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a b s t r a c t

High-dimensional indexing methods have been proved quite useful for response time

improvement. Based on Euclidian distance, many of them have been proposed for

applications where data vectors are high-dimensional. However, these methods do not

generally support efficiently similarity search when dealing with heterogeneous data

vectors. In this paper, we propose a high-dimensional indexing method (KRAþ-Blocks)

as an extension of the region approximation approach to the kernel space. KRAþ-Blocks

combines nonlinear dimensionality reduction technique (KPCA) with region approx-

imation approach to map data vectors into a reduced feature space. The created feature

space is then used, on one hand to approximate regions, and on the other hand to

provide an effective kernel distances for both filtering process and similarity

measurement. In this way, the proposed approach achieves high performances in

response time and in precision when dealing with high-dimensional and heterogeneous

vectors.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

The amount of multimedia data has strongly increased
in recent years. Therefore, new efficient and powerful
applications that handle this data are needed, such as
image search engines, bio-medical imaging, education,
commerce, etc.

In CBIR applications, the idea of image indexing consists
in extracting descriptors from images, then mapping them
into a high-dimensional space. The distance between two
vectors is frequently used to estimate the similarity between
the related images. Therefore, the problem of finding the
most similar images to a given query can be seen as a
ll rights reserved.
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problem of k–NN search in high-dimensional vector space.
Many methods have been proposed and they are known as
high-dimensional indexing methods. However, they en-
counter two kinds of problems. Firstly, they suffer from
the notorious dimensionality curse because they deal with
high-dimensional vectors. Secondly, when the considered
data is heterogeneous and not distributed uniformly, these
methods are confronted with the choice of the distances
that have to be used both for data space partitioning and
similarity estimation. In this work, we propose a novel high-
dimensional indexing method based on vector approxima-
tion approach so as to reduce the distance computations
(CPU time) and to improve the similarity search quality.
1.1. Related work

In the past, many high=dimensional indexing methods
were proposed to solve the k–NN search problem
efficiently. Most of them, however, are restricted to a
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small number of dimensions or very specific data
distributions. They typically degenerate to perform worse
than a sequential scan if the number of dimensions
is high. This phenomenon is often referred to as a curse of
dimensionality problem.

Many approaches have been proposed to overcome the
curse of dimensionality. They can be classified into three
major categories: spatial access methods, dimensionality
reduction approaches and filtering (approximation) ap-
proaches.

In spatial access methods, an image is represented by a
descriptor and the Euclidean distance between the
descriptors of two images is used both to compute the
similarity between them and to divide the space/data
vectors into spatial clusters.

KD-Tree [1] and R-Tree [2] are the first examples of
spatial access methods, then, several enhanced methods
have been proposed. R*-Tree[3] provides a consistently
better performance than the R-Tree and Rþ-Tree[4] by
introducing a policy called ‘forced reinsert’. Lin et al. [5]
proposed TV-Tree, which uses so-called telescope vectors.
Berchtold et al. [6] introduced X-Tree, which is particu-
larly designed for indexing higher-dimensional data.
X-Tree avoids an overlapping of region bounding boxes
in the directory structure using a new organization of the
directory, and it outperforms both TV-Tree and R*-Tree
significantly. However, bounding rectangles can still
overlap in higher dimensions. White and Jain [7] proposed
the SS-Tree as an alternative to R-Tree structure, which
uses minimum bounding spheres instead of rectangles.
Even though SS-Tree outperforms R*-Tree, overlapping
in high dimensions still occurs. Thereafter, several other
spatial access methods are proposed such as SR-Tree [8],
S2-Tree [9], Hybrid-Tree [10], etc.

All these conventional methods work efficiently if the
number of dimensions is low; however, they still suffer
from the curse of dimensionality (up to d=16) and their
performance degenerates to being worse than brut-force
sequential scan.

Dimensionality reduction approach is well known as
an effective process for mapping the original high-
dimensional features space into low-dimensional one by
eliminating the redundant information from the original
data. The most well-known method is the principal
component analysis (PCA) [11]. The idea is to remove
linear correlation between dimensions by rotating the
data space. This can be done by solving the eigenvalue
problem on a covariance matrix, and the resulting
eigenvalues reflect the variance of the resulting dimen-
sions. Unfortunately, only linear correlation can be
removed.

Multidimensional scaling (MDS) is another technique
for discovering the underlying spatial structure of a set of
data items from the similarity information among them
[12,13]. It assumes the existence of a monotonic relation-
ship between the original and the projected pairwise
distances.

LLE [14] and Isomap [15], are two representative
methods of the nonlinear dimensionality reduction ap-
proach. The idea of LLE is to map high-dimensional
vectors into a lower-dimensional space, preserving as
well as possible the neighborhood of each vector and the
global distance between rest of the vectors. The intrinsic
structure is thus preserved. Isomap constructs neighbor-
hood graph and computes shortest path distances
(geodesic distances) for each pair of points in the graph.
The classical MDS method is then used with geodesic
distances.

Although many reduction techniques exist, they are
restricted in different ways. The performances of linear
methods decrease dramatically when the manifold is
nonlinear, whilst the computational complexity of non-
linear approaches is generally higher than the linear
methods.

The filtering approach has been proposed as a
palliative solution for the dimensionality curse. It includes
VA-File [16], RA-Blocks [17], LPC-File [18], GC-Tree [19],
etc. The idea is to divide the data space into cells or
regions, and to use bit strings to approximate the data
vectors that fall into those cells or regions. During the
k–NN search step, for a given query vector, the relatively
small approximation file is sequentially scanned instead
of reading the complete data file. As the original vectors
are filtered, only a small fraction of them will be accessed,
and thus, limited access to the complete database is
performed.

In VA-File [16], the space is partitioned into a number
of hyper-rectangular cells. Each non-empty cell location is
encoded with a unique bit strings and stored in the
approximation file. In nearest neighbors search step, the
file is sequentially read, and then, upper and lower
distance bounds between the query vector and each cell
are estimated. The bounds are used to prune the irrelevant
vectors’ cells. Finally, the set of candidate vectors are read
from the hard disk and the k–NN are determined.

Chen et al. [17] noticed that for very large databases,
the approximation file cannot be completely stored in
memory. Hence, they proposed the region approximation
method, called RA-Blocks. The data space is partitioned
into regions that contain cells as described in Section 2.1.
Each region is approximated by two bit strings, corre-
sponding to the bottom-left and top-right cells of this
region. Hence, the computation time and the number of
I/O access are reduced, as the lower and upper bounds are
computed for regions and not for cells. However, the
partitioning strategy of the RA-Blocks usually generates
both empty regions and regions that contain only few
vectors compared to their capacity. To overcome these
limitations and to enhance the subdivision strategy used
by RA-Blocks, RAþ-Blocks was developed in our previous
paper [20].

As the filtering approach outperforms a sequential scan
and spatial access methods for high dimensionalities, we
focus on performing a k–NN search using this approach.
1.2. Our contributions

The objectives of this paper are to significantly reduce
the k–NN search response time and to improve the
similarity search quality. We propose a novel approximation
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method: KRAþ-Blocks, and a nonlinear similarity mea-
surement including relevance feedback mechanism.

To tackle the dimensionality curse problem when using
k–NN search, we combine high-dimensional indexing
method based on the approximation approach with
nonlinear dimensionality reduction technique. The pro-
posed kernel region approximation blocks (KRAþ-Blocks)
method reduces the vectors’ dimension using kernel
principal component analysis (KPCA) and then builds an
efficient index structure in the kernel feature space. In
contrast to the VA-file, region approximations are ar-
ranged in an index structure and high-dimensional
vectors are assigned to the corresponding region approx-
imations in the index. The approximation related to each
region is then given by the corresponding beginning and
ending vertices.

To improve the search quality, our idea is to provide a
general similarity framework, both for indexing and
retrieval. The proposed approach learns a good kernel
function from data automatically, and then uses the
kernel to map vectors into a new feature space allowing
a more effective data representation. Relevance feedback
mechanism is used in the induced feature space to
improve the similarity measurement.

This paper is organized as follows. In Section 2, two
high-dimensional indexing methods based on region
approximation approach are briefly presented. Then the
proposed KRAþ-Blocks is detailed in Section 3. Experi-
ments and results are described and commented in
Section 4. Section 5 is dedicated to our conclusion.
2. High-dimensional indexing methods based on region
approximation

2.1. RA-Blocks

As already mentioned, in RA-Blocks data space is
subdivided into hyper-rectangular cells. Each dimension di

is split into 2bi intervals, which are encoded with bi bits.
Then, data space is subdivided into compact and disjoined
regions having the same capacity (the maximum number
of vectors that can be accommodated in a disk page). Each
region will be approximated by the two bit strings
corresponding to the beginning (bottom-left cell) and
the ending (top-right cell) of this region (Fig. 1). The
strategy of the data space partitioning is based on K-D-B-
Tree algorithm [21].

k–NN search in the RA-Blocks is a two-phase process.
The first one is known as filtering phase which consists in
selecting the candidate regions based on their upper and
lower distance bounds to the query vector. The upper
(respectively lower) distance U (resp. L) is computed as
the maximum (resp. minimum) between the distance
from a query q to the beginning of the region and from
this query to the ending of the region as shown in Fig. 2.

The second phase (access to original vectors) selects
vectors contained in the candidate regions based on their
Euclidiean distances to the query. The k–NN search
algorithm of the RA-Blocks is given in Fig. 3.
The RA-Blocks outperforms other methods based on
the approximation vector approach in very high-dimen-
sional spaces. However, it presents some limitations in the
strategy of partitioning, which is used according to the
K-D-B-Tree algorithm. It generates a significant number of
empty regions and regions containing few vectors com-
pared to their capacity. This increases significantly the
number of regions to be treated during the filtering step
involving a relatively large approximation file, and there-
fore, an increase in CPU time due to the lower and the
upper distance bounds computing. To overcome these
limitations, we have developed in a recent work [20] an
improved region approximation block method, called
RAþ-Blocks, which defines a better strategy of subdivision.
2.2. RAþ-Blocks

The RAþ-Blocks [20] is inspired from RA-Blocks and the
main difference between the two methods is the parti-
tioning strategy of the data space into regions. The
splitting algorithm of the RAþ-Block is inspired by the
K-D-B-Tree as it uses the same strategy for finding
the splitting element. Splitting regions according to the
splitting element, results two new regions containing
the same number of vectors. The obtained regions will
be approximated by two bit strings corresponding to the
bottom-left and top-right cells, which will constitute the
approximation file. Let us note that RAþ-Blocks splitting
algorithm is based on the improvement of the internal
nodes partitioning (downward subdivision) of the K-D-B-
Tree structure. The main drawback of this structure is the
fact that, when partitioning is performed, it may produce
an important reorganization of the tree in order to
preserve the properties of the K-D-B-Tree structure. Often
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it creates a large number of empty leafs which cannot
guarantee an optimal use of data space, and thereafter,
increases the response time of k–NN search. Hence, the
basic idea of the partitioning strategy in the RAþ-Blocks is
to partition only the overflowed regions without using any
tree structure, setting a difference with the K-D-B-Tree
method, which actually divides all the regions that have
an intersection with the splitting element. On one hand
this guarantees, in most cases, that the k–NN are present
in the same disk page and, on the other hand, it reduces
the total number of the obtained regions and thereafter
reduces the I/O time. An example of data space partition-
ing into two dimensions is presented in Fig. 4, where
region capacity value is 3. As we can see, only the
overflowed data pages and their corresponding region
pages are split (in Fig. 4, region page 2 is split and region
page 3 is not).
The RAþ-Blocks outperforms both RA-Blocks and
VA-File in large image databases even with a very high
dimensionality. Comparison results between RAþ-Blocks
and various indexing techniques in large image database
can be found in [20].

Although RAþ-Blocks overcomes some difficulties of
high-dimensional vectors space, it suffers from certain
problems in CBIR applications. Particularly, the large-scale
image database, and the use of non-uniform and hetero-
geneous data, corresponding to the extracted images
attribute as color, texture and shape descriptors.
3. Kernel region approximation blocks (KRAþ-Blocks)

This section presents the KRAþ-Blocks, which can be
seen as an extension of the regions approximation
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approach for the kernel-based methods. The proposed
approach combines a nonlinear dimensionality reduction
technique with region approximation approach in feature
space. It addresses the different issues that are related to
CBIR, i.e., dimensionality reduction, indexing, similarity
measure and relevance feedback.

3.1. Dimensionality reduction

Principal component analysis (PCA) and singular value
decomposition (SVD) have been successfully used in
image processing, dimensionality reduction, reconstruc-
tion and classification [22,23]. Generally, these methods
work well when data exhibit linear correlation. In this
case, a small number of eigenvalues may account for a
large proportion of the data variance. However, when
some nonlinear correlations exist in data, these correla-
tions will not be detected by linear techniques using linear
classifier. This happens for CBIR applications that deal
with images, which are described with heterogeneous
attribute as color, texture, shape, etc. Therefore, linear
transformation techniques cannot offer effective or satis-
factory representation of the heterogeneous data and
better data representation can be expected by the use of
nonlinear approaches. Kernel principal component analy-
sis has been widely used in this case and has demon-
strated excellent performances [24,25].

Given a data set S in an input space w. KPCA maps S into
a kernel space F, also called feature space, through a
possibly nonlinear mapping f, associated with a given
kernel function, k, where k(p, q)=/F(p), F(q)S, p and qAS

and /,S denotes the dot product. KPCA finds the set of
eigenvectors ei, and their corresponding eigenvalues li

that satisfy

Mei ¼ liei ð1Þ

where M is the covariance matrix given by

M ¼
1

N

X
p2S

FðpÞFðpÞt ð2Þ
with N is the cardinal of S. As shown in [26], the problem
in Eq. (1) can be reformulated as

Koi ¼ lioi ð3Þ

where oi=(oi,1,y,oi,N) is a vector so as

ei ¼
X
p2S

oi;rankðpÞFðpÞ ð4Þ

and K is a symmetric matrix defined by

K
p;q2S
¼ kðp; qÞ

Solving the problem in Eq. (3), oi is obtained, and the
projection ai

p of vector p along the ith kernel principal
component is given by

ap
i ¼ /ei;FðpÞS ¼

X
q2S

oi;rankðqÞkðp; qÞ ð5Þ

The most popular kernel functions are Gaussian and
polynomial at different orders. The appropriate kernel
function selection has been discussed in [27]. Gaussian
radial basis function (GRBF) kernel is commonly used as
kernel function [28], and is adopted in this paper. The
GRBF kernel is defined as kðp;qÞ ¼ e�ðJp�qJ2=2d2

Þ, where p

and q are two vectors in the input space. In CBIR context, p

and q are image descriptors containing heterogeneous
attributes such as shape, color, etc. d is known as the width

of the GRBF, often set by users beforehand. This kernel
parameter determines the nature of the nonlinear map-
ping F( � ) to the kernel space. The feature space
dimensionality, denoted d, which corresponds to the
number of eigenvectors that we keep in the reduced
space, has also an influence on kernel data mapping. d and
d are two parameters to set when we deal with GRBF
kernel. Thus, different values of these parameters will
induce a series of different kernel spaces [29], and
therefore different representation of the vectors. In the
next section, the influence of d and d on data representa-
tion is studied.
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3.2. Similarity measure

The similarity measure is a very important concept in
information retrieval system. It is used to compare two
items and to determine whether they can be considered as
similar or not. In order to compare images, it is necessary
to define a similarity model whose choice is sensitive
due to its impact on retrieval results of any CBIR system.
To evaluate the similarity between images described by
heterogeneous attributes, a nonlinear similarity model
based on kernel functions is proposed. This approach does
not provide a particular metric for each descriptor type,
but a formal framework which offers many advantages.

In fact, the visual section of human brain uses a
nonlinear processing system for tasks such as pattern
recognition and classification [30], so the linear model is
not relevant for the nonlinear nature of human percep-
tion. Moreover, nonlinear model allows the use of
relevance feedback mechanism to refine the similarity
model under human perception. Therefore, we propose to
use a nonlinear model to simulate human perception for
similarity search.

The kernel trick lets us define a nonlinear similarity
measurement into a projected high-dimensional space F.
Specifically, given two vectors p and q, the similarity
function k(p, q) is defined as the inner product of F(p) and
F(q) where F is the function that maps the vectors p and q

from w to F. The inner product between two vectors can be
considered as a measure of their similarity. Therefore the
distance between p and q is defined as

dðp; qÞ2 ¼ /FðpÞ �FðqÞ;FðpÞ �FðqÞS
¼ kðp; pÞ þ kðq; qÞ � 2kðp; qÞ ð6Þ

In this work, we adopt a Gaussian radial basis function
(GRBF) as a similarity model, so the nonlinear similarity
model is defined as

kðp;qÞ ¼ e�ðJp�qJ2=2d2
Þ ¼ e�distðp�qÞ2=2d2

where the scaling parameter d controls how rapidly the
similarity k(p, q) falls off with the distance between p and
q in F, and dist(p, q) is the distance in w.

3.3. Indexing scheme

In order to minimize the number of disk accesses and
the number of distances computation in the search step, a
feature space needs to be well partitioned into clusters
containing similar data and constituting the index
structure. To create the index structure of the KRAþ-
Blocks, we use both KPCA and regions approximation
approach. Similarly to SVD, the KPCA maps data vectors in
reduced feature space via a nonlinear kernel and then, one
can capture the nonlinearity in the heterogeneous
features. This offers a compact and informative image
representation, which facilitates indexing mechanism.

The index structure is created by mapping data vectors
to a feature space, implicitly defined by the kernel
function choice. We start with a Gaussian kernel accord-
ing to our similarity model.

To map data vectors into the feature space, a reduced
set of orthogonal basis vectors ‘‘e’’: {e0,y, ed�1} is
computed by resolving Eq. (3). Thus, for any point p in w,
its corresponding point F(p) in F, can be expressed by

FðpÞ ¼
Xd�1

i¼0

ap
i ei þ ap

de? ð7Þ

where ai
p is the ith component of the vector p in F (Eq. (5))

and e? is orthogonal to the projection basis ‘‘e’’.
Thus, we can find the magnitude of the projection error

(ad
pe?)T(ad

pe?) given by

ðap
de?ÞT ðap

de?Þ ¼

Pdin
i¼d eignðiÞPdin
i¼0 eignðiÞ

ð8Þ

where din and d are, respectively, the dimensionality of w
and F, and eign() the eigenvalues of KPCA.

Based on the data projection, the feature space is
subdivided into a set of intervals; specifically each
dimension di of feature space is split into 2bi intervals
where each interval is encoded with bi bits. The feature
space is then subdivided into regions according to the
strategy used by the RAþ-Blocks, as described in Section
2.2 and [20]. Each region is approximated by two bit
strings which constitutes the index structure, and which
is used in the searching step to reduce the CPU cost.

3.4. Search step

Given a query vector q, and using Eqs. (6) and (7), the
square distance between F(p) and F(q) in the feature
space is given by

JFðpÞ �FðqÞJ2

¼ :ð
Xd�1

i¼0

ap
i ei þ ap

de?Þ � ð
Xd�1

i¼0

aq
i ei þ aq

de?Þ:2

¼
Xd�1

i¼0

ðap
i � a

q
i Þ

2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
þ ap

de?ðap
de?ÞT þ aq

de?ðaq
de?ÞT � 2ap

de?ðaq
de?ÞT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð9Þ

Thus, in order to determine the distance between two
vectors p and q in F, we used the vectors coordinates
in F (first term in Eq. (9)), and the projection error
(second term in Eq. (9)) obtained by KPCA algorithm. The
only unknown term is 2ad

pe?(ad
qe?)T, which is equal to

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ap

de?ðap
de?ÞT

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aq

de?ðaq
de?ÞT

q
cosy, where cos y is the

angle between the two vectors. The extreme values of
this expression are used to generate the distance bounds.
Instead of using the exact distance between two vectors,

we compute an approximation by considering cos y equal
to, respectively, þ1 for the upper distance and �1 for the
lower distance. Therefore, the upper distance and the
lower distance are approximated, respectively, with their
maximum and minimum values.

The similarity search in KRAþ-Blocks is similar to the
RAþ-Blocks method [20], which is performed in two steps.
In the first one, called the filtering step, the candidate
regions are found. As mentioned before, the approxima-
tion file is sequentially scanned, and the candidate regions
are selected according to their upper and lower distance
bounds to the query vector. The upper distance
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bound U and the lower distance bound L are then given by

U2ðq;BÞ ¼
Xd�1

i¼0

ðaq
i � a

B
i Þ

2
þ aq

de?ðaq
de?ÞT þ aB

de?ðaB
de?ÞT

þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aq

de?ðaq
de?ÞT

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aB

de?ðaB
de?ÞT

q
ð10Þ

L2ðq;AÞ ¼
Xd�1

i¼0

ðaq
i � a

A
i Þ

2
þ aq

de?ðaq
de?ÞT þ aA

de?ðaA
de?ÞT

þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aq

de?ðaq
de?ÞT

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aA

de?ðaA
de?ÞT

q
ð11Þ

where B and A, respectively, are the beginning and the
ending vertices of each region (Fig. 2) with

B ¼
Xd�1

i¼0

aB
i ei þ aB

de?;A ¼
Xd�1

i¼0

aA
i ei þ aA

de?;FðqÞ

¼
Xd�1

i¼0

aq
i ei þ aq

de?

During the second step, the original vectors are
accessed. The k–NN are determined by computing the
kernel distance (Eq. (9)) between query vector q, and
vectors contained in the candidate regions.

3.5. Relevance feedback scheme

To bridge the semantic gap between the high-level
user intention and low-level heterogeneous descriptors,
the concept of relevance feedback (RF) has been proposed.
As a response to a submitted query, the system provides a
set of images, and then the user is asked to designate
specific images as positive or negative. Positive means
that the image contains the semantic concepts queried
by the user and negative indicates that the image does
not contain such concepts. Two of the most classical
approaches in CBIR systems consist in modifying the
image query or the similarity model, accordingly to
positive, and/or negative images designated by the user
[31,32].

In our approach, we propose the creation of a new
feature space, where relevant vectors are brought closer to
each other, and irrelevant ones are moved far from
relevant vectors. This can be achieved by the use of
adaptive quasi-conformal kernel (AQK) [33]. Assuming
that p and p0 are two descriptors related to two images Ip

and Ip0, this method creates a new kernel function derived
from the previous one given by

~kðp; p0Þ ¼ cðpÞcðp0Þkðp; p0Þ ð12Þ

where c(p)=(Pr(Ip/I))/(Pr(Ip/R)),
with

PrðIp=IÞ ¼
1

NI

X
Iq2I

ððNI þ NRÞ � rÞe�ðJp�qJ2=2d2
Þ

and

PrðIp=RÞ ¼
1

NR

X
Iq2R

ððNI þ NRÞ � rÞe�ðJp�qJ2=2d2
Þ

where R and I are, respectively, the sets of relevant and
irrelevant images given by the user feedback, NR and NI
are, respectively, the numbers of relevant and irrelevant
images and r the rank of image Iq.

Based on the AQK Metric, a new distance is deduced by

dist2
AQK ðp;qÞ ¼

Xd�1

i¼0

ðcðqÞaq
i � cðpÞap

i Þ
2
þ cðqÞ2ðaq

de?ÞTaq
de?

þcðpÞ2ðap
de?ÞTap

de? � 2cðpÞcðqÞðap
de?ÞTaq

de? ð13Þ

The upper and lower distance bounds for AQK can be
expressed by

U2ðq;BÞ ¼
Xd�1

i¼0

ðcðqÞaq
i � cðBÞaB

i Þ
2
þ cðqÞ2aq

de?ðaq
de?ÞT þ cðBÞ2aB

de?

�ðaB
de?ÞT þ 2cðqÞcðBÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aq

de?ðaq
de?ÞT

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aB

de?ðaB
de?ÞT

q

ð14Þ

L2ðq;AÞ ¼
Xd�1

i¼0

ðcðqÞaq
i � cðAÞaA

i Þ
2
þ cðqÞ2aq

de?ðaq
de?ÞT þ cðAÞ2aA

de?

�ðaA
de?ÞT � 2cðqÞcðAÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aq

de?ðaq
de?ÞT

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aA

de?ðaA
de?ÞT

q

ð15Þ

The new kernel uses the information provided by the
user feedback to create new distances which are used
to select the relevant regions to the query (Eqs. (14)
and (15)), then to find the k images closest to the query
image (Eq. (13)). Thanks to the new kernel, the spatial
resolution will be expanded around irrelevant vectors and
contracted around relevant ones [33].
4. Experimental results

To evaluate the quality of the KRAþ-Blocks similarity
search, three databases have been used. The first one is
the well-known COIL-100 image database of Columbia
University [34]. It contains 100 object classes, and the 72
images of each class are generated by rotating the object
at an interval of 51 (Fig. 5).

The second one is a synthetic descriptor database that
we create starting from COIL-100, in order to get a larger
database (40,000) with the same number of classes.

The third one is also a synthetic descriptor database,
whose size is 2,200,000, and where descriptors have been
created randomly, and distributed uniformly in the range
[0–1] with a dimension of 250.

The first two databases are suitable for accuracy
evaluation while the last one has been used to study the
response time of the proposed approach.

As we aimed to work with high-dimensional and
heterogeneous descriptors, color and shape are used to
describe the images, and heterogeneous vectors of 252
values are computed. For color descriptor, we use LAB
histogram [35], which is quantized upon 192 bins, and
RGB dominant colors, spatial consistency, and percentage
of colors [36] upon a vector of 25 bins. As we can see in
Fig. 5, color is discriminatory for our test databases.
Angular radial transform (ART) [37] is used as shape
descriptor, which is also well adapted to COIL-100
database, as each image contains one single object on a
black background. The final image descriptor is a vector of
252 components (217 for color and 35 for shape).
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An example of COIL-100 image databases is presented
in Fig. 5. As it can be seen, these databases contain several
and various objects with different views. This will induce
some ambiguous situation when trying to retrieve all the
images related to a query. On one hand, some particular
views can be considered as similar, even though they are
related to different classes and different object, and on the
other hand, within the same class, dissimilar views related
to the same object can be found.

The precision/recall curve used shows the results, and
it is computed up to Rmax=2 �Card, where Card represents
the classes cardinal.

Experiments have been conducted to evaluate both the
optimal kernel parameters and the performances of the
KRAþ-Blocks method. Three of them are dedicated to
study the kernel parameters and to evaluate their impact
on classification and retrieval. The other experimentations
compare retrieval performances with other methods.
4.1. An illustrative example

As described previously, KPCA deals with nonlinear
transformation via nonlinear kernel functions. In the used
kernel function (GRBF), there are two parameters d and d
that must be predetermined, knowing that they have
significant impact on image representation in feature
space. Ideally, compact and informative image represen-
tation will facilitate the indexing mechanism and the
search process. An illustrative example of the influence of
d and d on the classification task is presented below.

Three clusters corresponding to three different classes
are built (Fig. 6a), and samples for each cluster are
generated randomly. Please note that the third cluster
contains two sub-clusters. The number of vectors for each
class is 40 and the dimensionality of each vector is 10.
A common representation should capture the principal
structure of the data set, i.e., the three clusters, while a
Fig. 5. An example of images (a) and c
better one should be able to capture also the two sub-
clusters of the third class.

PCA and KPCA are performed on this data set and
different values of d are used for KPCA. For a comprehen-
sive illustration, only the three first principal components
(PC) are used to plot data. Fig. 6a shows the original data
and Figs. 6b–f, show the projected data on the first, second
and third principal component obtained by PCA and KPCA
with d=0.01, 0.1, 0.5 and 1. Plots have been rotated so as to
obtain the best point of view and, therefore, to allow a
better understanding.

We can easily see from these figures that the parameter d
has a significant effect on class separability. The KPCA using
an appropriate d can improve the classification perfor-
mances compared to PCA (Fig. 6b). As we can see in this
example, for d=0.01, KPCA separates correctly the two sub-
clusters related to the third class (represented by squares).
However, when the value of d increases (Fig. 6d–f), data
representation becomes coarser, so these two sub-clusters
are merged. Thus, better data representation can be
achieved when KPCA is using the appropriate value of d.

When data are projected, the user’s expectations are
often a good separation, a significant dimension reduction
and no loss of information. Actually, the last two points
are in conflict. Generally, the top principal eigenvectors
capture the major variance while the remaining ones
correspond to the less significant details. However, the
amount of variance contained in the top PC depends both
on d and d parameters as illustrated in Table 1. Therefore,
the values of the kernel parameters d and d, influence
widely the relevance of the projection that will be used to
represent data in the feature space.
4.2. Kernel parameters estimation

To select the best values of d and d, respectively, the
dimensionality (i.e., the number of eigenvectors) and the
lasses (b) of COIL-100 database.
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width of RGBF, two parameters g (performance indicator)
and s (sum of the data variance in top ) are used as a criteria.

The performance indicator parameter g is defined as

g ¼ Intercluster

Intracluster
ð16Þ

where Intercluster and Intracluster are, respectively, the
inter cluster and intra cluster distances. Intercluster

represents the separation ability, and can be calculated
as the mean distances between the two closest vectors
those are belonging to two different clusters. Intracluster
Fig. 6. PCs for different d values. (a) Original data. (b) PCA. (c) KP
represents the clustering ability, and can be computed as
the mean of the average distances among all the clusters,
between one cluster vector and its gravity center.

The parameter s is given bys ¼
Pd�1

i¼0 eign(i), where d is
the dimensionality of the feature space and eign() are the
eigenvalues of KPCA.

Note that a large values of g and s are obtained
for, respectively, better class separation and small loss of
information.

To show the effect of the two kernel parameters d and
d on g and s, we conducted some tests on COIL-100 image
CA, d=0.01. (d) KPCA, d=0.1. (e) KPCA, d=0.5. (f) KPCA, d=1.
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Table 2
The corresponding verified equation for each region.

Region number Eq. (17) Eq. (18)

1 No No

2 No Yes

3 Yes No

4 Yes Yes

I. Daoudi et al. / Signal Processing: Image Communication 24 (2009) 775–790784
database, where the values of g and s are computed for
different values of d and d. The parameter d varies from 1
to 100 according to a logarithmic scale, and the dimen-
sionality d varies from 2 to 252 according to a linear scale,
where 252 is the size of image descriptors.

Figs. 7a and b show, respectively, g and s variations for
different values of d (lines) and d (columns), where pixels
darkness corresponds to g and s low values. They also
show the iso-parameter curve corresponding to a fixed
value of s and g

As we expected, large values of s and g, corresponding
to better performances, are obtained for large values of d

and d. However, from previous sections, it was shown that
a large value of d induces the dimensionality curse
problem and large value of d gives poor data representa-
tion. Consequently, a compromise must be found when
fixing those parameters.

In order to find the optimal values of (d, d), we first
select all the couples whose corresponding value of g
verifies

gd;dZ98%gmax ð17Þ

where gmax is the maximum value of g. In Fig. 7a, these
points are located above the iso-parameter curve, which
correspond to gd, d=98%gmax

In the second step, we select from these couples, those
whose variances verifies

sd;dZ98%smax ð18Þ

where smax is the maximum value of s.
Table 2 gives the corresponding verified equation for

each region (from 1 to 4 in Fig. 7c).
Table 1

Sum of variance in the top PCs according to parameter d.

d PC1 PC1 to

PC2

PC1 to

PC3

PC1 to

PC4

PC1 to

PC5

PC1 to

PC6

0.01 0.11 0.22 0.33 0.44 0.56 0.67

0.10 0.11 0.22 0.33 0.44 0.56 0.67

0.50 0.23 0.40 0.53 0.63 0.72 0.82

1 0.57 0.73 0.82 0.87 0.91 0.95

2 0.85 0.92 0.95 0.97 0.98 0.99
3 0.93 0.96 0.98 0.99 0.99 0.99

Bold values corresponds to the variance sum greater or equal to 98%.

Fig. 7. (a) g(d,d), (b) s(d,d) and (c) opti
Thus, the optimal couples are located in region 4. As
our objective is to select among the obtained couples
those having the lowest values of d and d, the selected
ones are located around the intersection point (the circle
in Fig. 7c).
4.3. Application to image retrieval

The following experiment illustrates the influence of
the kernel parameters on the effectiveness of retrieval on
COIL-100 image database. RP curve is plotted for five
different values of (d, d), one value per region in Fig. 7c and
one value corresponding to the intersection point that we
consider as the value which guarantees the best compro-
mise. In Fig. 8, we can easily see the influence of (d, d) on
mal values of kernel parameters.

Fig. 8. Precision–recall curves for different values of kernel parameters.
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retrieval performances. The best results are obtained
for (d=62, d=11) (intersection point) and (d=65, d=10)
(region 4 in Fig. 7c). Examples are presented in Fig. 13.
Table 3
The four methods used for similarity search quality comparison.

SCAN:

linear

SCAN

PCA: RAþ Blocks

using PCA

RAþ-

Blocks

KRAþ-

Blocks

Distance Euclidian X X

Kernel X X

Fig. 9. Precision–recall curves using (a) COIL-100 databa

Fig. 10. Precision–recall using (a) COIL-100 database
From this experiment, we note that the kernel para-
meters have a significant influence in the retrieval results.
In fact, as shown before, a better data representation in
the feature space is obtained when using appropriate
kernel parameters. This allows the KRAþ-Blocks index to
group similar data vectors in the same region and then to
perform k–NN search efficiently.
4.4. Similarity search quality

This experiment aims to show the retrieval quality
effectiveness of the KRAþ-Blocks. To study the perfor-
mance of kernel-based similarity measurement, 600
se and (b) extended COIL-100 database (40,000).

and (b) extended COIL-100 database (40,000).
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queries are performed on the COIL-100 database, using
the four different approaches SCAN, PCA, RAþ-Blocks and
KRAþ-Blocks as described in Table 3.

Linear scan is considered as a reference to test the new
high-dimensional indexing methods. To be under the
same conditions as in KRAþ-Blocks, linear scan was
performed after applying a nonlinear dimensionality
reduction (KPCA) using kernel distances.

Optimal kernel parameters are computed as described
in Section 4.2. The precision/recall curve is used to
evaluate the effectiveness of similarity retrieval and some
examples are presented in Fig. 14. This test has been
conducted for two different sizes of database: 7200 and
40,000. As we can see from Fig. 9, the proposed kernel
approach performs better than RAþ-Blocks and PCA/RAþ-
Fig. 11. Cost comparison for (a) 100,000 da

Fig. 12. Cost comparison for (a) 2,200,000 d
Block as it improves both data indexing and similarity
model. It is clear that the accuracy of the sequential search
is better than our method on both COIL-100 database
and extended COIL-100 database. This may be explained
by the fact that our method is an approximation of a full
search; it tolerates deterioration in the quality of the
search against a better gain in response time. Note that
the degradation of the quality of research increases with
the size of the database (Fig. 9(b)).

On one hand, as the studied methods are approxima-
tion based, data must be separated as well as possible
during the filtering step. This separation is better achieved
by a kernel approach as kernel parameters are deduced
from the data itself. On the other hand, the use of kernel-
based similarity model allows combining distances
ta vectors. (b) 60-dimensional data.

ata vectors. (b) 250-dimensional data.
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that are related to heterogeneous data in the same
formalism.

As mentioned before, images that are belonging to the
same class could have a very different aspect, which
involves false positive images.

4.5. Relevance feedback

To improve the retrieval performances, KRAþ-Blocks is
used with relevance feedback to find new kernel distances
as described in 3.5. The experiments were performed on
both COIL-100 database and extended COIL-100 database,
and we fixed k–NN, respectively, to 144 and 400. 600
images from the database are used as queries in order to
= 11, d = 62δ

Request  

Optimal 
parameters 

Request  

= 33.4, d = 20δ

Kernel
parameters

= 14.3, d = 52δ

Request

Kernel
parameters 

Kernel
parameters 

= 9, d = 16δ

Request

Request

= 10, d = 65δ

Optimal 
parameters 

Fig. 13. The first 10 nearest neighbor images usin
evaluate the average performances, and only one RF cycle
is performed for each query. As our database image classes
are well known, each retrieved image can automatically
be marked as relevant or not, according to whether it
belongs to the query class or not. PR curves in Fig. 10
reflect the achieved improvement through the proposed
method and some examples are presented in Fig. 15. As we
can see, from Fig. 15, the RF mechanism significantly
improves the results, showing the relevance of the kernel
distances used both in the filtering (Eqs. (14) and (15)) and
the searching steps (Eq. (13)). Based on the relevant and
irrelevant images, the relevance feedback estimates
flexible kernel distances that are used to create new
kernel space which offers a better data representation.
g KRAþ-Block method for different d and d.
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Fig. 14. Retrieval results using KRAþ-Block with selected kernel parameters for the COIL-100 images: first image of each row is the query image and the

others are the top 11 resulting images.
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Indeed, in this new space, the spatial resolution has been
expanded around irrelevant vectors and contracted
around relevant ones according to the user needs,
involving the improvement of the retrieval process.
Initial search 

One RF iteration 

Initial search 

One RF iteration 

Fig. 15. Retrieval results using (a) KRAþ-Block with optimal kernel

parameters and (b) using one RF iteration: first image of each row is the

query image and the others are the top 11 resulting images.
4.6. CPU time study

We conducted two experiments to show k–NN search
performance of the KRAþ-Blocks in terms of response
time. Both of them are conducted on a Microsoft Windows
XP machine with 2.3 GHz CPU, 2Go RAM, and 250Go in
local disk.

First, we compare KRAþ-Blocks, linear scan and KVA-
File on a synthetic database with various dimensions and
various numbers of vectors as shown in Fig. 11. We choose
the VA-File approach since it is considered as a reference
to test the new high-dimensional indexing methods
based on approximation approach. The linear scan
is also used for comparison because it outperforms all
spatial access methods. This experiment has used the
synthetic database, considering only 300,000 of 2,200,000
descriptors, and only 60 components instead of 250 for
each descriptor. Here we fixed K–NN=10, capacity=10,000,
disk page size=200 kB, and the bits number per dimension
bi=8.

As we can see in Figs. 11a and b, the KRAþ-Blocks
performs better than the linear scan and KVA-File [38],
when the dimensionality or the database size increases. In
both cases, the ratio between KVA-File and KRAþ-Blocks
response time seems to remain constant in this plot, and
especially it remains lower than KVA-File.

Therefore, in the next experiment we evaluate the
KRAþ-Blocks scalability versus vectors dimensionality and
database size for large database (up to 2,200,000). We can
see from Fig. 12 that the KRAþ-Blocks method maintains a
lower CPU times while the database and the
dimensionality increase. (Figs. 13–15)

Unlike most multidimensional indexing methods
that exist in the literature, the response times of the
proposed method has a linear cost according to the
database size and the dimensionality. This is due to
the partitioning strategy used to split the data space into
compact regions. This reduces the dimensionality curse
problem that affects most multidimensional indexing
techniques.

This robustness to database size and dimensionality is
closely linked to the use of regions’ approximations and
to the nonlinear dimensionality reduction strategy. In-
deed, the KRAþ-Blocks method uses the regions filtering
approach to compute the k–NN of the query. Much
computation time can be saved in retrieval step compared
to the KVA-file method as only regions’ lower and upper
bounds have to be computed. Moreover, the neighboring
vectors in KRAþ-Blocks structure are more likely to
be in the same physical page or consecutive pages due
to the preprocessing step. The aim of this step consists in
finding the appropriate nonlinear mapping, which allows
a better data separability and dimensionality reduction
of the feature space. Therefore, the performances of the
KRAþ-Blocks are better than the KVA-File and linear scan.
5. Conclusion

This paper introduces KRAþ-Blocks as an extension of
RAþ-Blocks for kernel-based methods, and combines
nonlinear dimensionality reduction (KPCA) and region
approximation. The proposed approach is well suited to
CBIR applications as they deal with very large databases,
high-dimensional vectors and heterogeneous data. We
showed that the use of the region approximation
approach can significantly decrease the number of
distances computations and then the response times,
while the use of the kernel approach helps to define new
distances which are suitable to the heterogeneous nature
of the descriptors. Since the kernel parameters have a
great influence on data representation, we proposed a
strategy to determine the optimal values which allows
better data separability in feature space. This one is then
used to build KRAþ-Blocks index structure and to perform
the similarity measurement. Finally, an effective kernel
distances are provided for kernel-based relevance feed-
backs to adapt distances to the user needs.
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