these convergences. As we will show it,
the strong law of large numbers and the central limit theorem are the theoretical
roots of Monte-Carlo integration and therefore, the roots of most of the algorithms
presented in this thesis. In probability theory, the convergence of sequences of
random variables to some specific limiting random variable is a major concept
with large applications to computational statistics. For example, the average of
n uncorrelated and identically distributed random variables (Yi)i∈{1,n} given by
Yi = 1

n

∑n
k=1 Xk almost surely converges to the mean µ of Xi if E[|Xi|] < ∞.

In the next sections, we assume that (Xn)n∈N is a sequence of random variables
defined on the probability space (Ω,F , P) and that X is a given random variable
defined on the same probability space.
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2.2.3.1 Convergence in Distribution

Suppose that (Xn)n∈N is a sequence of random variables with cumulative distribu-
tion functions Fn and X a random variable with cumulative distribution function
F . Then, Xn converges towards X in distribution, if and only if:

∀a ∈ Rc, lim
n→∞

Fn(a) = F (a)

where Rc is the set of real numbers where F is continuous. Convergence in
distribution is often denoted by adding the letter D over an arrow indicating
convergence:

Xn
D−→ X

It is actually the weakest form of convergence: it is therefore implied by all other
modes of convergence but rarely implies any other one.

2.2.3.2 Convergence in Probability

(Xn)n∈N converges towards X in probability if and only if:

∀ε ∈ R
+∗, lim

n→∞
P (|Xn −X| ≥ ε) = 0

Convergence in probability is commonly denoted by adding the letter P over the
convergence arrow:

Xn
P−→ X

Convergence in probability is the notion of convergence used in the weak law
of large numbers presented further in this chapter. Convergence in probability
finally implies convergence in distribution (we do not give any formal proof since
it is a bit out of the scope of this thesis).

2.2.3.3 Almost Sure Convergence

(Xn)n∈N converges almost surely (or almost everywhere as commonly said in
measure theory or with probability 1) towards X if and only if:

P
(

lim
n→∞

Xn = X
)

= P
({

ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω)
})

= 1

Almost sure convergence actually implies convergence in probability and it is
finally the notion of convergence used in the strong law of large numbers also
presented further in this chapter.
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2.2.3.4 Convergence in Mean

(Xn)n∈N converges in the r-th mean or in the Lr norm towards X, if and only if:

∀n ∈ N, E|Xn|r <∞, lim
n→∞

E (|Xn −X|r) = 0

Finally, if (Xn)n∈N converges in r-th mean to X for r = 1, we say that (Xn)n∈N

converges in mean to X. If (Xn)n∈N converges in r-th mean to X for r = 2, we
say that (Xn)n∈N converges in mean square to X. Convergence in the r-th mean
for r > 0, implies convergence in probability (once again, we do not give formal
proof). If r > s ≥ 1, convergence in r-th mean also implies convergence in s-th
mean and convergence in mean square therefore implies convergence in mean.

2.2.4 Laws of Large Numbers

We present here the two laws of large numbers (weak and strong) which are, with
the central limit theorem, the core and the roots of Monte-Carlo integration.
First, let Sn denote

∑n
i=1 Xi.

2.2.4.1 The Weak Law of Large Numbers

The weak law of large numbers states that if (Xn)n∈N is a sequence of independent
and identically distributed random variables with expected value µ < ∞ and
variance σ2 < ∞ then Sn/n = (X1 + · · ·+ Xn)/n converges in probability to µ.
Therefore,

∀ε ∈ R
+∗, lim

n→∞
P (|Sn − µ| < ε) = 1

2.2.4.2 The Strong Law of Large Numbers

The strong law of large numbers states that if (Xn)n∈N is a sequence of indepen-
dent and identically distributed random variables and that E[Xi] = µ and E[|Xi|] <
∞, then:

P
(

lim
n→∞

Sn/n = µ
)

= 1

If we finally replace E[Xi] < ∞ by E[X2
i ] < ∞, we obtain a convergence in

mean square and therefore an almost sure convergence. For this particular case,
we have a simple manner to obtain some properties about the convergence rate.
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Indeed, since the variance σ2 exists:

V [Sn/n] = V

[

1

n

n∑

i=1

Xi

]

= V

[

1

n

n∑

i=1

Xi

]

=
1

n2

n∑

i=1

V [X] =
1

n
V [X]

Therefore, the standard deviation decreases as the square root of the sample
number. The strong law is actually the simple explanation of many intuitive
phenomena and experiments: when the same sampling process is repeated many
times, averaging all results leads to the expected average µ of the measured
quantities.

2.2.5 Central Limit Theorem

While the laws of large numbers only give us the convergence of partial sums Sn/n,
the central limit theorem also provides more accurate properties concerning the
convergence speed. We first suppose that all Xn are independent and identically
distributed and that ∀n ∈ R, µ = E[Xn] and σ2 = E[X2

n] exist and are finite.
Whereas the strong law of large numbers only states that the expected value of
Sn/n is µ, the central limit theorem also provides a convergence in distribution.
Indeed, if Zn is defined by Zn = Sn−nµ

σ
√

n
, then, the distribution of Zn converges

in distribution towards the standard normal distribution N (0, 1) when n → ∞.
In a sense, the distribution of Sn/n approaches the normal distribution N(µ, σ2)
when n→∞.

Finally, if the third moment E[(Xn − µ)3] exists and is finite, we have a
more precise knowledge of the speed of convergence: it is on the order of 1/

√
n.

Formally, if f is a C3 function with a bounded third-order derivative (∃b ∈
R+, ∀x ∈ R, |f ′′′(x)| < b) and N is a random variable which follows N (0, σ2),
then,

E

[

f

(
Sn − µn√

n

)]

− E(N) < O(
1√
n

)

This gives us the classical convergence rate of Monte-Carlo integration for smooth
enough functions.

2.3 Monte-Carlo Integration

The goal of Monte-Carlo integration is to compute an integral of the form:

I =

∫

Ω

f(x)dµ(x)
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where Ω is a given space and µ an associated measure. Thanks to the strong law
of large numbers, if we generate N random variables (Xn)n∈[1...N ] with the same
probability density function p, then:

lim
N→∞

IN = lim
N→∞

1

N

N∑

n=1

f(Xn)

p(Xn)
= I almost surely

This convergence is the core of Monte-Carlo integration which therefore simply
consists in sampling random variables to estimate integrals.

2.3.1 Advantages and Drawbacks of Monte-Carlo Integration

As indicated in the previous section, if variance σ2 exists, the variance of In de-
creases in the order of 1√

n
. The central limit theorem gives us a more precise

bound. Indeed, Zn = Sn−nµ
σ
√

n
converges in distribution towards the normal dis-

tribution N (0, 1). Finally, if the third moment exists, the order of the speed of
converge is exactly O( 1√

N
).

This speed may seem to be quite slow if we compare Monte-Carlo integration
with other common quadrature rules. For example, a very simple Simpson’s rule
will provide a speed of convergence of an order of O( 1

N5 ). The other important
drawback of Monte-Carlo methods are their intrinsic statistical nature which
makes that one cannot be sure of the result. Only confidence intervals (which
can be made however as tight as required) can be indeed computed. However,
Monte-Carlo methods have several decisive advantages which make them very
efficient and consequently, very popular.

• Compared to deterministic integration methods, Monte Carlo methods are
better for high-dimensional integrals. Indeed, even if deterministic integra-
tion rules of order r have a convergence rate of O(N−r) in one dimension,
as the regularly spaced samples have to be distributed over all dimensions,
the convergence rate is only on the order of O(N− r

d ) in d dimensions.

• Conversely to higher order integration rules which require smooth inte-
grands, Monte-Carlo methods do not need such properties. This is par-
ticularly effective in the case of light transport problems where many dis-
continuities (often due to the geometry of the objects) may occur in the
integrands.

• Monte-Carlo integration methods are simple. Indeed, the evaluation of ran-
dom variables only requires to sample random points X and evaluate f(X).
These make the method easily applicable to many integration problems.
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Monte Carlo methods are therefore very robust and this leads us to prefer them
to classical quadrature rules which do not seem appropriate to the light transport
problem which, as we show it in Chapter 4, is both a high-dimensional and ”not-
smooth integrand” problem.

2.3.2 Sampling Random Variables

There are a large variety of techniques for sampling random variables: the in-
version method, the rejection method, and the Metropolis method that we will
present further in this thesis are some of them.

2.3.2.1 The Inversion Method

The goal is to generate a random variable X with a given density function p(x).
Let F (x) be the cumulative distribution of X. The inversion method consists
in choosing a uniform random variable U on [0 . . . 1] and in finding the value of
X such that F (X) = U and therefore such that X = F−1(U) where F−1 is the
inverse function of F . It is then easy to check that the cumulative distribution
function of X is F . Indeed,

P (X ≤ x) = P (F (X) ≤ F (x)) = P (U ≤ F (x)) = F (x)

Uniformly Sampling a Disk. If we are uniformly sampling a disk of radius
R, the density function of such a random variable is: p(r, θ) = 1

πR2 . The two-
dimensional distribution function is therefore:

Pr(r < r0 and θ < θ0) =

∫ θ0

0

∫ r0

0

rdrdθ

πR2
=

θ0r0

2πR2

As the density function is here separable, we do need to involve the Jacobian
and we can directly apply the inversion on both variables by first computing the
marginal distributions of r and θ. Therefore, the uniform pair (u0, u1) on [0, 1]2

can be transformed to a uniform point on the disk by (r, θ) = (R
√

u0, 2π
√

u1))

Sampling a Phong Lobe. In computer graphics, sampling direction random
variables with density p(θ, φ) = n+1

2π
cosn(θ) may be a common situation when

glossy or shiny materials occur (n is said to be the Phong exponent, θ ∈ [0, π/2]
is the angle from the surface normal and φ ∈ [0, 2π] is the azimuthal angle).
Once again, by computing the marginal distributions of θ and φ, we find that a
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uniform pair (u0, u1) can be directly transformed to a direction by:

(θ, φ) =
(

arccos
[

(1− u0)
1

n+1

]

, 2πu1

)

2.3.2.2 Rejection Sampling

If the transformation technique is not available (for example, when the cumula-
tive distribution function cannot be analytically inverted), one can use rejection
sampling. The algorithm, due to John von Neumann and presented in Algorithm
1, can be actually used with any density function, even those that cannot be inte-
grated analytically. If it accepts the proposed candidate with a high probability,
i.e. if f(x) is close to M · g(x), it may be furthermore highly efficient. Unfortu-
nately, if it is applied naively, it may be however very ineffective, since a large
number of iterations will be needed to accept a proposed candidate. For example,
a too large value for M will lead to a small acceptance rate and therefore a very
poor efficiency of the resulting estimator. This drawback makes that Metropolis
or Metropolis-Hastings algorithms are often preferred to rejection sampling for
difficult cases (and therefore, in a light transport context). We however present
a very simple and common example.

Uniformly Sampling a Disk. We aim at sampling a disk of radius R. First,
generate a candidate point (x, y) where x and y are independent and uniformly
distributed between −R and R. Then, if x2 + y2 ≤ 1 accept the candidate point
within [−R, R]. Otherwise, reject it and repeat this process. This leads to a
uniform distribution over the unit disk. We may also remark that this algorithm
trivially provides an approximation of π since its acceptation rate is equal to π
when R is equal to 1.

Algorithm 1 Rejection Sampling: Sample x with density f . ∃M > 1, ∀x ∈
Ω, f(x) < M · g(x)

1: while 1 do
2: Sample x from g(x) and u from U(0, 1)

3: if u < f(x)
M ·g(x)

then
4: return x
5: end if
6: end while
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2.3.3 Estimators

An estimator is a function of the observable or generated sample data that is
used to estimate an unknown parameter from this sample set. An estimator IN

can be therefore defined as a function of several random variables by:

IN = F (X1 . . .XN)

Typically, in the remainder of this thesis, the quantity that we want to estimate
(generally called estimand) will be the intensity of every screen pixel. I finally
denotes the quantity we estimate. The estimators can have different properties:

2.3.3.1 Error and Bias

The error of an estimator is defined by:

Error(IN) = IN − I

The mean of the error is generally known as the bias β of the estimator and it is
therefore defined by:

β[IN ] = E[IN − I]

The estimator is unbiased if and only if ∀N ∈ N∗, β[IN ] = 0

2.3.3.2 Consistency

The estimator is called consistent if and only if IN almost surely converges towards
I when N →∞. Therefore, IN is consistent if and only if:

Pr

(

lim
N→∞

IN = I
)

= 1

2.3.3.3 Asymptotic Normality

An estimator IN is asymptotically normal if and only if it is consistent and its
distribution around I converges in distribution towards a normal distribution
with standard deviation shrinking in proportion to 1/

√
N . Typically, if XN

are independent and identically distributed random variables, the central limit
theorem directly proves the asymptotic normality of IN .
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2.3.3.4 Efficiency

While computing and evaluating estimators, it is often fundamental to decrease
variance and maintaining running time small. This trade-off between variance
and speed is generally called efficiency and it is defined by:

e[IN ] =
1

V [IN ]T [IN ]

where T [IN ] is the time needed for the evaluation of IN . Therefore, an estimator
is all the more efficient than the variance is small for a fixed computation time.

2.3.3.5 Miscellaneous Remarks

Generally, it is better to only consider unbiased estimators. Indeed, the common
goal of a Monte-Carlo integrator is to decrease the Root Mean Square error (RMS
error) given by:

RMS[IN ] = E[(I − IN)2]

In the general case (i.e. with a biased estimator), the RMS error can be expressed
with the variance and the bias of the estimator. Indeed, we can easily show that:

RMS[IN ] = V [IN ] + β[IN ]2

Therefore, if the estimator is unbiased, the RMS error is equal to the variance.
For this particular case, the central limit theorem generally provides satisfactory
error estimates and useful information concerning the speed of convergence if the
random variables Xi are independent and identically distributed. However, there
are many cases where unbiased estimators are worst than biased ones. First, it
is often possible that the most efficient unbiased estimator is less efficient than
one given biased estimator: Depending on the application, it may be preferable
to use biased estimators. This is for example true in the computer graphics field.
While using virtual point lights, as the variance of the resulting estimator does
not even exist and is infinite, the resulting estimates have very poor properties.
The common solution is to use a very efficient biased estimator and to evaluate
the bias with a second unbiased estimator (see Section 4.4.2).

2.3.4 Variance Reduction

As specified by the central limit theorem, decreasing the variance of the computed
estimators is fundamental: this actually increases the precision of the estimations
that can be obtained for a fixed number of iterations. As there are a lot of variance
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reduction techniques and as it is a very active research field in computational
statistics, we only present here the most famous and classical ones.

2.3.4.1 The Use of Expected Value

A first effective variance reduction technique is the use of expected values to
reduce the dimensionality of the integral. Suppose the problem consists in com-
puting the following integral:

I =

∫

Ω0

∫

Ω1

f(x0, x1)dµ(x0)dµ(x1)

If the distribution of the random variable (X0, X1) is p(x0, x1), the strong law of
large numbers provides the following unbiased estimator:

IN =
N∑

i=1

f(x0, x1)

p(x0, x1)

If f0(x0) =
∫

Ω0
f(x0, x1)dµ(x1) and the marginal density of (X0, X1) p0(x0) =

∫

Ω0
f(x0, x1)dµ(x1) are known, then, we can compute a new estimator JN such

that:

JN =

N∑

i=0

f0(x0)

p0(x0)

It can actually be shown that JN has a lower variance than IN does. Indeed,
since the dependence on X1 is substituted by its expected value, the dimension-
ality of the integration problem is reduced and the integration problem becomes
easier. However, reducing the number of dimensions is not always an appropriate
solution, On the contrary, it is often practical to sample higher-dimensional ran-
dom variables and use marginal densities to project the generated sample on the
appropriate sub-space. In this thesis, we present such an example of application
in Chapter 8.

2.3.4.2 Importance Sampling

Variance reduction techniques using importance sampling consists in using spe-
cific probability density functions for a given integrand. In fact, it is well known
that the best probability function to integrate the integrand f is proportional to
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f . Indeed, if X is a random variable with pdf p(x) = f(x)
c

= f(x)
R

Ω f(x)dµ(x)
, then:

V [I] = E

[
f(X)

p(X)

]2

−E

[
f 2(X)

p2(X)

]

= c2 − c2 = 0

Unfortunately, it is often impossible to generate such a random variable to com-
pute the integral since the value of the integral has to be known. A common way
to reduce the variance of the estimators is therefore to a sample random variable
with probability functions g close to the integrand and to make f(x)/g(x) as
constant as possible. Many techniques can be used to generate such probability
density functions. A common technique consists in discretizing the sample space
and in generating a piecewise constant function close to f(x). Other appropri-
ate choices of probability density functions that can ensure efficient importance
sampling can be found in [60].

We may finally notice that importance sampling is certainly the most used
variance reduction techniques in Monte-Carlo rendering. It is for example, com-
monly used to sample environment maps or to deal with specular materials or
area light sources.

2.3.4.3 Multiple Importance Sampling

Multiple Importance Sampling was introduced by Veach and Guibas in [87]. Their
goal was to optimally combine several importance sampling strategies in order
to get performance similar to those obtained with the best strategy. To achieve
this goal, they propose effective ways to make strategies that compute weighted
combinations of all generated estimators. Let w = (wi(x))i∈[1...N ] be a family of

real numbers such that ∀i ∈ [1 . . .N ],
∑N

i=1 wi(x) = 1 and wi(x) ≥ 0 and let IN,w

denote the following estimator:

IN,w =

N∑

i=1

1

Ni

Nj∑

j=1

wi(Xi,j)
f(Xi,j)

pi(Xi,j)

where Xi,j are independent and identically distributed random variables with
probability density functions pi.

The Balance Heuristic. The balance heuristic is given by the following weighting
functions:

wi(x) =
Nipi(x)

∑Ni

j=1 Njpj(x)
(2.1)
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The authors proved that for all estimators IN built with a given family (wi(x))i∈[1...N ],
we have the following relation:

V [ÎN ] ≤ V [IN ] +

(
1

mini ni
− 1

∑

i ni

)

· I2

where ÎN is the estimator obtained by using weights proposed by Equation (2.1)
and I is the quantity we want to estimate. This inequality actually tends to prove
that, even if there is still room for improvement, the balance heuristics gives good
results.

The Power Heuristic. The power heuristic is given by the following weight-
ing functions:

wi(x) =
Nβ

i pi(x)β

(
∑Ni

j=1 Njpj(x)
)β

An exponent β = 2 gives satisfactory results in practice. The exponentiation
actually increases the weight of the samples for which one of the sampling tech-
niques which have been used generates it with a high probability.

2.3.4.4 Control Variates

The control variate technique proposes to find a function g similar to the inte-
grand and assumes that the integral

∫

Ω
g(x)dµ(x) can be analytically computed.

The technique then consists in computing a new estimator Î by subtract g such
that:

Î =

∫

Ω

g(x)dµ(x) +
N∑

i=1

f(Xi)− g(Xi)

p(Xi)

where Xi are independent and identically distributed random variables with prob-
ability density function p. Then, if we can find an appropriate density function
p, we can ensure that the variance of the estimator is decreased.

In a sense, control variates are the orthogonal approaches of importance sam-
pling techniques: The first ones try to minimize f(x) − g(x) while the second
ones aim at making f(x)/g(x) as close to 1 as possible.
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2.3.4.5 Stratified Sampling

Stratified sampling proposes to divide the domain Ω into different non-overlapping
sub-domains (generally called strata) Ω1 . . . ΩN such that:

N⋃

i=1

Ωi = Ω

We then take ni independent and identically distributed samples with prob-
ability density function pi within each stratum. This gives us a new stratified
estimator given by:

I
(s)
N =

N∑

i=1

P(Ωi)
1

ni

ni∑

j=1

f(Xi,j)

For example, if Ω = [0, 1], a typical stratified uniform sampler will choose Ωi and
ni such that:

ni = 1 and Ωi =

[
i− 1

N
,

i

N

]

The resulting variance and convergence properties of stratified sampling have
been studied in the literature. We may however make three important remarks:

• Stratified sampling cannot be worse than uniform sampling: it is therefore
always better to use it if it is possible;

• It is better to increase the number of strata rather than to increase the
number of samples per stratum. A good choice is therefore to use only one
sample per stratum (i.e. N =

∑

i ni and ni = 1);

• If the integrand is smooth and there are few discontinuities within each
stratum, the variance can decrease on the order of O(N−2) i.e. as the
square of the number of strata.

A major problem with stratified sampling is the difficulty to compute strata
when the integration problem becomes high-dimensional. For example, for a d-
dimensional problem, splitting once each dimension results in 2d strata thereby
limiting the choice of the sample count and actually the possibility to use only a
small number of samples (which is relatively important in computer graphics and
Monte-Carlo rendering). Several solutions such as Quasi Monte-Carlo methods
however try to solve this problem. For more details about Quasi Monte-Carlo
techniques, one may refer to Niederreiter [58], Beck and Chen [3] or Kuipers and
Niederreiter [52]
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2.3.4.6 Russian Roulette

Russian roulette does not actually reduce the variance of a given estimator but
rather tends to increase its efficiency. It is actually a very commonly used tech-
nique in the field of Monte-Carlo rendering. It first consists of considering a first
estimator IN such that:

IN =

N∑

i=1

Ji, where Ji are a set of estimators.

In an application like a light transport algorithm, it is probable that Ji is very
small and that its contribution is negligible. Therefore, its evaluation will be very
expensive and will make the estimator inefficient. The idea of Russian roulette is
to try to neglect this contribution in an unbiased way. To achieve such a result,
the Russian roulette technique proposes to build a new estimator I

(r)
N such that:

I
(r)
N =

N∑

i=1

J
(r)
i where

∀j ∈ NN , J
(r)
i =

Bi

pi

· Ji

Bi is a Bernoulli random variable with probability pi ∈ [0, 1] such that Bi =

pi · δ0 + (1− pi) · δ1. Even if the new estimator I
(r)
N has a higher variance than IN

does, it is possible to make it more efficient if we have some information about
Ji. It is actually a very common situation in Monte-Carlo rendering. Suppose
that we have N light sources: if we consider one geometric point on the surface
of the scene, it is possible that only a small fraction of the light sources is able
to bring a large contribution to this point even if they are unoccluded. Russian
roulettes can therefore be applied to randomly discard light sources with small
unoccluded contributions: the idea is to limit the expensive visibility computa-
tions by evaluating the energy transfer between one light and the point as if there
were no occluder and randomly set the contribution to 0 if it is small. This leads
to the following value for pi:

pi = min(1, Ci/s)

where s is a user-defined threshold and Ci is the unoccluded contribution of light
source i such that:

Ci =

{
Ji if there is no occluder
0 otherwise
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This technique can easily increase the efficiency of I
(r)
N .

2.4 Conclusion

The roots of Monte-Carlo rendering are the strong law of large numbers and the
central limit theorem. As the convergence rate cannot be changed, decreasing
the variance of the computed estimators or increasing their efficiency is therefore
the core of computational statistics. In this thesis, we will try to focus on both
strategies. We indeed want to combine low variance estimators with efficient im-
plementations by proposing predictive and robust methods which can efficiently
use current hardwares.
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CHAPTER 3

Physics of Light Transport

In this chapter, we present the physics of light transport: we therefore explain
how lights can interact with matter and most of the corresponding equations
involved in Monte-Carlo rendering and more generally in realistic rendering.

3.1 Introduction

Simulating most of light transport phenomena requires a well defined formal
approach. As other simulation problems, it can be summarized into three different
points:

• We first have to identify the physical problem;

• Then, we must formalize a mathematical model to support this problem;

• Finally, we have to propose an algorithmic and numerical solution to our
formalization.

In this chapter, we focus on the first two points. The third point will be analyzed
in the next chapter where we make a state of the art of most of the Monte-Carlo
methods proposed to solve the physical problem we describe here. Actually, the
main part of this Ph.D. and of our contributions focuses on the third point i.e.
the computational part of the light transport problem.

To be more precise, a model which completely satisfies the light transport
problem will include the following four aspects:

• The description of the scene we have to render. This includes the geometry
of the objects, the specification of the media (for example, taking into
account atmospheric phenomena) and the specification of the light sources;

• The radiometric measures;

• The light transport model that specifies how the light will propagate in the
scene and how it behaves on the surfaces of the objects;
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• The quantities we want to measure. Typically, when we compute a virtual
picture, these quantities are generally the responses (i.e. the transmitted
colors) of each camera captor.

We describe here these four points. One may also refer to the excellent and
very complete description in the Ph.D. dissertations of Eric Veach [85], Eric
Lafortune [54], James Arvo [1] or Philip Dutré [20]. As Eric Veach did in his
Ph.D. thesis, we finally think it is important to clearly formalize the problem
by identifying the associated integration domains, measures and integrands. As
we explained it in the previous section, it is a major concern when we want to
use any Monte-Carlo strategies. Furthermore, sorting the rendering algorithms
depending on the integration spaces, the computed integrands and so on is a
great help when we will present most of the Monte-Carlo rendering techniques
used in computer graphics in Section 4.

3.2 Geometric Quantities

3.2.1 Surfaces of the Scene

We first assume that the geometry of the scene consists of a finite set M of
piecewise differentiable two-dimensional manifold surfaces in R3. As differentiable
surfaces, they more particularly contains some extra information such as normal
vectors and intrinsic parameterization (i.e. a mapping from the unit square to
the surface that is used for example for texture mapping). A point on a surface
is therefore given by a family of vectors such as its position, normal, tangent and
binormals vectors.

The surfaces divide R3 into several connected cells: each of them is filled with
a non-participating medium with a constant refractive index. We finally define
an area measure A onM such that A is the Lebesgues (or uniform) area measure
onM.

3.2.2 Directions and Solid Angles

Directions are represented by unit-length vectors ω ∈ R3. The set of all directions
is denoted as the unit sphere S2 in R3. The measure commonly associated to
S2 is the solid angle measure denoted by σ such that if Λ ∈ S2 is a measurable
subset of S2, σ(Λ) is the solid angle of Λ.

Another interesting measure for integration over directions is the projected
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solid angle σ⊥ defined such that:

if Λ is a measurable subset of S2, σ⊥(Λ) =

∫

Λ

ω ·N(x)dω

where x is a point on M and N(x) is the normal vector at x. The dot product

ω · N(x) is generally denoted cos(θ) where θ is angle N̂(x), ω. Actually, if we
consider only one hemisphere (the one such as cos(θ) ≥ 0 or the one such as
cos(θ) < 0) 1, the projected solid angle of Λ is the area of the projection of Λ
on the plane sustaining the chosen hemisphere. Figure 3.1 illustrates most of the
notions described here. In the rest of the thesis, H+(x) will denote the set of

ω
σ(Λ)

σ⊥(Λ)

N(x)

x

dA(x)
S

Figure 3.1: Surface S, Directions ω, Solid Angles σ(Λ) and Projected Solid Angles
σ⊥(Λ)

directions ω such as ω · N(x) ≥ 0 and H−(x), the set of directions ω such as
ω ·N(x) < 0. Finally, −→xy will denote the direction vector going from x to y and−→xy(u), the corresponding unit-length direction.

1In computer graphics, we often consider the upward hemisphere of a given set of direction
(i.e. the hemisphere such that cos(θ) ≥ 0) for non-transparent objects.
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3.3 Radiometric Quantities

The basic notions for the light transport problem are its intrinsic radiometric
quantities. We present here the most important and commonly used ones.

3.3.1 Power or Flux

The power (also called ”radiant power” or ”flux ”in the field of radiometrics) is
the rate of flow of electromagnetic energy (or ”radiant energy”). Radiant power
is usually expressed in watts or joules per second [W = J · s−1]. Therefore, if
W is the radiant energy, the radiant power φ is defined by:

φ =
dW

dt

3.3.2 Irradiance

Irradiance E(x) at point x is the power per unit surface area at x and is therefore
defined by:

E(x) =
dφ(x)

dA(x)

with units [W ·m−2].

3.3.3 Radiance

Radiance is the most important radiometric quantity for the light transport prob-
lem since it is directly related to the rendering equation (see Section 3.5.1 for
more details). Radiance L(x, ω) at point x and for direction ω is the power per
projected solid angle per unit area. It is therefore defined by:

L(x, ω) =
d2φ(x, ω)

dA(x) dσ⊥(ω)

with units [W ·m−2 · sr−1]. Thus, if N(x) is the normal at point x, then L(x, ω)
can be expressed as:

L(x, ω) =
d2φ(x, ω)

|N(x) · ω)|dA(x) dσ(ω)
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Quantity Symbol Definition Unit

Power φ dW
dt

[W ]

Irradiance E dφ(x)
dA(x)

[W ·m−2]

Radiance L d2φ(x,ω)
dA(x) dσ⊥(ω)

[W ·m−2 · sr−1]

Spectral Radiance Lλ
d3φ(x,ω,λ)

dA(x) dσ⊥(ω)dλ
[W ·m−2 · sr−1 ·m−1]

Table 3.1: Radiometric Quantities Commonly used in Computer Graphics

Therefore, if A⊥ is the projected area measure, L(x, ω) can be expressed by:

L(x, ω) =
d2φ(x, ω)

dA⊥(x) dσ(ω)

The radiance function intuitively corresponds to the quantity of power passing
through a small surface dA⊥(x) perpendicular to ω around ω in a small solid
angle dσ(ω).

3.3.4 Spectral Radiance

Spectral radiance Lλ is finally defined as the radiance per wavelength and is
therefore given by:

Lλ(x, ω, λ) =
d3φ(x, ω, λ)

dA(x) dσ⊥(ω) dλ

with units [W ·m−2 · sr−1 ·m−1]

Spectral radiance is also a major concept even if the different wavelengths are
often not explicitly distinguished. We generally consider the quantities as vectors
L with a number of components dependent on the wavelength such that:

L = [Lλ1 . . . Lλk
]

In most light transport solvers (i.e. renderers), only three components (red, green,
and blue) are used. In this Ph.D. thesis, all algorithms will also only deal with
these three components.

Table 3.1 finally summarizes all the quantities presented here.
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3.4 Material Properties

Material properties describe the behavior, the response and the interaction of a
given surface with light. It thus defines how light is reflected, refracted or emitted
by a surface. In computer graphics, the most commonly used function for non-
emitting surfaces is the bidirectional scattering distribution function or BSDF.
For light sources, we generally use the emission distribution function (EDF) which
provides the power emitted for each small surface area and each solid angle over
the surface of the light source.

3.4.1 BSDF

For surfaces, it is generally interesting to dissociate incident and exitant radiance
functions. The incident radiance function Li(x, ω) will give the quantity of power
arriving at x per unit area and per projected solid angle at x around ωi. Con-
versely, the exitant radiance function Lo(x, ωo) will give the quantity of radiance
leaving x. This physical distinction directly leads to the definition of the BSDF
which describes the complex relation between Lo and Li. BSDF fs(x, ωo → ωi)
is actually expressed as the ratio of the radiance leaving in direction ωo and the
unit irradiance arriving from ωi at point x. Therefore:

fs(x, ωo → ωi) =
dLo(x, ωo)

dEi(ωi)
=

dLo(x, ωo)

dLi(x, ωi)dσ⊥(ωi)

3.4.2 BRDF and BTDF

Generally, the BSDF is decomposed into several components according to the
considered hemisphere. Actually, the BRDF fr is the restriction of the BSDF to
the incoming and outgoing direction subset such that the incoming and outgoing
directions respectively belong to the same hemisphere around the surface normal
N(x). Conversely, the BTDF ft is the restriction of the BSDF to the direction
subset such that the incoming and outgoing directions respectively belong to two
opposite hemispheres.

In computer graphics, we also generally classify the BSDFs according to the
directionality of the light scattering. Therefore, three behaviors, diffuse, specular
and glossy are informally specified:

Diffuse Reflection and Diffuse Transmission. The BSDF is constant and
the light is therefore directly scattered proportionally to the projected solid angle.
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Specular Reflection and Specular Transmission. The BSDF is equal to
a Dirac or to a function close to a Dirac (this is the informal part of this classifi-
cation).

Glossy Reflection and Glossy Transmission. This contains all other mate-
rials. This can describe, for example, a moderately diffuse plastic or painting.

The BRDF has finally a set of physical properties which make it physically
plausible.

Helmotz Reciprocity principle. If a given surface is physically based, then:

f(x, ωi → ωo) = f(x, ωo → ωi)

Energy Conservation The directional hemispherical reflectance or albedo ρr is
the fraction of the incoming radiance for a single direction that is reflected over
the hemisphere. It is therefore defined by:

ρr(x, ωi) =

∫

H+(x)

fr(x, ωo → ωi) dσ⊥(ωo)

A physically based BRDF must ensure that the albedo function ρr(x, ωi) satisfies:

∀ωi ∈ H+(x), ρr(x, ωi) ≤ 1

3.4.3 Light Sources

While most of the properties presented above deal with passive material i.e.
materials which do not emit light, another class of materials, the light sources,
are materials which do emit light. They are generally specified by their emission
distribution function (EDS) which defines the self emitted radiance Le(x, ω) at
point x on the light source surface for direction ω ∈ H+. Generally, two other
quantities are often considered. The emittance Be(x) is defined as the self-emitted
radiance integrated over H+ and is therefore given by:

Be(x) =

∫

H+

Le(x, ωo)dσ⊥(ωo)

The self-emitted flux or power φe of the light source is defined as the self-
emitted emittance integrated over the surface A of the light source and is thus
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given by:

φe =

∫

A

Be(x)dA(x)

3.5 Light Transport Equations

While dealing with light transport problems, the first issue is to physically de-
scribe the behavior of the materials and the lights. This is the role of the rendering
equation. The second issue is to describe how the measurements are done during
the virtual experiments. This is the role of the measurement equation. Typically,
the rendering equation will say how a given surface will scatter the incoming light
flux while the measurement equation will provide the response of the camera film
to the scattered light.

3.5.1 The Rendering Equation

The rendering equation or the radiance transfer equation is the most fundamental
relation in the field of light transport. It actually combines into the following
unique integral equation all the concepts and quantities previously described:
the BSDF, the self-emitted radiance and the associated geometric quantities.

∀(x, ωo) ∈ (M, S2), Lo(x, ωo) = Le(x, ωo)+

∫

S2

fs(x, ωo → ωi) Li(x, ωi)dσ⊥(ωi)

(3.1)
Therefore, the outgoing radiance at point x into direction ω is equal to the sum
of the self-emitted radiance (equal to zero it the surface does not emit light) and
the incoming radiance ”filtered” by the BSDF and integrated over the complete
direction unit sphere S2.

The first form of the rendering equation given by Kajiya in [42] is slightly
different but the form given in 3.1 is a bit more practical and the most commonly
used today.

Several important remarks concerning the rendering equation have to be
made.

3.5.1.1 The Rendering Equation as a Fredholm Equation of the Sec-
ond Kind

We can reexpress Li(x, ωi) in a more practical way. If y = vp(x, ωi) ∈ M
denotes the first intersection point seen by x into direction −ωi, then Li(x, ωi) =
Lo(y,−ωi). Therefore, the rendering equation can be reexpressed in a recursive
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form:

Lo(x, ωo) = Le(x, ωo) +

∫

fs(x, ωo → ωi) Lo (vp(x, ωi),−ω) dσ⊥(ωi) (3.2)

This form is very close to a Fredholm equation of the second kind generally
defined by: f(x) = g(x) +

∫ 1

0
f(y)K(x, y)dy. As we show it in the next

chapters, it directly leads to specific numerical Monte-Carlo techniques using
Markovian paths inMN.

3.5.1.2 Extended Forms of the Rendering Equation

The rendering equation in its original form does not handle all different lighting
phenomena. Several extensions have been therefore proposed to handle phe-
nomena such as sub-surface scattering and participating media [19,70], polariza-
tion [84], diffraction [77] and fluorescence [26].

3.5.2 The Measurement Equation

Whereas the rendering equation models the behavior of elements in a scene, the
measurement equation models the response of real or virtual captors. For captor
j, we first define the sensor responsivity W (j)(x, ω). The total response Ij is
therefore expressed as the integration of W (j)(x, ω) · Li(x, ω) such that:

Ij =

∫

M×S2

W (j)(x, ω)Li(x, ω)dσ⊥(ω)

Typically, if the surface points of sensor j are included intoM(j), W (j)(x, ω) can
be classically decomposed into two components such that:

W (x, ω) = IM(j)(x) ·W ′(j)(x, ω) (3.3)

where

IM(j)(x) =

{
1 if x ∈M(j)

0 otherwise

3.6 Conclusion

In this part, we presented the most important physical quantities while dealing
with light transport problems and the two most major equations. This gives us
the goal of any renderer: computing the measurement equation for all sensors in
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the scene by using the rendering equation. In the next part, we present simple
manners to make this problem suitable to Monte-Carlo techniques. Different
classical Monte-Carlo solvers and our own techniques will be then exposed.
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CHAPTER 4

Monte-Carlo Rendering

While the two previous parts introduced the physics of light transport (the model
we want to study, i.e. the rendering and the measurement equations) and Monte-
Carlo methods (the theoretical framework which helps us to design new numerical
schemes), this chapter presents most of the algorithms which aim at computing
virtual pictures by using this physical model and Monte-Carlo estimators. This
class of methods are commonly named ”Monte-Carlo Rendering” techniques.

4.1 An Appropriate Formalism for Monte-Carlo Render-

ing

The goal of any Monte-Carlo integrator is to compute an integral of the form:

I =

∫

Ω

f(x)dµ(x)

Unfortunately, the rendering equation (see Section 3.5.1) does not have such a
practical form. To make our problem suitable to Monte-Carlo methods, we there-
fore have to specify one sample space, the associated measure and the integrand.
In his Ph.D. thesis, Veach proposes such a formalism [85], the path integral for-
mulation, that we therefore expose in this section. However, for many sampling
techniques used in the field of Monte-Carlo rendering, the path integral formula-
tion is not the most appropriate one since many samplers specifically deal with
the path length: as specifying only one unified path space is not necessarily prac-
tical, we also introduce in this chapter the formalism commonly needed while
dealing with many Monte-Carlo rendering techniques.

4.1.1 The Path Integral Formulation

The path integral formulation aims at unifying the sampling processes while
using Monte-Carlo rendering techniques. The goal is to make the light transport
problem directly suitable to a Monte-Carlo approach which consists in sampling
a random variable X with density function p and in evaluating f(X)/p(X).
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4.1.1.1 The Light Transport Equation

Veach first developed the ”three point form” formulation which describes the local
lighting behavior of materials. This formulation replaces the classical rendering
equation form by removing all occurrences of directions ω. First, we redefine the
radiance function (for either its outgoing or incoming form) such that:

L(x, ω) = L(x→ x′)

where ω is the unit-vector pointing out from x to x′. In the same way, we can
redefine the BSDF fs such that:

fs(x
′, ωo → ωi) = fs(x→x′→x′′)

where ωi =
−→
xx′(u) and ωo =

−−→
x′x′′(u). Finally, we replace measure σ⊥ by measure

A with a change of variables in the rendering equation 3.1 such that:

dσ⊥(ωi) = dσ⊥(
−→
xx′(u)) = G(x↔ x′)dA(x)

G(x ↔ x′) is the geometric term between x and x′. It represents the differ-
ential beam between the two differential surfaces and is given by:

G(x↔ x′) = V (x↔ x′)
cos(θ0) cos(θ′i)

||x− x′||2

where V (x ↔ x′) is the visibility term between x and x′ which is equal to 1 if
x sees x′ and 0 otherwise. θ0 (resp. θ′i) is the angle between x → x′ and the
surface normal at x (resp. x′). By respectively replacing dσ⊥(ωi), fs(x

′, ωo → ωi)
and L(x, ωi) by their respective three-point form expressions described above, we
obtain the three point form of the rendering equation:

L(x′→x′′) = Le(x
′→x′′) +

∫

M
L(x→x′)fs(x→x′→x′′)G(x↔x′)dA(x) (4.1)

4.1.1.2 The Measurement Equation

Similarly, we can reexpress the measurement equation given by Equation 3.3 by
replacing the radiance expression and the sensor responsivity by their three-point
forms. All sensor responses can be thus defined by:

Ij =

∫

M×M
W (j)

e (x→x′)L(x→x′) G(x↔x′) dA(x) dA(x′) (4.2)
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4.1.1.3 The Path Integral Formulation

Using the light transport equation, the measurement equation can be recursively
expanded to be expressed in an iterative way:

Ij =

∞∑

k=1

∫

Mk+1

[

Le(xk→xk−1)G(x0↔x1) W (j)
e (x1→x0)

(
k−1∏

i=1

fs(xi+1→xi→xi−1)G(xi↔xi+1))dA(x0) . . . dA(xk)
]

(4.3)

The measurement equation can be finally reformulated as:

Ij =

∫

Ω

f (j)(x)dµ(x) (4.4)

f (j) is defined for each path length k by extracting the appropriate term from
expansion (4.3), Ω is the set of all finite length paths and µ the natural as-

sociated measure given by: µ(D) =
∞∑

k=1

µk(D ∩ Ωk) where Ωk is the set of all

length k paths and µk the associated product measure given by dµk(x0 . . .xk) =
dA(x0) . . . dA(xk). With this formalism, the global illumination problem is now
an integration problem we can solve by a Monte-Carlo algorithm.

As indicated by Veach, using the path integral formulation has several advan-
tages.

• As this is a standard formulation for Monte-Carlo techniques, it becomes
much easier to use and re-use most of the variance reduction methods de-
scribed in the literature;

• This formulation allows us to directly sample paths of any length. As it is
not needed anymore to make some distinction about path length, samplers
can become much simpler and generic;

• By explicitly dealing with light paths, we can design more efficient samplers.
Indeed, as we will show in the next sections, until Veach introduced this
formulation (and the associated Metropolis Light Transport algorithm [88]),
most of the algorithms only dealt with local sampling strategies: it was
therefore difficult to find optimal random variables, i.e. random variables
with distributions proportional to f (j).

Finally, building Monte-Carlo estimators with such a formalism is straight-
forward. First, sample a path X with density p(X). Then, simply consider the

39



estimator f (j)(X)/p(X). If we can ensure sufficient conditions on f (j)(X)/p(X),
this directly leads to an unbiased estimator Ij such that:

E

[
f (j)(X)

p(X)

]

= Ij

In the next section, we present some simple strategies to sample such light paths
x ∈ Ω.

4.1.2 Sampling the Path Space

With Equation 4.4, we have the appropriate formalism to tackle the light trans-
port problem with Monte-Carlo techniques. We present here the basic notions to
perform sampling processes with the path integral formulation.

• The first technique consists in sampling points across the set M of the
surfaces of the scene. It is actually a common strategy while we have to
sample area light sources;

• The second technique consists in sampling directions and finding the nearest
intersection point along this direction. For example, while dealing with
glossy surfaces, it is common to sample direction ω from point x with a
distribution close to the BSDF fs(x, ·).

The first sampler is the most related to the path integral formulation since this
formulation explicitly deals with surfaces. For example, uniformly sampling a
point on surface M with a total area equal to AM can simply be achieved with
a density equal to 1/AM.

The second sampler is a bit more complicated since it requires a change of
variables (see Figure 4.1). Actually, if ω is generated from x with probability
px(ω), then x′ along direction ω has a density equal to:

p(x′) = p(ω) · | cos(θ′i)|
||x− x′||2

With these remarks, it becomes easy to sample point over the set of sur-
facesM. However, generating a complete path and evaluating the corresponding
density is a bit more complicated.
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Figure 4.1: Geometry and Notations to Generate x′ from x.

4.1.2.1 Randomly Sampling Points over the Surface Set M

The first obvious method would be to select points over the surfaces of the scene
in a naive way. We can for example design the following sampler:

• Randomly choose the length l of the path x with probability P (l);

• Randomly sample l independent points (xk)k∈[1...l] with respective density
pk(xk).

This naive sampler provides a path x = (xk)k∈[1...l] with a density equal to:

p(x) = P (l)

l∏

k=1

pk(xk)

To increase the probability that f(x) > 0, we may ensure that:

• x1 is on camera sensor j.

• xl is on a light source.

Unfortunately, even if we ensure the two above properties, this sampler will pro-
vide very poor results. Indeed, for most common scenes, since the probability that
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segment (xi,xi+1) is occluded may be large, the probability that f(x) = 0 is high
and the resulting estimator f(X)/p(X) will have a high variance. This leads to
another sampling strategies mostly based on truncated ”Markov-Chained” light
paths.

4.1.2.2 Chaining Sampled Points

In computer graphics (and in other scientific fields such as neutron transport), it
is much efficient to choose points xk such that:

∀k ∈ [1 . . . l − 1], vp(xk,
−−−−→xkxk+1

(u)) = xk+1

We therefore just have to ensure that xk+1 is the first visible point by xk along
direction −−−−→xkxk+1

(u). To achieve such a result, the common solution is to chain the
sampled points xk. This is actually the core of all ”path tracing” technique we
present further in this chapter. The idea is to generate xk+1 conditionally to xk.
Imagine that we have already sampled point xk. A practical way to find a point
over the surface setM is to sample direction ωk with density p(ωk), to compute
vp(xk, ωk) and to finally set xk+1 = vp(xk, ωk). With this sampling technique,
we do not actually know the density of points xk but only the conditional density
p(xk → xk+1) given by:

p(xk → xk+1) = p(ωk) ·
| cos(θ′i)|

||xk − xk+1||2

Fortunately, we do not need to know the density of xk but only the density of
the complete path x. Actually, such a path is simply a truncated Markov-Chain
since point xk+1 only depends on point xk. Therefore, the density of x can be
expressed by:

p(x) = p(x1) ·
l−1∏

k=1

p(xk → xk+1)

Sampling such paths is the most common technique in computer graphics. We
give here two examples of samplers directly using both path integral formulation
and Markov-Chain path sampling strategies. One may argue that the following
techniques are not used in the field of computer graphics. It is actually true but
our goal is to show how to use the path integral formulation in a direct manner.
Actually, the only algorithms which require and use it are those which are based
on Metropolis Light Transport samplers [88]. For all other ones, the path integral
formulation is used in a more restrictive way. This common approach will be
presented and introduced in the next section.
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4.1.3 A ”Path Integral Formulated” (but Inefficient) Path Tracer

We consider in this section the sensor j and as precised in Section 4.1.1.3, we
therefore want to compute:

Ij =

∫

Ω

f (j)(x)dµ(x)

Ms will denote the light source surfaces in the scene. Our path tracer will sample
paths x as presented by Algorithm 2.

Algorithm 2 ”Path Integral Formulated” Path Tracer: sample path x

1: Sample point x1 over the surface M(j) of sensor j with density p(j)(x1)
2: Sample direction ω1 from x1 such that W (j)(x1, ω1) > 0 (see Section 3.5.2).

Find the nearest point along direction ω1 from x1, vp(x1, ω1)
3: x2 ← vp(x1, ω1)
4: l ← 2
5: while xl /∈Ms do
6: Sample direction ωl with density pxl

(ω) such that fs(xl, ωl−1 → ωl) > 0.
Find the nearest point along direction ωl from xl, vp(xl, ωl),

7: xl+1 ← vp(xl, ωl)
8: l ← l + 1
9: end while

10: x = (x1 . . .xl)

This sampler simply tracks a light source in the scene by randomly casting
paths from the camera. The density of such a sampled path is trivial and is given
by:

p(x) = p(j)(x1) ·
l−1∏

k=1

p(xk → xk+1) = p(j)(x1) ·
l−1∏

k=1

pxk
(ωk) ·

|cos(θ′i,k)|
||xk − xk+1||2

Unfortunately, this sampler is totally inefficient. For the very simple and common
case where light sources have only small areas, the probability of hitting a light
source is small and finding them in a fast way is thus almost impossible with this
technique. One may argue that arbitrarily casting a ray (often called ”shadow”
ray) provides a better solution. It is actually the first step towards a bidirectional
path tracer. We present such a sampler in the next section. Once again, this
sampler is not the solution commonly implemented in renderers. However, it is a
practical example to understand bidirectional samplers in the computer graphics
literature.
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4.1.4 A ”Path Integral Formulated” (but inefficient) Bidirectional
Path Tracer

In this section, we first assume that we set a function Ps defined onM such that:

∀x ∈M, Ps(x) ∈ [0 . . . 1] and Ps(M) = 1

Ps actually provides the probability to stop the sampling of the current path.
This leads to the sampler given by Algorithm 3.

Algorithm 3 ”Path Integral Formulated” Bidirectional Path Tracer: sample
path x

1: Sample point x1 over the surface M(j) of sensor j with density p(j)(x1)
2: lc ← 1
3: while uniform random 0 1() < Ps(xlc) do
4: Sample direction ωlc with density pxlc

(ωlc) such that:

if lc = 1 then W (j)(xlc, ωlc) > 0
else fs(xlc , ωlc−1 → ωlc) > 0.

5: Find the nearest point along direction ωlc from xlc vp(xlc , ωlc)
6: xlc+1 ← vp(xlc, ωlc)
7: lc ← lc + 1
8: end while
9: Sample point y1 over the light source surface setMs with density ps(y1)

10: ls ← 1
11: while uniform random 0 1() < Ps(xls) do
12: Sample direction ωls with density pyls

(ωls) such that:
if ls = 1 then Le(yls, ωls) > 0
else fs(yls , ωls−1 → ωls) > 0.

13: Find the nearest point along direction ωls from yls vp(yls, ωls)
14: yls+1 ← vp(yls , ωls)
15: ls ← ls + 1
16: end while
17: x = (x1 . . .xlc ,yls . . .y1) = (x1 . . .xlc+ls)
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The density of the resulting path is given by:

p(x) = p(x1) · ps(xlc+ls)

lc+ls−2∑

i=1

i−1∏

k=1

pxk
(−−−−→xkxk+1

(u)) · |N(xk+1) · −−−−→xkxk+1
(u)|

||xk − xk+1||2

×
i+2∏

k=ls+lc

pxk
(−−−−→xkxk−1

(u)) · |N(xk−1) · −−−−→xkxk−1
(u)|

||xk − xk−1||2

×
i−1∏

k=1

Ps(xk) ·
i+2∏

k=ls+lc

Ps(xk) · [1− Ps(xi)] · [1− Ps(xi+1)]

︸ ︷︷ ︸

(4.5)

Probability to have sampled i points from the camera

and lc + ls − i points from the light

where
∏

i∈∅ xi = 1

This sampler therefore proposes to build two independent paths and to con-
nect their respective ending points. Thus, f (j)(x) 6= 0 if and only if vp(xlc,

−−−→xlcyls
(u)) =

yls. Therefore, if there is any occluder between xlc and yls, path x does not bring
any contribution to sensor j.

The expression given by Equation 4.5 may seem a bit complicated but it
is actually tightly related to the sampling process. The question (which is the
most common one while using non-trivial samplers) is: what is the density of
the sample? To answer this question, we have to determine all the possible
manners to generate this path with this sampler. Here, Algorithm 3 provides
two paths (xk)k∈[1...lc] and (yk)k∈[1...ls] which have been concatenated in one path
x = (xk)k∈[1...lc+ls]. The same sampler could have generated this path with any
other combination of camera path length i and light path length j as long as
i+ j = lc + ls. Therefore, density of path x can be expressed as the weighted sum
of all densities provided by all possible manners to sample the path. We may
finally notice that the density of path x is very close to the conditional densities
of bidirectional mutations of the Metropolis Light Transport algorithm [88].

Unfortunately, this elegant bidirectional path tracer is once again very ineffi-
cient. The main reason is that casting rays in the scene is very expensive and it
becomes fundamental to intensively reuse the paths we are building. The other
(and in fact, commonly used) technique would consist of casting shadow rays be-
tween all possible xp and yq point pairs. It however seems difficult to formalize
such a sampler with the path integral formulation: indeed, it would not generate
one path at a time but, on the contrary, a large family of strongly correlated
paths.

In the literature of Monte-Carlo rendering, all these techniques are based on
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the distinction among path lengths, the intensive use of Russian roulettes and
the explicit combination of several estimators. We present these approaches in
the next section.

4.2 Monte-Carlo Rendering by Explicitly Handling Path
Lengths

In this section, we present the most common way to build samplers in computer
graphics. In the previous section, we showed that directly designing samplers
using the path integral formulation is not necessarily an efficient strategy. On
the contrary, specifically sampling paths with fixed lengths is generally more
effective.

4.2.1 Subdividing the Path Space with Path Lengths

Equation 4.3 can be reformulated in the following manner (see Section 4.1.1.3):

Ij =

∞∑

k=1

∫

Mk+1

[

Le(xk→xk−1)G(x0↔x1) W (j)
e (x1→x0) (4.6)

(

k−1∏

i=1

fs(xi+1→xi→xi−1)G(xi↔xi+1))dA(x0) . . . dA(xk)
]

=

∞∑

k=1

∫

Ωk

f
(j)
k (xk)dµk(xk) =

∞∑

k=1

Ij,k

Instead of explicitly gathering all paths in only one path space, an alternative
would be to evaluate all the terms of the sum. To achieve such a result in
an efficient way, the following strategies are currently used in all ”path tracing
systems”:

• If Xk is a random variable used to sample Ωk, define Xk+1 such that Xk+1

and Xk are correlated and at least a sub-path of Xk is reused for Xk+1;

• As sampling an infinity of random variables is impossible, use a Russian
roulette to avoid any further sampling after some random rank p.

Many path samplers actually use those two techniques to compute an unbiased
solution of the measurement equation.
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4.2.2 Standard Path Tracing

Standard Path Tracing proposed by Kajiya [42] was the first algorithm attempt-
ing to tackle the light transport problem in its global form. This algorithm is
actually not really different from the modified path tracing algorithm we pre-
sented in Section 4.1.3. Similarly to the approach we detailed, a light path is first
generated backward from the camera for each camera sensor. However, to make
the approach more efficient, Kajiya proposed to cast a visibility ray towards one
light source for each light bounce made by the current path. As indicated by
the previous sub-section, this technique therefore consists of reusing the camera
path sampled for path space Ωk while sampling path space Ωk+1. Conceptually,
at each sampling step, an infinity of paths is sampled (one for each path length).
Practically, a Russian roulette is used to set that after some random rank, all
contributions due to the ”non-sampled” paths are equal to zero (see Algorithm
4).

Algorithm 4 Standard Path Tracer: set maximum sampling rank p and sample
path family (xl)l∈[1...p]

1: Sample point x1 over the surface M(j) of sensor j with density p(j)(x1)
2: Sample direction ω1 from x1 such that W (j)(x1, ω1) > 0 (see Section 3.5.2).

Find the nearest point along direction ω1 from x1, vp(x1, ω1)
3: x2 ← vp(x1, ω1)
4: Sample a point xs across the surface setMs of the light sources with density

ps(xs).
5: x1 ← (x1,x2,xs)
6: l ← 2
7: while uniform random 0 1() < Ps(xl) do
8: Sample direction ωl with density pxl

(ω) such that fs(xl, ωl−1 → ωl) > 0.
Find the nearest point along direction ωl from xl, vp(xl, ωl)

9: xl+1 ← vp(xl, ωl)
10: Sample point xs fromMs with density ps(xs).
11: xl ← (x1 . . .xl+1,xs)
12: l ← l + 1
13: end while
14: p← l

As shown by Algorithm 4, a maximum rank p is randomly set. It simply
depends on the sequence of sampled points (xk)k∈[1...p]. The density of each path
xl can then be expressed as the product of the probability to reach rank l and
the product of the successive conditional densities of each point (since each path
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xk is once again a truncated Markov-Chain). Therefore:

∀l ∈ [1 . . . p], p(x) =
l∏

k=2

Ps(xk) · p(j)(x1) ·
l−1∏

k=1

pxk
(ωk) ·

|cos(θ′i,k)|
||xk − xk+1||2

Thus, if l ≤ p, this sampler provides the estimator f
(j)
l (xl)/p(xl). If l > p, the

paths are supposed to bring no contribution to sensor j. We may finally remark
that this sampler is a bit simplified since it does not handle light sources directly
visible from the camera or specific paths with specular materials which cannot be
sampled from the camera. The common solution is to specifically handle several
estimators depending on the kinds of paths which are generated. This is actually
one of the goals of bidirectional path tracers.

4.2.3 Bidirectional Path Tracing

Even if the standard path tracing algorithm remains unconditionally robust and
unbiased, variance problems lead to implement more predictive algorithms. In
fact, since generating light paths only from the camera is a bit arbitrary, sampling
them also from the light sources may be a good idea: this is the core of bidi-
rectional samplers initially proposed by Lafortune and Willems [55] and Veach
and Guibas [86]. As the standard path tracer presented above, bidirectional path
tracers propose to sample path spaces (Ωk)k∈N and to build several correlated es-
timators for each path length. They are actually efficient implementations of the
”Path Integral Formulated” bidirectional path tracer exposed in Section 4.1.4.

Algorithm 5 presents a form of bidirectional sampler. Two paths are first
built, one from the camera sensor and one from the light source surface set. This
sampling process then provides pc × ps correlated light paths. Similarly to the
standard path tracing algorithm, the density of path xlc,ls can be expressed as
the product of the probabilities of reaching ranks lc and ls, the densities of point
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Algorithm 5 Standard Bidirectional Path Tracer: set maximum sampling ranks
pc and ps and sample path family (xlc,ls)(lc,ls)∈[1...pc]×[1...ps]

1: Sample point x1 over the surface M(j) of sensor j with density p(j)(x1)
2: lc ← 1
3: while uniform random 0 1() < Ps(xlc) do
4: Sample direction ωlc with density pxlc

(ωlc) such that:

if lc = 1 then W (j)(xlc, ωlc) > 0
else fs(xlc , ωlc−1 → ωlc) > 0.

5: Find the nearest point along direction ωlc from xlc , vp(xlc , ωlc)
6: xlc+1 ← vp(xlc, ωlc)
7: lc ← lc + 1
8: end while
9: Sample point y1 over the light source surface setMs with density ps(y1)

10: ls ← 1
11: while uniform random 0 1() < Ps(xls) do
12: Sample direction ωls with density pyls

(ωls) such that:
if ls = 1 then Le(yls, ωls) > 0
else fs(yls , ωls−1 → ωls) > 0.

13: Find the nearest point along direction ωls from yls, vp(yls, ωls)
14: yls+1 ← vp(yls , ωls)
15: ls ← ls + 1
16: end while
17: pc ← lc
18: ps ← ls
19: for lc = 1 to pc do
20: for ls = 1 to ps do
21: xlc,ls ← (x1 . . .xlc ,yls . . .y1)
22: end for
23: end for
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x1 and y1 and the conditional densities of each other sampled points. Therefore:

p(x) = p(x1) ·
lc−1∏

k=1

pxk
(−−−−→xkxk+1) ·

|N(xk+1) · −−−−→xkxk+1|
||xk − xk+1||2

× ps(y1) ·
ls−1∏

k=1

pyk
(−−−−→ykyk+1) ·

|N(yk+1) · −−−−→ykyk+1|
||yk − yk+1||2

×
lc−1∏

k=1

Ps(xk) ·
lc−1∏

k=1

Ps(yk)

︸ ︷︷ ︸

(4.7)

Russian roulette

The further idea is to build several estimators for each path length l. We first
consider all paths (xlc,ls) such as lc + ls = l and combine all their contributions
to design estimator Jj,l thus defined by:

Jj,l =
∑

lc+ls= l

wlc,s(Xlc,ls) ·
f

(j)
l (Xlc,ls)

p(Xlc,ls)

where
∑

lc+ls= l wlc,s(Xlc,ls) = 1 and wlc,s(Xlc,ls) ∈ [0 . . . 1]. As with standard
path tracer:

E

[ ∞∑

l=2

Jj,l

]

= Ij

The choice of the weight families wi,j is fundamental: the most common technique
is to use multiple importance sampling as presented in Section 2.3.4.3. Once
again, the algorithm presented here is a bit simplified. For example, in the more
sophisticated sampler proposed by Veach and Guibas, length 1 paths are also
handled.

4.2.4 Light Tracing

Light tracing (or ”particle tracing”) algorithms [21] are not really different from
path tracing ones. As they consist of sampling the light paths from the light
sources instead of the camera, they are actually a simpler form of bidirectional
path tracers as presented in the previous section.
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4.2.5 Metropolis Light Transport

Metropolis Light Transport [88] is a successful algorithm presented by Veach and
Guibas. As Metropolis sampling strategies are used in two of our contributions
(Metropolis Instant Radiosity and Coherent Metropolis Light Transport with
Multiple-Try Mutations), this technique will be detailed in Chapters 8 and 9.
To sum up the approach, we may however say that Metropolis Light Transport
consists of locally exploring the sampled space Ω with a set of path mutations.

4.3 Designing Efficient Monte-Carlo Renderers

While bidirectional paths tracers are the cores of most of the samplers used in
Monte-Carlo rendering, it exists many numerical techniques which aim at making
the computations more effective. They either propose to bias the estimators
to make them more efficient or to factorize and reexpress all the computations
to make the algorithms faster. In this section, we present the most classical
examples.

4.3.1 Photon Mapping

The photon mapping technique [38–40] is the most famous example of trade-off
between rendering speed and bias in the field of computer graphics. It is actually
a two-pass method that is able to handle many illumination features in an efficient
manner. The technique actually consists in sampling light paths from the light
sources and in storing path information with the compact representation given
by photons. Once the photons have been stored, the incoming radiance value is
computed by using a non-parametric estimation pass. The estimation pass which
consists in averaging and weighting neighbor photon contributions by using kernel
functions, makes the estimators biased but consistent since the error due to the
estimation tends to 0 when the number of photons increases.

In fact, we do not detail more particularly the algorithm but one may find a
very detailed explanations in Chapter 16 of the book by Pharr and Humphreys,
Physically Based Rendering [64]: the authors furthermore expose the formal-
ism of photon mapping techniques in a manner closed to ours. An interesting
and complete survey of photon mapping methods can also be found in Suykens
Ph.D. [79]. Some interesting work has also been achieved by Dmitriev et al. [18],
Guenther et al. [32] and Wald et al. [94] to make photon mapping suitable to
interactive rendering.
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4.3.2 Environment Mapping

Environment mapping techniques [27] consist in replacing the whole incoming
radiance field by a radiance picture which provides the incoming radiance for
each possible direction ω. This simplification leads to consider that the parts of
the scene seen by the camera are only illuminated by a set of objects located at
an infinite distance. The method is commonly used to represent sky dome or
simply, to make the computations easier while illuminating one given object.

There is an important amount of recent work aiming at tackling variance
problems and at proposing interactive rendering while using this kind of methods.

To achieve interactive rendering, most of the researchers propose to use ex-
pensive pre-computations [36, 44, 45] or to project the illumination and/or the
BRDFs of the objects into finite bases such as spherical harmonics [65, 66, 75]
and wavelets [57]. These techniques therefore involve a second source of bias
since the environment maps (and sometimes the BRDFs) are compressed.

Other classical Monte-Carlo approaches consist of reducing variance. Most
of these techniques are based on the notion of bidirectional sampling [6] and
take into account the energy of incident illumination as well as the BRDF in the
sampling process by either using a sampling / resampling step [82,83], sequential
sampling [25] or wavelet representations of the BRDF and the environment map
[10].

4.3.3 Irradiance and Radiance Caching

Irradiance caching proposed by Ward et al. [101,102] is, with photon mapping, one
of the most efficient trade-offs between speed and bias. It exploits the smooth-
ness of indirect illumination by sampling the irradiance sparsely over surfaces,
caching the results and interpolating them. For each ray hitting a surface, the
irradiance cache is queried. If one or more irradiance records are available, the
irradiance is interpolated. Otherwise a new irradiance record is computed by
sampling the hemisphere and is added to the cache. In this way, the cache is
progressively updated in a view dependent way. More recently, Krivanek [53]
proposed to store the incoming radiance function over the hemisphere thereby
allowing interpolation to be applied to glossy surfaces.

In the next section, we present with more details, Instant Radiosity [47]. As
photon mapping, Instant Radiosity is a Monte-Carlo rendering technique which
focuses on rendering speed and efficiency.
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4.4 Instant Radiosity

4.4.1 Principle

Instant Radiosity [47] (IR) is a powerful method to compute global illumination
for diffuse or not-too-shiny materials. It actually consists in virtually splitting
each path x = {x0,x1, . . . ,xn} into three parts:

• xc = {x0,x1} where x0 is a location on a sensor and x1 is a point seen by
this sensor;

• xv is a point located just after x1: in a sense, xv ”illuminates” x1 and it is
the Virtual Point Light (VPL) location we are looking for;

• xs is the remainder of the path. Its end is connected to a light source while
its first point is connected to xv. We may notice that xs can be void if xv

is located on a light source.

Using the path integration formulation, we then generate and store N random
paths {xv, xs} from the light sources and reuse these sub-paths for all camera
pixels (i.e. the camera sub-paths {x0,x1}). Therefore, we have for each pixel j:

Ij = E

(
f (j)(x)

p(x)

)

= E

(
f (j)({xc,xv, xs})
p({xc,xv, xs})

)

As xc and {xv, xs} are independent:

p ({xc,xv, xs}) = p (xc)p({xv, xs}))

Once again, two sampling strategies can be designed:

• In the original presentation of the idea by Keller, the path lengths were
actually distinguished. Therefore, in the most common implementation of
Instant Radiosity, different length but correlated paths are generated during
the same sampling process and one or several estimators are built for each
path length;

• An alternative implementation can directly generate paths of any length
and therefore sample the whole path space Ω.

The efficiency of Instant Radiosity relies on the fact that the V PLs are reused
for all the sensors in the scene and that the global illumination problem comes
down to visibility requests between the V PLs and a point of the scene.
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(a) (b)

Figure 4.2: Instant Radiosity. (a) First, light paths are propagated from the
physical light sources. Each bounce is stored as a Virtual Point Light or VPL.
(b) Then, all lighting contributions (direct and indirect) are replaced by the set
of VPLs. Evaluating the incoming radiance field on sensor j becomes equivalent
to accumulating all VPL contributions.

4.4.2 The Overmodulation Problem

Instant Radiosity suffers from a serious overmodulation problem. In the simple
form described above, the estimators produced while using VPLs do not have
bounded variance. Indeed, while evaluating the VPL contribution, visibility term
G has to be evaluated and as the 1/r2 term is not bounded, the VPL contribution
tends to ∞ when the distance between the VPL and the illuminated point tends
to 0. This property makes that Instant Radiosity does not provide Monte-Carlo
estimators since the Central Limit Theorem (see Chapter 2) does not apply. We
therefore have no information concerning the convergence speed since variance
does not exist.

The most common solution is to bound the visibility term G so that the
resulting estimators become biased and remain efficient. Furthermore, inspired
by the work by Heinrich [37] who proposed an optimal method for the Monte
Carlo approximation of weakly singular operators in the context of parametric
integration, Kollig and Keller [51] propose to compute in an unbiased manner the
bias introduced when clamping visibility term G.

4.4.3 Variance Reduction Techniques

The location of the VPLs is a crucial problem. Indeed, it is fundamental to
place VPLs only on surfaces which are able to illuminate parts of the scene seen
by the camera. Indeed, the ”gathering” step which consists in computing the
sensor response to the VPLs (i.e. illuminating the screen pixels) is very expen-
sive. Surprisingly, there are few researches explicitly dealing with the placement
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of VPLs. The ”Power Sampling” technique proposed by Wald et al. [98] pro-
poses to compute the power brought by each physical light source to the camera
through direct or indirect contributions and build the corresponding discrete cu-
mulative density function. They finally sample light paths or VPLs by choosing
the light sources proportionally to the power they bring to the camera. Even
it is, in the literature, the only example of such variance reduction for the VPL
generation, there are a lot of researches which have been recently made for the
photon sampling step in photon mapping. All these techniques are generally said
to be ”importance driven”. Importance has been used by many researchers to
speed up the convergence rates of off-line rendering in radiosity or Monte-Carlo
methods. A detailed discussion is available in [7]. More particularly, a subsequent
work has been achieved with photon map techniques [40]. Even if photon map
algorithms are numerically quite different from Instant Radiosity (the first ones
are non-parametric estimation methods while the second one is an analytical MC
approach), the VPL generation is quite similar to the photon generation. Peter
and Pietrek propose to trace importance particles from the eye point [62]. The
resulting distribution is then used to guide the photon tracing step. The method
was extended by Keller and Wald [49] and Suykens and Willems [80] to provide
more robust numerical results. All these methods can be used to guide the VPL
generation. However, as all of them require to sample a large number of impor-
tons (particles generated from the camera), they unfortunately seem unsuitable
to real-time rendering. That is why we propose in Chapters 7 and 8 efficient
samplers for the VPL generation.

4.4.4 Rendering Systems Using Instant Radiosity

There are several rendering systems which have been proposed and combined
with Instant Radiosity. The most famous one is certainly ”Instant Global Illumi-
nation” designed by Wald et al. [97], and improved by Benthin et al. [5]. It aims
at computing realistic outputs with a VPL set: they both distribute screen tiles
over clustered commodity PCs and decrease the required fillrate by using inter-
leaved sampling invented by Keller and Heidrich [48]: instead of computing the
contributions of every VPL for all pixels, interleaved sampling suggests distribut-
ing uncorrelated sub-sets of VPLs inside n×m sample patterns (see Chapters 5
and 6 for a detailed description of this technique). By using this approximation,
they easily achieved interactive and even real-time frame rates with a cluster of
about 20 PCs for both simple and complex scenes (counting millions triangles).

More recently, Bruce Walter et al. [99,100] proposed to use a binary light tree
containing all VPLs and a perceptual metric to adaptively partition the lights into
groups. This method introduces a small bias due to the ”cuts” introduced during
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the rendering process but offers a good trade-off between speed and quality.

In this thesis, we propose new systems using GPUs to render the contributions
of a VPL set: Chapters 6 and 5 present them in details. In Chapter 8, we will
also use a rendering system close to Instant Global Illumination.

4.5 Conclusion

In this chapter, we presented the roots of any Monte-Carlo renderer attempting at
tackling the light transport problem: the path integral formulation and the path
tracing sampling techniques. Of course, this is only a very small part of Monte-
Carlo rendering and more generally a very small part of all existing rendering
techniques. The book by Pharr and Humphreys [64] is an excellent and complete
introduction to physically based rendering. More directly related to Monte-Carlo
rendering, the Ph.D. thesis of Veach [85] is certainly today the most precise
and formalized work and will help any person wanting to design a Monte-Carlo
renderer.
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CHAPTER 5

Non-Interleaved Deferred Shading of

Interleaved Sample Patterns

In this chapter, we present a novel and fast technique to combine interleaved
sampling and deferred shading on a GPU. The goal is to offer a simple and fast
sampling scheme which aims at speeding up the gathering pass while using Instant
Radiosity and the set of Virtual Point Lights (VPLs) provided by this method
(see Chapter 4). In this chapter, we do not therefore propose a new sampling
scheme but only an efficient implementation of the final pass of the algorithm.
For new ways to sample VPLs, one may refer to Chapters 7 and 8.

The core idea of the method is quite simple. Interleaved sample patterns are
computed in a non-interleaved deferred shading process. The geometric buffer
(G-buffer) which contains all of the pixel information is actually split into several
separate and distinct sub-buffers. Formally, the texels inside a n × m regular
pattern are dispatched over different regions of the screen, the separate sub-
buffers. Hence, texel (x, y) will go to texel (x/n, y/m) belonging to sub-buffer
(i, j) with i = x mod n and j = y mod m. To achieve such a result in
a fast way, a massive two-pass swizzling copy is used to convert between these
two buffer organizations. Once split, the sub-buffers can then be accessed to
perform any fragment operation as it is done with a standard deferred shading
rendering pipeline. By combining interleaved sampling and deferred shading,
real time rendering of global illumination effects can be therefore easily achieved.
Instead of evaluating each light contribution on the whole geometric buffer, each
shading computation is coherently restricted to a smaller subset fragments using
the sub-buffers. Therefore, each screen pixel in a regular n × m pattern will
have its own small set of light contributions. Doing so, the consumed fillrate
is considerably decreased and the provided rendering quality remains close to
the quality obtained with a non-interleaved approach. The implementation of
this rendering pipeline is finally straightforward and it can be easily integrated
in any existing real-time rendering package already using deferred shading. As
an application of this technique, we propose to efficiently handle a set of virtual
point lights and therefore to deal with indirect illumination effects. Figure 5.1
presents some results obtained with the approach.

The chapter is organized as follows. Section 5.1 sums up the related tech-
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niques, deferred shading and interleaved sampling. Section 5.2 presents our core
technique i.e. the buffer splitting strategy used to perform interleaved sampling
and all the following shading operations. Section 5.3 shows how the standard
deferred shading rendering pipeline can be greatly accelerated by combining it
with the buffer splitting technique. Sections 5.4 and 5.5 are devoted to the results
obtained for every step of the pipeline and two different kinds of applications. A
conclusion is finally given in Section 5.6.

(a) (b)

Figure 5.1: The Indirect Lighting Impact. (a) presents a snapshot of
Q3tourney2 (courtesy of Id Software) with direct lighting only (two point light
sources). The screen resolution is 1024 × 768. (b) The same scene with 512
secondary point light sources. Using interleaved deferred shading, the scene is
rendered at 17 f/s on a GeForce 6800 GT and 33 f/s on a NVidia GeForce 7800
GT.

5.1 Overview of Related Techniques

The method proposed in this chapter deals with two pre-existing techniques:
interleaved sampling and deferred shading. We present them in details in this
section.

5.1.1 Deferred Shading

The first technique we use here is deferred shading. Deferred shading first in-
troduced by Deering et al. [16] then developed by Saito and Takahashi [71] sug-
gests storing the geometric and material information in buffers (generally called
”G-buffer”) and reusing them to perform the lighting computations. It greatly
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simplifies the rendering pipeline and it also prevents the geometry from being
reprojected each time a shading pass is performed.

5.1.2 Interleaved Sampling

The second technique we use is interleaved sampling. Since Cook et al. [13]
[12] presented several Monte-Carlo strategies using camera path samples and
incoherent sampling from one pixel to the other, many sampling methods have
been proposed. Recently, Keller and Heidrich presented a simple interleaved
sampling strategy [48] quite suitable to graphics hardware. As shown by Figure

(a) Standard Sampling (b) Interleaved Sampling

Figure 5.2: Standard and Interleaved Samplings. (a) presents a regular sam-
ple pattern typically used with accumulation buffers while (b) shows an example
of 2× 2 interleaved sample pattern.

5.2, interleaved sample pattern families are an extension of regular sample pattern
ones. Indeed, instead of sampling the same random variable families for each
pixel, the interleaved sampling technique proposes to sample these families across
n×m pixels. We may also say that interleaved samples are taken from a number of
independent regular grids which are then merged into a single sampling pattern.
The samples of all regular grids are thus interleaved such that in the final high-
quality image, adjacent pixels are not correlated. In a sense, interleaved sampling
is a trade-off between completely uncorrelated sample sets as used by Cook et al.
with distributed ray tracing and completely correlated sample set as used with
accumulation buffers.

This sampling technique was successfully used by Ingo Wald et al. to perform
interactive global illumination [97]. First, the whole incoming radiance field is
replaced and represented by a set of hemispherical virtual point lights (commonly
called VPLs) computed with the Instant Radiosity algorithm [47]. Then, all visi-
bility requests are computed with an efficient and parallelized raytracer [92] [98].
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To perform the integration with limited computation capabilities, the VPL con-
tributions are interleaved. Therefore, not every pixel computes every lighting
sample since each pixel in a regular pattern (3× 3 for example) uses a different
light sample set. The VPL contributions are then filtered using a discontinuity
buffer. With a cluster of commodity computers, they achieved interactive frame
rates on highly complex scenes. Unfortunately, raytracing is not currently sup-
ported by specific graphics hardware and even if significant advances were recently
achieved in this domain [72] [81], commodity ”RPUs” are not currently available.
For these reasons, we propose to efficiently combine interleaved sampling and
deferred shading by using today GPUs.

5.2 GPU-friendly Interleaved Sampling

The goal of this section is to limit computations to separate and distinct frag-
ment subsets. In a standard deferred shading application, since a light source will
illuminate all screen pixels, a large fillrate will be consumed if many light sources
are present in the scene. With interleaved sampling and a n × m interleaved
pattern, each pixel inside a n × m rectangle will have its own set of light con-
tributions and no correlation between adjacent pixels occurs. By exploiting the
coherence of neighbor pixels and blending their irradiance, the rendering quality
can therefore remain close to the quality provided by non-interleaved methods
with a performance equivalent to the performance obtained with a sub-sampling
technique. This section introduces the shortcomings of several naive ideas to per-
form interleaved sampling and also presents a more GPU-friendly approach. To
compare all the approaches, we will assume that a geometric buffer containing
the normal, the position and the material information of each pixel has been first
created and stored.

5.2.1 Naive Approaches

The obvious way to accomplish interleaved sampling is to render n ×m passes
by using a stencil buffer for each of them so that only one pixel in each n ×m
cell should be rendered. This approach was tested and as shown in Table 5.1, it
gave very poor results. Indeed, even if early fragment culling is activated, the
incoherence of the input data prevents the GPU from being efficient. Several
variants were also explored. First, stencil tests were replaced by depth tests
in order to exploit early-z culling capabilities. However, as the hierarchical Z-
buffer algorithm [28] commonly used by the GPUs also requires the coherence
of the depth data, the method was inefficient too. We secondly tested dynamic
branching but the incoherence of the data once again caused bad results. We
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4× 4 2× 2
No Interleaving 75 ms 75 ms
Stencil Culling 73 ms 72 ms
Depth Culling 72 ms 74 ms
Dynamic Branching 78 ms 82 ms

Table 5.1: Time to Accumulate 16 Point Light Contributions. The
G-buffer resolution is equal to 1024 × 1024. Stencil or depth culling and dy-
namic branching give very poor results. The incoherence of the data inside a
2× 2 or 4× 4 pattern strongly limits the performance.

finally tried to directly create the tiled and separate sub-buffers presented in
Figure 5.4.c by accessing the G-buffer data with an indirection during every
shading pass. Since texture accesses are very incoherent, the application becomes
utterly bound by the memory latency and considerably slows down. These failures
motivated more sophisticated techniques.

5.2.2 One-Pass G-Buffer Splitting

To provide the coherence needed by the GPU, explicitly splitting the G-buffer G
into n×m smaller tiled sub-buffers Gi,j seems a good idea since operations for each
light source can be performed on contiguous groups of pixels. To understand this
simple concept, Figure 5.4.b gives an example of a split normal buffer. Hence,
texel (x, y) from G goes to texel (x/n, y/m) belonging to sub-buffer Gi, j with
i = x mod n and j = y mod m. The split can be done in a single pass with
a specific fragment program. A look-up texture is first precomputed and used to
move a texel of the initial G-buffer to the associated texel of the split G-buffer.
Using one pass to split the buffer is unfortunately slow since memory accesses
remain strongly incoherent during the splitting pass. Fortunately, the approach
can be easily accelerated.

5.2.3 Two-Pass G-Buffer Splitting

The memory organization on GPUs requires special care. Indeed, like CPUs,
GPUs are all the more efficient that memory and cache accesses are coherent.
To provide coherence during any mapping operation, the textures are 2D block
allocated by the graphics card drivers. It motivated a coherent two-pass approach.

Block Splitting. The memory and cache access incoherence during the one-
pass splitting is mainly caused by the size of the manipulated data. A simple
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idea is therefore to limit splitting operations to small 2D blocks to enhance data
locality. The initial G-buffer G is thus subdivided into p×q blocks and each block
is split into n×m separate sub-blocks. If the blocks are small enough, memory
accesses remain coherent during the pass. After this pass, each sub-buffer is sub-
divided into p× q sub-blocks spread across the whole buffer as shown by Figure
5.3.c.

Block Translation. To rebuild each sub-buffer, another pass performs the trans-
lation of the interleaved sub-blocks (See Figure 5.3.c and 5.3.d). Once again, the
memory accesses remain coherent since entire blocks are moved.

C

B

G−buffer

A

D

(a) (b)

BB B

B5B3B1

D

1

0 D D4

3 5

C

C C C

C C

0

0 2

42

0

1 3

2 4

5

C

C

DB

C

DB

C

DB

C

B
1 1

2 2

2

3

3

3

3

4 4

4 4

5 5

5 5

C

D0

0 0

B0

4

531

D D D D0B1 D

A

A

A A

AA

A

A

A A

A A22

2

(c) (d)

Figure 5.3: Two-Pass G-Buffer Splitting. The desired interleaved pattern is
3×2. (a) presents the initial G-buffer. (b) The G-buffer is subdivided in 4 (2×2)
blocks. The interleaved pattern size is 3 × 2. (c) shows the G-buffer after the
block splitting. As the interleaved pattern is 3 × 2, each block has been split in
6 (3 × 2) sub-blocks. The wanted sub-buffers (AiBiCiDi) are therefore spread
across the whole buffer. (d) shows how the sub-buffers (AiBiCiDi) are retrieved
by the block translation.

As shown in Section 5.4, this approach gives satisfactory results. In most
of the cases, performing block manipulations is much more efficient than the
one-pass naive approach.
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5.2.4 Buffer Gathering

Once the shading operations have been achieved (See Section 5.3.3), the inter-
leaved pattern is reconstructed by gathering the sub-buffers. This pass is the
opposite of the buffer splitting one (see Figure 5.4.d) and for the same reasons,
it is performed in two passes, the block translation pass and the block gathering
one.

With the buffer splitting approach, uncorrelated light contributions or more
generally uncorrelated computations can be made for nearby pixels in a way
as generic as the one proposed by a standard deferred shading approach. In
the next sections, we will show that computing and accumulating hundreds of
light contributions is now possible with a decent framerate and a good rendering
quality by combining buffer splitting with deferred shading and fast filtering
techniques.

5.3 Non-Interleaved Deferred Shading of Interleaved Sam-

ple Patterns

We now present an extension of deferred shading using the buffer splitting /
gathering techniques. Instead of performing the shading operations on the whole
G-buffer, they are restricted to low-resolution tiled sub-buffers. In comparison
with standard deferred shading, three passes are added. The first one splits
the G-buffer in several sub-buffers. The second one reconstructs the interleaved
sampling pattern after the shading passes and the third one exploits the spatial
coherence of neighbor pixels to blend uncorrelated lighting contributions. There-
fore, the rendering pipeline is now decomposed into 5 steps all presented in Figure
5.4.

5.3.1 G-Buffer Creation (BC)

Before the shading operations, three float buffers (the G-buffer) which respec-
tively contain positions, normals and colors are first created (see Figure 5.4.a).
The material information such as material identifiers is also packed in the re-
maining components. For bandwidth reasons, precision is limited to 16 bits and
the scene is therefore bounded.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5.4: Non-Interleaved Deferred Shading of Interleaved Sample
Patterns. (a) G-buffer Creation. (b) G-buffer Splitting. The G-buffer is sub-
divided into n × m separate smaller sub-buffers. Each sub-buffer contains a
distinct texel subset. (c) Different shading computations are performed on ev-
ery sub-buffer. (d) G-buffer Gathering. The irradiance buffer is computed by
gathering all the irradiance sub-buffers. The resulting interleaved pattern may
be noticed. (e) A discontinuity buffer is computed. (f) A box blur is applied on
the irradiance buffer and the discontinuity buffer is used to prevent non-neighbor
texels from being filtered. (g) The self-colors of the objects and the irradiance
buffer are finally blended.
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5.3.2 G-buffer Splitting (BS)

The initial G-buffer is split into separate sub-buffers. Two look-up textures are
first computed. The first one stores the block splitting function presented in
Section 5.3.2 while the second one stores the block translation function. Then,
two fragment programs successively execute the two functions. Once it is done,
the sub-buffers are tiled in a buffer with the same size than the initial one (see
Figure 5.4.b).

5.3.3 Shading Computations (SSM / SNSM)

Different lighting contributions are computed for each sub-buffer. Any operation
possible with deferred shading is still available. Indeed, as the former G-buffer is
explicitly split into smaller sub-buffers, any deferred shader can also be used by
focusing the viewport or drawing a quad on a given sub-buffer. A tile of small
irradiance sub-buffers is then obtained (see Figure 5.4.c). It may be noticed that
the visibility of hemispherical (resp. spherical) point light sources is solved by
unrolling the hemicube (resp. the cube) in a standard shadow map [103] and
reindexing it with a small cube map as described in [50]. Depending on the
application (see Section 5.5), two shading techniques can finally be used: SSM
(Shading with a Shadow Map) is a shading pass with a shadow map reprojection
and SNSM (Shading with No Shadow Map) is a shading pass with no shadow
map reprojection (visibility is ignored). In both cases, glossy and diffuse BRDFs
are handled.

5.3.4 Buffer Gathering (BG)

Once all light contributions have been accumulated, the irradiance buffer is rebuilt
by two fragment programs which successively perform the two passes of the buffer
gathering technique described in Section 5.2.4.

5.3.5 Filtering (F)

To maintain interactive or real time rendering, few light contributions per pixel
can be computed. If a filter is applied on continuous zones of the screen, the
geometric coherence of the scene can be exploited to virtually compute many
light contributions per pixel.

Discontinuity Buffering (DB). A discontinuity buffer is first computed. Two
discontinuity thresholds (respectively on normals and positions) are initially fixed.
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Then, a fragment program reads the normal and the position buffers and decides
if the current pixel is on a discontinuity or not by evaluating an arbitrary mea-
sure between the current fragment (x0, y0) and its three ”positive” neighbors
(x0 +1, y0), (x0, y0 +1) and (x0 +1, y0 +1). Similar techniques are described with
more details by Simmons and Séquin in [74].

Box (Uniform) Blurring (B). The discontinuity buffer is used to apply a
two-pass separable box blur on continuous zones of the screen. Two cases can
occur.

• The current fragment (x0, y0) is not on a discontinuity. The +x (resp. +y)
and -x (resp -y) directions are explored one after the other. Neighbor pixels
are blended to the current pixel until a discontinuity is encountered in the
given direction or the filter kernel size is reached.

• The current fragment (x0, y0) is on a discontinuity. Since either (x0 + 1, y0)
or (x0, y0 + 1) or (x0 + 1, y0 + 1) is not similar to (x0, y0), only the -x (resp.
-y) direction is explored. A neighbor pixel is once again blended to the
current pixel until a discontinuity is encountered.

+X

P

+X

P
(b) (a)

Figure 5.5: Box Blur. (a) The standard approach. For a given direction, all
texture accesses are made at texel center. (b) With hardware-supported bilinear
filtering. All texture accesses are made between two texels. Bilinear filtering
blends their contributions. One texture access is therefore sufficient for two texels.

To speed up the filtering pass, we modified the standard box blur by using
hardware-supported filtering (see Figure 5.5). Instead of fetching data at the
center of each texel, a 0.5 bias is applied and combined with hardware-supported
bilinear filtering. As extra artifacts can occur on discontinuities with the fast
filtering approach, the accesses to the discontinuity buffer are also modified by
activating the 0.5 bias and the bilinear filtering. The texel contributions are then
ignored as soon as the discontinuity texel value is greater than 0. In comparison
with the first approach, this criteria is sufficient.

To prevent object colors from being filtered, the self-colors of the objects
are blended only after applying the filter. As shown in Section 5.4, combining
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discontinuity buffering and interleaved sampling provides high quality filters with
very few visible artifacts.

5.3.6 Remarks

Two important remarks may be made. First, the discontinuity buffer is already
computed by many deferred shading engines since it helps to perform antialiasing.
Secondly, the technique presented in this section can also be considered as a
Level-Of-Detail algorithm. If a 2n × 2m (low details) interleaved pattern has
been computed, 2i × 2j interleaved patterns (higher details with i ≤ n and j ≤
m) can also be performed by clustering several sub-buffers. Depending on the
application, it is therefore easy to interleave few direct point lights and many
secondary ones with only one interleaved pattern.

5.4 Results

We present in this section the results obtained for every rendering pass and the
impact of all technical choices presented in the previous sections.

5.4.1 Buffer Splitting Results

We analyzed the performance of the buffer splitting approach with or without
block manipulations. Several sizes of blocks were tested. Figure 5.6 presents
some results obtained on a GeForce 6800 GT. The performance greatly varies
with the size of the blocks and the interleaving sampling pattern chosen. For
a 2 × 2 interleaved sampling, buffer splitting with 32 × 32 blocks is the most
efficient method (only 5% faster than the naive approach). For a 4×4 interleaved
sampling, buffer splitting with 16 × 16 blocks is 70% faster than the one-pass
approach. Other tests were made. For larger resolutions such as 1280×1024 and
large interleaved sampling patterns, a finely tuned two-pass approach is more
than three times as fast as the naive one. Unfortunately, the choice of the block
size strongly depends on the organization of the memory and caches on the card.
That is why the optimal configuration must often be empirically chosen for each
screen resolution and each regular pattern size.

We may finally notice that a recent work using our technique (i.e. buffer
splitting and buffer gathering) with GeForce 8 GPUs [56] shows that a direct
one-pass splitting was more efficient than the two-pass one. Indeed, the advances
recently achieved with graphics hardware make incoherent texture accesses a bit
less sensitive to cache problems.

67



Figure 5.6: Buffer Splitting Results. The size of the G-buffer is equal to
1024 × 1024. The x axis gives the size of the blocks and the y axis gives the
computation time in milliseconds. Different interleaved sampling patterns are
presented (2× 2, 4× 4 and 8× 8)

5.4.2 Shading Results

The shading performance depends on the type of applications but it is identical to
the one obtained with standard deferred shading methods. All details are given
in Section 5.5.

5.4.3 Buffer Gathering Results

The performance is quite similar to the one presented in Section 5.4.1 but it may
be noticed that only one three-component 16 bit float buffer has to be gathered
since only the irradiance buffer is rebuilt. This pass is therefore about 40% faster
than the splitting one.

5.4.4 Discontinuity Buffering and Filtering Results

Discontinuity Buffer. Computing discontinuities in a fragment program does
not strongly limit our application since it is much less expensive than shading
computations. Nevertheless, handling discontinuities during the box blurring is
a bit more difficult and expensive.

Filtering. To stop blending texels beyond a discontinuity, accesses to the irra-
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Normal box Fast box
Blur Blur

7× 7 16.9 ms 10.9 ms
11× 11 29.7 ms 16.9 ms
17× 17 51.8 ms 32.7 ms

Table 5.2: Filtering Results. Times to perform a box blur on the picture. Two
techniques are presented, with and without hardware supported bilinear filtering.
The screen resolution is equal to 1280× 1024. The GPU used for the tests is a
NVidia GeForce 6800GT.

diance buffer are sequentially done along a direction. As soon as a discontinuity
is encountered, a flag is set to 0 to ignore the next texel contributions. It may be
noticed that dynamic branching can also be used to stop blending texels beyond
a discontinuity. This approach was tested and does not provide any significant
performance enhancement (because the blurring operation is most of the time
performed on the whole kernel).

Table 5.2 shows results obtained with both standard and hardware-supported
approaches. Using float buffer filtering capabilities provides a speed-up equal to
60 % without visible differences.

Quality. Figure 5.7 presents some results obtained with sub-sampling and in-
terleaved sampling methods (self-colors of objects are not blended). Even with
high-variance estimators due to glossy reflections, interleaved sampling combined
with a discontinuity buffer and our fast box blur provides good results. Sub-
sampling does not handle high-frequencies details and it is much more difficult to
deal with discontinuities. As shown in picture 5.8, details brought by a normal
map or a finely tessellated model disappear with sub-sampling whereas inter-
leaved sampling and fast box filtering still provide satisfactory results.

5.5 Applications

After analyzing each computation pass of the algorithm, we now present the
overall performance obtained with two different kinds of applications. For both
applications, a set of virtual point light sources is first generated with the sam-
pling strategy provided by Instant Radiosity [47]. For more details about this
technique, one may refer to Chapter 4. We also present two effective sampling
techniques in Chapter 7 and 8.
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BC BS SSM SNSM BG B
6800GT 10.9 10.7 4.9 4.7 4.5 7.3
7800GT 5.2 5.8 2.7 2.6 2.3 3.9

Table 5.3: Overview of the Performance. The results are given in milliseconds
per million of fragments. Times for the G-buffer creation pass are given with
a scene of Quake 3 (courtesy of Id Software) counting 250000 triangles. All
acronyms are given in Section 5.3. The interleaved pattern size is 4× 4 and the
kernel size of the box filter is 5× 5.

5.5.1 Implementation Details

To handle visibility problems, several classical algorithms were implemented. To
speed up the visibility requests, the geometry is first segmented with a kd-tree.
Then, frustum culling is performed to eliminate the unseen leaves of the tree. A
PVS or Potential Visible Set is finally computed for the whole tree to cull leaves
not seen by a given leaf. The rasterization code was written using the OpenGL
2.0 API and the ray tracing requests are done by using a finely tuned kd-tree.

5.5.2 Fully Interactive Applications

Using our extension of the deferred shading pipeline with real time applications
(like video games) is straightforward but requires specific approximations. An
interactive application needs a decent frame rate and computing all visibility
requests for every point light is very expensive. The first approximation which
has to be done is thus to ignore visibility for secondary light sources. Secondly,
the variance is all the larger that the number of bounces increases. To efficiently
handle this problem, only one-bounce indirect illumination will be taken into
account. It is generally visually sufficient.

Table 5.3 sums up the computation times of all passes with two GPUs of dif-
ferent generations, a NVidia GeForce 6800 GT and a NVidia GeForce 7800 GT.
With standard deferred shading, BS, BG and F passes are not executed. Only
one or several shading passes are thus performed. It is therefore easy to analyze
the extra costs due to interleaved sampling. For a NVidia 6800GT, the extra time
taken by the interleaved sampling extension for one million of pixels is equal to
22.5 ms. It is roughly equivalent to 4.5 shading passes. Therefore, if interleaved
sampling saves more than 4.5 million shading computations, it becomes compet-
itive. For example, with our implementation and a 4 × 4 interleaved pattern,
computing the contributions of 16 or more lights is already more efficient with
interleaved deferred shading. Furthermore, our approach seems to be adapted
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IS no IS speed-up
Q3dm11 36 f/s 1.2 f/s ×31
Dragon in Q3t1 29 f/s 1.2 f/s ×25
Buddha in Q3dm12 36 f/s 1.2 f/s ×30

Table 5.4: Performance with or without Interleaved Sampling on a 7800
GT. The screen resolution is 1024× 768. The interleaved pattern size is 8 × 6.
480 point light sources are accumulated. With standard deferred shading, the
situation is intractable. If it is combined with interleaved sampling, real time
frame rate is achieved without too noticeable artifacts.

to current graphics hardware improvements. With roughly the same memory
bandwidth, the GeForce 7800 GT is roughly twice faster than the GeForce 6800
GT. Therefore, even with large memory manipulations, the memory latency and
bandwidth do not strongly limit our approach and block splitting remains ef-
ficient. Table 5.4 gives frame rates obtained with typical scenes used in video
games. Without interleaved sampling, real time frame rate cannot be achieved.
By extending the rendering pipeline with buffer splitting, the performance is im-
proved by more than an order of magnitude without major visible artifacts as
shown in Figure 5.9.

5.5.3 Physically Based Rendering

Physically based rendering requires unbiased approaches. The Instant Radiosity
sampling strategy first gives a set of virtual point lights (VPLs). For every VPL,
a high quality shadow map is computed. It is then reprojected into a given sub-
buffer. As visibility is solved for every VPL, the bottleneck of the algorithm can
be either the shading computations or the shadow map computations. Table 5.5
gives numerical results obtained for scenes with different geometric complexities.
Hence, due to their linear algorithmic complexities, the shadow maps become very
expensive for large scenes. With interleaved sampling, the shading problem can be
however efficiently handled. If the point of view and the scene do not change, the
G-buffer (split or not) does not have to be recomputed. Therefore, if many VPL
contributions are accumulated, the G-buffer creation, the manipulation passes
and the filters become free. That is why our approach remains most of the time
much faster than deferred shading with a speed-up roughly varying from the
interleaved pattern size like 22, 42 or 82 (for very simple scenes) to 1 (for very
large scenes). Figure 5.10 gives several images obtained with this approach.
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Shadow Map No IS 2 x 2 IS Speed Up

Office 2.2 ms 2.4 s 0.7 s ×3.4
Theater 4 ms 2.8 s 1.0 s ×2.8
Conference 8 ms 3.8 s 2.2 s ×1.7
Cruiser 15 ms 5.9 s 4.0 s ×1.5

Table 5.5: Times to Obtain less than 1% RMS Error with a NVidia
GeForce 6800 GT. The office contains 31000 triangles, the Candlestick theater
100000 triangles, the conference room 228000 triangles and the cruiser one million
triangles.

5.6 Conclusion

In this chapter, we presented an efficient and new way to perform interleaved
sampling with today’s graphics hardware and a novel and conservative extension
of deferred shading. Instead of performing the shading computations with the
whole geometric buffer, they are made with small, separate and interleaved sub-
buffers. Doing so, the necessary fillrate is strongly limited and hundreds of light
sources can be accumulated in real time. By exploiting the pixel coherence, the
rendering quality remains very close to the quality obtained with a brute-force
approach. Furthermore, all operations available with deferred shading remain
available with our method and the algorithm can easily be integrated in any
existing real-time rendering package already using a deferred shading technique.

The major step in improving the method is certainly to solve the visibility
problems in a better way. Shadow maps like shadow volumes have a linear com-
plexity in relation to the number of triangles. An interesting method would be to
perform the shadowing computations by ignoring the visibility during the shad-
ing passes but using a set of positive and negative virtual point lights. Recently,
Laine et al. proposed in [56] to use a shadow map cache system and a clever
flickering reduction technique to make the combination of the buffer splitting
approach and the use of VPLs physically based and real-time.
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(a) (b)

(c) (d)

Figure 5.7: Rendering Quality. (a) the 1024× 1024 reference image computed
with 512 point lights and no interleaved sampling. (b) close-up on a lamp with a
simple sub-sampling approach. (c) 4× 4 interleaved sampling with no filter. (d)
4× 4 interleaved sampling + filtering
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(a) (b)

Figure 5.8: The surface details brought by a normal map are conserved with
interleaved sampling and our fast box blur as shown in (a). They disappear with
sub-sampling as shown in (b).
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(a.1) direct only (a.2) direct + indirect
6800 GT: 35 f/s — 7800 GT: 69 f/s 6800 GT: 19 f/s — 7800 GT: 36 f/s

(b.1) direct only (b.2) direct + indirect
6800 GT: 32 f/s — 7800 GT: 64 f/s 6800 GT: 15 f/s — 7800 GT: 29 f/s

(c.1) direct only (c.2) direct + indirect
6800 GT: 31 f/s — 7800 GT: 58 f/s 6800 GT: 15 f/s — 7800 GT: 29 f/s

Figure 5.9: Results with Fully Interactive Applications. The screen resolution

is 1024 × 768. The interleaved pattern size is 8 × 6. Visibility for secondary light

sources is ignored. All scenes count 480 secondary VPLs. Frame rates obtained for

direct contributions only (with a standard deferred shading method) are also given.

(a) Q3dm11 (about 80 000 triangles) lit by one hemispherical point light source. (b)

Buddha in Q3dm12 lit by one hemispherical point light source. About 200 000 triangles

are rendered. (c) Dragon in Q3tourney1 lit by two hemispherical point light sources.

About 150 000 triangles are rendered in this scene.
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(a) - IS: 0.7 s / No IS: 2.4 s (b) - IS: 1.0 s / No IS: 2.8 s

(c) - IS: 2.2 s / No IS: 3.8 s (d) - IS: 4.0 s / No IS: 5.9 s

Figure 5.10: Physically Based Results. Pictures and convergence times ob-
tained with less than 1% RMS error. Results are given with or without interleaved
sampling. The screen resolution is 1280×1024 and the interleaved sampling pat-
tern is 2 × 2. (The theoretical maximum speed-up is therefore equal to 4) (a)
The office. 35 000 triangles are rendered. (b) The Candlestick Theater with 100
000 triangles. (c) The conference room. 200 000 triangles are rendered. (d) The
cruiser. One million triangles are displayed.
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CHAPTER 6

Interleaved Deferred Shading

In this chapter, we present a new approach to combine deferred shading and inter-
leaved sampling on modern graphics hardware. The goal is once again to propose
a rendering technique using GPUs which aims at speeding up the gathering pass
while using Instant Radiosity Algorithm (see Section 4.4 for more details about
the method).

The main idea is simply to speed up any rendering application requiring an im-
portant use of sampling strategies by computing uncorrelated samples for nearby
pixels. To achieve such a result, we simply interleave the sample information in
look-up textures and we use these textures during every deferred shading pass.
For example, we can compute soft shadows by first storing different sample in-
formation inside a n×m texture and then read this texture to build a different
subset of shading results for each pixel inside a n × m rectangle. To illustrate
the efficiency of the method, we propose to speed up two common applications
in video games and interactive applications, both using a set of virtual point
lights. The first one proposes to use a set of primary virtual point light sources
to compute soft shadows due to area light sources in real time while the second
one consists in real time rendering of global illumination effects for completely
dynamic scenes. For these two applications, our method remains very simple to
implement, considerably decreases the consumed fill rate and speeds up the whole
rendering process without any noticeable artifacts.

This chapter is organized as follows. Section 6.1 presents our core technique
i.e. the generic way to speed up a rendering technique by combining interleaved
sampling and deferred shading. Section 6.2 shows how the method can be applied
to speed up the generation of approximate soft shadows. Section 6.3 is devoted
to the simulation of global illumination effects. A conclusion is finally given in
Section 6.4.

6.1 The Interleaved Deferred Shading Technique

Like the previous chapter, the two techniques upon which we base the strategies
presented here are interleaved sampling [48] and deferred shading [71]. One may
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(a) (b)

(c) (d)

Figure 6.1: Two Different Applications using Interleaved Deferred Shad-
ing.(a) and (b) show how interleaved deferred shading can speed up the rendering
of soft shadows. Thanks to the method, a speed up of 3 and a 35 f/s frame rate
can be easily achieved with 256 samples per pixel. (c) and (d) present the results
obtained with interleaved deferred shading and a Monte-Carlo global illumination
algorithm. The indirect incoming radiance field is first replaced by 500 virtual
point light sources. Interleaved deferred shading is then used to display a com-
pletely dynamic environment which is both directly and indirectly lit at 40 f/s.
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therefore refer to Chapter 5 of this Ph.D. thesis. The goal of our technique is
to limit the fill rate consumed by a rendering application. We can for example
imagine a Monte-Carlo soft shadow algorithm where 256 samples per pixel are
taken to compute the penumbra due to a large light source. To limit the compu-
tation requirements, sub-sampling is a common technique: instead of achieving
the estimations for all pixels, the calculations can be made for one pixel in 16.
Unfortunately, sub-sampling leads to visible artifacts. Conversely, interleaved
sampling will propose to take 16 samples for all pixels in the screen so that every
pixel will have its sample set and filtering the picture will be much easier.

Interleaved deferred shading directly computes interleaved samples without
any buffer splitting / gathering passes. The principle is extremely simple since it
consists in storing and interleaving the information needed by the shading passes
in look-up textures. Therefore, for a n×m interleaved sample pattern:

Step 1. Store the needed information in one or several n×m textures;

Step 2. Perform the shading passes by reading the information textures and
repeating them across the screen;

Step 3. With the G-buffer, compute a discontinuity buffer and use it to fil-
ter the results from Step 2.

The technique is less flexible than the buffer splitting one: interleaving several
shadow maps can be for instance difficult since it would require to create a large
texture containing all the shadow maps and another one containing the trans-
formation data (such as the Model View / Projection Matrix). Nevertheless, for
many applications, it is much simpler, faster and it gives the same results in term
of quality.

6.2 Application to Soft Shadows

The first application of interleaved deferred shading is a simple method to gen-
erate approximate soft shadows with only one shadow map per light source. For
more details about shadow mapping, one may refer to [103].

6.2.1 Principle of the Technique

Our algorithm aims at accelerating Fernando’s technique, Percentage Closer Soft
Shadows [23], which performs an adaptive percentage closer filter during the
shadow mapping pass. The initial Fernando’s algorithm is a three-step approach.
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Normals Positions Colors

Screen

Interleaved Look−up Textures

G−buffer

Shading

Figure 6.2: Interleaved Deferred Shading. Interleaved deferred shading first
consists in storing uncorrelated sample information inside small n×m textures.
Then, these samples and the G-buffer are used to perform the shading passes.
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Scene

Figure 6.3: Blocker Search Step. During the blocker step, we average depth
values which are smaller than the light to receiver depth. The search area is
shown in black.

Step 1 - Compute a shadow map. Compute one shadow map for an area
light source. The projection center is located at the center of the light;

Step 2 - Blocker Search and Penumbra Estimation. Estimate the blocker
distance. Search in the shadow map and average the depths that are closer to
the point being shaded (see Figure 6.3). Then, using a rough but common par-
allel plane approximation, evaluate the penumbra width thanks to the estimated
blocker distance. Size penumbra wp is simply given by:

wp = (dreceiver − dblocker) · wlight/dblocker

Step 3 - Filtering. Perform a standard Percentage Closer Filtering or PCF
step (see [67] for more details) using a kernel size proportional to the penumbra
estimate from Step 2.

This quite simple technique provides non-physically based soft shadows but visu-
ally satisfactory results. Furthermore, even if it is a brute force approach and the
resulting frame rate may be low, it is a perfect candidate for interleaved deferred
shading since it relies heavily on an important use of sampling strategies.
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6.2.2 Percentage Closer Soft Shadows with Interleaved Deferred Shad-
ing

The technique is accelerated in a direct way by distributing all the samples inside
a n×m sample pattern. To achieve such a result, we just compute a n×m× l 3D
sample texture which stores the sample information needed by each pixel inside
any n×m rectangle. By using this texture, we therefore have l samples per pixel
and all pixels inside any n×m rectangle will have their own sets of uncorrelated
estimators.

We now have a modified soft shadow algorithm.

Step 0 - Discontinuity Buffer. Compute a discontinuity buffer with the nor-
mal and depth information given by the G-buffer;

Step 1 - Blocker Search and Penumbra Estimation. Estimate the penum-
bra size but only with a smaller sample number. To fetch the sample information
needed by pixel (xi, yi), read and use the l texels located at the positions going
from (xi mod n, yi mod m, 0) to (xi mod n, yi mod m, l− 1) from the 3D texture;

Step 2 - Penumbra Size Filtering. Filter the penumbra size buffer computed
in Step 1 with the discontinuity buffer. Details about discontinuity buffering and
fast and accurate filters have been presented in the previous chapter;

Step 3 - Shadow Buffer. Apply a standard PCF filter thanks to the penum-
bra size buffer computed in Step 2. Once again, use the 3D texture to fetch the
sample information so that only l samples are used per pixel;

Step 4 - Shadow Buffer Filtering. Filter the shadow buffer obtained in
Step 3 by using the discontinuity buffer.

Once the soft shadows have been computed, the shading passes can be executed
to compute the final image.

6.2.3 Results and Discussion

We implemented three versions of the technique using OpenGL 2.0.

• The first one directly uses the algorithm as described by Fernando;

• The second one is the implementation of the method described in Section
6.2.2;
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IDS Buffer Brute
Splitting Force

A Quake 3 map + 3 Quake 2 models 31 f/s 11 f/s 10 f/s

Table 6.1: Soft Shadows with several techniques on a NVIDIA 7800 GT.
The screen resolution is 1024 × 768. The interleaved pattern size is 4 × 4. 256
samples are used per pixel so that only 16 texture reads are performed with the
buffer splitting and the IDS techniques.

• The last one implements the buffer splitting approach. Therefore, we first
split the G-buffer and we estimate the blocker distance using only a subset
of the needed samples. Then, we gather the resulting sub-buffers, filter
them to estimate the blocker distance. We finally split the resulting buffer
and repeat the same process one more time to perform the PCF.

As shown by Table 6.1, interleaved deferred shading speeds up the application
by a factor of 3 whereas the buffer splitting only provides a 10% speed up. Indeed,
the application requires two different sampling steps so that the buffer splitting
method needs two extra buffer gathering / splitting passes. Moreover, the quality
is quite similar to that of the initial method (see Figure 6.4). Indeed, the dis-
continuity buffer prevents the colors from bleeding and all high-frequency details
provided by bump maps, height maps or a finely tessellated mesh are preserved
by decoupling the shading and the shadowing steps in several passes. One might
notice that the maximum theoretical speed up (equal in our example to 16) is
not achieved due to the overhead in our technique: interleaved deferred shading
requires to filter the results of the sampling passes two times and to compute the
discontinuity buffer and the G-buffer. Finally, the more physically-based methods
presented in [2], [29] and [30] may certainly be accelerated with our technique.
Even if they are not Monte-Carlo numerical schemes, it may be quite interesting
to reformulate the computations done as sampling strategies and therefore use
interleaved deferred shading.

6.3 Application to Global Illumination

The second application of interleaved deferred shading is a simple method to
generate global illumination effects in a real time application.
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(a) (b)

Figure 6.4: Quality Differences between the Brute Force and the In-
terleaved Deferred Shading Approaches. The achieved quality between the
two methods remains close: interleaved deferred shading is suitable for filtering
soft shadows.

6.3.1 Principle of the Technique

To efficiently perform global illumination effects with interleaved deferred shad-
ing, we first use the Instant Radiosity sampling strategy [47] to find a set of
virtual point lights (VPLs) replacing the indirect incoming radiance field. We
remind that a complete description of this sampling method can be found in
Chapter 4. As solving the visibility requests for every VPL is too expensive,
we simply ignore the occlusions between secondary VPLs and a pixel. Therefore,
only direct contributions are correctly handled with shadow maps. Finally, as the
variance gets larger as the number of bounces increases, only one-bounce indirect
illumination will be taken into account.

6.3.2 Instant Radiosity and Interleaved Deferred Shading

Combining interleaved deferred shading and Instant Radiosity is straightforward.
We simply store and interleave the VPL normals, positions and powers inside one
or more n × m textures. We then use them during the shading passes so that
pixel (x, y) will be illuminated by the VPLs located at (x mod n, y mod m).

6.3.3 Results and Discussion

We now analyze the performance of our implementation and compare it with sim-
ilar approaches. We implemented a complete rendering pipeline with the G-buffer
creation, the shadow map computations, the shading passes and a filter using a
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IDS Buffer Brute
Splitting Force

Quake 3 Map - ”Druel” (120K triangles) 44 f/s 36 f/s 1.2 f/s
Quake 3 Map - ”Gon” (30K triangles) 42 f/s 35 f/s 1.2 f/s

Table 6.2: Global Illumination Effects with different Techniques on a
NVIDIA 7800 GT. The screen resolution is 1024× 768. The interleaved pat-
tern size is 8×6. 480 point light sources are accumulated. As interleaved deferred
shading (IDS) does not require any massive copy between different buffer organi-
zations, it is more than 20% faster than the previous method. With no interleaved
sampling, the situation is intractable

discontinuity buffer. The visibility requests are finally performed through a soft-
ware ray tracer. As shown by Table 6.2, interleaved deferred shading is about
20% faster than deferred shading with buffer splitting since it does not require
any preprocessing or post-processing steps to reorganize the data. Furthermore,
the visual quality is strictly equivalent and the implementation is much easier.

Finally, the method can be used with many other typical implementations of
global illumination simulation. For example, Dachsbacher and Stamminger use
an alternative method to find relevant VPLs from an extended shadow map [15].
As they also use deferred shading, directly interleaving the secondary light sources
contributions can be quite appropriate to their technique and will provide a better
quality than sub-sampling does.

6.4 Conclusion

In this chapter, we presented an efficient and straightforward way to combine
interleaved sampling and deferred shading. The technique consists in storing
and interleaving the needed data in textures and using them during the shading
passes. We presented two typical rendering applications using it and showed how
they can be accelerated without noticeable artifacts. Finally, we believe that the
interleaved deferred shading technique can more generally offer a good trade-off
between quality and speed when the computing capabilities are insufficient.
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CHAPTER 7

Bidirectional Instant Radiosity

This chapter presents a new sampling strategy to achieve interactive global illumi-
nation on one commodity computer by proposing an efficient numerical stochastic
scheme which can be well adapted to a fast rendering algorithm.

In fact, we want to make Instant Radiosity (IR) [47] more robust and more
predictive. As presented in Chapter 4, Instant Radiosity proposes to sample a
set of virtual point light sources (VPLs) to describe the incoming radiance field
(this is the sampling pass) and to use it to illuminate the areas of the scene seen
by the camera (this is the gathering pass). As we want to provide an efficient
sampling strategy to handle difficult settings without sacrificing performance in
common cases, we developed an extension of Instant Radiosity in the same way
bidirectional path tracing is an extension of path or light tracing. Our idea is to
build several estimators and to efficiently combine them to find a set of virtual
point light sources which are relevant for the areas of the scene seen by the camera.
The resulting algorithm is faster than classical solutions to global illumination.
Using today graphics hardware, an interactive frame rate and the convergence
of the scheme can be easily obtained in scenes with many light sources, glossy
materials or difficult visibility problems. We may notice that this chapter does
not explicitly present efficient implementations of the gathering pass: one may
actually refer to the presentations of fast GPU techniques in Chapters 5 and 6.

The remainder of the chapter is organized as follows. Section 7.1 presents
an overview of the approach. Section 7.2 suggests in details the new sampling
strategies we chose to compute global illumination. Section 7.3 details the GPU
implementation of our method and all numerical issues which can be encountered.
Section 7.4 presents some results. A conclusion is finally given in Section 7.5.

7.1 Overview of the Approach

Bidirectional Instant Radiosity we present here is based on classical Monte-Carlo
rendering strategies. Its goal is to compute the measurement integral using
Monte-Carlo numerical schemes. Therefore, for sensor j in the scene, Bidirec-
tional Instant Radiosity aims at evaluating Equation 7.1 (as specified in Chapter
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4):

Ij =

∫

M×M
W (j)

e (x→x′)L(x→x′) G(x↔x′) dA(x) dA(x′)

=

∫

Ω

f (j)(x)dµ(x) (7.1)

Similarly to Instant Radiosity [47], Bidirectional Instant Radiosity proposes
to compute global illumination for diffuse or not-too-shiny materials using cor-
related random variables and factorized computations. Like Instant Radiosity,
our method will generate a path random variable Xs generated from either the
light sources or the camera. Then, if X0 a random variable defined on Mj (the
surface of sensor j) and X1 a set of points on the surface of the scene M (see
Figure 7.1.a):

Ij = E

[
f (j)({Xs,X1,X0})
p({Xs,X1,X0})

]

As {X1,X0} and Xs are independent:

p
[
{Xs,X1,X0}

]
= p(Xs)p [{X1,X0}]

As we show it in the next section, Bidirectional Instant Radiosity builds bidi-
rectional estimators and generates VPLs from the camera and the light sources
with a sampling / resampling strategy: a VPL distribution with a density almost
proportional to the power they bring to the camera is built. Actually, this kind
of approach is not new and similar techniques close to ours, commonly called
”importance-driven” sampling strategies, were already used in off-line renderers.
We present in Chapter 4 a discussion concerning importance-driven techniques
and why their applications to photon sampling are conceptually close to the vari-
ance reduction strategies applied to the generation of VPLs. Unfortunately, they
do not seem suitable for interactive rendering since many importons (i.e. the
particles generated from the camera) have to be generated and stored in a first
pass and costly density estimations must be performed for each bounce made by
the light paths. Finally, starting from a light source can be simply inappropriate
for specific difficult integration cases since a very high number of particles may
have to be generated before finding the relevant VPLs. This will be discussed
with more details in Section 7.4.
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7.2 Bidirectional Sampling of the VPLs

Inspired by the subsequent work achieved by Veach with path integration methods
(one may refer to Chapter 4 for more details), we extend Instant Radiosity in
the same way bidirectional path tracing is an extension of path or light tracing.
Instead of generating VPLs only from the light sources, we propose to generate
them from the camera, too. The goal is to provide an efficient sampling strategy
suitable for fast rendering engines as those proposed by Wald et al. (see Section
4.4.4) or those we present in Chapters 5 and 6.

7.2.1 Reverse Instant Radiosity

Only generating VPLs from the light sources is as arbitrary as only generating
paths from the camera or the lights. Indeed, one strategy can be better or worse
than the other according to the integrand: for example, finding caustics is most
of the time much easier with light tracing than with camera path tracing. That
is why we propose here an adjoint approach to Instant Radiosity: instead of sam-
pling VPLs only from the light sources, they are also generated from the camera.

Sampling Reverse VPLs. Our idea comes from a very simple observation.
The only points which can illuminate an area of the scene seen by the camera
are the points which can see this area. Therefore, the goal is to sample the VPL
locations x2 along the surface of the scene M to solve:

I ′
j =

∫

M×M×M
W (j)

e (x0→x1) L(x2→x1) fr(x2→x1→x0)

G(x0↔x1) G(x1↔x2) dA(x0) dA(x1) dA(x2) (7.2)

With a simple camera model (just a pinhole without lens), the VPLs can be
algorithmically found by randomly generating length 2 paths from the camera
(see Figure 7.1.b). The end of such a path gives the location of a VPL which can
bring light to the camera after one bounce. Therefore, we have a new and simple
sampling strategy which consists in finding the ending points of length 2 camera
paths. This set will be denoted Mr (where r stands for ”reverse”).

We may make an important remark: The density pc chosen to sample Mc

can be arbitrarily determined as long as we are sure that for all subsets Λ ∈ Mc:

∫

Λ

pc(x)dA(x) 6= 0 if Λ brings some energy to the camera (7.3)

The simplest sampler to find reverse VPLs may consist in:
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• Uniformly sampling the screen (the uniform distribution is not a necessary
condition and other ones can be chosen as long as the condition given by
Equation 7.3 is satisfied);

• Tracing the associated ray and find the nearest intersection along the ray;

• Sampling a new direction ω from the intersected surface with density p(ω)
(which generally depends on the nature of the surface);

• Finding the nearest intersection along direction ω and considering the re-
sulting point as a reverse VPL.

Once a VPL has been sampled, its properties which are needed to perform the
gathering pass have to be computed.

Estimation of VPL Density p(x2). Each VPL is the end of a length 2 cam-
era path x. As x is a homogeneous Markov chain, its density p is expressed as
p(x) = p(x1)p(x1→x2) where x1 is a point directly visible by the camera and
x2 is the location of the VPL. p(x1→ x2) is therefore the density of x2 seen
by x1. Hence, computing the density of x2 consists in evaluating the mean of
p(x1)p(x1→x2) by ”integrating over x1”.

In other terms, p(x2) is the probability of reaching this point by a length 2
path. Formally, it is the second marginal law of x = (x1,x2) and therefore, if
Mc is the set of the points visible from the camera:

p(x2) =

∫

Mc

p(x1)p(x1→x2)dA(x1)

As we can see, evaluating the density of reverse VPLs is an integration prob-
lem. Many techniques can be used to solve it and we present here a simple
Monte-Carlo numerical scheme. First, it is important to notice that the densities
used to sample the VPLs (i.e. p(x1) and p(x1→x2)) and the densities used during
the Monte-Carlo estimation may be different.

It is finally crucial to specifically design an estimator. Here, our estimation
problem is quite simple since it only consists in sampling points x1. Therefore,
if we sample X1 with density p(X1) (i.e. the same density that the one used
during the reverse VPL sampling step), we have the simple following estimator:

U = p(X1 → x2)

U can finally be reexpressed with directions. If direction ω is equal to the nor-
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malized direction
−−−→
X1x2

(u)1, we have:

U = p(X1 → x2) = p(ω) · |ω ·N(x2)|
||X1 − x2||2

· V (X1,x2)

where:

V (x,y) =

{
1 if x is visible from y
0 otherwise

Estimation of VPL Exiting Radiance Field L(x2→x1). Once the density
of the VPLs has been estimated, their outgoing radiance field must be computed.
We can do a rough but common approximation by considering the surface of the
VPLs diffuse and their outgoing radiance field constant for all projected solid
angles. Otherwise, representing the outgoing radiance field would be much more
difficult since it may vary along the hemisphere according to the incoming ra-
diance. To perform the radiance field estimation, we implemented a standard
bidirectional sampler as described by Veach and Guibas [86] and Lafortune and
Willems [55]. We may also notice that the ”inefficient” bidirectional path tracer
presented in Chapter 4 can be also used since the efficiency of the VPL sampling
pass is less fundamental than the efficiency of the gathering pass.

Once the density and the outgoing radiance field of the generated VPLs have
been estimated, we can use them to evaluate Equation 7.2. Hence, we provide a
sampling strategy which finds a VPL distribution proportional to the importance
brought by the camera.

7.2.2 Bidirectional Instant Radiosity

The major problem with path tracing algorithms is to find relevant paths. With
Metropolis Light Transport [88], the ideal random variable with a density propor-
tional to the integrand is directly found by a Metropolis sampling. The integra-
tion is finally performed thanks to the useful ergodic properties of the generated
Markov chain. Unfortunately, with Instant Radiosity methods, generating an
ideal random variable per pixel seems difficult since a part of the paths is already
fixed by the VPLs. An easy way to do it would be to have a set of VPLs for
each pixel. Unfortunately, all the nice algorithmic properties of the method and
its efficiency would be lost.

That is why we propose another sampling strategy. Its goal is to generate a
VPL family such as the power brought to the camera by each of them is constant.

1We remind that −→xy(u) =
−→
xy

||−→xy||

90



xi

xi1
xi0

V PLs x2
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x1
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(a) (b)

Figure 7.1: Standard and Reverse Instant Radiosity. (a) Standard IR.
(b) Reverse IR. Green points x1 (Mc) are the points visible from the camera.
Magenta points x2 (Mr) are those visible from Mc and the only possible VPL
locations for the given point of view. Sampling length 2 paths gives Mr. Con-
necting Mr to the light sources gives the outgoing radiance field of the sampled
VPLs.

In other words, we want to sample a random variable with a density proportional
to the power brought to the camera. In the case where the integrand is the
responsivity of the camera to the incoming radiance (i.e. a camera with one
pixel), it is the best sampling strategy.

Standard and Reverse IR sampling methods can now provide the location of
VPLs. As shown on Figure 7.2, Standard IR is not always better or worse than
Reverse IR. According to the radiance field in the scene and the point of view, a
method has to be preferred to the other. Therefore, we have to find an efficient
way to combine the two sampling strategies.

We propose a Monte-Carlo sampling / resampling approach. In path tracing
methods, sampling / resampling is often useless since the most expensive step is
the generation of paths. Conversely, IR is a two-pass algorithm with an integra-
tion pass generally much more expensive than the propagation one. Therefore, a
sampling / resampling method can be quite suitable to generate the VPLs.

First, a set VN of N/2 standard VPLs and N/2 reverse VPLs is generated.
For each of them, we evaluate the power brought to the camera (more exactly
the camera response to the incident radiance field created by the VPLs). Then,
the associated cumulative distribution function (CDF) is built. To estimate the
power brought by every VPL, M length 2 paths are cast from the camera to the
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L L

(a) (b)

Figure 7.2: Comparison of Standard Instant Radiosity and Reverse In-
stant Radiosity. (a) Here, Reverse IR is more efficient to find relevant VPLs.
The scene is indirectly lit and the relevant paths are difficult to find from the
lights. (b) Standard IR is more efficient. A light source directly illuminates a
very small area of the scene. Finding it from the camera is difficult.

VPL and the energy transfered along these paths is evaluated and accumulated
to build each element of the CDF . Then, we use the CDF to resample VN and to
determine a relevant subset VN ′ (N ′ ≤ N). The densities of the resampled VPLs
are finally subsequently modified by multiplying their densities by their weights
in the CDF and their energies by the number of times they have been chosen.

This method does not call for important storage capacity and remains very
simple to implement since it does not require any extra sophisticated structures
or non-parametric estimations. It may be noticed that a sampling / resampling
strategy has been recently used by Talbot et al. [83] to efficiently sample BRDFs
and direct lighting.

7.3 Implementation

The implementation we propose must deal with sampling and performance issues.
Two distinct passes are made. The first one generates VPLs while the other one
performs the final integration.

92



7.3.1 Handling Many Light Sources

Before generating VPLs, the problem of sampling many light sources must be
solved. Several papers made attempts to deal with this issue. As Dietrich et al.
did [17], we build a cumulative density function (CDF) depending on the light
source contributions. Paths are first traced from the camera and the contribution
of every light source is computed along them. Then, the CDF is built and used
to choose without bias which light sources must start a light path. This method
simply discards (or likely discards) the sources which barely light the areas seen
by the camera.

7.3.2 VPL Sampling

The VPL sampling pass is done with a raytracer. To achieve efficient raytracing
with a O(log n) complexity, a kd-tree is classically built (with a O(n log n) com-
plexity). However, even if our raytracer is carefully written in C and many of the
useful heuristics proposed by Havran in his Ph.D. thesis [34] were used, we do
not use any low-level optimization for our implementation.

We may notice three important numerical issues during the propagation pass
described in Section 7.2.

• The first important issue is the power estimation done for each VPL. M
sample paths are generated from the camera. The power brought by each
VPL is then estimated using these paths. To prevent a rough estimation
from discarding lights with a small contribution, a small uniform quantity
is added to each element of the CDF (see Figure 7.3). We may notice
that doing this keeps the estimator perfectly unbiased since no element of
the CDF which can bring some power to the camera is nil. However, the
resampled VPL density is no more proportional to the power they bring
to the camera (but it remains close to it). During all our tests, M = 10
provided satisfactory results.

• The second numerical issue is to estimate the density of probability of every
VPL sampled from the camera. Once again, M sample camera paths are
used to perform the estimation. If M is too small, the final result can be
biased. If it is too big, the estimation becomes too expensive. M = 50 pro-
vided good results without noticeable bias. To speed up the computations,
we also use a very simple trick. When the power brought to the camera by
a reverse VPL is evaluated, only 5 samples are taken into account. Then,
the precise density estimation with 50 camera samples is only done for the
VPLs which are resampled. Doing so, the quality of the power estimation
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is a bit degraded but the resampling rate can be much larger for the same
computation time. In our tests, generating more VPLs always provides
more satisfactory results than performing a precise power estimation with
fewer VPLs.

• The last numerical issue is the resampling rate. As the best sampling
method is not known, N

2
reverse VPLs and N

2
standard VPLs are first

sampled. Then, N ′ are resampled and kept. We produced several tests to
estimate an efficient value for r = N

N ′ . If r is too large, two many sources
are sampled / resampled and the propagation pass becomes too expensive.
If it is too small, the integration domain is not sufficiently explored and
the convergence will be slow. On most of the scenes, r = 10 produces
very satisfactory results. With our GPU integrator, the propagation pass
remains cheap compared to the integration one. Nevertheless, the value of
r can be more accurately tuned depending on the respective performance
of the propagation and the integration algorithms. It may be noted that it
is not necessary to store all VPLs which will be resampled if the sampling
/ resampling is done incrementally several times. Therefore, Bidirectional
Instant Radiosity does not require an important storage.

7.3.3 GPU Final Integration

To perform the final integration pass, we set up a simple GPU integrator close
to the implementation we propose in Chapters 6 and 5. Since we have to accu-
mulate many light sources, it is fundamental to prevent the geometry from being
rasterized many times; we thus propose to use deferred shading [71]. We give
here some of the main steps of our rendering pipeline:

G-buffer Creation. The normal, the position and the color of each pixel are
stored in a G-buffer. To build it, three float buffers are first created. They re-
spectively contain positions, normals and colors. Material information such as
material identifiers is also packed in the remaining components. For bandwidth
reasons, precision is limited to 16 bits. It may be noticed that the G-buffer does
not have to be recomputed if the point of view remains still. It is therefore well
adapted to progressive rendering.

Shadow Map Computation. To perform all visibility requests, a shadow
map is computed for each VPL. With the approximation that VPLs lie on diffuse
surfaces, they can be considered as uniform hemispherical sources. To compute
the visibility requests due to a hemispherical light source, the five shadow maps
of the hemicube are unrolled in a standard 2D shadow map and reindexed with
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a small cube map. The method is described in [50]. Due to shadow map aliasing
issues, it may be noticed that the GPU implementation is not unbiased. Nev-
ertheless, with high resolution shadow maps and the interior scenes we tested,
aliasing is most of the time not noticeable for hemispherical shadow light sources.
For exterior scenes and the illumination due to a sky, the parallel projections can
be easily reparameterized to avoid aliasing (see, for example, [78] [104]).

Shadowing Operations. Once the shadow map is computed, all the VPL con-
tributions are accumulated using the standard technique of ping-pong buffers.
Two buffers are simply created and used. During a computation pass, one buffer
is written while the other one is read to fetch and accumulate the previous con-
tributions. Their respective roles are then sequentially switched.

7.4 Results

We now present the results obtained with the Bidirectional IR sampling technique
and the GPU implementation presented in Section 7.3.3. Furthermore, we will
compare our method to the closest related work.

7.4.1 Reverse and Standard IR

To illustrate the behavior of the sampling strategies, a ”U” office only indirectly
lit by another room through a small corridor was designed (see Figure 7.4). For
this kind of scene, Reverse IR is more efficient since finding the VPLs from the
lights is quite difficult. Figure 7.4 presents some results obtained with the two
approaches without resampling. A second office indirectly lit by a halogen lamp
was also built. It is a scene where Standard IR sampling is better than Reverse
IR (see Figure 7.6b).

Therefore, depending on the scene, one of the method can be better than the
other. To handle all kind of scenes, the two sampling strategies are combined.
Table 7.1 gives the percentage of standard and reverse VPLs kept after resam-
pling. It gives a good idea of the quality of the generated samples for the given
point of view. Hence, for U-office and the point of view given on Figure 7.4,
100 % of the resampled VPLs were reverse VPLs. Conversely, on the conference
room mainly directly lit by many small light sources, Standard IR provides much
better light sources than Reverse IR does.
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Standard IR VPLs Reverse IR VPLs
Conference 8.7 % 1.3 %

Cruiser 6.2 % 3.8 %
U-Office 0% 10 %

Q3tourney1 2.1 % 7.9 %

Table 7.1: Percentage of Resampled VPLs. The resampling rate is equal
to 1:10. According to the scene and the point of view, one method or the other
provides the more relevant VPLs. For the conference room scene, most resampled
VPLs are standard VPLs. For U-Office, the Reverse IR strategy is more efficient.

7.4.2 Sampling / Resampling Performance

To handle all visibility difficulties, the VPLs are resampled. Figure 7.5 gives an
image of the ”U” office obtained by combining and resampling the two estimators.
1250 VPLs are created with Standard IR sampling strategies and 1250 other ones
are generated with Reverse IR technique. Then, all of them are resampled with
a resampling rate r equal to 1:10.

Sampling / resampling gives satisfactory results in all the tested cases. Figure
7.6 presents other images computed with VPLs obtained using the sampling
strategies described in Section 7.2. Scene Q3tourney1 is particularly awkward.
Light must bounce at least three times before reaching the central room through
a small corridor.

7.4.3 GPU and Overall Performance

We now analyze the performance of our GPU integrator. The goal is to present
the performance impact of our method compared to Standard Instant Radiosity
and other techniques dealing with importance and bidirectional sampling. We
only want to show that Bidirectional Instant Radiosity remains suitable for in-
teractive rendering. Table 7.2 sums up the performance of our raytracer and the
different GPU passes. An interactive frame rate is thus obtained with few VPLs
for scenes with variable complexities (Office contains 35,000 triangles whereas
Cruiser contains one million triangles). Compared to coherent raytracing ap-
proaches [92], our implementation suffers from the linear algorithmic complexity
of shadow map computations. Nevertheless, with a commodity GPU and a sim-
ple frustum culling on kd-tree leaves, interactive global illumination can be easily
performed. Several pictures with the scenes we tested are presented on Figure
7.7.

We now analyze the impact of Bidirectional Instant Radiosity on the frame
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Shadow G-Buffer Shading ray/s fps
Map

Office 2.2 ms 8.3 ms 5.1 ms 1000K 15

Theater 4 ms 9.2 ms 5.1 ms 900K 6

Conf 8 ms 12.2 ms 5.1 ms 800K 4.5

Cruiser 15 ms 31 ms 5.1 ms 500K 2.2

Table 7.2: Performance of our Implementation. The given times for the
GPU passes are obtained with 512 × 512 × 4 unrolled hemicube shadow maps
and a 1024 × 1024 screen resolution. Frames per second given in the Table are
obtained with 30 VPLs / frame. The GPU is an Nvidia GeForce 6800 GT and
the CPU an AMD Athlon 2400+.

rate in comparison with Standard Instant Radiosity. For a 1:10 resampling rate,
each VPL requires about 10 rays (by using 5 rays for the power estimation, 5
rays for the fast reverse estimation of the VPL density of probability and 50 rays
for the precise density estimation). With the standard Instant Radiosity method
and a mean albedo equal to 0.5, one VPL requires about 1 ray. Therefore, our
sampling strategy is ten times slower than Instant Radiosity. However, even
with 1000 VPLs per frame and 100 frame per second, an optimized raytracer can
almost provide ten million rays as required by our method. Furthermore, VPLs
can be reused from one frame to the next one. Therefore, Bidirectional IR makes
Instant Radiosity suitable for a wider variety of cases without sacrificing much
of its fine properties (fast sampling strategies and fast integration).

7.4.4 Comparison with Importance-Driven Techniques

Another way to extend Instant Radiosity would be to use the importance-driven
photon sampling strategy designed by [62]. With this technique, light sources
and directions are chosen by estimating the importance brought by the camera.
Therefore, it would be easy to sample VPLs proportionally to the power they
brought to the camera. Unfortunately, this method does not seem suitable for
interactive or real time rendering. First, large scenes can require a large number
of importons (more than 20000). Secondly, choosing a new shooting direction is
very expensive since it requires the construction of a hemispherical CDF.

Keller’s and Wald’s method [49] is faster since no CDF is computed every time
a new direction is chosen. The importance estimation is only used to determine
if a photon is stored or not. Nevertheless, a lot of importons have to be stored
and the technique does not provide a new direction sampling strategy as Peter’s
technique does. The method was nevertheless tested with fast estimations with
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a regular grid. The quality of the resulted images was equivalent to Standard
IR + sampling / resampling but provides much less satisfactory results than
Bidirectional IR. This can be explained by the completely new sampling strategy
brought by Reverse IR. The difference was particularly noticeable for the U-office
scene where a large number of particles had to be generated from the physical
light sources before finding relevant VPLs.

Therefore, even if standard importance-driven techniques provide very good
results for off-line rendering, Bidirectional Instant Radiosity outperforms them
when relevant VPLs have to be found with the constraint of interactivity.

7.5 Conclusion

We presented in this chapter new sampling strategies to handle difficult scenes
for global illumination. Our method extends Instant Radiosity and proposes a
bidirectional sampler to find relevant VPLs for a given point of view in a fast
and efficient way. Using GPUs and a simple and brute force implementation, we
already perform interactive rendering with not-too-shiny materials and all kinds
of visibility layouts. In the next chapter, we will explore other sampling strate-
gies using Metropolis VPL samplers. The idea consists in building an ergodic
homogeneous Markov Chain of VPLs with an invariant law proportional to the
power brought to the camera by the VPLs.
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(a) (b)

(c) (d)

Figure 7.3: Handling the Bias Problem with Sampling / Resampling.
(a) shows direct lighting for the 10th Shirley’s test scene. (b) is a zoom on a
small part of the screen computed by Radiance. (c) The same zoom done with
a too rough CDF and our GPU integrator. Power brought by remote VPLs is
underestimated. (d) A small quantity is added to all the elements of the CDF .
The estimator is now unbiased.
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(a) (b)

(c) (d)

Figure 7.4: The ”U” Office. (a) shows the VPLs sampled with Standard IR
sampling. (c) is the resulting picture. No VPL illuminates the areas seen by
the camera. The picture is black (b) shows the VPLs sampled with Reverse
IR sampling. (d) the resulting raytraced picture with only 200 VPLs and no
resampling.
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(a) (b)

Figure 7.5: Bidirectional Instant Radiosity with the ”U” Office. Sampling
/ resampling creates a distribution proportional to the power brought to the
camera. (a) shows the VPL distribution and (b), the raytraced image obtained
with only 250 VPLs.

(a) (b) (c)

Figure 7.6: Sampling Performance. Several pictures computed with the sam-
pling techniques described in the chapter. Bidirectional sampling finds the rele-
vant VPLs no matter the visibility layout. (a) A part of Q3tourney1 (courtesy
of ID software) indirectly lit trough a small corridor. Light paths make at least
3 bounces before coming into the room. Most of the VPL are found with reverse
IR strategy. (b) A simple office indirectly lit by a halogen lamp easily handled
by Standard Instant Radiosity. (c) The U Office (raytraced). The scene is com-
pletely indirectly lit through a small corridor. Bidirectional IR quickly finds the
relevant VPLs.
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(a)
2.4 s / 15 f/s

(b) (c)
2.8 s / 6 f/s 3.8 s / 4.5 f/s

(d.1) (d.2)
5.9 s / 2.2 f/s 4.6 s / 2.2 f/s

Figure 7.7: Overall Performance with a GPU Deferred Shading Renderer.

With our method, convergence is obtained in a few seconds for very different scenes.

Convergence times are obtained with less than 1% RMS error. Frame rates are ob-

tained with 30 VPLs per second. The screen resolution is equal to 1280 × 1024. The

graphics card is a NVidia GeForce 6800 GT. (a) An office with a very bright lamp.

35,000 triangles are rendered. (b) Candlestick Theater with 100,000 triangles. (c) The

conference room. 200,000 triangles are rendered. (d) Two different views of Cruiser.

One million triangles are displayed.
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CHAPTER 8

Metropolis Instant Radiosity

In this chapter, we present Metropolis Instant Radiosity (MIR), an unbiased
algorithm to solve the light transport problem.

MIR is actually an extension of Instant Radiosity (see Chapter 4 for more
details about this technique): as Instant Radiosity, it is a hybrid technique which
consists in representing the incoming radiance field by a set of Virtual Point
Lights (VPLs) and in computing the response of all sensors in the scene by accu-
mulating their contributions. In contrast to other similar approaches and more
particularly Bidirectional Instant Radiosity we presented in the previous chapter,
MIR proposes to sample the VPLs with an innovative Multiple-try Metropolis-
Hastings (MTMH) algorithm: the goal is to build an efficient, aggressive, and
unconditionally robust variance reduction method that works well regardless of
the scene layout. Indeed, the quality of the sample set is fundamental: as shown,
for example, in Figure 8.6.f, placing VPLs close to the light source will provide a
bad solution, since the parts of the scene seen by the camera are not illuminated
by the regions close to the source. Conversely, Metropolis Instant Radiosity pre-
sented here, will compute a VPL set which has an interesting intrinsic property:
each VPL will provide the same amount of power to the camera. Figure 8.6 il-
lustrates the efficiency of our approach with very different situations. Finally, we
present a fast ray tracing implementation using MIR and show how our complete
rendering pipeline can produce high-quality and high-resolution pictures in few
seconds.

The remainder of the chapter is finally organized as follows. Section 8.1
presents an overview of our contribution. Section 8.2 reviews the two techniques
upon which we base our method. Sections 8.3 and 8.4 expose in details the new
sampling strategies we set up to compute global illumination. In Section 8.5, we
present the results we obtained with our new sampler and some comparisons with
related approaches. The limitations and a conclusion are given in Section 8.6.
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8.1 Overview of our Contribution

As presented in Chapter 4, Veach and Guibas developed Metropolis Light Trans-
port (MLT) [88] to overcome most of the variance issues involved by independent
path sampling strategies. The decisive advantage of a Metropolis sampler over
independent Monte-Carlo estimators is its ability to exploit coherence in path
space and therefore to preserve the sampling context. Since 1997, the Metropolis-
Hastings algorithm has been widely explored. Pauly et al. [61] extended it by
adding extra Monte-Carlo Markov Chain (MCMC) mutations that handle partic-
ipating media. Kelemen et al. [46] proposed a simplification of the MLT algorithm
which increases the acceptance rate and directly works in the space of uniform
random numbers used to build up paths. Fan et al. [22] also used a Metropolis-
Hastings algorithm to populate photon maps by exploiting coherence among light
paths. More recently, Cline et al. [11] developed an efficient algorithm that uses
Metropolis mutation strategies in a standard Monte-Carlo integrator. They first
generate a set of path samples from the camera to the light sources and then use
a sequence of MCMC mutations to redistribute the power of each path over the
image plane in an unbiased way. All these techniques therefore build low variance
estimators and try to directly solve the problem in its high-dimensional aspect.
They are unfortunately slow as they do not generally exploit the computation
coherence or the current CPU / GPU architectures.

Conversely, another large class of Monte-Carlo rendering techniques focuses
on the algorithmic speed rather than on an aggressive variance reduction like
Photon Mapping [40] or Instant Radiosity [47] (see Chapter 4 for more details).
One may also refer to Wald’s PhD [90] for discussions and effective ray tracing
implementations of these approaches.

All the above problems therefore motivated Metropolis Instant Radiosity (pre-
sented in Algorithm 6). As we want to propose a rendering technique which re-
mains numerically robust and fast for all kinds of scenes, combining a Metropolis
sampler which can provide very relevant samples and Instant Radiosity which
can be very efficiently implemented sounds good. In this chapter, we therefore
present an innovative VPL sampler using a modified Metropolis-Hastings: the
”Multiple-try Metropolis-Hastings Algorithm” (MTMH) [41]. As we will show
it, our method provides a faster exploration of the sampled space than any other
related technique does, and finally offers very good estimators without severe
performance penalties.
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Algorithm 6 Metropolis Instant Radiosity

1: Set all pixel intensities to 0;
2: Compute the power Pc received by the camera (see Section 8.3.1);
3: With a Metropolis-Hastings sampler (either the standard version presented

in Section 8.3.2 or the Multiple-try one presented in Section 8.4), compute
a set of n VPLs with a density proportional to the power they bring to the
camera. We do not know the outgoing radiance functions of the VPLs but we
know the scene transmits the same amount of the VPL power to the camera;

4: for i = 1 to n do
5: • Suppose that VPL i is on a diffuse surface and that it has a constant

outgoing radiance function equal to 1. Compute the intensity of each
pixel in the screen and the total power P ′ transmitted to the camera
through the scene from VPL i;

• As we know that VPL i transmits a power equal to Pc/n to the camera
and that there is a linear relation between the outgoing radiance
function of the VPL and the transmitted power, rescale the intensities
of the pixels by a Pc

n P ′ factor (see Section 8.3.4);
• Accumulate VPL i contribution.

6: end for

8.2 Metropolis Sampling for Light Transport

We give here a short overview of the Metropolis-Hastings algorithm and its appli-
cation to the global illumination problem as introduced by Veach and Guibas [88].

8.2.1 Metropolis-Hastings (MH) Algorithm

We first recall that a sequence of random variables (X(t))t∈N is a Markov Chain
if X(t) depends only on X(t−1) through a transition function g(·|x(t−1)). The goal
of the Metropolis-Hastings algorithm is to construct a Markov Chain that has
a equilibrium distribution π∞ by applying successive mutations on its elements.
This algorithm does not solve a priori an integration problem but may provide
a very elegant variance reduction technique in the case where many correlated
integrals have to be computed.

The algorithm starts at t = 0 with the selection of X(0) = x(0) randomly drawn
from a distribution π0 with the only requirement that π0(x

(0)) > 0. Given
X(t) = x(t), the algorithm computes X(t+1) as follows:

1. Sample a candidate value X∗ from a proposal distribution g(·|x(t));
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2. Calculate the Metropolis-Hastings ratio R(x(t), x∗), where:

R(u, v) =
π∞(v) · g(u|v)

π∞(u) · g(v|u)
;

3. Sample a value for X(t+1) according to the following:

X(t+1) =

{
X∗ with probability min{R, 1}
x(t) otherwise;

It is possible to show that under general conditions, the sequence (X(t))t∈N is a
Markov Chain with equilibrium distribution π∞.

8.2.2 Ergodicity

With the MH sampler, we can therefore sample almost any distribution π∞. If
we ensure the ergodic property of the chain (i.e. all states are equally probable
according to π∞ after a long time passed in the chain), we are furthermore able to
use all the samples of the Markov Chain as if they exactly follow the stationary
distribution. To do this, it is sufficient to ensure that g(x|y) > 0 when π∞(x) > 0
and π∞(y) > 0 since all states can be reached with a non-null probability through
only one mutation step.

8.2.3 Application to Light Transport

Veach and Guibas proposed to use a MH sampler as a powerful variance reduction
technique for the global illumination problem. They first evaluate the total power
received by the camera and then use a Metropolis sampler to compute correlated
random variables with a density directly proportional to the integrand f (c) which
is actually the set of all camera sensors. During the sampling process, they finally
estimate the pixel intensities by counting the number of paths going through
each pixel and by proportionally distributing the total power over all of them.
For a more detailed introduction to Metropolis sampling and its application to
rendering, we refer to [63].

8.2.4 Using the Path Integral Formulation for Instant Radiosity

Instant Radiosity, as presented in Chapter 4 is an elegant method to compute
global illumination for diffuse or not-too-shiny materials. It simply consists in
generating light paths from the light sources and storing each bounce as a Virtual
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Point Light or VPL. As in the remainder of this chapter, we will explicitly combine
the path integral formulation and the VPL samplers, we think that it is important
to remind that each VPL is actually a complete light path and not only its ending
point. Therefore, if xv is the last point of the light path and xs is the remainder
of the path which is connected to a light source, we will say that xv is a geometric
VPL and that {xv, xs} is a path VPL (see Figure 8.1).

xv

x0

x1

xs

xc xs

0

1

Figure 8.1: Path and Geometric VPLs: the camera path, xc = {x0,x1}, the
location of the VPL, xv, and xs0, the remainder of the path which ”brings some
power” to xv. We have here a geometric VPL xv which contains two path VPLs,
{xv, xs0} and {xv, xs1} (see Section 8.3.3).

8.3 Metropolis Instant Radiosity

We introduce here the core of our contribution, Metropolis Instant Radiosity (see
Algorithm 6). To be more precise, our goal is to propose an efficient global illu-
mination algorithm by computing a Markov-Chain of VPLs such that each VPL
will bring the same amount of power to the camera.

As our algorithm heavily relies on marginals, we first recall their definition. If
X = (X0, X1 · · ·Xn−1) ∈ (Ω0 ×Ω1 × · · · ×Ωn−1) is a random variable, then Xi is
called marginal of X. Furthermore, if f is the density of X, the density fi of Xi
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is defined by:

fi(y) =

∫

Ω0

· · ·
∫

Ωi−1

∫

Ωi+1

· · ·
∫

Ωn−1

f(x0, · · · , xi−1, y, xi+1, · · · , xn−1)

dµ(x0) · · · dµ(xi−1)dµ(xi+1) · · ·dµ(xn−1) (8.1)

We therefore have to integrate f on
∏

j 6=i Ωj to obtain fi.

8.3.1 Compute the Power Pc Received by the Camera

We first compute the power Pc received by the camera by generating a family
of bidirectional paths going from the camera to the light sources. To eliminate
start-up bias, we also resample the generated paths to provide a ”good” initial
random variable with a law close to the integrand f (c) described in the next
section. For more details about this technique, one may refer to [88].

8.3.2 Generating the VPLs with a Metropolis Sampler

The goal of a Monte-Carlo integrator for the light transport problem is to inte-
grate f (j) as shown in Chapter 4 by Equation 4.4. To achieve this goal, the best
sampling strategy is to generate samples with a density directly proportional to
f (j). What we propose here is thus to sample the entire path space Ω proportion-
ally to the response f (c) of the camera to the power brought by a path, to project
these samples on the appropriate sub-space and to finally consider them as VPLs.

By directly using the Metropolis sampling technique designed by Veach and
Guibas, we are able to sample a distribution of paths proportional to f (c). In-
deed, as indicated in Section 8.3.1, we first simulate a random variable X0 with a
density close to f (c) and then, we use the mutation strategies proposed by Veach
and Guibas to compute a Markov-Chain with an invariant law proportional to
f (c) (see Section 8.5.1 for more details about the implementation). It is impor-
tant to notice that these paths are complete since they go from the camera to
a physical light source. In the remainder of the chapter, we will finally set the
normalization constant a such as: a = 1

Pc
= 1

R

Ω f(c)(x)dµ(x)

As the sub-path {xv, xs} is a marginal of x = {x0,x1,xv, xs} and as we directly

sample x with density a · f (c)(x), Equation 8.1 gives us the density p
(c)
vs ({xv, xs})

of {xv, xs}:

a · f (c)
vs ({xv, xs}) =

∫

M

∫

M
a · f (c)({x0,x1,xv, xs}) dA(x0) dA(x1)

108



In other words, by sampling complete paths from the camera to a light source
with a density proportional to f (c), we also have an interesting class of sub-paths
{xv, xs} with a density proportional to f

(c)
vs . Actually, they all bring the same

amount of power to the camera. Indeed, if ({xvi
, xsi
})i∈[1...n] is a set of n VPLs,

then:
Pc =

∫

Ω
f (c)({x0,x1,xv, xs})dµ{x0,x1,xv, xs}

≃ 1
n

∑n
i=1

R

M

R

M
f(c)({x0,x1,xvi

,xsi
})dA(x0)dA(x1)

p({xvi
,xsi

})

≃ 1
n

∑n
i=1

f
(c)
vs ({xvi

, xsi
})

p
(c)
vs ({xvi

, xsi
})

︸ ︷︷ ︸

= 1
n

∑n
i=1

1
a·n = 1

n

∑n
i=1

Pc

n

VPL i contribution

Additionally, we may remark that even if we know that every VPL brings the
same amount of power to the camera (equal to Pc/n if there are n VPLs), the
outgoing radiance function of each of them is unknown (but not needed as we
know Pc).

As soon as the sampling step is finished, we finally have a set of sub-paths
({xvi

, xsi
})i: each of them is a path VPL which ”emits” light from xvi

and trans-
mits a power equal to Pc/n to the camera.

8.3.3 Clustering the Physical VPLs

Each VPL is thus a complete sub-path which starts from a light source and goes
to the corresponding geometric VPL xv. While applying mutations on complete
paths, it is furthermore possible that the VPL location xv does not change. This
case occurs when:

• The candidate is rejected and the path is duplicated;

• Only the sub-path xc = {x0,x1} is mutated;

• Only the sub-path xs is mutated.

With this sampler, each geometric VPL can therefore contain several path VPLs:
if k path VPLs go to the given location xv, the contribution of the geometric VPL
xv will be equal to k · Pc/n. Finally, if the user requires m different locations
for the VPLs (i.e. m geometric VPLs), the number n of path VPLs that must
be generated is not known but is automatically determined during the sampling
step by precisely monitoring the mutations.
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8.3.4 Accumulating the VPL Contributions

After the sampling step, we have a set of m path VPLs xvi
: each of them brings

a fixed amount of power to the camera equal to Pi = ki · Pc/n where n is the
number of paths generated during the sampling step (i.e. the total number of
path VPLs) and ki is the number of path VPLs connected to xvi

. To compute
the contribution Pi of VPL xvi

for each pixel of the screen, we simply dispatch
Pi among all pixels. To achieve such a result, we first suppose that the surface at
xvi

is diffuse and that its outgoing radiance function is constant and equal to 1.
Then, we perform the lighting computations and evaluate the intensity of every
pixel. Once it is done, we evaluate the total power P ′

i received by the camera
and scale all pixel intensities by a Pi/P

′
i factor such that the total power emitted

by xvi
and transmitted to the camera becomes Pi.

8.3.5 MIR with Common Renderers

Metropolis Instant Radiosity is conceptually different from Instant Radiosity
since we do not know the outgoing radiance function of each VPL. This may
be a practical limitation since most of the implementations of Instant Radiosity
assume that this function is known and therefore base their code-design on this
assumption. Fortunately, our sampling technique can be easily integrated to any
of these renderers by adding an extra pass: the VPL outgoing radiance function
estimation. This pass simply consists in randomly casting rays from the camera
and then, in scaling their outgoing radiance function in relation to the power they
bring to the camera. Thus, we do not have to extend any pre-existing renderer
using Instant Radiosity since all the properties of the VPLs (normals, powers,
and positions) are determined.

8.3.6 Handling Overmodulations due to the 1/r2 Term

As indicated in Section 4.4.2, a major problem with Instant Radiosity (and
Metropolis Instant Radiosity) is that overmodulation issues occur when the V PLs
are close to the surface currently shaded. To handle this problem, we propose a
consistent strategy: as usually done, we first avoid the overmodulation problem
by bounding the visibility term G(xv↔x1) during the shading passes and the
sampling passes. Once the V PL contributions have been accumulated, we there-
fore have a biased result where a part of the total incoming energy is missing. To
compute this missing part, we are however able to use the technique proposed
by Kollig and Keller in [51] which consists in adding an extra pass which exactly
compensates the bias introduced by bounding G(xv↔x1). We may notice that
we did not implement this last pass and all the pictures presented in the article
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are therefore biased.

8.4 A VPL Multiple-try Metropolis-Hastings (MTMH)
Sampler

In the previous section, we described a complete rendering pipeline using a stan-
dard Metropolis-Hastings (MH) sampler. The main problem with such a sampler
is the important correlation which may occur between successive samples in the
chain: in worst cases, the algorithm may be slow to converge and it may be
trapped in a local mode of integrand f (see Figures 8.2 and 8.3). To over-
come these difficulties, Liu et al. [41] proposed an alternative strategy known as
Multiple-try Metropolis-Hastings sampling. What we propose here is to slightly
change Step 3 of MIR by replacing the MH algorithm by the Multiple-try one.

8.4.1 The MTMH Algorithm

The approach is to generate a larger number of candidates thereby improving the
exploration of π∞ near x. One of these proposals is then selected in a manner that
ensures that the chain has the correct limiting stationary distribution. To achieve
such a result, we still use a proposal distribution g, with optional positive weights
λ(u, v) where the symmetric function λ is presented further below. To ensure the
correct limiting stationary distribution, it is necessary to require that g(x∗|x(t)) >
0 if and only if g(x(t)|x∗) > 0, and that λ(x(t), x∗) > 0 whenever g(x∗|x(t)) > 0.
Let x(0) denote the starting value, and define w(u, v) = π∞(v)g(u|v)λ(u, v). Then,
for t ∈ N , the algorithm proceeds as follows:

1. Sample p independent proposals X∗
1 . . .X∗

p from g(·|x(t));

2. Randomly select a single proposal X∗
j from the set of proposals, with prob-

ability proportional to w(x(t), X∗
j ) for j = 1, . . . , p;

3. Given X∗
j = x∗

j , sample p − 1 independent random variables X∗∗
1 , . . .X∗∗

p−1

from the proposal density g(·|x∗
j). Set X∗∗

p = x(t);

4. Compute the generalized Metropolis-Hastings ratio:

Rg =

∑p
k=1 w(x(t), X∗

k)
∑p

k=1 w(X∗
j , X

∗∗
k )

;
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5. Set

X(t+1) =

{
X∗

j with probability min{1, Rg}
x(t) otherwise.

We can give an intuitive explanation to understand the MTMH algorithm. With
a standard Metropolis-Hastings sampler, we test two samples, x and x∗, and
keep only one of them with the respective probabilities 1-min(1, R) and min(1, R).
With MTMH, we conversely test two families of samples, (x∗

1 . . . x∗
p) and (x∗∗

1 . . . x∗∗
p ),

and keep only one element of each family x∗
j or xi = x∗∗

p with the respective proba-
bilities 1-min(1, Rg) and min(1, Rg): instead of only testing two points, we finally
also deal with their ”Metropolis neighborhood”.

8.4.2 Application to VPL Sampling

As the limiting properties do not change with a MTMH sampler, the generation of
complete paths x will provide the sub-path class {xv, xs} that has the same prop-
erties as those obtained with a standard Metropolis-Hastings sampler. We set
λ(u, v) = [g(u|v) · g(v|u)]−1 to encourage certain types of proposals: by using this
specific λ, w(xi, x

∗) corresponds to the importance weight π∞(x∗)/g(x∗|xi) and
the chosen candidate X∗

j becomes the probably most interesting sample among
X∗

1 . . .X∗
p . The decisive advantage of MTMH sampler over a Metropolis-Hastings

one is algorithmic. Since the VPL generation step is not the most expensive one in
a complete rendering pipeline, we have some computation time to finely tune the
VPL distribution: MTMH is therefore quite appropriate to achieve this goal since
it tends to decorrelate the successive VPLs and to explore the whole integration
space faster. For a classical Metropolis Light Transport (MLT) implementation,
this approach may be however much less interesting since generating 2k−1 extra
paths without using them may be inefficient. Nevertheless, we may notice that if
we find a way to use all of them, MTMH may also provide an aggressive variance
reduction technique in a MLT environment.

8.5 Implementation and Results

We present in this section how we have implemented our complete renderer,
the results we obtained with MIR, and finally, several comparisons with existing
similar approaches.
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8.5.1 The VPL Sampling Pass

The first thing to do is to virtualize and replace the complete incoming radiance
field by a set of virtual point lights computed with our Metropolis sampler. As
described in the previous sections, we generate these VPLs by mutating and
projecting light paths which go from the camera to a light source. Since our
method is limited to diffuse and not-too-shiny environments, we do not deal with
caustics and therefore only use bidirectional perturbations: for a complete and
detailed explanation of the technique, we refer to [88].

8.5.2 Rendering with Coherent Ray Tracing

The core of our implementation relies on coherent ray tracing algorithms and
implements the OpenRT API [17]. To render a picture, we therefore use the now
classical rendering technique: ”Instant Global Illumination” presented in [97].
First, we perform the ray casting requests with a finely tuned coherent ray tracer
using the SIMD SSE∗ instruction sets today available on almost every commodity
PC. This approach simply consists in packing several rays inside one vectorized
structure and performing all the operations by using SSE operands. Then, we
use Interleaved Sampling [48] to accumulate distinct VPL contributions for every
pixel inside a n ×m tile. Once these contributions have been accumulated, we
finally filter the resulting picture inside the continuous zones of the screen with
a discontinuity buffer, thereby virtually providing n × m times more samples
per pixel. More details about these techniques and the construction of efficient
acceleration structures for ray tracing can be found in the literature [4,34,90,95].

8.5.3 MTMH vs MH

We present here some simple configurations to show why it may be attractive
to use Multiple-try Metropolis-Hastings rather than Metropolis-Hastings. In this
section and the remainder of the chapter, we will use 10 candidates for MTMH,
a commonly used value in computational statistics.

As shown in Figure 8.2.b, the MH sampler gets stuck in the direct local mode.
Even if it will finally find the indirect contributions, the large correlation between
successive samples will produce a ”non-representative” sample set if only a small
number of VPLs is used. Conversely, MTMH provides much better results as
shown in Figure 8.2.c: with very few VPLs, it proposes a good sample distribution
with a direct/indirect repartition close to the reference one.

Figure 8.3 presents another kind of configuration where we explicitly create
two important local modes: the parts of the scene seen by the camera can be
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(a) - 12800 VPLs (b) - MH (c) - MTMH

Direct Indirect RMS error
Ground Truth 49% 51 % -

MH (128 VPLs) 100 % 0 % 0.04%
MTMH (128 VPLs) 56 % 44 % 0.005%

Figure 8.2: Direct / Indirect Modes. (a) is the reference image. (b) shows
the results obtained with a MH sampler: the sampler gets stuck in the direct
local mode. (c) shows the results obtained with a MTMH sampler: it is able to
explore direct and indirect local modes.

illuminated either by the left room or by the right one. As expected, with only
256 VPLs, the MH sampler does not equally explore the two local modes whereas
the MTMH algorithm provides much better results by computing a more repre-
sentative sample set. In the remainder of the chapter, we will therefore always
use MTMH instead of MH.

8.5.4 Results with Easy Configurations

We present here the results we obtained with Metropolis Instant Radiosity in
”easy” scenes, i.e. scenes which are mostly directly lit. We compare our ap-
proach with two other methods, Bidirectional Instant Radiosity (see Chapter 7)
and {Standard Instant Radiosity + Efficient Light Source Cumulative Distri-
bution Function (CDF)} [91]. The first method consists in generating a larger
number of VPLs than desired from the camera or the light sources, in computing
the power they transfer to the camera and finally, in keeping the most relevant
candidates (i.e. those which bring the larger contributions). The second method
consists in computing the power brought by each physical light source to the
camera through direct and indirect contributions and in associating to each of
them the corresponding density. As shown in Figure 8.4, a standard sampler
without any variance reduction technique gives poor results. On the contrary,
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(a) (b) - MH (c) - MTMH

Figure 8.3: Exploration of Left and Right Contributions. (a) is the
overview of the scene: the two lights emit the same amount of energy. (b) shows
an image computed with 256 VPLs and a MH sampler. (c) is the same scene with
256 samples, the same computation time, but computed with a MTMH sampler.

with CDF without CDF
Office 50 % 54%

Shirley’s Scene 10 54 % 91%

Table 8.1: Rejection Rate with MTMH

the three other methods achieve much more satisfactory renderings with very
comparable qualities. This can be easily explained by the fact that the three
approaches try to generate a VPL distribution with a density close to the power
brought to the camera. Since the scene is mostly directly illuminated, Wald’s et
al. approach approximates it by first computing a suitable CDF for the physical
light sources. The resampling method tries to compute it by discarding the less
interesting ones. Metropolis Instant Radiosity finally approximates it by directly
simulating the desired density through a Markov-Chain.

We may also remark that the three approaches are complementary. Indeed,
the MTMH sampler chooses the best candidate with a technique close to a sam-
pling / resampling strategy. Furthermore, associating to each source a density
proportional to the power they bring to the camera, remains interesting with a
MTMH sampler since it decreases the rejection rate during the sampling process
(see Table 8.1) and accelerates the VPLs generation. This combination is more
efficient if we want to generate a large number of VPLs or if the environment is
highly occluded.
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(a) - Reference (standard)

(b) - Standard (c) - Bidirectional

RMS error: 0.02% RMS error: 0.007%

(d) - CDF (e) - MTMH

RMS error: 0.008% RMS error: 0.009%

Figure 8.4: Tests with Shirley’s Scene 10. The reference image is computed
with 12800 VPLs, the other ones, with 256 VPLs.

8.5.5 Results with Difficult Visibility Configurations

As presented above, MIR is efficient for scenes which are mostly directly lit.
However, the decisive advantage of our strategy is its ability to handle very hard
visibility issues. To prove it, we compared our approach to Standard Instant
Radiosity (SIR) and Bidirectional Instant Radiosity (BIR) by testing the three
techniques with two awkward configurations presented in Figures 8.6.f and 8.3.a.
To be fair, we finally ensure that the VPL generation time with BIR is close to
the VPL generation time with MIR.

As shown in Figures 8.5.a, 8.5.b and 8.5.c, Standard Instant Radiosity fails to find
the relevant VPLs since it does not discard the direct contributions. With BIR,
the result is much better but an important noise is still noticeable. With MIR,
we finally achieve an excellent result. The difference between the two approaches
can be intuitively explained: BIR proposes to build a sample distribution with
a density proportional to the power brought to the camera in an approximate
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Scene 6 Scene 10 Office Conf Theater Cruiser 3 Dragons

VPL

generation

time (MTMH)

0.32s 0.31s 0.31s 0.49s 1.0s 0.92s 2.4s

VPL

generation

time (BIR)

0.82s 0.82s 0.62s 0.92s 1.0s 1.3s 1.0s

Rendering

time
4.5s 5.0s 3.2s 7.4s 11.1s 7.7s 7.1s

Table 8.2: Computation Times on a Core Duo T2600. The interleaved
sampling pattern size is equal to 8× 8 and the screen resolution to 1024× 1024.
The resampling rate for BIR and the number of candidates generated with MTMH
are equal to 10. As we use the same renderer for Bidirectional Instant Radiosity
and Metropolis Instant Radiosity, the rendering times are identical. The given
VPL generation time finally includes the construction time of the CDF for the
physical light sources.

way since the sampling / resampling strategy provides the exact density only if
we resample an infinity of candidates. Furthermore, to ensure that we do not
discard a VPL which brings some power to a small part of the screen, we must
set a non-null probability for all VPLs and therefore increase the variance of the
estimator. On the contrary, MIR proposes to compute the desired density with
a Markovian process. Since we have an appropriate initial random variable and
an efficient mutation strategy using multiple candidates, the density is obtained
very soon in the chain and the overall quality of the resulting estimators is very
good.

The scene presented in Figures 8.5.d, 8.5.e, 8.5.f finally shows that sampling
VPLs with independent random variables can be extremely inefficient. With this
layout, the ratio of the measure of relevant paths and the measure of all paths
is indeed so small that both bidirectional and standard VPL sampling strategies
are inefficient. On the contrary, MIR effectively explores the integration space
around the relevant candidates and provides a very good VPL distribution.

8.5.6 Overall Results

Table 8.2 sums up the computation times obtained with our implementation
with the scenes and the camera positions presented in this chapter. For almost
all scenes, MIR provides more relevant sample sets with a smaller amount of
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time. For the Three Dragon Room scene, where it is slower, MIR spends the
most time to the evaluation of Pc (see Section 8.3.1) because we do not fix the
total number of paths but the total number of paths which bring some power
to the camera. However, even if we let the same computation time to BIR, the
resulting distribution is much less relevant. On the other hand, if we want to
achieve the quality provided by MIR with BIR, the needed resampling rate is
superior to 1000 and thus inappropriate for interactive rendering. Finally, the
current implementation of the samplers is neither optimized nor multi-threaded
and we believe that the sampling process can be easily accelerated.

8.6 Limitations, Discussions and Conclusion

Even if we think that our approach provides significant improvements in difficult
cases, we must clearly underline its limitations. First, as our method is view-
dependent, flickering issues may occur. To solve this kind of problem, Ghosh et
al. [24] recently proposed a sequential Monte-Carlo technique to limit flickering
while sampling environment maps. Adapting and applying this strategy to the
generation of VPLs may provide satisfactory results. Secondly, Instant Radiosity
and MIR only handle diffuse or not-too-glossy surfaces. Directly using VPLs to
illuminate very specular surfaces will produce very high variance estimators: it
would be interesting to generate a reflected ray and to find a diffuse surface to
perform the VPL gathering. Thirdly, even if our approach provides good results
with directly-lit scenes in comparison with other importance-driven methods, we
think that the better sample distribution offered by a low discrepancy sequence
will give higher-quality results. Moreover, Owen and Tribble recently proposed a
Quasi-Monte Carlo Metropolis algorithm [59] which could provide a good sample
space stratification and an effective exploration of the integration space thanks
to MCMC mutations. Finally, our technique cannot handle caustics and this
can motivate an alternative but attractive research direction: trying to set up
an interactive Metropolis Light Transport system. We propose in the next chap-
ter some results in that direction since we design a coherent Metropolis Light
Transport system.
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(d) - Standard (e) - Bidirectional

���� ������

������

������

������
������

������

������

�� �� �� �� �� �� ��

One Dragon Room

Path Length1 2

Ratio

0.25

Three Dragon Room

(f) - MTMH (h) - Path Lengths

Figure 8.5: Indirect Illumination Stress Tests. All pictures are computed
with 1024 VPLs. We also give the different numbers of paths per length obtained
while performing the mutations.
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(a) - Office (b) - Conference (c) - Cabin

(d) - Theater (e) - Cruiser

(f) (g) - Three Dragon Room (h) - Jack-o-Lantern in (g)

Figure 8.6: Some Images Rendered with Metropolis Instant Radiosity. A
coherent ray tracer and 1024 VPLs are used here. Our method which consists in
describing a Virtual Point Light (VPL) sampler as a Markovian process provides
very satisfactory results in many cases: in mostly directly-lit scenes as shown in
(a), (b) and, (c) with many light sources or complex scenes as shown in (d) and
(e), and with very difficult visibility issues as shown in Figures (f), (g), and (h).
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CHAPTER 9

Coherent Metropolis Light Transport with

Multiple-Try Mutations

We present in this chapter an effective way to implement coherent versions of
Metropolis Light Transport (MLT) by using a class of Multiple-Try mutation
strategies. Indeed, even if MLT is an unconditionally robust rendering technique
which can handle any kind of lighting configurations, it does not exploit any
computation coherency. For example, it is difficult to cluster similar light rays
into beams or cones, to perform SIMD computations on vectorized data or to
efficiently use geometry caching with non-tessellated scenes. To make Metropolis
Light Transport suitable for most of the currently existing commercial renderers,
we therefore propose to divide the algorithm into two parts: the first one explores
the entire integration space in a way very similar to the initial implementation
of Metropolis Light Transport while the second one ”splits” in an unbiased way
each sample into a family of arbitrarily coherent samples. We finally propose to
illustrate the efficiency of our approach with an example of implementation of
coherent ray tracing using SIMD instructions.

As we show it further in this chapter, Coherent Metropolis Light Transport
(CMLT) is in a sense close to Instant Radiosity [47] and its derivatives (see
Chapters 7 and 8): instead of sampling a set of virtual point lights and using
them to illuminate the parts of the scene seen by the camera, CMLT samples a
set of complete paths (going from the light sources to the camera) and proposes
to perturb them in a coherent manner to compute the final picture.

The remainder of the chapter is finally organized as follows. Section 9.1
presents an overview of our contribution. Section 9.2 exposes in details the new
sampling and mutation strategies we set up to compute global illumination by
combining MLT and ray packets. Section 9.3 gives all the necessary details to
achieve the implementation of our technique. In Section 9.4, we present the
results we obtained and some comparisons with other related approaches. The
limitations and possible future work are finally given in Section 9.5 and Section
9.6 concludes.
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9.1 Overview of the Algorithm

Metropolis Light Transport (MLT) is an innovative algorithm proposed by Veach
and Guibas [88]. In the previous chapter, we described in details the algorithm
and introduced a new algorithm, Metropolis Instant Radiosity, based on MLT
and Instant Radiosity. On the contrary, we propose in this chapter an orthogonal
approach: instead of making Instant Radiosity more predictive and more robust,
we aim at accelerating the Metropolis Light Transport algorithm by making it
more suitable to today CPU architectures. Indeed, the limitations of Instant
Radiosity to not-too-glossy scenes and the difficulty to handle caustics make us
think that MLT would provide better results if its rendering times were sufficiently
improved.

x

D

D

E

E
D diffuse

eye

Figure 9.1: Multiple-Try Mutations with Metropolis Light Transport.
Here, we have mutated a part of path x given by a MLT algorithm. By using a
class of Multiple-Try mutations, we generate at once, several sub-path candidates
from the camera (represented by dashed lines): these mutations allow us to cluster
rays into ray packets, to factorize cache accesses and so on.

In fact, Metropolis Light Transport has several decisive advantages over al-
most all other sampling and integration techniques:

• its theoretical elegance since it proposes a unified solution to the Light
Transport Problem;

• its numerical robustness and its insensitive behavior in relation to the scene
configuration;

• its unbiasedness.

Unfortunately, two major drawbacks make it unsuitable for production renderers.
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Algorithm 7 Coherent Metropolis Light Transport with main chain length n
and sub-chain length m

1: Set all pixel intensities to 0;
2: Compute the power Pc received by the camera and choose a first path sample

x1;
3: for i = 1 to n do
4: y1 ← xi

5: for j = 1 to m do
6: With a Multiple-Try mutation, ”split” current sample yj into several

candidates. Use ray packets or ray packet frustums to compute ray
intersections or BRDF evaluations. Accumulate all the multiple-try can-
didates proportionnaly to the power they bring to the camera and the
generalized Metropolis ratio used to generate them {see Section 9.2 for
more details};

7: Choose the next sample yj+1;
8: end for
9: Generate the next candidate xi+1 with a Metropolis-Hastings mutation;

10: end for
11: Scale the pixel intensities such that the power received by the camera becomes

Pc.

• due to the very large number of random paths generated for a given picture,
flickering problems are difficult to handle when rendering an animation;

• it has very poor algorithmic properties. Indeed, since the samples are se-
quentially generated, the result of sample n is needed to compute sample
n+1 and it therefore becomes very difficult to cluster rays. Furthermore, to
make the algorithm unbiased, large changes may happen from one sample
to the next one making thereby caching strategies inefficient.

Fortunately, the ray tracing literature has recently known large and decisive
advances so that making Metropolis Light Transport efficient seems possible.
Wald et al. developed in 1999 a vectorized ray tracing implementation using SSE
SIMD instructions [92]. Since his first implementation, Wald applied the coher-
ent ray tracing algorithm to a large number of applications like interactive global
illumination or interactive photon mapping [90]: these applications were the first
source of inspiration when we were implementing Metropolis Instant Radiosity
presented in the previous chapter. More recently, Reshetov et al. proposed a
conservative extension of ray tracing, the Multi-Level Ray Tracing Algorithm
(MLRTA) [68]: by clustering rays into pyramids, they managed to achieve real
time rendering with complex scenes on commodity computers. In 2006, other im-
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provements were done and interactive or real time frame rates were also achieved
with dynamic scenes [31, 89, 93]. All these strategies nevertheless require that
rays are coherently grouped into beams or pyramids or more generally that they
are sufficiently coherent. This motivates our approach. We want to bring new
numerical tools to enhance and speed up MLT and make it suitable to the recent
advances made in ray tracing. Our second goal is to propose a new organization
of the method such that MLT may be implemented in commercial renderers. In-
deed, Christensen showed that ray tracing can be used to render very complex
scenes if ray coherency (which can be tracked by ray differentials) is ensured [8,9].
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Figure 9.2: Coherent Metropolis Light Transport. (a) presents the temporal
representation of the algorithm while (b) shows it in screen space where each light
path is projected.
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All the above problems therefore motivated our approach: by making MLT
coherent, we want to produce a first step towards its implementation in produc-
tion renderers. Algorithm 7 sums up our technique: it consists in extending the
original implementation of Metropolis Light Transport [88] by adding new se-
quences of Multiple-Try mutations which can be easily handled by many efficient
ray tracing methods. As shown in Figure 9.1, we divide the method into two
parts to ensure the computation coherency. First, we explore the entire integra-
tion domain by generating a set of standard light path samples with Metropolis
Light Transport algorithm. Then, for each MLT sample, we generate a family
of Multiple-Try candidates. This second part therefore creates many candidates
at once around the original MLT sampled path and computes the intersections
and the BRDF evaluations with ray packets or ray packet frustums. With this
approach, the variance of the estimators may be slightly increased but their effi-
ciency are considerably improved.

To sum up our method, we propose to amortize the incoherent Metropolis
Light Transport sampling process by using sequences of coherent, fast and parallel
Multiple-Try mutations for each sample obtained with MLT.

9.2 Coherent Metropolis Light Transport

In this section, we present the core of our contribution, i.e. the new mutation
family we add to enhance the speed of MLT.

9.2.1 MTMH Algorithm

The main reason for the poor coherency of computations while using MLT is the
fact that all {sampling/BRDF evaluation/accumulation} processes are sequen-
tial: the results for path n are needed to evaluate the results for path n + 1.
To break the sequential aspect of the algorithm, we propose to generate many
samples at once using a Multiple-Try Metropolis Hastings algorithm (MTMH).
One may refer to Chapter 8 for a complete presentation of the algorithm.

Figure 9.2 presents the two algorithms, MH and MTMH, as they are used in
our new implementation of MLT. As we can see, to determine if the proposed
candidate is accepted or rejected, the MTMH competitors represented by trian-
gles are tested against the MTMH candidates represented by disks.
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9.2.2 Application to Metropolis Light Transport

MTMH can be applied in very different ways. The first obvious implementation
would be to replace all MH mutations by MTMH mutations. Unfortunately,
this technique would provide very poor results: if you generate for example,
10 samples for each MTMH mutation, you will accumulate only one candidate
among the 10 ones thereby resulting in a very poor efficiency. Furthermore, if the
candidates are independently generated, the computation coherency can not be
ensured since bidirectional mutations (see [88] for all necessary details about this
mutation strategy) may explore very different parts of the sample space. What
we propose here is therefore a bit different.

9.2.2.1 Unbiased Exploration of the Sample Space

We first generate a path sample family with only bidirectional mutations by using
standard MH proposals (represented by squares in Figure 9.2). This sampling
process provides a sample family with a density equal to f (c)/||f (c)|| and the re-
sulting estimator is therefore unbiased. Conversely to the original MLT, we do
not use the caustic perturbation strategy or the lens one since our goal is to ex-
plore the entire integration domain in an unbiased way and not to provide efficient
estimators. This first part finally provides a set of n path samples (xi)i∈[1...n].

9.2.2.2 The ”Lens Sub-path” Space

For a given path xi, the lens sub-path (xi,1 . . .xi,k) is the sub-path of the form
ES∗DS∗(L|D) (where we use Heckbert’s regular expression notation [35]; S, D,
E, and L stands for non-diffuse, diffuse, lens and light vertices respectively);
the light sub-path is on the contrary, the remainder of the path (which may be
void if the lens sub-path is already connected to a light source). We can give
an intuitive representation of the lens and light sub-paths: if we would want to
discretize the incoming radiance field by a set of virtual point lights (as done in
Instant Radiosity [47]), appropriate positions for these point lights would be the
second diffuse surface, i.e. the ending point of the lens sub-path. This point can
therefore be considered as a temporary virtual point light which illuminates the
first diffuse surface seen by the camera through specular reflections.

For each xi, we can therefore define lens sub-path spaces Ωls
i such as x belongs

to Ωls
i if and only if the light sub-path of x is identical to the light sub-path of xi.

This sub-space is quite interesting since it is much smaller than the entire path
space and can be entirely explored by using only lens or caustics perturbations:
once the initial path x is given, we just have to generate new sub-paths around
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the lens sub-path of x to sample it.

Figure 9.1 gives for example the strategy that can be used to explore a diffuse
lens sub-path, i.e. a sub-path of the form EDD: this approach here consists
in sampling rays from the camera and in connecting the computed intersection
to the second diffuse surface of the lens sub-path of x. If we are able to clus-
ter many camera rays before performing any intersection or BRDF evaluation,
we will therefore be able to factorize many operations. As these strategies are
implementation dependent, we give in Section 9.3 all the necessary details to
implement effective perturbations to explore the lens sub-path space.

What we propose is therefore to use a MTMH sampler to explore each sub-
space Ωls

i and thus, to compute new unbiased estimators from the initial unbiased
estimator given by the sample family (xi). Before extensively presenting the
MTMH version of the lens sub-path space, we first detail a MH version and
explain why it does not provide both computation coherency and low-variance
estimators. We will finally show that the exploration of the lens sub-path space
with MTMH will give us the theoretical roots of a coherent implementation of
the Metropolis Light Transport algorithm.

9.2.2.3 Exploring the Lens Sub-path Space with MH

As the samples (xi)i are generated proportionally to f (c), each of them brings
an equal quantity of energy to the camera (equal to ||f (c)||/n). By counting
how many path samples go through each pixel, we have, as shown by Veach and
Guibas, an unbiased estimator of the power received by each pixel. From a given
xi, we can then perform a MH move to generate a new path yi with an acceptance
probability equal to Ri and a transition function q(xi, yi). As we use a MH move,
the detailed balance is satisfied and the energy transfered from xi to yi is equal
to the energy transfered from yi to xi. Therefore, the estimator obtained by
weighting the contributions of the two families (xi)i and (yi)i by 1 − Ri and Ri

is still unbiased.

This assumption can lead to several strategies to explore the lens sub-path
space. Cline et al. propose, for example, to build a finite length Markov-Chain
from each xi and to recursively deposit the energy according to the Metropolis
ratio evaluated at each step [11]. This strategy is interesting to reduce the vari-
ance of the estimators, but as the paths are sequentially generated, it seems very
difficult to cluster the generated rays. Another strategy, also suggested in [11],
would be to split each sample into m candidates and to proportionally deposit the
energy of each generated sample. This method seems to ensure the computation
coherency, but it leads to high variance estimators since the energy received by
the mutated samples will greatly vary. Iterating in this manner will result in an
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exponential growth in the number of samples. As our goal is to maintain low
variance estimators and to exploit the computation coherency, MTMH moves
provide the best of the two previous approaches.

9.2.2.4 Exploring the Lens Sub-path Space with MTMH

With MTMH mutations, we are able to generate p different candidates x∗
1 . . . x∗

p

(represented by disks in Figure 9.2) for a given initial sample x(t) (see Section
9.2.2 for the notations). Once the single proposal x∗

j has been chosen, we generate
p competitor samples (x∗∗

1 . . . x∗∗
p−1, x∗∗

p = x) from x∗
j . Then, the process is

repeated by setting as current sample, either x or xj . This approach therefore
allows to generate many samples at once and to perform a Markov Chain which
can efficiently explore the lens sub-path space. The last problem which has to be
solved is to use and accumulate the contributions of all the generated samples,
i.e. all the candidates x∗ and all the competitors x∗∗. To achieve such a result,
we can make a simple remark: compared to the MH algorithm, MTMH only
replaces the single candidates by families of candidates and, as indicated in [41],
the detailed balance is therefore still maintained. This leads to the following
strategy; for each step of the MTMH mutations, we build 2p estimators:

• the first p ones are x∗
1 . . . x∗

p. Their contributions are respectively weighted

by Rg · w∗
i where w∗

i = f (c)(x∗
i )/

∑p
k=1 f (c)(x∗

k);

• the last p ones are x∗∗
1 . . . x∗∗

p . Their contributions are respectively weighted

by (1− Rg) · w∗∗
i where w∗∗

i = f (c)(x∗∗
i )/

∑p
k=1 f (c)(x∗∗

k ).

This approach can be intuitively explained: as we want to maintain the detailed
balance, we first accumulate each family proportionally to ”its Metropolis ratio”,
then, we accumulate each element x inside a given family proportionally to its
energy function, i.e. f (c)(x).

9.2.2.5 User Parameter Values

We set λ(u, v) = [g(u|v) · g(v|u)]−1 to encourage certain types of proposals: by us-
ing this specific λ, w(xi, x

∗) corresponds to the importance weight π∞(x∗)/g(x∗|xi).
However, we noticed that the algorithm was not particularly sensitive to the value
of λ.

For the Gaussian standard deviations, we finally found that appropriate val-
ues were close to the parameters proposed by Veach and Guibas in [88]. For
example, for the radius R of the MTMH perturbations in screen space, setting σ
between 5% and 10% of the image size (width or height) provides good results.

128



However, they strongly depend on the number p of accumulated candidates and
competitors. For more details about the numerical behavior of the strategies,
please refer to Section 9.4.2.

9.2.3 Summary of the Approach

The roots of Coherent Metropolis Light Transport are therefore the MTMH muta-
tions. On the one hand, we explore the entire sample space with MH bidirectional
mutations. On the other hand, for each MH path, we sample the corresponding
lens sub-path space in a fast manner by performing a finite length sequence of
MTMH perturbations. Compared to the standard Metropolis Light Transport,
we may therefore notice two deep changes:

• the perturbations and the bidirectional mutations are reorganized. Instead
of sequentially alternating {lens/caustics} perturbations and bidirectional
mutations, we deterministically apply a sequence of perturbations for each
bidirectional mutation;

• all MH perturbations are replaced by MTMH perturbations.

9.2.4 Conceptual Differences with Metropolis Instant Radiosity

One may wonder what the differences with Metropolis Instant Radiosity are (see
Chapter 8).

First, the way we propose to use the Multiple-Try mutations is orthogonal.
With Metropolis Instant Radiosity, Multiple-Try mutations aim at decorrelating
the successive virtual point lights: indeed, as many candidates are proposed at
each step of the algorithm, the acceptation ratio is increased and large moves are
likelier. With Coherent Metropolis Light Transport, the Multiple-Try mutations
are used to coherently deposit many contributions at once. We may notice that
it is also possible to use the Multiple-Try mutations during the incoherent path
sampling process of Coherent Metropolis Light Transport. We just have to replace
the standard MCMC mutations by Multiple-Try ones.

Secondly, Coherent Metropolis Light Transport is much more generic. Indeed,
it replaces, in a sense, the virtual point lights by complete light paths. The
gathering step which consists in illuminating with the set of VPLs, the parts
of the scene seen by the camera is thus replaced by the coherent Multiple-Try
mutations of the current path.

Finally, Metropolis Instant Radiosity is actually included in Coherent Metropo-
lis Light Transport. Indeed, if you choose as Multiple-Try candidates and com-
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petitors, one path for each pixel in the screen, Coherent Metropolis Light Trans-
port can be reexpressed as a Metropolis Instant Radiosity algorithm. It is however
not the best strategy when, for example, there are many different local modes
in the screen (i.e. there are many parts in the screen which are illuminated by
different surfaces in the scene). Local explorations of the sampled space is, in
this kind of configuration, more interesting.

We now have to analyze a last point: how can we mutate the lens sub-paths
in a fast and coherent way and how can Coherent Metropolis Light Transport be
implemented?

9.3 Implementing Coherent Metropolis Light Transport

The previous sections did not detail the implementation of our technique. We
therefore present here how we perform the MTMH mutations to explore the lens
sub-path space and how we can cluster rays to speed up the computations.

9.3.1 Designing an Effective Lens Sub-space Exploration

The first step is to build an effective mutation strategy to generate the MTMH
candidates and competitors. Before detailing our method, we can make two
remarks which motivated our choice:

• paths x generated by standard MLT (represented by squares in Figure 9.2)
are already an effective sample set with density f (c)/||f (c)||: that motivates
to explore the close neighborhood of each sample;

• the mutation strategy to generate MTMH mutations must not introduce
extra sampling artifacts or patterns which may be slow to disappear.

These two points lead us to use Gaussian random variables with density qµ,σ

defined by qµ,σ = 1
2σπ

exp
(

− (x−µ)2

2σ2

)

. Indeed, depending on the nature of the

given sub-path, we have to use two different path generation strategies:

• let assume that the lens sub-path x0 . . .xk has the form ES∗DS+(D|L)) (it
is a caustic lens sub-path): we generate a path starting from xk, the second
diffuse surface (or the light source). The direction of the segment xk,xk−1

is perturbed by a random (θ, φ) where φ is a uniform random variable and
θ is a Gaussian random variable with µ = 0 and σ is user-defined;

• otherwise, the lens sub-path x0 . . .xk has the form ES∗D(D|L) (it is a non-
caustic lens sub-path): we perturb the old image location by moving it a
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Gaussian random distance R and a uniform angle φ.

For these two kinds of mutations, we noticed that the Gaussian strategies were the
most effective. Since we want to use a large number of MTMH candidates per MH
sample, a uniform density for R or θ gives very poor results. After implementing
it, we noticed that bright circles (which were slow to disappear) may appear
around duplicated MH samples. Other strategies were tested like linear densities,
but none of them gives satisfactory results. Conversely, since all derivatives of
Gaussian distributions are null at µ, the Gaussian MTMH perturbations offer very
smooth transitions and the results we got are very similar to the ones obtained
with a standard MLT (see Section 9.4).

We finally have to make an important remark concerning Gaussian densities:
in our case, we do not use exact Gaussian densities, but clamped ones which are
defined on a given domain Ω by:

qclampedµ,σ =
qµ,σ

∫

Ω
qµ,σ(ω)dω

In the particular case where Ω is the set of screen coordinates, qclampedµ,σ is
different for each pixel. We first precompute and store on the hard disk a Gaussian
map which gives for every pixel the value of 1 /

∫

Ω
qµ,σ(ω)dω. This allows us

to sample clamped Gaussian random variables with a rejection technique and no
extra computation at run-time.

9.3.2 Making the Computations Coherent

As described before, the MH part of the algorithm (represented by the Markov
Chain of squares in Figure 9.2) is incoherent and we do not intend to speed this
part of the algorithm. On the contrary, we want to amortize the expensive cost of
each MH by computing sub-sequences of MTMH lens sub-path samples. Several
implementations are possible.

9.3.2.1 Coherent MLT with SIMD Ray Packets

In this section, we will suppose that the lens sub-path is non-caustic (the approach
is quite similar for a caustic lens sub-path). Let us consider the given current
path x we have to mutate and its corresponding lens sub-path xls. To perform
the perturbation of xls, we first perform a n×m jittered and uniform sampling as
presented in Figure 9.3. Then, by inverting the Gaussian density (a Box-Muller
transform can, for example, be used), we generate a set of n×m ray segments that
we use to trace the corresponding MTMH candidates. These complete sub-paths
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are obtained by perturbing the remainder of the segment in a way very similar to
the multi-chain perturbation technique presented by Veach and Guibas in [88].
To achieve effective SIMD computations as presented by Wald in [92], we finally
cluster 4 neighborhood rays (see Figure 9.3) and we perform the camera path
tracing (or the light path tracing if we have to mutate a caustic lens sub-path)
using a coherent ray tracer. We may notice that the path tracing part remains
coherent since we cluster a set of close camera rays and we perturb the remainder
of the path around the same given camera path xls. As described by Benthin in
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Figure 9.3: Our Technique to Ensure Ray Coherency. (a) is the uniform
jittered 2D sampling. (b) shows the corresponding Gaussian sampling in screen
space. We can see the 2× 2 ray packet we made with 4 neighbor rays. (c) shows
some resulting camera sub-paths: we have mutated here a ESDD lens sub-path.

his Ph.D. [4], larger ray packets can also be used to more effectively speed up the
intersection operations: this can also be implemented with the jittered approach
and no extra theoretical difficulties.
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9.3.2.2 Coherent MLT with Ray Packet Frustums

Very efficient algorithms were recently introduced to exploit in a better manner
ray coherency by using ray packet frustums [68,93,96]: as the interval arithmetic
supporting all these algorithms requires a common origin for all rays in the packet,
we can not compute all kinds of lens sub-paths with ray packet frustums only. For
EDD lens sub-paths, there is no specific problem, since the two ray packets have
common origins (the first one is the camera while the second one is the second
diffuse surface). Nevertheless, for a ESDSL sub-path or other sub-path types,
we can use ray packet frustums only for the rays starting from the camera and
the rays starting from the light source: the remaining rays have to be processed
by casual SIMD packets.

9.3.3 Summary and Remarks

MTMH perturbations thus allow us to generate many coherent rays at once, to
perform coherent ray tracing and to use ray packet frustums when it is possible.
The next section presents the results we obtained with our implementation and
the tests we did to demonstrate the efficiency of our approach.

Furthermore, as indicated by Craiu and Lemieux in [14], the MTMH candi-
dates and competitors do not even need to be independent so that the MTMH
proposals can be directly generated with low-discrepancy number sequences and
quasi Monte-Carlo techniques. This can lead to better estimators and may be
really helpful to handle flickering-free rendering of animations (we give some ideas
about this in Section 9.5).

9.4 Results

We implemented a complete rendering system to perform SIMD computations
when using MTMH perturbations. We actually recoded the OpenRT API [17] and
divided our CMLT renderer into two parts: the first one sequentially generates
paths with a standard Metropolis Light Transport algorithm while the second one
performs the sequence of MTMH mutations and executes the SIMD part of the
shaders: the ray generation and the BRDF evaluations are completely vectorized
and encapsulated in a user-friendly interface.

We finally have to notice that we did not implement a ray packet frustum
technique so that much better performance can be expected if it was used (par-
ticularly for EDD lens sub-paths).
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(a) σ = 16 pixels (b) σ = 32 pixels (c) σ = 64 pixels

Figure 9.4: Different Values of σ. For the 3 tests, we use 256 MTMH candi-
dates and 256 MTMH competitors. The screen size is equal to 1024× 1024 and
about 20 mutations per pixel have been evaluated.

9.4.1 Comparison with Metropolis Light Transport

The first remark we can made is that, in a sense, our technique strictly contains
MLT. Indeed, if you implement MLT and use the same number of perturbations
and bidirectional mutations (it is what Veach proposed in [88]), implementing
CMLT with length 1 MTMH sub-sequences and only 1 MTMH candidate will
roughly provide the same results. However, CMLT adds three parameters which
have to be analyzed:

• the standard deviation σ of the Gaussian random variables;

• the number of MTMH candidates (and competitors);

• the length of the MTMH sub-sequences.

9.4.1.1 Length of MTMH Sub-sequences

We first noticed that our method was almost insensitive to the sub-sequence
length since our samples already follow density f (c). However, since the initial
samples provided by a path tracer do not follow f (c), this behavior must be
quite different if you combine MTMH sub-sequences and an Energy Redistri-
bution Path Tracer: it would be certainly more interesting to use long MTMH
sub-sequences. Finally, in a more complex rendering system (with for example,
geometry caches), this parameter may need to be more carefully tuned.
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9.4.1.2 σ and the Number of MTMH Candidates

Even if the algorithm remains unbiased for all values of σ, we have to carefully
balance the number p of MTMH candidates and the size of the MTMH pertur-
bations. Figure 9.4 shows a simple scene tested with different values of σ and
p = 256. As we can see, generating too many MTMH candidates in a too small
area causes very poor results. Indeed, Metropolis Hasting does not stratify well so
that we directly inherit this poor stratification for small values of σ. On the con-
trary, the jittered sampling used for the MTMH perturbations greatly enhances
the stratification of the sample set. In a sense, CMLT also offers a trade-off
between variance and stratification over the image plane.

For a given implementation, it is therefore fundamental to carefully tune the
respective values of σ and p. For all the pictures computed in this chapter, we
set p = 256 and σ = 5% of the screen size.

9.4.2 Overall Performance

As indicated above, we perform the MTMH perturbations with a multi-threaded
coherent ray tracer using the SSE SIMD instruction set. Compared to a non-
vectorized implementation, we achieved a speed-up varying from 2.3 to 1.5: the
acceleration actually depends on the lens sub-path length, the number of MTMH
candidates and the size of the Gaussian perturbations. Once again, it is important
to carefully tune the sampling parameters to maintain computation speed, good
stratification properties and low variance. With our current implementation, we
achieved between 1 or 2 million mutations per second on most of the scenes we
tested. Our implementation seems to be very competitive compared to other
existing MLT renderers. We actually think that aggressively exploring the lens
sub-path space offers a good sampling strategy since perturbations are much
less computationally expensive than bidirectional mutations. We finally believe
that using ray packet frustums can still bring major improvements as speed-ups
superior to 10 have been recently reported [68, 93].

9.4.3 Cache Simulation

Christensen et al. recently published two papers about distribution ray tracing
in complex scenes [8, 9]. We believe that our technique, combined with multi-
resolution geometry caching, can fit in production renderers such as the ray trac-
ing system used within the RenderMan interface. Indeed, MTMH mutations are,
in essence, very close to a standard distribution ray tracing framework: instead
of generating reflections, refractions or shadow rays for a uniform set of pixels,
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Diffuse Office Glossy Office
4 Tri 16 Tri 128 Tri 4 Tri 16 Tri 128 Tri

MLT 55% 61% 62% 38% 40% 45%
CMLT 87% 92% 99% 82% 91% 98%

IR 87% 92% 99% 81% 90% 98%

Diffuse Conference Glossy Conference
4 Tri 16 Tri 128 Tri 4 Tri 16 Tri 128 Tri

MLT 65% 77% 79% 70% 74% 77%
CMLT 80% 95% 98% 81% 95% 99%

IR 81% 96% 98% 82% 95% 99%

Table 9.1: Some Cache Hit Statistics. We use the four test scenes presented
in Figure 9.5 and 3 cache sizes: 4, 16, and 128 triangles. Coherent Metropolis
Light Transport (CMLT) easily outperforms standard Metropolis Light Transport
(MLT). It roughly behaves as Instant Radiosity (IR) does.

we actually use the same strategies for a Gaussian pixel distribution. To analyze
the performance of our technique, we simulated and implemented a simple cache
system.

We actually associate a fixed size cache to the triangles of our test scenes
(see Figure 9.5). When a ray / triangle intersection is requested, we check if the
triangle is in the cache: if we find it, it is a cache hit, otherwise, it is a cache miss
and the triangle is inserted in the cache. To evaluate the performance, we finally
use four test scenes: a purely diffuse office, the same scene but with a glossy wall,
a purely diffuse conference room and the same scene with a glossy floor. The
goal is to exhibit the coherence properties of the tested algorithms with various
layouts. We compare our method (CMLT) with Metropolis Light Transport
(MLT) and Instant Radiosity (IR) [47] which is one of the most coherent and
successful methods when combined with coherent ray tracing techniques. We
noticed that CMLT provided results which are very similar to the results obtained
with IR. Actually, the two methods have close algorithmic properties. For IR,
we implemented a multi-threaded rendering tile system: each thread renders
small tiles which are associated to a set of VPLs. At the same time, our CMLT
rendering system finally replaces the tiles by a jittered Gaussian path distribution.
Once the rays have been generated, the operations are quasi-identical.

Compared to IR, we however have to remind that a CMLT system requires
to write anywhere in the frame buffer which may be limiting in a multi-threaded
environment.
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9.5 Limitations and Future Work

As an extension of Metropolis Light Transport, our method inherits some of its
drawbacks.

9.5.1 Flickering Problems

The first one is the difficulty to handle animations without flickering problems.
This issue has actually two main reasons:

• as the samples are sequentially dependent, if one of them considerably
changes from one frame to the next one, all the following samples in the
Markov Chain will be consequently modified and major flickering issues will
suddenly occur;

• as Metropolis Light Transport is a pure Monte-Carlo technique, we have
to use a lot of pseudo-random numbers which are difficult to reuse in a
flickering-free way.

We however think that handling flickering issues may be much easier with Co-
herent Metropolis Light Transport. First, it seems to be possible to store all the
MH paths (represented by squares in Figure 9.2) on hard-disk. Indeed, compared
to a MLT algorithm, most of the computed paths are generated with MTMH
perturbations and the MH paths obtained with bidirectional mutations only are
much less numerous. When we compute a new frame, we can therefore re-read
the stored paths, mutate them with a sequential sampler, and make them follow
the density of the current frame as done by Ghosh et al. to compute illumination
with environment maps in [24]. In other words, if we have a set of paths which

follow the density f
(c)
n of frame n, a sequential sampler can mutate these paths to

make them follow f
(c)
n+1. As the MTMH samples do not need to be independent,

we can moreover use deterministic quasi random sequences of samples which can
easily be regenerated from one frame to the next one. These ideas may thus
provide satisfactory results to handle flickering problems since most of the paths
of the previous frame could be ”reprojected” in an unbiased way into the next
frame.

9.5.2 Other Sampling Strategies

The MTMH mutations strategies can finally certainly be applied to other sam-
plers: there must be no specific problems to handle participating medias, mo-
tion blurs or spectral representations of materials. Furthermore, MTMH mu-
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tations can certainly be combined to an Energy Redistribution Path Tracing
algorithm [11]. Instead of performing a sequence of MH perturbations, it would
be not too difficult to replace them by a sequence of coherent MTMH candidates
as we did with MLT.

9.5.3 Implementing a Distributed Framework

One difficult challenge is to efficiently implement a Metropolis Light Transport
algorithm with a computer cluster. With our current implementation, it seems
impossible to achieve interactive or real time frame rate, since running separate
MLT on separate threads / computer is not appropriate to a distributed frame
work (it would require a too large bandwidth to gather all pictures). A good
approach would perhaps be to use an Interleaved Sampling technique [48] and
therefore to compute the contributions of different pixel sub-sets on different
machines. This would require only few changes into the different MLT samplers.
Combining MLT and Interleaved Sampling could also provide good results with
inhomogeneous multi-core architectures like Cell processors.

9.6 Conclusion

We presented in this chapter, a coherent extension of Metropolis Light Transport
which can easily be combined with most of the recent advances achieved in the
field of ray tracing. By adding Multiple-Try perturbations, we can coherently
compute most of the intersection and BRDF operations by efficiently using ray
packets or ray packet frustums. We now believe that an interactive and even
real time MLT system can be implemented: if the remaining problems previously
presented are solved, we could finally have an unconditionally robust rendering
system which could handle any scene of any complexity and as MLT initially did,
any lighting layout without the necessity to use aggressive filters or to bias the
method.
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(a) - Diffuse Office (b) - Glossy Office

(c) - Diffuse Conference Room (d) - Glossy Conference Room

Figure 9.5: The Four Scenes to Test the Coherency of our Algorithm
with a Simulated Cache System. The 1024× 1024 pictures presented here,
are computed in about 5 minutes on a Core Duo and a 2 × 2 SIMD ray packet
system. Office contains 35, 000 triangles and Conference Room 200, 000 triangles
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(a) Candelstick Theater (b) Cabin Lit by a Simple Sky

(c) The MLT Room

Figure 9.6: Three 1024× 1024 pictures rendered in 10 minutes with Co-
herent Metropolis Light Transport. About 1000 mutations per pixel are
used. We accelerate the Metropolis Light Transport algorithm by adding a new
class of Multiple-Try coherent mutations. With these mutations, we are now able
to use ray packets or ray packet frustums to speed up the intersections and the
BRDF evaluations.

140



CHAPTER 10

Final Summary, Conclusions and Future Work

In this dissertation, we focus on the domain of realistic image synthesis in com-
puter graphics while targeting physically-based as well as real-time or interactive
rendering. We actually explore two different but complementary research ar-
eas. First, we aim at efficiently using modern hardware architectures (GPUs or
CPUs) and at implementing either effective rasterization renderers or ray trac-
ing systems. Secondly, we try to propose new probabilistic numerical schemes
using Virtual Point Lights (VPLs). As already indicated in the thesis, effective
implementations may require some restrictions in the abstraction and the possi-
bilities provided by the numerical algorithm: using virtual point lights allows us
to simulate many light transport phenomena with few restrictions while main-
taining interactive or real-time frame rates. We can more precisely sum up our
contributions in the following manner:

10.1 Summary of Contributions

10.1.1 Another Presentation of Monte-Carlo Rendering

In the first chapters of the thesis, we try to expose the Monte-Carlo Rendering
techniques, and more particularly those which aim at solving the light transport
problem in its global form. Even if most of the ideas are not new and previously
exposed in several Ph.D. thesis or books also dealing with Monte-Carlo rendering,
we think that it is fundamental to recap the roots of any Monte-Carlo renderer:

• Probability theory and the Central Limit Theorem: they provide the con-
verging properties of all sampling strategies: almost sure convergence and
convergence in distribution of the random variable partial sums towards a
Gaussian distribution;

• The path sampler families currently existing in computer graphics: they
either generate paths of any length or intensively use Russian Roulettes to
explicitly compute an infinite sum of integrals.
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Even if most of engineers and researchers in computer graphics are familiar with
Monte-Carlo methods, we think that a suitable formalization is fundamental.
Once it is done, Monte-Carlo techniques are certainly ones of the simplest and
most powerful numerical schemes since they only consist in:

Sampling, evaluating, and accumulating.

10.1.2 Interleaved Sampling on GPUs

We provide two new techniques to perform uncorrelated computations over neigh-
bor screen pixels. The first approach, ”Non-Interleaved Deferred Shading of Inter-
leaved Sample Pattern” is very generic and can be used to extend any pre-existing
renderer. With some extra lines of code to integrate it in an existing renderer, ac-
cumulating many light source contributions therefore becomes much easier. The
second approach, ”Interleaved Deferred Shading” is simpler but more restrictive
and remains more adapted to real-time applications such as video games.

10.1.3 Variance Reduction Methods for VPL Rendering Techniques

We provide two variance reduction strategies to improve the location of virtual
point lights. Indeed, as it is useless to sample virtual point lights which are
not able to illuminate the parts of the scene seen by the camera and since the
lighting computations are quite expensive, it is fundamental to improve the VPL
distribution. The first technique, Bidirectional Instant Radiosity, proposes to
sample VPL both from the camera and the light sources and to use a sampling
/ resampling step to improve the distribution. The second method, Metropolis
Instant Radiosity, aims at directly sampling an optimal VPL distribution by us-
ing a Markov-Chain Monte-Carlo sampler. As these two techniques are entirely
based upon Instant Radiosity, implementing them in a renderer already using
virtual point lights seems not-too-difficult. In fact, we propose several exam-
ples of implementations using them (with CPUs or GPUs, with ray tracing or
rasterization).

10.1.4 Coherent Metropolis Light Transport

Thanks to the experiences acquired with the study of virtual point light sampling
strategies and the difficult implementations of interactive ray tracing techniques,
we propose to extend the successful Metropolis Light Transport algorithm in a
coherent manner. Our wish is actually simple: instead of illuminating parts of the
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scene seen by the camera with a set of virtual point lights, we similarly propose
to coherently perturb complete light paths around some path candidates. The
technique provides interesting results but as indicated in Chapter 9, we do not
obtain interactive results yet. However, the excellent robustness of Metropolis
Light Transport samplers makes us think that implementing an interactive MLT
system remains quite appealing.

10.2 Conclusion

This Ph.D. thesis, even if it only focuses on a very small part of computer graph-
ics, finally tries to make one more step towards the ultimate renderer, i.e. the
renderer which would be able to simulate in real-time all the visible lighting phe-
nomena regardless to the input properties. Of course, we do not succeed in such a
quest but we really hope that the community will appreciate the results, the ideas
and the efforts provided in this thesis. It is quite difficult to know the directions
which will be chosen in the next years. First, the ”good” technical choices remain
today difficult to find. On the one hand, rasterization techniques are extremely
fast, robust and can display any scene without expensive precomputations. On
the other hand, ray tracing techniques recently make outstanding advances and
remain the most natural approaches to deal with the light transport problem.
The situation concerning the numerical schemes is worst and much more uncer-
tain. Monte-Carlo renderers are the more flexible but one major step has to be
made to implement them in real-time renderers such as those used in video games.
However, even if techniques using precomputation steps are today the most pop-
ular ones, we think that the quest toward total interactivity strictly requires fast,
robust and predictive rendering strategies. Contrary to off-line rendering where
designers can improve and change the lighting design to make the scene most
realistic, real-time rendering does not offer such a chance: it is therefore possi-
ble that real-time renderers will require more ”physically-based simulation” than
off-line ones will in the future.

10.3 Future Work

There is of course, a very large room for improvement. First, we think that it
is quite important to handle flickering problems while using importance driven
techniques. The three sampling methods we propose, Bidirectional and Metropo-
lis Instant Radiosity, and Coherent Metropolis Light Transport, do not correctly
deal with these issues. Secondly, Instant Radiosity does not handle very glossy or
shiny surfaces and specific lighting phenomena such as caustics. It may therefore
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be very interesting to propose sampling techniques to tackle these problems. Fi-
nally, the incoming new processor architectures, using inhomogeneous configura-
tions and massively parallel features will certainly bring strong and deep changes
in the numerical scheme requirements: some algorithms will certainly have to be
discarded while other ones will become competitive.
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