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ABSTRACT 

Motivation 

Several approaches have been developed for mining spatial data (i.e. generalization-based, 

clustering, spatial associations, approximation and aggregation, mining in image and raster 

databases, spatial classification and spatial trend detection). However, we argue that these 

approaches do not consider all the elements found in a spatial database (spatial data, non-

spatial data and spatial relations among the spatial objects) in an extended way. Some of 

them focus first on spatial data and then on the non-spatial data or vice versa, and others 

consider restricted combinations of these elements. We think that it is possible to enhance 

the generated results of the data mining task by mining them as a whole and not as 

separated elements (they are related elements). A graph representation provides the 

flexibility to describe these elements together and this is the motivation to explore the area 

of graph-based spatial knowledge discovery. 
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Proposal 

Our idea is to create a unique graph-based model to represent spatial data, non-spatial data 

and the spatial relations among spatial objects. We will generate datasets composed of 

graphs with a set of these three elements. We consider that by mining a dataset with these 

characteristics a graph-based mining tool can search patterns involving all these elements at 

the same time improving the results of the spatial analysis task. A significant characteristic 

of spatial data is that the attributes of the neighbors of an object may have an influence on 

the object itself. So, we propose to include in the model three relationship types 

(topological, orientation, and distance relations). 

 

In the model the spatial data (i.e. spatial objects), non-spatial data (i.e. non-spatial 

attributes), and spatial relations are represented as a collection of one or more directed 

graphs. A directed graph contains a collection of vertices and edges representing all these 

elements. Vertices represent either spatial objects, spatial relations between two spatial 

objects (binary relation), or non-spatial attributes describing the spatial objects. Edges 

represent a link between two vertices of any type. According to the type of vertices that an 

edge joins, it can represent either an attribute name or a spatial relation name. The attribute 

name can refer to a spatial object or a non-spatial entity. We use directed edges to represent 

directional information of relations among elements (i.e. object x touches object y) and to 

describe attributes about objects (i.e. object x has attribute z). 

 

We propose to adopt the Subdue system, a general graph-based data mining system 

developed at the University of Texas at Arlington, as our mining tool. Subdue discovers 
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substructures using a graph-based representation of structural databases. The substructures 

(a connected subgraph within the graphical representation) describe structural concepts in 

the data (i.e. patterns). The discovery algorithm is a computationally constrained beam 

search. The algorithm begins with the substructure matching a single vertex in the graph. 

Each iteration, the algorithm selects the best substructure and incrementally expands the 

instances of the substructure. An instance of a substructure in the input graph is a subgraph 

that matches (graph theoretically) that substructure. 

 

A special feature named overlap has a primary role in the substructures discovery process 

and consequently a direct impact over the generated results. However, it is currently 

implemented in an orthodox way: all or nothing. If we set overlap to true, Subdue will 

allow the overlap among all instances sharing at least one vertex. On the other hand, if 

overlap is set to false, Subdue will not allow the overlap among instances sharing at least 

one vertex. So, we propose a third approach: limited overlap, which gives the user the 

capability to set over which vertices the overlap will be allowed (vertices representing 

remarkable elements that refer, for instance, to a spatial object in a spatial database or to 

some characteristic defining a particular topic of a dataset). We visualize directly three 

motivations issues to propose the implementation of the new algorithm: search space 

reduction, processing time reduction, and pattern oriented search. 
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Contribution 

The contribution to the discovery knowledge in the spatial data domain, described in this 

dissertation, is the development of a new approach for spatial data modeling and mining 

using a graph-based representation. This contribution includes the following results: 

• New graph-based data representation for spatial, non-spatial data and spatial 

relations. 

• New algorithm to discover substructures using a limited overlap approach in the 

Subdue system. 

• A prototype system implemented the proposed model. 
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Chapter 1 

INTRODUCTION 

Due to the advances in data generation and recompilation we are facing a continuous 

growth in the data collections. The analysis and interpretation of this data by manual 

techniques is sometimes a tough task; therefore, different methods have been proposed to 

help us transform it into useful knowledge. Knowledge discovery in databases (KDD) is 

defined as the non-trivial extraction of implicit, previously unknown, and potentially useful 

information from data [16]. This is an interactive and iterative process that involves several 

phases. The data mining phase is the nucleus of the process; it consists of the application of 

data analysis and discovery algorithms that, under acceptable computational efficiency 

limitations, produces a particular enumeration of patterns over the data [12]. Data mining 

involves the integration of methods from different scientific fields like machine learning, 

database technology and statistics. The first approaches developed focused in the discovery 

of knowledge from relational data. 

 

Nowadays, however, terms like geoprocessing and Geographic Information System are 

used widely in daily life. This is a result of the improvement in the human capabilities to 

create, manipulate, store and use data from phenomena on, above or below the earth’s 
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surface. This data is known as spatial data. Spatial data mining focuses in the discovery of 

implicit and previously unknown knowledge in spatial databases [16]. Spatial data has 

many features that distinguish it from relational data such as the relationships among the 

objects, complexity, and the query language used to access them. 

1.1 Motivation 

As result of the growing in the volume of spatial datasets and the necessity for tools to help 

us transform them into useful information, several approaches have been developed for 

knowledge discovery from spatial data: the basic in the Generalization-based methods 

[20][34] is that data and objects often contain detailed information at primitive concept 

levels but sometimes it is desirable to summarize that information and present it at a higher 

concept level. Clustering [25][27][36][38][44] is the process of grouping physical or 

abstract objects into classes (clusters) of similar objects so that the members of a cluster are 

as similar as possible whereas the members of different clusters differ as much as possible 

from each other. Spatial associations [13][28] discover rules that associate one or more 

spatial objects with other spatial objects. In Approximation and aggregation methods [26] 

the idea is to analyze the characteristics of the clusters in terms of the features (objects) 

close to them. Aggregate proximity is the measure of closeness of the set of points in the 

cluster to a feature. Mining in image and raster databases [13][14] can be viewed as 

another approach of spatial data mining. Some applications of this approach (based on 

images) are automatic recognition and categorization of astronomical objects; classification 

of stars, galaxies and other stellar objects. Spatial Classification [30] is the task of 
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assigning objects to a set of classes based on their attribute values. Spatial Trend Detection 

[10] describes the regular change of one or more non-spatial attributes of an object when 

moving away from a given starting object. 

 

However, we argue that these approaches do not consider all the elements found in a spatial 

database (spatial data, non-spatial data and spatial relations among the spatial objects) in an 

extended way. Some of them focus first on spatial data and then on the non-spatial data or 

vice versa, and others consider restricted combinations of these elements. We think that it is 

possible to enhance the generated results of the data mining task by mining them as a whole 

and not as separated elements (in the real world they are related). In this context, we 

propose to use a graph-based representation since it provides the flexibility to describe 

these elements together and this is the motivation to explore the area of graph-based spatial 

knowledge discovery. 

 

Our work is based in the hypothesis if we create a graph-based model to represent together 

spatial and non-spatial data and if we use this model for generating a dataset composed of 

both type of data, then we can apply data mining techniques using this knowledge 

representation to spatial and non-spatial data at the same time and get enriched results 

(patterns found through data mining) considering both kind of data about objects and the 

spatial relations among them. 
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1.2 Proposal 

Our proposal is to create a unique graph-based model to represent spatial data, non-spatial 

data and the spatial relations among spatial objects. We will generate datasets composed of 

graphs with a set of these three elements. We consider that by mining a dataset with these 

characteristics a graph-based mining tool can search patterns involving all these elements at 

the same time improving the results of the spatial analysis task. A significant characteristic 

of spatial data is that the attributes of the neighbors of an object may have an influence on 

the object itself. We propose to include in the model three relationship types (topological, 

orientation, and distance relations). 

 

In the model the spatial data (i.e. spatial objects), non-spatial data (i.e. non-spatial 

attributes), and spatial relations are represented as a collection of one or more directed 

graphs. A directed graph contains a collection of vertices and edges representing all these 

elements. Vertices represent either spatial objects, spatial relations between two spatial 

objects (binary relation), or non-spatial attributes describing the spatial objects. Edges 

represent a link between two vertices of any type. According to the type of vertices that an 

edge joins, it can represent either an attribute name or a spatial relation name. The attribute 

name can refer to a spatial object or a non-spatial entity. We use directed edges to represent 

directional information of relations among elements (i.e. object x touches object y) and to 

describe attributes about objects (i.e. object x has attribute z). 

 

We propose to adopt the Subdue system [23][43], a general graph-based data mining 

system developed at the University of Texas at Arlington, as our mining tool. Subdue 
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discovers substructures using a graph-based representation of structural databases. The 

substructures (a connected subgraph within the graphical representation) describe structural 

concepts in the data (i.e. patterns). The discovery algorithm is a computationally 

constrained beam search. The algorithm begins with the substructure matching a single 

vertex in the graph. Each iteration, the algorithm selects the best substructure and 

incrementally expands the instances of the substructure. An instance of a substructure in the 

input graph is a subgraph that matches (graph theoretically) that substructure. 

 

A special feature named overlap has a primary role in the substructures discovery process 

and consequently a direct impact over the generated results. However, it is currently 

implemented in an orthodox way: all or nothing. If we set overlap to true, Subdue will 

allow the overlap among all instances sharing at least one vertex. On the other hand, if 

overlap is set to false, Subdue will not allow the overlap among instances sharing at least 

one vertex. So, we argue a third option is needed: a limited overlap. With this option we 

give the user the capability to set over which vertices the overlap will be allowed (vertices 

representing remarkable elements that refer, for instance, to a spatial object in a spatial 

database or to some characteristic defining a particular topic of a dataset). We visualize 

directly three motivations issues to propose the implementation of the new algorithm: 

search space reduction, processing time reduction, and pattern oriented search. 
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1.3 Contribution 

The contribution to the discovery knowledge in the spatial data domain, described in this 

thesis, is the development of a new approach for spatial data modeling and mining using a 

graph-based representation. This approach includes the following issues: 

• We proposed a new graph-based data representation for spatial data, non-spatial 

data and spatial relations among the spatial objects. We visualize two objectives for 

creating a data model with these characteristics. The first one is to create a unique 

graph-based dataset representing these related elements. The second one is to use 

this dataset to feed a graph-based mining system, so we can discover single patterns 

(involving these elements) which help us to describe/understand the data, based on 

the premise, they are related elements in the real world. 

• We proposed a new algorithm to discover substructures (patterns) using a limited 

overlap approach in the Subdue system. We visualize directly three motivations 

issues to propose the implementation of the new algorithm: search space reduction, 

processing time reduction, and specialized overlapping pattern oriented search. 

• We designed and developed a prototype system implementing the proposed model. 

The prototype provides to the user a friendly graphical user interface for managing 

the spatial layers to work with, for creating spatial and non-spatial graphs, for 

mining those graphs and for displaying the generated results. 
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1.4 Organization of the thesis 

The thesis is structured in the following way: Chapter 1 presents the motivation, proposal, 

and contributions of the thesis. Related work is described in chapter 2. In chapter 3 we 

detail our graph-based model to represent together spatial data, non-spatial data, and spatial 

relations. Our graph-based data mining tool, the Subdue system, and the new limited 

overlap algorithm are described in chapter 4. A prototype system implementing our model 

is presented in chapter 5. Use-cases showing the applicability of our proposal are described 

in chapter 6. Finally, conclusions and final remarks are commented in chapter 7. 
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Chapter 2 

RELATED WORK 

Knowledge Discovery in Databases, spatial data, non-spatial data, Data Mining, Spatial 

Data Mining, Geographic Information System, geoprocessing, and Geomatics are terms 

broadly used nowadays. This chapter presents an outline related to these issues. The 

Geographic Information Systems are presented in section 2.1. In section 2.2 we describe 

related work about Knowledge Discovery in Databases and data mining. Finally, section 

2.3 introduces the three types of spatial relations we propose to incorporate in our model to 

represent spatial data. 

2.1 Geographic Information System (GIS) 

A Geographic Information System is defined as a tool for the manipulation of geographic 

data [2]. The GIS performs a great diversity of functions; some of them are the compilation, 

verification, storage, retrieval, manipulation, update and visualization of geographic data. 

Additionally, one of its more important features is the inclusion of data analysis modules. 
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All these functions are applied by a GIS to geographic data, stored generally in a 

geographic database. The data processed and manipulated is georeferenced, that is, it is 

assigned to a specific location on the Earth’s surface using a coordinate system. 

 

The GIS can process data from several sources. For example, data collected from maps, 

images and photography, statistical data from mathematical analyses, and data from CAD 

systems (Computer-Assisted Design). 

 

A GIS organizes and handles digital data stored generally in a geographic database.  The 

databases are important in the GIS technology because they store geographic data with a 

structured form, allowing the data to be used for many tasks. Many GIS implement 

additional functionalities when they use database management systems (DBMS) to store 

and to handle all or some data in an independent subsystem. 

 

The diversity of the uses of the GIS has generated the proliferation of a great variety of 

definitions of GIS. A user generally defines a GIS according to what he/she uses it for and 

his/her own experience and abilities. Some of these definitions are: 

• A system for data processing designed for the production and/or visualization of 

maps. 

• An information system to respond to questions about Earth’s properties or soil 

types. 

• A system for decision making support in situations of natural phenomena. 

• An electronic positioning system to be used by terrestrial or marine transportation. 
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The GIS frequently is named according to its application field [2]. For example, when they 

are used to manage land’s registries they are generally called Land Information Systems 

(LIS); in applications of municipal and natural resources they are important components of 

the Urban Information Systems (UIS), and Natural Resources Information Systems (NRIS) 

respectively. The term Automatic Mapping/Facility Management (AM/FM) is used by 

public maintenance companies, transportation agencies, and local governments for systems 

dedicated to the operation and maintenance of networks. 

 

The GIS’s field (see Figure 2.1) involves many disciplines, applications, data types, and 

end users, for example: 

• Disciplines: Computer Science, Cartography, Spatial Analysis, Topography, 

Hydrography, Statistic, Sciences of the Information, Planning, etc. 

• Applications: Operation and maintenance of networks and, other devices, 

administration of natural resources, highway planning, map production, urban 

analysis, planning analysis, etc. 

• Data: Digital maps, digital images and photography, data satellites, video images, 

etc. 

• Users: Planners, topographers, vulcanologists, geographers, environmentalist, 

engineers, etc. 
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DisciplinesDisciplinesUsersUsers

ApplicationsApplicationsDataData

 

Figure 2.1. Geographic Information System. 

 

Geographic Information Systems involve the uses of systems and science. Their use arise 

question such as: How does a GIS user know that the results obtained are accurate? How 

can user interfaces be made readily understandable by novice users? Goodchild M. F. 

published in 1992 a paper where he argued that questions such as these and their systematic 

study constituted a science. 

 

Geoprocessing study the fundamental issues arising from geographic information (i.e. 

creation, handling, storage and use of the information). The term Geomatics, the fusion of 

ideas from geosciences and informatics, is defined as the umbrella covering all fields that 

are today important for understanding and further developing information systems in this 

context [31][32][33]. 
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A GIS offers its users greater capabilities to process datasets than those offered by manual 

systems. In a GIS database the data are stored in a structured form, unlike the manual 

systems where the data are stored in files, maps, and/or reports. The data can be recovered 

from geographic databases and processed faster and more safely than in the manual 

systems. 

 

We can classify the GIS’s users into two groups. In the first group, we find professional 

operators who spend a lot of time working with GIS technology. They are people trained in 

some particular software and they know the capabilities of this technology.  Many times 

these people do not use the results of their work, but they pass them on to the end users.  

 

The second user group spends less time working with the GIS’s.  They maintain geographic 

information in order to have tools which help them in the decision making process. There 

are few opportunities for extensive training in the GIS tools, and consequently the GIS must 

be simple and easy to handle. 

2.2 Data Mining 

Knowledge Discovery in Databases (KDD) is be defined as the non-trivial extraction of 

implicit, previously unknown, and potentially useful information from data [16]. This is an 

interactive and iterative process that involves several phases: data preparation, search for 
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patterns over the data, evaluation and interpretation of discovered patterns, and refinement 

of the whole process as we shown in Figure 2.2. 

Clean
data

Formatted
and
structure data

PatternsKnowledge

Data
mining

Patterns
evaluation

Integration

Data Integrated
data

Selected
data

Cleanning Selection

Transformation

 

Figure 2.2. Knowledge Discovery in Databases. 

 

The data mining phase (the search for patterns) is the nucleus of the process; it consists of 

the application of data analysis and discovery algorithms that, under acceptable 

computational efficiency limitations, produces a particular enumeration of patterns over the 

data [4][12]. 

 

Data mining involves the integration of methods from different scientific fields such as 

machine learning, database technology, statistics, and visualization as we shown in Figure 

2.3. The first approaches developed focused in the discovery of knowledge from relational 

data. 
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Figure 2.3. Data mining: integration of several fields. 

 

Several architectures have been proposed for data mining [21][24]. Figure 2.4 presents an 

architecture based on the proposal of Han et al. [22]. The user is the trigger of the entire 

process and receptor of the discovered knowledge. Data may be fetched from several 

sources such as files, databases, and data warehouses using a data server module. The data 

mining engine may use one or more data mining techniques for searching patterns from 

data. The significance, importance and interestingness of the found patterns are evaluated 

by the pattern evaluation module. The data mining engine and pattern evaluation modules 

may use background knowledge stored in a knowledge database. The role of the graphical 

user interface is to receive the user requirements and to deliver the generated results. Since 

this is an iterative and interactive process, the components may interact among themselves. 
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Figure 2.4. Architecture for a KDD system. 

 

2.2.1 Spatial Data Mining 

Climate change, natural risk prevention, human demography, deforestation, and natural 

resources atlas are examples from a large variety of issues arisen as result of the interaction 

among people and their natural environment, the earth planet. Data generated from those 

issues are known as spatial data. Spatial data mining methods focuses in the discovery of 

implicit and previously unknown knowledge in spatial databases [16]. 

 

Spatial data have many features that distinguish them from relational data. For example, the 

spatial objects may have topological, distance, and direction information, the complexity, 
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and the query language used to access them. Different approaches have been developed for 

knowledge discovery from spatial data such as Generalization-based method [20][34], 

Clustering [25][27][36][38][44], Spatial associations [13][28], Approximation and 

aggregation [26], Mining in image and raster databases [13][14], Classification learning 

[30], and Spatial trend detection [10]. In the following subsections we present a description 

of these spatial data mining approaches. 

2.2.1.1 Generalization-based Method 

Generalization has been shown to be one of the effective methods of discovering 

knowledge. It was introduced by the machine learning community and it is based on 

learning from examples techniques. The generalization based knowledge discovery requires 

concept hierarchies (given explicitly by experts or generated automatically). In the case of 

the spatial databases, there can be two types of concept hierarchies: 

 

• Thematic hierarchies. We can generalize tomatoes and bananas as fruits, fruits and 

vegetables as cash crops. 

• Spatial hierarchies. We can generalize some geographic points as a country or a 

region. 

 

The approach introduced by the machine learning community (tuple-oriented) cannot be 

directly adopted for large spatial databases because it does not handle very well the noise 

and inconsistent data, and the algorithms are exponential in the number of examples. Han et 

al. [20] present a modified technique named attribute-oriented induction for mining 
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relational data. Lu et al. [34] extend attribute-oriented induction technique to spatial 

databases. Attributed-oriented induction is performed by climbing the generalization 

hierarchies and summarizing the general relationships between spatial and non-spatial data 

at a higher concept level. The authors present two generalization based algorithms: 

• Non-spatial data dominant. This method performs attribute-oriented induction on 

the non-spatial attributes, first generalizing them to a higher concept level and later 

merges corresponding spatial attributes (using spatial merge and approximation). 

• Spatial data dominant. Given the spatial data hierarchy, generalization can be 

performed first on the spatial data and then generalizing their corresponding non-

spatial attributes. 

 

Both algorithms assume that the rules to be mined are general data characteristics 

(characteristics rules) and that the discovery process is initiated by the user who provides a 

learning request. A disadvantage in this approach is the case where a hierarchy may not 

exist or the hierarchy given by the experts may no be entirely appropriate in some cases. 

The quality of mined characteristics is highly dependent on the structure of the hierarchy. 

2.2.1.2 Clustering 

Clustering is the process of grouping physical or abstract objects into classes of similar 

objects. Clustering analysis helps construct meaningful partitioning of large set of objects. 

Due to the huge amount, characteristics and nature of spatial data, there are important 

challenges for a clustering algorithm: 

• Achieve good time efficiency. 
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• Identify clusters irrespective of their shape or relative positions. 

• Handling of noise or outliers. 

• Handling data with large number of features (high dimensionality). 

 

Data clustering identifies clusters, or densely populated regions, according to some distance 

measurement in a multidimensional dataset. Given a set of multidimensional data points, 

the data space is usually not uniformly occupied by the data points. Data clustering 

identifies the sparse and the crowded places, and hence discovers the overall distribution 

patterns of the dataset. We can classify clustering algorithms in four main approaches: 

Partitioning, Hierarchical, Locality-based and Grid-based algorithms. 

• Partitioning algorithms partition a database of n objects into a set of k clusters 

which are represented by the gravity of the cluster (k-means algorithms) or by one 

representative object of the cluster (k-medoid algorithms). These algorithms use a 

two-step procedure. First, they determine k representatives, next, assign each object 

to the cluster with its representative closest to the considered object. 

• Hierarchical clustering algorithms decompose the database into several levels of 

partitioning which are usually represented by a dendrogram. The algorithm 

iteratively splits the database into smaller subsets until some termination condition 

is satisfied. The dendrogram can either be created top-down (divisive) or bottom-up 

(agglomerative). 

• Locality-based clustering algorithms group neighboring data elements into clusters 

based on local conditions and therefore allow the clustering to be performed in one 

scan of the database. 
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• Grid-based algorithms quantize the space into a finite number of cells and then do 

all operations on the quantized space. They frequently use hierarchical 

agglomeration as one phase of processing. 

 

Classification of clustering algorithms is neither straightforward, nor canonical. Some 

algorithms perform clustering by combining techniques from these approaches. Important 

issues in clustering algorithms include the following properties: 

• The algorithm must be efficient (time complexity). 

• Ability to handle noise (outliers). 

• Sensibility to data input order. 

• Priori knowledge and parameters. 

• Ability to find clusters of arbitrary shape. 

• Scalability to large databases. 

• Ability to work with high dimensional data. 

2.2.1.3 Spatial Associations 

A spatial association rule is a rule which describes the implication of one or a set of 

features by another set of features in spatial databases [28]. An example of a spatial 

association rule is “the biggest industries in Mexico are close to DF”. 

 

A spatial association rule is of the form X  Y, where X and Y are sets of spatial or non-

spatial predicates. There are various kinds of spatial predicates that could constitute a 
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spatial association rule. Some examples are topological relations such as intersects, 

overlap, disjoint; and spatial orientations such as left_of, west_of. 

 

Koperski and Han [28] developed an algorithm for spatial associations rules in spatial 

databases. They use the concepts of minimum support and minimum confidence introduced 

by Agrawal et al. [1] to develop associations rules from large database transaction database. 

The support of a pattern A in a set of spatial objects S is the probability that a member of S 

satisfies pattern A, and the confidence of A  B is the probability that a pattern B occurs if 

pattern A occurs. A user or an expert may satisfy thresholds to confine the rules to be 

discovered to be strong ones. 

 

Although many spatial association rules may exist in large databases, some of them may 

occur rarely or may not hold in most cases. Also, such rules are usually not 100% true, but 

carry some non trivial knowledge. 

 

The authors employ a method which uses a top-down progressive deepening search 

technique. The technique firstly searches at a high concept level for large patterns and 

strong implications relationships among the large patterns at a coarse resolution scale. Then 

only for those large patterns, it deepens the search to lower concept levels. Such a 

deepening search the process continues until no large patterns can be found. The search 

employed for large patterns at high concept levels is applied at a coarse resolution scale 

efficiently by using approximate spatial computation algorithms such as R-trees or plane-

sweep techniques operating on minimum bounding rectangles (MBR). Only the candidate 

spatial predicates, which are detailed reviewed, will be computed by refined spatial 
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techniques. Such multiples-level approach saves much computation because it is very 

expensive to perform detailed spatial computation for all possible spatial association 

relationships. 

2.2.1.4 Approximation and Aggregation 

Clustering algorithms are effective and efficient methods for answering questions such as: 

where are the clusters in the spatial database? In some cases it is also important to answer 

the question why the clusters are there. We can rephrase the question as: what are the 

characteristics of the clusters in terms of the features (objects) that are close to it? Knorr 

and Ng [26] present a study based in this question. 

 

The aggregate proximity is the measure of closeness of the set of points in the cluster to a 

feature as opposed to the distance between a cluster boundary and the boundary of a 

feature. Finding aggregate proximity relationships is not as simple as it may seem. There 

are three reasons: 

• The sizes and shapes of the cluster and the features may vary greatly. 

• There may be a very large number of features to examine. 

• Even if a suitable feature (i.e. polygon) is found to describe the shape of the cluster 

of points, it is inappropriate to simply report those features whose boundaries are 

closest to the cluster’s boundary, because the distribution of points in a cluster may 

not be uniform. 
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The authors propose the use of computational geometry concepts to find out the 

characteristics of a given cluster in terms of the features close to it. They present the 

algorithm CRH (where C is for encompassing circle, R for isothetic rectangle, and H for 

convex hull) which uses concepts as filters to reduce the candidate features at multiple 

levels. In general, they collect a large number of features from multiples sources (i.e. maps) 

and feed them along with the cluster to the algorithm CRH and discover knowledge about 

spatial relationships. 

 

Approximation by circles and then by rectangles is used to eliminate features that have 

large aggregate distance to the cluster. After these filters, the algorithm calculates the 

aggregate proximity of points in the cluster to the convex boundary of each feature that 

passed through the previous filters. In the last step, the algorithm reports the features with 

the best aggregate proximities showing the minimum and maximum distances of points in 

the cluster to the feature, average distance, and percentages of points located in the distance 

less than specified threshold. 

2.2.1.5 Mining an Image Database 

Knowledge mining from image databases can be viewed as a special case of spatial data 

mining. For example, Fayyad et al. present a system [14] to identify and categorize 

volcanoes on the surface of Venus from images taken by the Magellan spacecraft. Three 

basic components are implemented in the system: data focusing, feature extraction, and 

classification learning. The first component increases the overall efficiency of the system 

by first identifying the portion of the image being analyzed that is most likely to contain a 
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volcano. They compare the intensity of the central pixel of a region to the estimated mean 

background intensity of its neighborhood pixels. The second component extracts interesting 

features from the data. The final component uses training examples provided by the experts 

to create a classifier that can discriminate between volcanoes and false alarms. For this task 

the authors implement decision trees. 

 

Other studies of mining in image and raster databases are: Second Palomar Observatory 

Sky Survey [15], it uses decision trees for the classification of galaxies, stars and other 

stellar objects. Stolorz and Dean [41] proposed a system for detecting earthquakes from 

space. They combined methods of statistical interference, massively parallel computing, 

and global optimization to build the system that analyze tectonic activities with sub-pixel 

resolution over a large area. Stolorz et al. [42] and Shek et al. [39] carry out studies about 

fast spatio-temporal data mining from geophysical datasets; they described CONQUEST, a 

distributed parallel querying and analysis mining tool. 

2.2.1.6 Classification Learning 

Spatial classification has as objective to find rules that divide a set of objects into a number 

of groups, where objects in each group belong mostly to one class. Many types of 

information can be used to characterize spatial objects. We can classify such information 

into non-spatial attributes of objects, spatially related attributes with non-spatial values, 

spatial predicates and spatial functions. 
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Each of these categories may be used to extract both for class label attributes (attributes that 

divide data into classes) and predicting attributes (attributes on whose values the decision 

tree is branched). It is possible uses aggregate values for some of these attributes. 

 

Koperski et al. [30] proposed and evaluated a method for classification of spatial objects. 

The method enables classification of spatial objects based on aggregate values of non-

spatial attributes for neighboring regions. Spatial relations between objects on the map are 

taken into a count, which may be represented into the form of predicates. 

2.2.1.7 Spatial Trend Detection 

Spatial trend detection is defined as a regular change of one or more non-spatial attributes 

in the neighborhood of some object in a database [10]. An example of spatial trend is as 

“moving away from downtown Puebla, the price of land decreases”. 

 

Neighborhood paths starting from some point x are used to model the movement and a 

regression analysis is performed on the respective attribute values for the objects of a 

neighborhood path to describe regularity of change. In the regression analysis the distance 

from x is the independent variable and the difference of the attribute values are the 

dependent variable(s). There are two types of trends: global trends and local trends. In the 

first one, the existence of a global trend for a start object x indicates that if considering all 

objects on all paths starting from x the values for the specified attribute(s) in general tend to 

increase or decrease with increasing distance. Local trends exist only in a particular 

direction. 
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2.3 Spatial relations 

The explicit location and extension of objects define implicit relations of spatial 

neighborhood. The information about the neighborhood of spatial objects constitutes a 

valuable element that must be considered in the mining task. In the following subsection we 

will present the Neighborhood Graphs, Neighborhood Paths and Neighborhood Indices 

concepts which introduce us to the three types of spatial relations we propose to include in 

our model to represent together spatial data. 

2.3.1 Neighborhood Graphs, Neighborhood Paths and Neighborhood 

Indices 

Martin Ester et al. [9][11] introduce the concept of neighborhood graphs for explicitly 

representing those implicit neighborhood relations. Neighborhood graphs may cover one of 

the following neighborhood relations: 

• Topological. 

• Distance. 

• Direction. 

 

These relations are called binary relations since we can determine spatial relations between 

pairs of objects. 

 

A neighborhood graph G for some spatial relation neighbor is a graph where nodes are 

objects in the database and edges between nodes n1 and n2 represent the fact that the 
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relationship neighbor (n1, n2) holds. The neighborhood path in the neighborhood graph G is 

a set of nodes directly connected through the edges of the graph. The neighborhood index is 

a data structure that allows for the efficient execution of the operations for the construction 

of graph and for browsing and expansion of paths. It stores all neighbors for the objects in a 

database. 

2.3.2 Topological Relations 

Topological relations are those relations which are invariant under linear transformations, 

i.e. if both objects are rotated, translated or scaled simultaneously the relations are 

preserved. They present a definition of topological relations derived from the nine 

intersection model [6][7][8]. 

 

In the model (see Figure 2.5), the topological relations between two objects A and B are 

defined in terms of the intersections of object A’s interior (Aº), object A’s boundary (∂A) 

and object A’s exterior (A¯) with object B’s interior (Bº), object B’s boundary (∂B) and 

object B’s exterior (B¯). The exterior of an object is represented by its complement. 

Aº∩Bº Aº∩∂B Aº∩B¯
∂A∩Bº ∂A∩∂B ∂A∩B¯
A¯∩Bº A¯∩∂B A¯∩B¯

 

Figure 2.5. Nine intersection model. 

 

The topological relations between two objects are disjoint, contains, inside, equal, touch, 

covers, coveredBy, and overlap as we show in Figure 2.6. 
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Figure 2.6. Topological Relations. 

 

2.3.3 Distance Relations 

Distance relations compare the distance between two objects with a given constant using 

arithmetic operators such as <, >, =. The distance between two objects is defined as the 

minimum distance between them (i.e. select all elements inside a radio of 50 km from a “x” 

point). Figure 2.7 shows two examples of this type of relation; in the figure we are 

representing how close and how far two objects are each other. 

 

Figure 2.7. Distance Relations. 
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We propose to use Euclidian distance which is defined as the straight line distance between 

two points. In a plane with p1 at (x1, y1) and p2 at (x2, y2), the Euclidian distance is √((x1 - 

x2)² + (y1 - y2)²).  

2.3.4 Direction Relations 

The direction relation B R A of two spatial objects A and B is defined using one 

representative point of object A and all points of the destination object B. It is feasible to 

define several possibilities of direction relations depending on the number of points that are 

considered in the source and destination objects. The representative point of a source object 

may be the center of the object or a point on its boundary. This representative point is used 

as the origin of a virtual coordinate system and its quadrant defines the direction. 

 

The Direction relations between two objects are North_of, South_of, East_of, West_of, 

Northeast_of, Northwest_of, Southeast_of, and Southwest_of. In Figure 2.8 we show some 

examples of direction relations, for instance, object D is South of object C and East of 

object A. 
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Figure 2.8. Direction Relations. 

2.4 Conclusion 

Data mining is a younger and promissory research field. Many of the data mining 

approaches developed for knowledge discovery in relational databases were extended to the 

spatial databases domain. In this chapter we presented several approaches such as 

generalization, clustering, spatial association, and spatial classifications. We have described 

three types of spatial relations that will be included in our model to represent as a unique 

graph-based dataset spatial data, non-spatial data and spatial relations. 

 

In the next chapter we will describe the model. First, we will talk about the graph-based 

knowledge discovery, next we will detail our methodology, and finally we will present an 

example showing its applicability and generated results. 
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Chapter 3 

GRAPH-BASED REPRESENTATIONS 

This chapter describes our graph-based model to represent together spatial data, non-spatial 

data and spatial relations among the spatial objects. We propose to include three types of 

spatial relations: topological, distance and direction. Section 3.1 presents some issues 

related to the graph-based knowledge discovery. Our methodology is detailed in section 

3.2. In section 3.3 we describe five graph-based representations based in our model. 

Finally, an example of the applicability of the proposal is presented en section 3.4. 

3.1 Generalities 

In chapter 2 we presented several approaches developed to search knowledge in spatial 

databases. The differences between these approaches are based on the data representation 

and the data mining algorithm used in the search task. Certainly, the data representation 

used by a mining tool is very important, and it has to be powerful enough to represent 

domains containing complex relations among their components (i.e. spatial data domain). 

 



 31

A graph-based representation has these characteristics [3][5][17][35]. It has the benefits of 

being easy to understand and flexible enough to create different representations of the same 

domain. The domain (i.e. data and relationships) is described using graphs. These graphs 

become the input to a graph-based discovery tool which uses a heuristic to choose the 

subgraphs that are considered important or discovered knowledge. 

 

A graph is defined as a pair G = (V,E). V = {v0,…,vn} denotes a finite set of elements called 

vertices. E is a set of edges satisfying E ∈ f: V2 V2 where f is an injective function. Then, 

each edge e ∈ E is a pair (vi,vj). If (vi,vj) is an ordered pair for any (vi,vj) ∈ E, then G = 

(V,E) is said to be a directed graph. A labeled graph has labels associated with its edges and 

vertices. 

 

In knowledge discovery systems using a graph-based approach, the data mining algorithm 

uses graphs as the knowledge representation; this means that the data preparation phase 

includes the transformation of the data to a graph format. The search space of a graph-

based data mining algorithm consists of all the subgraphs that can be derived from its input 

graph. 

 

In the literature there exist several definitions about what a spatial data is. However, before 

to present our spatial model definition, we precise the following issues: 

• When we speak about geometric object we refer to an object describing a form (i.e. 

point, line, and polygon). 
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• A spatial object refers to an object represented by a coordinate system (i.e. 

Cartesian coordinates). 

• A geographic object maybe considered a specialization of a spatial object because it 

is represented by a coordinate system but related to earthly coordinates (sometimes 

called Geodetic or Geographic coordinates). 

 

A model is a simplification of the reality. It is not the reality, rather it represents the reality. 

So, what a model is used for is to explain or to understand the reality. A model can be, for 

instance, an equation, a hypothesis or a structured idea. A spatial model is therefore an 

abstraction of spatial data to generate useful information to help us understand, describe, 

and predict how things work and/or solve problems in the real world. When we work with 

geographic coordinates we can talk about a geographic model. 

3.2 Methodology 

The idea is to create a graph-based model to represent together spatial data, non-spatial data 

and the spatial relations between spatial objects. We will generate datasets composed of 

graphs with a set of these three elements. We argue that by mining a dataset with these 

characteristics a data mining algorithm can search patterns involving all these elements at 

the same time improving the results of the spatial analysis process. 

 

For example, finding out interesting patterns of objects located at some distance from a 

particular point; focusing in a current problem such as finding risk zones near the 
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Popocatépetl volcano (México). In addition, it would be important to know the 

characteristics of the evacuation routes which would be used in situations of volcanic 

activity, i.e., what are the characteristics of the evacuation routes; could they withstand the 

atmospheric conditions and the passage of vehicles in an emergency situation? 

 

A significant characteristic of spatial data is that the attributes of the neighbors of an object 

may have an influence on the object itself. So, we propose to include in the model the three 

types of relationship mentioned in chapter 2: topological, distance, and direction relations. 

 

As we mentioned, the basis is that in a spatial database there exist spatial objects, these 

objects interact with other objects (spatial relations) and they may have several attributes 

describing them (non-spatial data). Thus, we propose to create graphs that help us to 

describe these interconnections between all these elements. 

 

A simple way can be as follows: for each object we create a vertex representing the object 

itself and join two vertices with a directed labeled edge if they have a spatial relation in 

common (we add one edge for each spatial relation among vertices). Additionally, we can 

also create vertices representing the value of their non-spatial attributes and directed labeled 

edges joining each attribute to its object (one edge per attribute). 

 

But there is a higher complexity level when working with general graphs (i.e. a graph with 

multiple edges between vertices) than with simple graphs (i.e. a graph with at most one 

edge between any given pair of vertices and with no loops); therefore, our idea is to work 
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with simple graphs. So, we propose to improve this representation to the one shown in 

Figure 3.1 (using UML notation). 

 

Figure 3.1. General graph-based model to represent spatial data. 

 

In the model, the spatial data (i.e. spatial objects), non-spatial data (i.e. attributes), and 

spatial relations are represented as a collection of one or more directed graphs. Therefore, a 

directed graph contains a collection of vertices and edges representing all these elements. 

 

Vertices represent either spatial objects, spatial relations between two spatial objects 

(binary relation), or non-spatial attributes describing the spatial objects. Edges represent a 

link between two vertices of any type. According to the type of vertices that an edge joins, 

an edge can represent either an attribute name or a spatial relation name. The attribute name 

can refer to a spatial object or a non-spatial entity. We use directed edges to represent 

directional information of relations among elements (i.e. object x touches object y) and to 

describe attributes about objects (i.e. object x has attribute z). 
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This knowledge representation has the capability to describe a spatial dataset using graphs, 

allowing a graph-based mining tool to mine it as a whole. The capabilities of the model to 

represent the relation between these objects will be of great impact in the results of the data 

mining processes since the world is described by objects and the relation between these 

objects, we can figure out the relations as the elements describing the interaction of the 

objects with each other. 

3.3 Spatial Graph-based Data Representations 

In the construction of the graph there are issues such as the graph complexity and size that 

have a direct impact over the data mining algorithm performance. The quality of results 

refers to another important aspect. Testing several representations will allow us to produce 

comparisons among obtained results, to evaluate them, and finally to make a decision for 

selecting the one(s) which offers the better results. 

 

For better results we refer to our criteria for success. One approach is to show that the 

model allows discovering known patterns. Another approach is to have a domain expert 

saying that the discovered patterns are interesting. We have worked with domain experts 

for developing these tasks. 

 

Currently, we have developed five models to represent spatial data, non-spatial data and 

spatial relationships among the spatial objects as a unique dataset from the general model. 
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Three issues define the characteristics (i.e. number of vertices and edges, simple graph, 

etc.) of the graphs created from these models: 

• Equivalent spatial relations. 

• Symmetric spatial relations. 

• The way to represent objects and their relations in the model. 

 

In the following subsections we will explain how these three characteristics affect the 

structure and composition of the graph. First, we will talk about the equivalent relations, 

next the symmetric relations and finally the five created models. 

 

Equivalent Spatial Relations 

Suppose that our dataset is composed of an object A disjoint of an object B, this implies that 

object B is disjoint of object A. In this case the two objects are disjoint each other (an 

equivalent relation). When creating the graph, this relation can be represented by two 

directed edges, one edge labeled as “DISJOINT” from object A to object B and vice versa. 

However we can use the following principle: 

 

2 directed edges, 1 edge e(vi,vj) and 1 edge e(vj,vi) equal to 1 undirected edge e = ij 

 

By applying this principle we can replace the two directed edges by only one undirected 

edge labeled as the equivalent relation without losing the representation of the spatial 

relation among the objects. 
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The equivalent relations implemented in our research are the following: 

• TOUCH 

• OVERLAPBDYINTERSECT 

• OVERLAPBDYDISJOINT 

• EQUAL 

• CLOSE 

 

Symmetric Spatial Relations 

Suppose that our dataset is composed of an object A South of an object B, when we create 

the graph this relation is represented by a directed edge from object A to object B labeled as 

“South_of”. But it implies the relation object B is North of object A (it is a symmetric 

relation). This last relation in some models is not represented. 

 

According to the model the representation of a symmetric relation implies one of the 

following options: 

• The addition of a directed edge labeled as the symmetric relation. 

• The addition of a vertex labeled as the spatial relation (i.e. topological, direction) 

and a directed edge labeled as the symmetric relation. 

 

The symmetric relations implemented in our research are the following: 

• CONTAINS  INSIDE 

• COVERS  COVEREDBY 

• ON  COVERS 
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• NORTH_OF  SOUTH_OF 

• EAST_OF  WEST_OF 

• NORTHEAST_OF  SOUTHWEST_OF 

• SOUTHEAST_OF  NORTHWEST_OF 

 

Models 

As we have commented, testing several representations will allow us to produce 

comparisons among obtained results, to evaluate them, and finally to make a decision for 

selecting the one(s) which offers the better results (in term of quality). The following five 

models were developed to answer issues such as: in some models we obtain a reduction in 

the number of vertices and edges, but do they give us the same representation of our data? 

Are we gaining in the size reduction, but what are we loosing? There is a higher complexity 

working with general graphs than with simple graphs, does it affect the generated results? 

What about time processing? 

 

In order to descriptive the characteristics of each model we will use the sample dataset 

shown in Figure 3.2. Our dataset is composed of two spatial objects, object A representing a 

house and object B representing a lake, and the following three spatial relations among 

them: 

• Distance relation 

o Object A close object B (equivalent relation). 

• Topological relation 

o Object A touch object B (equivalent relation). 
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• Direction relation 

o Object A South of object B (symmetric relation). 

 

 

Figure 3.2. Sample dataset. 

Additionally, to evaluate the characteristics of each model (the model is itself a graph) we 

have developed the following nine evaluation metrics: 

• Num. vertices. Total number of vertices in the graph. 

• Num edges. Total number of edges in the graph. 

• Size (vertices + edges). Total number of vertices plus total number of edges in the 

graph. 

• % increment. This item represents the percent of increment (in term of vertices 

plus edges) of this graph respect to the graph created by using the base model. 

• Simple graph. To indicate if the graph is a simple one (graph with at most one edge 

between any given pair of vertices and with no loops). 

• Directed edge. To indicate if the graph has directed edges. 

• Undirected edge. To indicate if the graph has undirected edges. 
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• Complete information. This item shows if the symmetric relation is represented in 

the graph. 

• Redundant “Relation” edge. In some models we add a “Relation” edge for 

representing explicitly the fact there is a relation between two spatial objects. There 

is a way for avoiding creating complex graphs. This item tells us if a redundant 

“Relation” edge is presented in the graph. 

 

Model #1 - base model 

Figure 3.3 shows the first model created for representing spatial data as proposed. The 

characteristics of the model according to the metrics are: 

• Num. vertices: 2 vertices for representing each spatial object (i.e. object A, and 

object B). 

• Num. edges: 4 edges, 3 edges for representing the original relations (i.e. “close”, 

“touch”, and “South_of” relations) and 1 edge for representing the “North_of” 

relation created from the original “South_of” symmetric relations. The “North_of” 

relation is itself a symmetric relation. 

• Size (vertices + edges): 6 

• % increment: 0%, it is the base model. 

• Simple graph. No, it is a complex graphs with 4 edges linking 2 vertices. 

• Directed edge. Yes, they are used for representing the “South_of” and “North_of” 

symmetric relations. The direction of the edges is according to the lecture of the 

relations among the objects. 
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• Undirected edge. Yes, they are used for representing the “close” and “touch” 

equivalent relations. 

• Complete information. Yes, in the graph are represented the “North_of” 

symmetric relation created from the original “South_of” symmetric relation. 

• Redundant “Relation” edge. No, in the model we don’t use “Relation” edges. 

Spatial
object A

Spatial
object B

South_of

touch

close

North_of  

Figure 3.3. Model #1 - base model. 

 

Model #2 - single replication of relations types, complete information 

In Figure 3.4 we show our second model created for representing spatial data. The 

characteristics of the model according to the metrics are: 

• Num. vertices: 5 vertices, 2 vertices for representing the spatial objects and 3 

vertices for representing the “topological”, “distance”, and “direction” relations (the 

spatial relation types). For each spatial relation type among two spatial objects we 

add 1 vertex labeled as its name. In the example there exist 1 “topological” relation, 

1 “distance” relation, and 1 “direction” relation. 

• Num. edges: 6 edges, 3 edges for representing the original relations, 2 edges for 

representing the equivalent relations (i.e. “close” and “touch” relations) created 

from the original ones, and 1 edge for representing the symmetric relation (i.e. 

“North_of” relation) created also from the original relations. 
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• Size (vertices + edges): 11 

• % increment: +83.33% 

• Simple graph. Yes, there exists at most 1 edge between any given pair of vertices. 

• Directed edge. Yes, they are used for representing all relations. The direction of the 

edges is from the vertices representing the spatial objects to the vertices 

representing the spatial relation types. 

• Undirected edge. No, in the model we don’t use undirected edges. 

• Complete information. Yes, we represent the symmetric relations created from the 

original ones. 

• Redundant “Relation” edge. No, in the model we don’t use “Relation” edges. 

 

Figure 3.4. Model #2 - single replication of relations types, complete information. 

 

Model #3 - double replication of relations types, no complete information 

In Figure 3.5 we show our third model created for representing spatial data. The 

characteristics of the model according to the metrics are: 

• Num. vertices: 8 vertices, 2 vertices for representing the spatial objects and 6 

vertices for representing the “distance”, “topological”, and “direction” relations. For 
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each spatial relation type among two spatial objects we add 2 vertices labeled as its 

name. For instance, in the example there exist three relations: 1 “topological” 

relation, 1 “distance” relation, and 1 “direction” relation, so we add 6 vertices, 2 per 

each spatial relation. 

• Num. edges: 9 edges, 6 edges (the “Relation” edges) to link the vertices 

representing the spatial objects to the vertices representing the spatial relation types 

(from each vertex representing a spatial object start 3 edges since we have 3 

relations), and 3 edges for representing the original relations. These last 3 edges are 

used to join the vertices representing the spatial relation types. 

• Size (vertices + edges): 17 

• % increment: +183.33% 

• Simple graph. Yes, there exists at most 1 edge between any given pair of vertices. 

• Directed edge. Yes, they are used for representing the symmetric relations and the 

“Relation” edges. The direction of the “Relation” edges is from the vertices 

representing the spatial objects to the vertices representing the spatial relation types. 

The direction of the other edges is according to the lecture of the relations among 

the objects. 

• Undirected edge. Yes, they are used for representing the equivalent relations. 

• Complete information. No, we don’t represent the symmetric relations created 

from the original ones. 

• Redundant “Relation” edge. Yes, we use in the model “Relation” edges for 

representing explicitly the existence and type of a relation among 2 spatial objects. 

Additionally, we use this edge for avoiding creating complex graphs. 
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Figure 3.5. Model #3 - double replication of relations types, no complete information. 

 

Model #4 - single replication of relations types, no complete information 

In Figure 3.6 we show our fourth model created for representing spatial data. The 

characteristics of the model according to the metrics are: 

• Num. vertices: 5 vertices, 2 vertices for representing the spatial objects and 3 

vertices for representing the “topological”, “distance”, and “direction” relations. For 

each spatial relation type among two spatial objects we add 1 vertex labeled as its 

name. In the example there exist 1 “topological” relation, 1 “distance” relation, and 

1 “direction” relation. 

• Num. edges: 6 edges, 3 edges (the “Relation” edges) to link a vertex representing a 

spatial object (in the example we have 2 vertices since there are 2 spatial objects) to 

the vertices representing the spatial relation types (from this vertex representing a 

spatial object start 3 edges since we have 3 relations), and 3 edges for representing 
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the original relations. These last 3 edges are used to link the vertices representing 

the spatial relation types to the un-used vertex representing the other spatial object. 

• Size (vertices + edges): 11 

• % increment: +183.33% 

• Simple graph. Yes, there exists at most 1 edge between any given pair of vertices. 

• Directed edge. Yes, they are used for representing the symmetric relations and 

“Relation” edges. The direction of the “Relation” edges is from a vertex 

representing a spatial object to the vertices representing the spatial relation types. 

The direction of the other edges is from the vertices representing the spatial relation 

types to the un-used vertex representing the other spatial object (it is according to 

the lecture of the relations among the objects). 

• Undirected edge. Yes, they are used for representing the equivalent relations. 

• Complete information. No, we don’t represent the symmetric relations created 

from the original ones. 

• Redundant “Relation” edge. Yes, we use in the model “Relation” edges for 

representing explicitly the existence and type of a relation among 2 spatial objects. 

Additionally, we use this edge for avoiding creating complex graphs. 
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Figure 3.6. Model #4 - single replication of relations types, no complete information. 

 

Model #5 - double replication of relations types, complete information 

In Figure 3.7 we show our fifth model created for representing spatial data. The 

characteristics of the model according to the metrics are: 

• Num. vertices: 8 vertices, 2 vertices for representing the spatial objects and 6 

vertices for representing the “distance”, “topological”, and “direction” relations. For 

each spatial relation type we add 2 vertices labeled as its name. In the example we 

add 2 vertices for the 2 “topological” relations, 2 vertices for the “distance” relation, 

and 2 vertices for the “direction” relation. 

• Num. edges: 12 edges, 6 edges (the “Relation” edges) to link the vertices 

representing the spatial objects to the vertices representing the spatial relation types, 

and 6 edges for representing the original relations and those ones generated from 

them (equivalent and symmetric relations). These last 6 edges are used to link the 

vertices representing the spatial relation types to the vertices representing each 

spatial object (3 edges for each spatial object). 

• Size (vertices + edges): 20 
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• % increment: +233.33% 

• Simple graph. Yes, there exists at most 1 edge between any given pair of vertices. 

• Directed edge. Yes, they are used for representing all relations. 

• Undirected edge. No, in the model we don’t use undirected edges. 

• Complete information. Yes, we represent the symmetric relations created from the 

original ones. 

• Redundant “Relation” edge. Yes, we use in the model “Relation” edges for 

representing explicitly the existence and type of a relation among 2 objects. 

Additionally, we use this edge for avoiding creating complex graphs. 

 

Figure 3.7. Model #5 - double replication of relations types, complete information. 

 

Table 3.1 presents the results of the nine metrics developed to evaluate the characteristics 

of each model. Model #1 is named the base model. 
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Model Num. 

Vertices 

Num. 

Edges 

Size 

(v + e) 

% 

Increment 

Simple 

Graph 

Directed 

Edge 

Undirected 

Edge 

Complete 

Information 

Redundant 

“Relation” 

Edge 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

#1  2 4 6 - No Yes Yes Yes No 

#2 5 6 11 +83.33 Yes Yes No Yes No 

#3 8 9 17 +183.33 Yes Yes Yes No Yes 

#4 5 6 11 +83.33 Yes Yes Yes No Yes 

#5 8 12 20 +233.33 Yes Yes No Yes Yes 

Table 3.1. Characteristics of the graph-based representation models. 

 

The metrics were proposed based on the causes/effects each of them has both into the 

created graph and the mining algorithm. We visualize four significant issues related directly 

to these metrics: 

 

1. Search space 

The search space of a graph-based data mining algorithm consists of all the subgraphs that 

can be derived from its input graph, thus, the number of vertices (1) and edges (2) of the 

created graph (3) define the size of the search space for the discovery system. Therefore, 

the objective must be to minimize the number of vertices and edges used to create the 

graphs but at the same time to maximize the representativeness of the dataset. As we can 

see in Table 3.1, the model using the minimum number of vertices and edges to represent 

our sample dataset is model #1 (2 vertices and 4 edges) whereas model #5 is the opposite 

case (8 vertices and 12 edges). 

 



 49

2. Processing time 

The search space size plays a relevant role regarding to the processing time used to 

discover patterns. If we have a large search space the algorithm would require more time to 

evaluate all the possible subgraphs. Therefore, a comparison among the “percentage of 

increment” (4) metric of the proposed models is presented in Table 3.1. Remember this 

metric compares the size of a given model with respect to model #1 (base model). For 

instance, model #5 has a graph size increment of 233.33% respect to model #1. In other 

words, the mining algorithm will require the evaluation of 233.33% more vertices and/or 

edges by using model #5 instead of model #1 for the same dataset. 

 

3. Graph Complexity 

Next chapter describes the Subdue system, our graph-based data mining tool. As we will 

see there exists a higher complexity for the mining algorithm to work with complex graphs 

than with simple ones (i.e. at most an edge among any given pair of vertices and with no 

loops). For instance, into the graph match process, expanding phase (Subdue uses an 

“expanding” approach for discovering patterns), and graph compression stage. Therefore, 

the objective was to propose graph-based models that allow us to create simple graphs. As 

we can see in Table 3.1, only model #1 does not create simple graphs. 

 

Thus, as a strategy to break the multiplicity of edges among two vertices (for instance, 

vertices representing two spatial objects meeting two or more spatial relations among them) 

we use the following approaches: 
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• To add a new vertex labeled as the relationship type (i.e. Topological, Distance, and 

Direction) by each spatial relation among the spatial objects. This approach is used 

in model #2. 

• To add a new vertex (model #4) or two new vertices (model #3 and model #5) 

labeled as the relationship type (i.e. Topological, Distance, and Direction) by each 

spatial relation among the spatial objects, and to link this new vertex (model #4) or 

new vertices (model #3 and model #5) with the vertices representing the spatial 

objects by using edges labeled as “Relation”. The approach used to link the vertices 

is different in each model as we have mentioned in the definition of each of them. 

This nomenclature is used to represent the fact there exits a spatial relation among 

these spatial objects. These edges are known as redundant relation edges (9). 

 

4. Data representativeness 

The directed edges (6), undirected edges (7), and complete information (8) metrics are used 

to maximize the representativeness of the dataset but minimizing, as most as possible, the 

graph size and its complexity. Directed edges are used to represent the symmetric spatial 

relations (object A North_of object B, implies, B South_of A), the redundant relation edges, 

and the non-spatial attributes describing the spatial objects. Undirected edges are used to 

represent equivalent spatial relations (the relation is represented by an undirected edge 

instead of two directed edges). Finally, complete information means that symmetric spatial 

relations among spatial objects are also represented into the model. 
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3.4 Use-case 

To show the applicability of our model, we will use a dataset from a Popocatépetl volcano 

database [37][40]. The database contains data related to several issues in the zone such as 

settlements, rivers, and evacuation roads in the zone, just to mention some of them. 

 

Figure 3.8 shows a fragment of the layers “roads” and “settlements” of the Popocatépetl 

volcano zone. The roads layer (shown in green color) represents the roads in the zone; it is 

composed of spatial objects (i.e. lines) and non-spatial data describing the characteristics of 

those roads (i.e. id, start point, end point, length, and type). The settlements layer (shown in 

pink color) represents population areas in the zone. The layer is composed of spatial objects 

(i.e. polygons) and non-spatial data describing the characteristics of the settlements (i.e. id, 

area, perimeter, and type). 

 

Figure 3.8. Spatial database representing some objects of the world. 
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Suppose we are interested in the identification of relations among the roads starting in, or 

crossing a settlement (i.e. type and a set of characteristics of roads in relation to the number 

of people living in a settlement that in case of a volcanic contingency are required to be 

evacuated). So, we need to create a dataset involving these elements for mining it and 

search for patterns that help us to evaluate the characteristics of the roads and, may be, to 

make the decision of improving them (or build new ones) for their utilization in case of 

volcano activity. In this case we are working with different types of spatial objects and also 

we are adding non-spatial data and relationships (as touch or overlap) to our dataset. 

 

But the construction of the dataset implies being concerned about some constraints. For 

example, if we include all the elements existing in the data layers we might build a huge 

graph, and this will have a direct impact in the data mining algorithm. So, we explore 

methodologies to deal with topics such as complexity, the size of the graph, noise and 

quality of the data. A solution for facing the problem of creating a huge graph is delimiting 

the set of elements to be included in it by using selection windows. The user can create 

these windows and only the elements inside them are candidates to be included as objects 

in the graph. The idea is shown in Figure 3.9. Suppose the user will work with n data 

layers, thus, for each layer we will select only the spatial objects inside the area delimited 

by the selection window. We can see this functionality such as a drill operation over all the 

spatial layers the user works with. 
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Figure 3.9. Selection window. 

 

Once we have defined the working area, as shown in Figure 3.8, we can build the graph. 

The process consists of three phases. In the first phase, the user has to choose the spatial 

relation(s) to evaluate among the spatial objects (in the example the touch or overlap 

topological relations). The second phase involves the validation process, only the objects 

covered by the relation(s) become elements to be included in the graph. 

 

Figure 3.10. Querying a spatial database. 

 

The last phase consists of building the graph using the results of the validation process. 

Figure 3.10 presents an example of this functionality. This time only the area delimited by a 

selection window is shown. In the figure, the spatial objects setting either the touch or 
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overlap relations are shown in blue color, the rest of the objects are shown in their original 

colors. The circles show some examples where a road is starting or crossing a settlement. 

 

Figure 3.11. Graph-based representation for spatial data. 
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Figure 3.11 shows the graph created using model #2 (we used the Graphviz System [19] to 

draw the graph). The vertices in the graph represent either spatial objects (i.e. road, 

settlement), spatial relations between two objects (i.e. topological), or attributes describing 

the objects (i.e. ID value). In this example, we use a special vertex labeled as “object” for 

expressing the interconnection between the spatial objects, their spatial relations, and non-

spatial attributes (i.e. object type road with ID 989 overlaps or touches with object…). 

 

According to the type of vertices that an edge joins, the edge can be labeled as either a 

spatial relation name (i.e. overlap, touch), or as the name of an attribute describing the 

characteristics of an object (i.e. type, ID). 

 

We may read the graph as follows: there are six roads and six settlements inside the 

working area meeting either a touch or overlap relation in the form road  settlement. We 

suppose that each polygon object in the map represents a settlement. Some roads start from 

a settlement and others cross a settlement. For example, the road with ID 981 crosses the 

settlements with ID’s 3079, 3139, 3151, 3083 and 3138. This means that we need to be 

careful with this road since it has interaction with several settlements and in case of a 

contingency it will be used widely. In the graph we included only the object's ID non-

spatial attribute for each object. 

 

This is a simple example; in the real world the spatial data layers may have hundreds or 

thousands of objects, and each object may have dozens of attributes describing it. Joining 

all these elements will allow creating large graphs representing the elements found in a 
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spatial database improving the results of the data mining task. Once we have created the 

graph, it will be used as input to a graph-based mining system. 

3.5 Conclusion 

Our idea is to propose a graph-based model to represent together spatial data, non-spatial 

data and the spatial relations between spatial objects. Based in the model we generate 

datasets composed of graphs with a set of these three elements. Our argumentation is that 

by mining a dataset with these characteristics a data mining algorithm can search patterns 

involving all these elements at the same time improving the results of the spatial analysis 

process. 

 

We have presented an example of the applicability of the proposal using data from a 

Popocatépetl volcano database. The created graph will be the input for a graph-based 

mining system. We propose to use the Subdue system, which will be described in the next 

chapter. 
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Chapter 4 

MINING THE GRAPH 

Chapter 4 describes the characteristics of the Subdue system [23][43], our data mining tool. 

Subdue was developed at the University of Texas at Arlington and it can be applied to any 

domain that can be represented as a graph. In the first part of the chapter we present the 

general characteristics and main functions. In the second part we describe the overlap 

feature and its importance for the pattern discovery system, and introduce a new algorithm 

named limited overlap. 

4.1 Characteristics 

The Subdue system discovers substructures using a graph-based representation of structural 

databases. Structural data involves the concept of units or parts and the interdependence 

and relationships of those parts. The substructures (a connected subgraph within the 

graphical representation) describe concepts in the data (i.e. patterns). 
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The substructure discovery system represents structural data as a labeled graph. The input 

to Subdue is a graph where labeled vertices correspond to objects in the data, and directed 

or undirected labeled edges map relationships between objects. 

 

The discovery algorithm is a computationally constrained beam search. There are three 

different evaluation methods to guide the search towards more appropriate substructures: 

Minimum Description Length (MDL), Size-based, and Set Cover. The default evaluation 

method is MDL. 

 

The algorithm begins with the substructure matching a single vertex in the graph. Each 

iteration the algorithm selects the best substructure and incrementally expands the instances 

of the substructure. An instance of a substructure in the input graph is a subgraph that 

matches (graph theoretically) that substructure. 

 

The algorithm searches for the best substructure until all possible substructures have been 

considered or the total amount of computation exceeds a given limit. Evaluation of each 

substructure is determined by how well the substructure compresses the description length 

of the input graph. 

 

There might be slight variations of some substructures that can be considered as instances 

of another substructure. Subdue uses an inexact graph match algorithm to identify this kind 

of instances. In this inexact match approach, each distortion of a graph is assigned a cost 

and if the total cost is lower than a given threshold, the substructure is considered an 

instance of the other substructure. 
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A distortion is described in terms of transformations such as the deletion, insertion, and 

substitution of vertices and edges. The best substructure found by Subdue can be used to 

compress the input graph, which can then be input to another iteration of Subdue. After 

several iterations, Subdue builds a hierarchical description of the input data where later 

substructures are defined in terms of substructures discovered on previous iterations. 

 

Figures 4.1, 4.2, 4.3 and 4.4 show an example of the system’s functionality. The example is 

presented in terms of the house domain, where a house is defined as a triangle on a square. 

T represents a triangle, S a square, C a circle and R a rectangle (see Figure 4.1). The 

objects in the figure (i.e. T1, S1, R1) become labeled vertices in the graph, and the 

relationships (i.e. on(S1, R1), shape(C1, circle)) become labeled edges. 

 

Figure 4.1. Graph representation of the house domain. 
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The graph representation of the substructure discovered by Subdue from this data is shown 

in Figure 4.2 where Subdue found four instances of “triangle on square”. 

 

Figure 4.2. Substructure and instances discovered from the house domain by Subdue. 

 

After a substructure is discovered, each instance of the substructure in the input graph is 

replaced by a single vertex representing the entire substructure. In Figure 4.3 the discovered 

substructure (object shape triangle on object shape square) is labeled as SUB_1 

(SUBstructure number 1). 

 

Figure 4.3. Substructure replacement procedure in the house domain. 

 

Finally, the substructure (labeled as SUB_1) is used to compress the original input graph, 

which can then be input to another iteration of Subdue (see Figure 4.4). 
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Figure 4.4. Graph representation of the house domain after substructure replacement. 

 

The Subdue system’s ability to perform discovery has been proved in several domains 

including scene analysis, chemical analysis and CAD circuit analysis. In [18] the authors 

present an example of the Subdue capabilities to perform data mining tasks, they work with 

an earthquake database and show that Subdue is capable of finding not only the shared 

characteristics of the earthquake events, but also space relations between them. In the case 

of the identification of shared characteristics, they used the pattern containing the region 

number specification to recognize the area being studied; in the case of space relations, they 

found patterns that represent parts of the paths of the involved fault (i.e. subarea with a high 

concentration of earthquakes). 

4.1.1 Main Functions 

In this subsection we present a briefly description of the main functions composing the core 

of Subdue. Each of them is itself integrated by several subfunctions, but the idea is to 

present them in a global perspective. 



 62

 

Compress 

The compress function returns a new graph, which is the given graph compressed with the 

given substructure instances. Vertices "SUB" replace each instance of the substructure, and 

"OVERLAP" edges are added between vertices "SUB" of overlapping instances. Edges 

connecting to overlapping vertices are duplicated, one per each instance involved in the 

overlap. 

 

Discover 

This function plays the role of manager in the phase of discovering the best substructures in 

an input graph. It is in charge of issues such as to get initial substructures, to extend each 

substructure, to evaluate each extension, and to add to a final list the best discovered 

substructures. 

 

Evaluate 

This function implements the different evaluation methods used to guide the search towards 

more appropriate substructures: Minimum Description Length (MDL), Size-based, and Set 

Cover. The value of a substructure s in a graph g is computed as: 

size(g) / (size(s) + size(g|s)) 

 

The value of size() depends on whether we are using the MDL or Size-based evaluation 

method.  If MDL is used, then size(g) computes the description length in bits of g.  In case 

of Size-based, then size(g) is simply vertices(g) + edges(g). The size(g|s) is the size of 

graph g after compressing it with substructure s. Compression involves replacing each 
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instance of s in g with a new single vertex and reconnecting edges external to the instance 

to point to the new vertex.  For Size-based, the size(g|s) can be computed without actually 

performing the compression. 

 

If negative graphs are present, then the evaluation becomes: 

size(Gp) + size(Gn) 
----------------------------------------------------- 
size(S) + size(Gp|S) + size(Gn) - size(Gn|S) 

 

where Gp is the positive graph and Gn is the negative graph. 

 

If the evaluation method is Set Cover, then the evaluation of substructure s becomes: 

(num positive edges containing s) + (num negative edges not containing s) 
------------------------------------------------------------------------------------------- 

(num positive edges) + (num negative edges) 
 

Extend 

This function returns a list of substructures representing extensions to the given 

substructure. Extensions are constructed by adding an edge (or edge and new vertex) to 

each positive instance of the given substructure in all possible ways according to the graph. 

Matching extended instances are collected into new extended substructures, and all such 

extended substructures are returned. If a negative graph is present, then instances of the 

substructure in the negative graph are also collected. 

 

Graphmatch 

The Graphmatch function returns true if graph_1 and graph_2 match with cost less than the 

given threshold. If so, the objective is to store the match cost in the variable pointed to by 
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matchCost and to store the mapping between graph_1 and graph_2 in the given array is 

non null. 

 

Subgraph Isomorphism 

Set of functions implementing a subgraph isomorphism algorithm. The objective is to find 

predefined substructures: searches for subgraphs of graph_2 that match graph_1 and 

returns the list of such subgraphs as instances in graph_2. Returns empty list if no matches 

exist. This procedure mimics the “discover substructures” loop by repeatedly expanding 

instances of subgraphs of graph_1 in graph_2 until matches are found. 

4.2 Overlap 

Now, we will talk about the overlap feature in Subdue. This feature has a preponderant role 

in the substructure discovery system. The overlap feature is controlled by the overlap user’s 

parameter. If overlap is false then overlap among instances is not allowed, otherwise, 

overlap is allowed. 

 

To explain the cause/effect of this feature in Subdue, we will present some examples 

generated by using two standalone functions belonging to the Subdue: the Subgraph 

Isomorphism and Minimum Description Length functions. The results generated by these 

functions are affected by the value of the overlap parameter. 

 

Subgraph Isomorphism (SGISO) 
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As we have already mentioned, the subgraph isomorphism function searches for subgraphs 

of graph_2 that match graph_1 and returns the list of such subgraphs as instances in 

graph_2. The subgraph isomorphism function is embodied in the “FindInstances” function. 

The procedure is optimized toward graph_1 being a small graph, and graph_2 being a large 

graph. 

 

The FindInstances function starts finding a list of single-vertex instances, one for each 

vertex in graph_2 that matches the first vertex of graph_1. Next, the algorithm attempts to 

extend each instance in the instance list by an edge (or edge and new vertex) from graph_2 

that matches the attributes of the given edge in graph_1. Finally, the instances not matching 

graph_1 are filtered, and an overlapped instances validation process is preformed. If 

overlap is false overlapped instances are discarded. The resulting list represents the 

instances of graph_1 in graph_2. 

 

For illustrative purpose suppose we have as input graphs those shown in Figure 4.5 and 

Figure 4.6. Input graph_1 has 3 vertices and 2 edges, and graph_2 has 8 vertices and 7 

edges. 

 

 

Figure 4.5. SGISO - input graph_1. Figure 4.6. SGISO - input graph_2. 
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Running SGISO with the overlap parameter set to false, the algorithm finds 1 instance of 

graph_1 in graph_2 (see Figure 4.7). Figure 4.8 shows the discovered instance in graph_2. 

 

 

Figure 4.7. SGISO - no overlap. Figure 4.8. SGISO - no overlap, 1 instance in graph_2. 

 

Now, running SGISO with the overlap parameter set to true, the algorithm finds the 4 

instances shown in Figure 4.9. We can see that each instance has the vertices labeled as A, 

B, C but they represent different vertices (they have different ID vertices). For example, the 

first instance has the ID vertices 1, 5 and 3; the second instance has the ID vertices 1, 5 and 

6 respectively, and so on. Figure 4.10 shows the 4 discovered instances in graph_2. 

 

 

Figure 4.9. SGISO - overlap. Figure 4.10. SGISO - overlap, 4 instances in graph_2. 
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Minimum Description Length (MDL) 

The MDL principle states that the best theory to describe a set of data is that theory which 

minimizes the description length of the entire dataset. We define the MDL of a graph to be 

the number of bits necessary to completely describe the graph. The minimal encoding of 

the graph in terms of bits is computed as follows: 

edgeBitsrowBitsvertexBitsMDL ++=  

Where vertexBits represents the number of bits needed to encode the vertex labels of the 

graph, rowBits represents the number of bits needed to encode the rows of the adjacency 

matrix A (the matrix represents the graph connectivity), and edgeBits represents the number 

of bits needed to encode the edges represented by the entries A[i,j] = 1 of the adjacency 

matrix A. 

 

The standalone MDL function computes the description length (dL) of graph_1, graph_2 

and graph_2 compressed with graph_1 along with the final MDL compression measure: 

)_|_()_(/)_( AgraphBgraphdLAgraphdLBgraphdL +  

 

dL(graph_2|graph_1) represents the value of graph_2 compressed with graph_1. The 

overlap feature has a direct effect to compute this value because the number of instances for 

compressing graph_2 is based in the instances list returned by the FindInstances function 

(see example standalone subgraph isomorphism function). 

 

As we have commented, the Subdue system implements a compress graphs function named 

CompressGraph. The inputs of the function are the graph to be compressed, and the 
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substructure instances used to compress the graph. The function returns a new graph, which 

is the given graph compressed with the given substructure instances. 

 

In order to show the effects of the overlap in the standalone MDL function (focusing in the 

generated compressed graph) we will show, in the following figures, examples of the 

different cases of validation that are implement to face this feature. Figure 4.11 shows the 

input graph_1, this graph will be used in all the examples as the first input graph. It has 3 

vertices and 2 edges. 

 

Figure 4.11. MDL - input graph_1. 

 

In our first example we will use as graph_2 (our second graph) the shown in Figure 4.12. 

This graph has 8 vertices and 7 edges. As we can see our graph has a “remarked” edge, the 

directed edge labeled as g between vertex 1 (labeled as A) and vertex 8 (labeled as F). This 

edge represents the current case of validation (in the future it will be named the guide 

edge). 

 

As part of the CompressGraph algorithm, there is a function named AddOverlapEdges that 

adds edges to the compressed graph, describing overlapping instances of the substructure in 

the given graph, based in two conditions. First, if two instances overlap, then an undirected 
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edge OVERLAP is added between them. Second, if an external edge points to a vertex 

shared between multiple instances, then duplicate edges are added to all instances sharing 

the vertex. If the second condition is true the AddOverlapEdges function calls a new 

function named AddDuplicateEdges. The purpose of this function is to add duplicate edges 

based on overlapping vertex between substructures.  

 

As we can see, the layout of the edge (that we call the guide edge) is important for the 

global functionality of the compress graph algorithm. So, in the following examples we will 

change the guide edge for illustrating the different validation cases. 

 

Returning to our example, if we run the MDL program with the overlap parameter set to 

false, our final compressed graph will be the shown in Figure 4.13. Since overlap is not 

allowed between instances, the FindInstances function finds 1 instance of graph_1 that 

match graph_2. In the graph this instance was replaced by a vertex SUB, so we have only 1 

vertex of this type. There are not edges OVERLAP, and no edges were duplicated. 

  

Figure 4.12. MDL example 1 - input graph_2. Figure 4.13. MDL example 1 - no overlap. 

 

In the next example our graph_2 is the shown in Figure 4.14. It is the same graph used in 

the previous example, but this time we run MDL with the overlap parameter set to true. The 

generated compressed graph is shown in Figure 4.15. The FindInstances function finds 4 
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instances since the overlap between instances is allowed. In the graph the 4 instances were 

replaced by 4 vertices SUB. There are 5 edges OVERLAP, an edge OVERLAP between two 

vertices SUB tells us that these substructures overlap. By “substructures overlap or 

overlapped substructures” we refer that the instances they represent have common vertices. 

 

In the example, there is a directed edge (edge g, our guide edge) connecting two vertices, 

one of them belonging to a substructure (in exact term, to an instance of a substructure) and 

the other one no belonging to the substructure (vertex F), is an external edge; the 

discovered instances were 4 (overlap is allowed), so, in the graph there are 4 directed edges 

starting from each vertex SUB (the direction of the edge is preserved) to the vertex F. 

 

A similar procedure was implemented for edge f (connecting vertex C and vertex D, 

vertices number 6 and 7 respectively) and edge c (connecting vertex B and vertex E, 

vertices number 2 and 4, respectively). They were duplicated since these edges connect 

vertices belonging to a substructure to vertices no belonging to the substructure (external 

edges). In the figure we can see that vertex D has 2 edges f connecting it to 2 vertices SUB 

(preserving the direction of the edge) and vertex E has 2 edges c connecting it to 2 vertices 

SUB (remember that 4 instances were discovered, overlap is allowed). 

 

Finally, our compressed graph has 7 vertices: 4 vertices SUB, 1 vertex F, 1 vertex D, and 1 

vertex E; and 13 edges: 5 edges OVERLAP, 4 edges labeled as g, 2 edges labeled as f, and 2 

edges labeled as c. 
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Figure 4.14. MDL example 2 - input graph_2. Figure 4.15. MDL example 2 - overlap. 

 

For the following examples the overlap parameter is always set to true. 

 

Figure 4.16 shows our new graph_2, we only changed the direction of the guide edge. Now 

it starts from vertex F (number 8) to vertex A (number 1). The generated compressed graph 

is shown in figure 4.17. In the compressed graph we observe that, this time, the 4 edges g 

start from vertex F to the 4 vertices SUB (the direction of the edge is preserved). 

Everything else remains as the previous example. 
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Figure 4.16. MDL example 3 - input graph_2. Figure 4.17. MDL example 3 - overlap. 

 

For the next example, we only change from a directed guide edge to an undirected one. Our 

graph_2 is the graph shown in Figure 4.18. By running MDL we generate the compressed 

graph presented in Figure 4.19. The only modification is that the edges between vertex F 

and the 4 vertices SUB are undirected edges. Everything else remains unchanged. 

 

Figure 4.18. MDL example 4 - input 

graph_2. 

Figure 4.19. MDL example 4 - overlap. 
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For illustrating a new outcome of the overlap feature in the standalone MDL function, we 

change our graph_2 as follows: 

• Vertex number 8 labeled as F is deleted. 

• Our guide edge labeled as g is deleted. 

• A new edge labeled as g (our guide edge) is added between vertex number 1 labeled 

as A and vertex number 3 labeled as C. For the current example we use a directed 

edge. 

 

Our graph_2 is shown in Figure 4.20. The graph has 7 vertices and 7 edges. The “new” 

edge has the characteristic that it is an edge between two vertices belonging to a same 

substructure and in some cases, as we will see, they belong to overlapped substructures. 

Remember that overlap is allowed between instances, so the FindInstances function finds 4 

instances. 

 

The generated compressed graph is shown in Figure 4.21. We mentioned that our guide 

edge joins 2 vertices belonging to a same substructure (vertex number 1 labeled as A and 

vertex 3 labeled as C, and in some cases these vertices belong to overlapped substructures. 

So, in the graph there are 6 edges labeled as g, 4 edges joining vertices SUB (telling us that 

they overlap), and two self edges in 2 vertices SUB. These last 2 edges are our new case of 

validation. The self edge tells us that inside the substructure, there is an edge joining two 

vertices belonging to the same substructure. The direction of the edges does not matter 
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since this is an edge inside the substructure (an internal edge). The other duplicated edges 

(i.e. edge c and edge f) were computed using the previous described procedure. 

 

Finally, our compressed graph has 6 vertices: 4 vertices SUB, 1 vertex D, and 1 vertex E; 

and 15 edges: 5 edges OVERLAP, 6 edges labeled as g, 2 edges labeled as f, and 2 edges 

labeled as c. 

Figure 4.20. MDL example 5 - input 

graph_2. 

Figure 4.21. MDL example 5 - overlap. 

 

For the example shown in Figure 4.22, we only changed the direction of the guide edge. 

Now it starts from vertex number 3 labeled as C to vertex number 1 labeled as A. The 

generated compressed graph is presented in Figure 4.23. The generated compressed graph 

is the same one that in the previous example. This is telling us that just changing the 

direction of the guide edge does not have effect in the resulting compressed graph. 
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Figure 4.22. MDL example 6 - input graph_2. Figure 4.23. MDL example 6 - overlap. 

 

For the next example, we only change from a directed guide edge to an undirected one. Our 

graph_2 is the graph shown in Figure 4.24. The generated compressed graph is presented in 

Figure 4.25. The single change is that all edges g are now undirected edges. Everything else 

remains unchanged. 

 

Figure 4.24. MDL example 7 - input graph_2. Figure 4.25. MDL example 7 - overlap. 

 

Now, for illustrating a new outcome of the overlap feature in the standalone MDL function 

(self edge in a vertex shared by instances of a substructure), we change our graph_2 as 

follows: 
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• Edge labeled as g between vertex number 1 labeled as A and vertex 3 labeled as C is 

deleted. 

• A new edge labeled as g (our guide edge) is added between vertex number 1 labeled 

as A and vertex number 1 labeled as A (a self edge). For the current example a 

directed edge. 

 

Our graph_2 is shown in Figure 4.26. The graph has 7 vertices and 7 edges. The “new” 

edge has the characteristic that is a self edge; it starts and ends in the same vertex. This 

vertex belongs to overlapped substructures, so we have 4 substructures sharing it. 

 

The resulting compressed graph is shown in Figure 4.27. Since our guide edge is a self 

edge the compressed graph has 10 edges labeled as g. There are 6 edges joining vertices 

SUB (telling us that they are overlapped substructures), and 4 self edges in 4 vertices SUB 

telling us that they have an edge which origin and destination vertices are the same. 

 

We note in the compressed graph a special characteristic between some vertices SUB. We 

refer that some pairs of vertices SUB are joined by 2 edges labeled as g. One of them starts 

in the first vertex SUB and ends in the second one. The second edge has a vice versa 

direction. This is consequence that they are overlapped substructures with a common vertex 

and this vertex is the source and destination of an internal edge. 
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Finally, our compressed graph has 6 vertices: 4 vertices SUB, 1 vertex D, and 1 vertex E; 

and 19 edges: 5 edges OVERLAP, 10 edges labeled as g, 2 edges labeled as f, and 2 edges 

labeled as c. 

Figure 4.26. MDL example 8 - input 

graph_2. 

Figure 4.27. MDL example 8 - overlap. 

 

For the last example, we use as graph_2 the one shown in Figure 4.28. We only change our 

guide edge from a directed edge to an undirected one. Figure 4.29 shows the generated 

compressed graph. There are 2 differences between this compressed graph and the previous 

one. First, the edges labeled as g are undirected edges. Second, the special characteristic for 

some vertices SUB is implemented in a different way. 

 

Currently, we note that those vertices SUB joined by 2 edges labeled as g in the previous 

example, now, they are joined by just 1 undirected edge labeled as g. Since the guide edge 

is undirected we only need 1 edge for representing they are overlapped substructures with a 

common vertex and this vertex is the source and destination of an internal undirected edge. 

The 4 vertices SUB have self edges, but they are undirected ones this time. Everything else 

remains unchanged. 
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Finally, our compressed graph has 6 vertices: 4 vertices SUB, 1 vertex D, and 1 vertex E; 

and 16 edges: 5 edges OVERLAP, 7 edges labeled as g, 2 edges labeled as f, and 2 edges 

labeled as c. 

 

Figure 4.28. MDL example 9 - input graph_2. Figure 4.29. MDL example 9 - overlap. 

4.3 Limited Overlap 

As we have described in the previous section, the overlap feature plays a preponderant role 

in the Subdue’s substructures discovery system. As consequence, the generated results are 

also conditioned, in a high percentage, to this parameter. However, as we have seen, it is 

implemented to allow overlap among any instances of a substructure or among all the 

instances of a substructure. In this context, we propose a new approach named limited 

overlap. The major feature in this approach is to give the user the means to specify the set 

of vertices where an overlap is allowed. These vertices may represent significant elements 

in the context we work with. 
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In the following subsections we will present the motivation, advantages, new algorithm, 

and an example of the new overlap feature implemented in the Subdue system. 

 

Motivation 

As we have already commented, the current overlap feature in Subdue is implemented in an 

orthodox way: all or nothing. It means that Subdue allows the overlap among all the 

instances sharing at least one vertex or that Subdue does not allow (discard) the overlap 

among instances sharing at least one vertex. 

 

But we argue that a third option is needed, an option where the user has the capability to set 

over which vertices the overlap will be allowed, it is a limited overlap. We visualize 

directly three motivations issues to propose the implementation of the new algorithm that 

will be explained in the following subsections: 

• Search space reduction. 

• Processing time reduction. 

• Specialized overlapping pattern oriented search. 

 

In order to help us to describe the characteristics of the limited overlap we will use the 

graphs show in Figure 4.30 and 4.31 as input graphs in the future examples. Input graph 

PS_1 (Predefined Substructure number 1) has 2 vertices and 1 edge, input graph PS_2 

(Predefined Substructure number 2) has also 2 vertices and 1 edge, and finally graph_3 has 

9 vertices and 8 edges. 
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Figure 4.30. Limited overlap - input 

graphs PS_1 and PS_2. 

Figure 4.31. Limited overlap - input graph_3. 

 

1) Search space reduction. In knowledge discovery systems using a graph-based 

approach, the data mining algorithm uses graphs as a knowledge representation; the search 

space of a graph-based data mining algorithm consists of all the subgraphs that can be 

derived from its input graph. 

 

The substructures discovery process in Subdue begins with the creation of the substructures 

matching a single vertex in the graph (one for each of the different labels in the graph). 

Each iteration through the algorithm selects the best substructures and expands the 

instances of these substructures by one neighboring edge (or an edge and new vertex) in all 

possible ways. 

 

But as part of the process to select the best substructures and then to expand them there 

exists a filter phase. In this phase according to the overlap parameter the instances of a 

substructure are evaluated: if overlap is set to true then overlapped instances are kept, 

otherwise is overlap is set to false then overlapped instances are discarded. 
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For example, suppose we want to search the instances of PS_1 and PS_2 in graph_3. With 

the overlap set to false Subdue discovers 2 instances, one instance for each predefined 

substructure as we can see en Figure 4.32. PS_SUB_X is the nomenclature used by Subdue 

to identify it is an instance of Predefined Substructure “SUB_X”; where SUB_X means it is 

the SUBstructure number X. But, if overlap is set to true, Subdue discovers 4 instances, 2 

instances for each predefined substructure (see Figure 4.33). Finally, suppose the user 

wants to search instances of PS_1 and PS_2 in graph_3 but this time he/she considers that 

vertices A have a higher relevance (for example, a remarkable spatial object in a spatial 

database) so he/she proposed to use a limited overlap, the overlap will be allowed just 

among instances containing vertices A.  We can see that PS_1 has a vertex A, thus this time 

Subdue finds 3 instances, 2 instances of PS_1 and 1 instance of PS_2 as we show in Figure 

4.34. In the figure we can observe that instance 1 and instance 2 share the vertex number 1 

labeled as A. For PS_2 Subdue finds 1 instance since the other one (instance number 4 in 

Figure 4.33) has also the vertex number 6 labeled as C, but the overlap is just allowed 

among vertices A. 
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Figure 4.32. No overlap - SGISO. 

 

Figure 4.33. Overlap - SGISO. 

 

Figure 4.34. Limited overlap PS_1 - SGISO. 

 

We have mentioned that the best discovered substructure by Subdue (by iteration) can be 

used to compress the input graph, which can then be input to another iteration. After several 

iterations, Subdue builds a hierarchical description of the input data where later 

substructures maybe defined in terms of substructures discovered on previous iterations. 

We have also comment that each iteration through the algorithm selects the best 

substructures and expands the instances of these substructures by one neighboring edge (or 

an edge and new vertex) in all possible ways. So the number of instances of the 

substructures defines the search space (by iteration) in the substructure discovery process. 

 

As we can see in our example, by using the limited overlap we obtain a search space 

reduction (with overlap set to true), since the number of instances becoming candidates to 

be expanded is selected according to the allowed values given by the user. 
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2) Processing time reduction. The reduction in the number of instances becoming 

candidates to be expanded results in a search space reduction, and this effect also has a new 

outcome, a processing time reduction. 

 

Allowing overlap slows Subdue considerably since the number of candidate instances to 

expand, to evaluate, to match, to compress, and to discover increase as we have seen. 

However, by the implementation of the limited overlap, the number of instances to be 

processed in these phases decrease resulting also in a processing time reduction in the 

overall substructure discovery process. 

 

3) Specialized overlapping pattern oriented search. We have also commented that the 

limited overlap gives the user the capabilities to define the set of interesting elements over 

which the overlap will be allowed (the elements are represented as vertices in the graph 

according to the proposed model) so the algorithm will discard the elements (overlapped) 

that the user does not considerer significant. 

 

In the example presented in Figure 4.34, the judgment of the user is that vertices A have a 

higher relevance so he/she propose to use a limited overlap, the overlap will be allowed just 

among instances containing vertices A. This consideration is a personal decision of the user 

according to the work context (in many cases with the support of domain expert). For 

instance, a remarkable element may refer to a spatial object in a spatial database or to some 

characteristic defining a particular topic of a dataset. 
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Therefore, the limited overlap gives the user the mechanics to implement a pattern oriented 

search. The user delimits the set of elements that will have a preponderant role in the 

substructure discovery process. But this characteristic gives also a new advantage, the 

patterns evaluation process is simplified since the set of generated results is smaller because 

it is focused over the user requirements. 

 

Algorithm 

As we have described, the limited overlap gives the user the capabilities to define the set of 

elements (vertices in a graph) where overlap among instances is allowed. The process starts 

reading this set of vertices which are integrated to the Subdue’s parameters as a limited 

overlap label list. During the substructure discovery process a filter phase is performed. 

This phase consists to evaluate (and may be to discard), based on the overlap parameter, the 

list of discovered instances. 

 

If the discovered process is composed by several iterations, after each of them, the overlap 

label list may be updated to integrate the new vertices where overlap is also allowed. 

Remember that at the end of each iteration, the best substructure found by Subdue can be 

used to compress the input graph, which can then be input to another iteration of Subdue. 

After several iterations, Subdue builds a hierarchical description of the input data where 

later substructures are defined in terms of substructures discovered on previous iterations. 
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Limited Overlap (instance1, instance2) 
  //Global process 
  while (elementsInstance1 < totalElementsInstance1) AND NOT endProcess 
      //Instance1’s vertex 
      vertex1 = vertex from instance1 
 
      //Instance2’s vertex 
      while(elementsInstance2 < totalElementsInstance2) 
          vertex2 = vertex from instance2 
 
      //Instances overlap 
      if (vertex1 = vertex2){ 
          intancesOverlap = true 
          endProcess = true 
      } 
 
      //Instances overlap, check by limited overlap 
      if (instancesOverlap AND overlapLabelList NOT EMPTY){ 
          if (vertex1 in overlapLabelList) 
              //It is a limited overlap 
              limitedOverlap = true 
          else 
              //Process continues until all vertex1 are validated 
              endProcess = false 
      } 
 
  return instancesOverlap, limitedOverlap 
 
 

In the validation process each vertex belonging to instance1 (vertex1) is validated against 

all vertices belonging to instance2 (vertex2). If vertex1 and vertex2 are the same then the 

instances overlap. If the instances overlap then vertex1 is validated against the list 

containing the set of vertices allowed for overlap (the overlapLabelList). If vertex1 exists in 

overlapLabelList then is a limited overlap. 

 

Example 

To illustrate the functionality of the new algorithm, we will present some examples 

generated using a new version of Subdue implementing the limited overlap feature. The 

input graphs for the examples are those shown in Figure 4.30 and Figure 4.31; the idea is to 
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perform a pattern oriented search by discovering patterns in graph_3 but based on PS_1 

and PS_2 (our predefined patterns). 

 

Subdue implements a pattern oriented search by, initially, finding all instances of PS_1 and 

PS_2 in graph_3. The next step is to compress graph_3 using the found instances of each 

PS_1 and PS_2. Figure 4.35 shows the compressed graph with the overlap parameter set to 

false. As we can see, Subdue found 1 instance of PS_1 (i.e. vertex PS_SUB_1) and 1 

instance of PS_2 (i.e. vertex PS_SUB_2) since overlap among instances is not allowed (see 

Figure 4.32 for details). 

 

Figure 4.35. No overlap - compressed graph. 

 

Finally, the compressed graph becomes the input graph to discover substructures. Figure 

4.36 shows the best 3 substructures found by Subdue according to its substructure 

discovery system (see Section 4.1 for details). Each substructure has 1 instance; it means 

that there exists 1 repetition of each of them in the input graph (in the example we use exact 

graph match, but Subdue allows also inexact graph match). The first one (labeled as “a”), is 

composed by 2 vertices: 1 vertex B, and 1 vertex E; and 1 edge labeled as c. The second 

one (labeled as “b”) is composed by 4 vertices: 1 vertex PS_SUB_1, 1 vertex C, and 2 
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vertices B; and 3 edges labeled as a, b. g. The vertex PS_SUB_1 is itself a substructure 

composed by two vertices: 1 vertex A, and 1 vertex B; and 1 edge labeled as a. We have 

already commented that later substructures may be defined in terms of previous discovered 

substructures, or in term of predefined substructures as in this example. Finally, the third 

one (labeled as “c”) is composed by 4 vertices: 1 vertex PS_SUB_1, 1 vertex PS_SUB_2, 1 

vertex C, and 1 vertex B; and 3 edges: 2 edges labeled as b, and 1 edge labeled as g. Once 

again vertices PS_SUB_1 and PS_SUB_2 are themselves substructures. 

 

a) b) 

 

c) 

Figure 4.36. No overlap - discovered substructures. 
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For the next example we set overlap to true. The generated compressed graph is shown in 

Figure 4.37. Now, Subdue finds 2 instances for each PS_1 and PS_2 (see Figure 4.33 for 

details). 

 

Figure 4.37. Overlap - compressed Graph. 

 

Figure 4.38 shows the best 3 substructures discovered by Subdue. The first and second ones 

(labeled as “a” and “b”) are themselves the predefined substructure PS_SUB_2 and 

PS_SUB_1 respectively with 2 instances each of them. The third one (labeled as “c”) is a 

substructure composed by 2 vertices and 1 edge with 1 instance. 
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a) b) 

 

c) 

Figure 4.38. Overlap - discovered substructures. 

 

Our next example is implemented by using the limited overlap feature. Suppose the user 

wants to perform a specialized overlapping pattern oriented search: he/she only wants to 

allow overlapped instances in vertices representing PS_1. The generated compressed graph 

is shown in Figure 4.39. As result of the restriction for overlapping instances Subdue finds 

2 instances of PS_1 (they share the allowed vertex A) and just 1 instance of PS_2 (since 

they share a not allowed vertex C). The found instances are shown in Figure 4.34. 
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Figure 4.39. Limited overlap PS_1 - compressed graph. 

 

Figure 4.40 shows the best 3 substructures discovered by Subdue from this graph using the 

limited overlap. In the figure we can see that Subdue reports as the best substructure 

PS_SUB_1 with 2 instances (labeled as “a”). This is consequence of the integration of the 

compressed graph since it has 2 vertices PS_SUB_1. The second reported substructure 

(labeled ad “b”) is composed by 2 vertices: 1 vertex PS_SUB_1, and 1 vertex E; and 1 edge 

labeled as c. The last one (labeled as “c”) is composed also by two vertices PS_SUB_1; and 

1 edge labeled as PS_OVERLAP_1. 
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a) b) 

 

c) 

Figure 4.40. Limited overlap - discovered substructures. 

4.4 Conclusion 

In this chapter we have described the characteristics and functionality of our graph-based 

data mining tool, the Subdue system. We introduced a new algorithm named limited 

overlap. We presented some examples showing the functionally of the new algorithm using 
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an artificial dataset. Examples using data from the real world we will presented in chapter 

6. These examples are developed by using two test contexts: a Puebla downtown 

population census from the year of 1777 and a Popocatépetl volcano database. 

 

In the next chapter we introduce a prototype system implementing the proposed model for 

representing spatial data, non-spatial data and spatial relations among the spatial objects as 

a whole dataset using a graph-based representation. 
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Chapter 5 

PROTOTYPE 

A natural skill of people is the interpretation of visual data; therefore, this is a fact we must 

consider to get advantage during the data mining process. In [29] the authors say that a 

future direction for the KDD research field is the design and use of user interfaces: “one can 

create a query language which may be used by non-database specialists in their work. Such 

a query interface can be supported by a Graphical User Interface (GUI) which can make the 

process of query creation much easier”. 

 

The challenge consists in improving the capabilities for displaying the generated results 

(i.e. from a query or the data mining process) in a graphical mode. The idea is that if we are 

able to analyze the results in such a graphical way, we may give feedback to the user so that 

he can refine the analysis process and/or guide the direction for further study. This is the 

principle in relevance feedback (do an initial query, get feedback from the user, and then to 

incorporate information obtained from prior relevance judgments to redefine the query). 

 

We developed a prototype system that provides a graphical user interface to perform the 

data mining phase (and data analysis) using our proposed graph-based representation for 
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spatial and non-spatial data. The analysis is implemented by using spatial and non-spatial 

queries and the data mining process is performed with the Subdue system, a graph-based 

data mining tool. In our research we used two test contexts to evaluate our proposal. The 

first one is a database storing data from the Popocatépetl volcano (see chapter 3.4 for 

details). The other one is a database containing data related to a population census from the 

year of 1777 in Puebla downtown as described in section 5.1. 

5.1 Population Census from the year of 1777 in Puebla 

downtown 

As our test context we have worked in the project “Habitar y vivir. Análisis del espacio 

habitacional de la ciudad de Puebla 1690-1890”. This is a project directed by Dra. Rosalva 

Loreto López, a researcher in the Urban History domain. Our objective is to make use of 

data mining techniques for finding interesting relations and patterns between the population 

and habitation spaces in Puebla downtown by that time period. We argue that using our 

model we could find patterns involving non-spatial data (i.e. characteristics of people living 

in the zone), spatial data (i.e. distribution of the space), and relations between them (i.e. 

characteristics of houses based on people social status and/or number of people living in a 

house) in a single pattern. 

 

Figure 5.1 shows the spatial structure we implemented for representing the spatial concepts 

in the census. The structure has 5 spatial aggregation levels. Parish (spatial concept for 

representing a physical area) is the upper spatial component. A Parish is defined by one or 
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more Neighborhood. A Neighborhood can involve several Block. A Block is defined by 

four Street and finally a Street gives the location of a House, where a family lives. 
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Figure 5.1. Representation of spatial concepts in the census from the year of 1777. 

 

After defining the spatial concepts involved in our domain, we need a graph-based data 

representation model to describe our data as a graph. We must remember that this is a vital 

step since we work with a graph-based algorithm for the data mining step. Currently, we 

have implemented two graph-based data representations to model the non-spatial data. 

 

These representations have three main components: (1) HOUSE involves the attributes 

describing a House. It contains one or more Uh (atomic physical area where a family lives). 

One or more families might inhabit in a House, but each family lives in an Uh. (2) UH 

involves the attributes describing the living space. (3) MEMBER involves the attributes 

describing a member of a family. 
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Figure 5.2 shows the first structure created for the population census. A description of this 

structure is as follows: a Parish contains one or more Neighborhood. A Neighborhood 

contains one or more Block or Location (spatial concept for identifying with precision a 

physical area -i.e. north of-). Block and Location contain one or more Street. A Street 

contains one or more HOUSE. A HOUSE has two attributes (NCasa -Id assigned to the 

House- and NHabCasa -number of Uh in a House-). A HOUSE contains one or more UH. 

An UH has several attributes describing it (Uh -Id assigned to the Uh-, Etnicidad -

predominant ethnic group among the members of a family-, TFamilia -type of family, i.e. 

family with children-, TUh -type of Uh- and NMiembrosFamilia -number of members 

integrating a family-). An UH contains one or more MEMBER. Finally a MEMBER has 

several attributes describing it (JFamilia –family chief-, TitPersona -title of the member, 

i.e. don, doña-, Nombre -first name-, Apellido -last name-, Sexo -sex-, EdoCivil -marital 

status-, Parentesco -social relationship with respect to the family chief-, GpoEtnico -ethnic 

group- and Edad -age-). 
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Figure 5.2. Model A to represent non-spatial data in the census from the year of 1777. 

 

The second structure is presented in Figure 5.3. This structure can be read as follows: A 

HOUSE is the main piece in the structure. A HOUSE has several attributes describing it 

(Parish, Neighborhood, Block, Location, Street, NCasa and NHabCasa). A HOUSE 

contains one or more UH. An UH has several attributes describing it (Uh, TUh, Etnicidad, 

TFamilia, NMiembrosFamilia). In a UH lives (contains) one or more MEMBER, and 

finally, a MEMBER has several attributes describing it (Jfamilia, TitPersona, Nombre, 

Apellido, Sexo, EdoCivil, Parentesco, GpoEtnico and Edad). 
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Figure 5.3. Model B to represent non-spatial data in the census from the year of 1777. 

5.2 Modules 

This section presents a prototype system developed for testing our graph-based data 

representation model for spatial data mining as proposed. The prototype is implemented in 

the Java programming language. We use the Oracle DBMS version 9i for storing and 

processing our data. Oracle has a module to manage spatial data named Oracle Spatial; we 

take advantage of the spatial operators, geometry functions and spatial aggregate functions 

implemented in the module for either identifying the objects in a region over a spatial layer 

or obtaining/validating the spatial relations between two spatial objects. The prototype is 

divided in seven modules described in the following subsections. 
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Data Preparation and Cleaning. The data preparation and cleaning phase is a step of the 

Knowledge Discovery in Databases (KDD) process. Our module helps the user to validate 

the data and creates the structures necessary to store it in the database. In this process, the 

data mining expert and the user must work together to identify the activities to be 

performed that are related to the process (i.e. to identify noise and remove it, treat missing 

values, etc). Once these activities have been defined, the process is transparent to the user 

when adding more data (belonging to the same database schema for the domain). 

  

Query. We have implemented the interface shown in Figure 5.4 to allow the user creating 

non-spatial queries. The goal is to allow the user, making use of spatial and non-spatial 

attributes, to query the database and build graphs from the obtained results. 

 

The Query panel allows the user for querying the database by using an SQL-like approach. 

The queries are created in real time and then submitted to the database for answering the 

user request. The results are presented to the user in two ways. The first uses a relational 

approach and the second is represented over a map. 
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Figure 5.4. The query panel. 

 

The interface is divided in 2 sections, the Control and the Results sections. The Control 

section is divided in 4 subsections: Select, Where, OrderBy and GroupBy. The Results 

section is divided in 2 subsections: Query visualization and Generated results. 

 

In the Control section the user creates the query. The query is created by specifying the 5 

most usual clauses in a SQL statement: Select–From-Where-OrderBy-GroupBy. The first 

two elements are mandatory, while the last three are optional. 
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The Select subsection presents the twenty-two fields that compose the core of the database. 

Twenty one of these fields have four options implementing query functionalities as follows: 

option1 – attribute name – option2 – options3 – option4. The first option is used to indicate 

if the field will be included in the query. The second option contains the keywords used to 

implement, currently, five grouping functions: “count", "count(distinct())", "distinct", 

"max" and "min". These keywords are used to group the data by the field(s) selected in the 

GroupBy subsection. Options three and four are used to indicate if the descriptive attributes 

associated to the field will be included in the query. If the first option is not selected then 

all the other options are ignored. Additionally, the Select subsection has an item containing 

the name of the schema (i.e. 1777 census) to create the “from” clause of the query.  

 

The Where subsection is used to indicate the set of conditions, by field, for restricting the 

rows to be selected (the dataset returned by the query). A condition specifies a combination 

of one or more expressions composed of attribute names, attribute values, and logical 

operators. These conditions are entered manually by the user, so knowledge about the 

domain is required. 

 

The OrderBy subsection allows the user to indicate if he/she wants to sort the rows returned 

by the query and which field(s) will be used to perform the operation. We can sort the rows 

returned using the twenty-two fields composing the database and we can also implement 

combinations of these elements (i.e. sorting by the Name and Sex fields). 

 

The GroupBy subsection was implemented to allow the user to group the selected rows 

based on the value(s) of each row and return a single row with a summary of the 
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information for each group. We can group the rows using twenty-one of the twenty-two 

fields of the database and we can also implement combinations of these elements (i.e. 

grouping by the Parish and Sex fields). The grouping aggregation function (i.e. count or 

sum) is chosen in the Select subsection. As we already mentioned, we have implemented 

five grouping functions. 

 

Our prototype system creates queries by selecting the different fields and options contained 

in the four previous sections. This query is created in real time, displayed in the Query 

visualization area and then submitted to the DBMS for processing. The obtained result is 

displayed in the Generated results area; it is presented by using a relational approach (rows 

and columns). 

 

SQL. Using this interface the user has the freedom to create a query by typing it directly (in 

manual form). The principle is the same as we described in the Query panel, we want to 

create queries and with the results of the queries we create graphs (based in our model). 

These graphs will be the data source for our data mining algorithm so that we can find 

patterns that allow us to understand and describe our data. 

 

In the Query panel the user creates the query by using a graphical interface but if he/she 

wants to modify it, it is not possible. Each time the user creates a query in the Query panel, 

the created query is copied to the Query visualization area in the SQL panel so if the user 

wants to enhance or modify the query he/she is able to do it. The generated results are 

presented to the user in the Generated results area. Both interfaces (Query and SQL panels) 

provide the user with the capability to send the generated results to a text file or a printer. 
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Map. Other way to create graphs in the prototype is using the Map panel. In this case the 

interface displays in a graphical way the spatial layers stored in the database (see Figure 

5.5). 

 

Figure 5.5. The map panel. 

 

By using the interface, the user can delimit the set of spatial and non-spatial data that will 

be used for creating the graphs. Some times the user wants to analyze only some regions in 

a spatial layer so it is not necessary to include all the data in the graph. Additionally, we 

have to take into account that if we have a huge database we will build huge graphs and this 

feature has a direct impact over the data mining algorithm, so this is an important issue we 
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have to face. A solution for facing the problem of creating huge graphs is delimiting the set 

of elements to be included in it by using selection windows as we mentioned in chapter 3. 

 

A second method for delimiting the set of elements to be considered while creating a graph 

is by using the results of the non-spatial queries created and processed in the Query and 

SQL panels. This is implemented by a process that identifies the spatial objects involved in 

the results generated by a non-spatial query (i.e. a query computing the number of people, 

grouped by Sex, living in each Parish in the census from the year of 1777 so we can select 

and show the Blocks or the Streets belonging to each Parish over the map). 

 

The interface is divided in four sections: Visualization area, Layers in database, 

Operations control and Map control. The Layers in database section displays the name of 

the spatial layers stored in the database. The component is also used for selecting and 

identifying the spatial layers to work with.  

 

We also include information about the spatial relations to be considered in the graph. The 

Operations control section includes the operations (Topological, Distance and Direction) 

implemented to validate the spatial relations among spatial objects. In the case of the 

topological relations we have implemented the validations supported by the Oracle Spatial 

module. 

 

The Map control section has five buttons implementing the Zoom in, Zoom out, Show all, 

Reset all and Save map operations. The Visualization area works in two operational modes: 

Query mode for creating selection windows and Zoom mode for implementing the Zoom in 
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and Zoom out operations. The option “X Layer” is used to indicate if the validation of 

spatial relations among spatial objects will just be among objects belonging to different 

spatial layers (i.e. objects belonging to the Parish and Neighborhood layers) or among all 

objects belonging to all layers. The last two options are used to control the characteristics 

of the Selection window: a Selection window tool can be a Rectangle or a Circle, and we 

can specify if we want to select just the elements inside the Selection window or the 

elements inside and touching its border. 

 

Once the user has selected the working area, the following steps are identifying the objects 

inside the area and validating the spatial relation(s) among them. We have implemented the 

validation of topological, distance and direction relations; only the objects meeting the 

relation(s) chosen by the user will be candidates to become objects in the graph. 

 

Spatial Graph. The next task is to create the graph. First, the user must select the non-

spatial attribute(s) describing the spatial objects in the graph (see Figure 5.6). Remember 

that the spatial objects and spatial relations among the objects that will be included in the 

graph were selected in the Map panel. 
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Figure 5.6. The spatial graph panel. 

 

By using the interface, the user can select the non-spatial attributes of each spatial layer that 

he wants to work with. For example, if the user works with the spatial layers A (with five 

attributes) and B (with three attributes), he/she can select attributes one and two from layer 

A and attributes two and three from layer B. Currently, the user has to select the attribute(s) 

that will be related to the spatial objects, but as we have mentioned, we are working to 

enhance this functionality of the Query and SQL panels so that we can create non-spatial 

queries and then use the results for selecting spatial objects and then creating a graph. 
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From the Graph characteristics section the user defines the format, model and output 

device characteristics for the graph. The graph generated by the system can be created 

following the Subdue or the Graphviz [19] layouts. In the first case the graph is created for 

feeding the Subdue system, and in the second case it is created for visualization purposes. 

Currently, we have implemented five graph-based representation models in our prototype. 

Each model expresses a representation proposal for creating graphs involving the three 

basic elements found in a spatial database (spatial, non-spatial data, and spatial relations 

among spatial objects). The resulting graph can be visualized on the screen or stored in a 

text file. The last option was implemented in order to provide the Subdue and Graphviz 

systems with their corresponding input files. 

 

We can see at the right side in the Figure 5.6 an example of a created graph using the 

Subdue layout. This sample graph was generated from 2 spatial layers (i.e. chiglesia and 

chpuebla). From each of them the user selected one or more attributes that were related to 

the spatial objects. Figure 5.7 presents a fragment of the same graph but this time it is 

drawn by using the Graphviz system.  
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Figure 5.7. Graph representation of processed data. 

 

Non-Spatial Graph. Focusing in the “Habitar y vivir. Análisis del espacio habitacional de 

la ciudad de Puebla 1690-1890” project we have implemented an interface for allowing the 

user the creation of graphs based in the two structures developed for representing the 

population census from the year of 1777. These graphs are created using only non-spatial 

data. Our objective for implementing graphs with this characteristic is to have metrics that 

allow us to compare and to evaluate the results generated by the data mining algorithm 

when we use graphs containing spatial data, non-spatial data, and spatial relations at the 

same time against graphs containing only non-spatial data. 

 

The interface implemented is shown in Figure 5.8. The user selects the non-spatial 

attributes and defines the settings that will be used for creating a query (as in the spatial 

graph). The result obtained from the query is used for creating the non-spatial graph. 
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Figure 5.8. The non-spatial graph panel. 

 

Subdue. The Subdue panel contains the interface developed for calling the Subdue system 

(see Figure 5.9). In order to run Subdue, the user must select the corresponding text file (a 

file containing a graph) and define the parameters that will guide the Subdue’s substructure 

discovery system for finding substructures. 
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Figure 5.9. The Subdue panel. 

 

Figure 5.10 shows an example of a Subdue’s standard output (only for one substructure) for 

displaying the discovered substructures (i.e. patterns) from the input data. Since our 

definition of instances and substructures (see chapter 4.1 for details) the Subdue’s output is 

also a graph, in our example, the graph can be read as follows: 

• Substructure value = 1.01706. Represents the MDL value of the substructure. 

• Pos instances = 3865. This value tells us how many instances of the substructure 

exist in the input graph. 

• Graph (2v, 1e). Number of vertices (“v”) and edges (in our example directed edges 

“d”) compose the graph. 
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• “v 1 SUB_4”. First vertex labeled as SUB_4 of the graph. 

• “v 2 X”. Second vertex labeled as X of the graph. 

• “d 1 2 ETNICIDAD”. Directed edge from vertex 1 to vertex 2 labeled as 

ETNICIDAD. 

 Substructure: value = 1.01706, 
pos instances = 3865, 
neg instances = 0 
Graph(2v,1e): 
v 1 SUB_4 
v 2 X 
d 1 2 ETNICIDAD 

 

Figure 5.10. Example of Subdue’s standard output. 

 

As we have already commented, Subdue is a system that finds substructures in a 

hierarchical way, that is, a substructure found in a previous iteration can appear in a new 

iteration. When this happens, those substructures are represented by a vertex labeled as 

SUB_x, which represents the best substructure discovered at iteration “x”. 

 

In our example (Figure 5.10), SUB_4 is itself a substructure defined by 2 vertices and 1 

edge where its first vertex is labeled as SUB_2. This means that the definition of SUB_4 is 

composed by the definition of SUB_2. Substructure SUB_2 is defined by 2 vertices and 1 

edge where its first vertex is labeled as SUB_1. Again, this means that the definition of 

SUB_2 is composed by the definition of the previously discovered substructure SUB_1. 

Finally, SUB_1 is a substructure defined by 2 vertices and 1 edge. 

 

As we can see, the lecture and interpretation of the substructures discovered by Subdue 

may be a complicated task. We have implemented a parsing function for reading a text file 
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containing the results generated by Subdue, so we can create the necessary data structures 

for presenting to the user the same results but using an easier way to read it as we show in 

Figure 5.11 (the figure presents the example described in Figure 5.10). This layout is 

created by using the Graphviz system and is saved as a JPEG image file but we can save it 

in any output format supported by Graphviz. The goal is to improve the way the user can 

read and interpret the results generated by Subdue. 

 

Figure 5.11. Layout for reading the Subdue’s discovered substructures. 

5.3 Conclusions 

As test context we have designed and built a spatial database to store both a population 

census from the year of 1777 in Puebla downtown and a map representing the blocks in the 

zone. This data are part of a project directed by Dra. Rosalva Loreto López, a researcher in 

the urban history domain. 
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We have developed a prototype system implementing our model to represent together 

spatial data, non-spatial data and the spatial relations among the spatial objects. The 

prototype allows the user to select the spatial layers to work with, to create spatial and non-

spatial queries that will be used to select the spatial objects that will be included in the 

graph. For each spatial layer the user work with, he/she has the capability to select the 

attributes that will be related to the spatial objects in the graph. 

 

We have also implemented a visualization tool which helps us to display in a graphical way 

(by using the Graphviz system) the hierarchical discovered substructures by Subdue. 

 

In the next chapter we present four use-cases showing the applicability of our methodology 

for modeling and mining spatial data mining using a graph-based representation. 
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Chapter 6 

RESULTS 

This chapter presents four use-cases of our methodology for modeling and mining spatial 

data using the proposed graph-based representations. For this purpose, we used two spatial 

databases as our test contexts. The first database contains data related to a population 

census from the year of 1777 in Puebla downtown and the second one is a database storing 

data from the Popocatépetl volcano. 

 

The use-cases described were implemented based on the following premises: evaluating the 

graph-based proposal for modeling and mining spatial data, evaluating the limited overlap 

feature, and evaluating the discovered knowledge with the support of a domain expert. 

Therefore, the three use-cases presented in this chapter were implemented based on the 

following methodology: 

1. Selection of the spatial layers to work with. 

2. Selection of the spatial relations that will be validated among the spatial objects. 

3. Selection of the non-spatial attributes that will be related to the spatial objects in the 

graph. 
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4. Mining the graph using the no overlap, standard overlap and limited overlap 

features. 

5. Evaluation of discovered patterns. 

6.1 Population census from the year of 1777 in Puebla downtown 

As we have already mentioned, our first test domain is a spatial database containing data of 

a population census from the year of 1777 (see chapter 5 for details). Figure 6.1 shows a 

fragment of the “chpuebla”, “chiglesia” and “chrio” spatial layers used in the use-cases. 

 

Figure 6.1. Population census from the year of 1777 in Puebla downtown. 

 

The chpuebla spatial layer (shown in white color) represents blocks in Puebla downtown; 

this layer is related to a population census from the year of 1777 as non-spatial data. The 
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chiglesia layer (shown in red color) contains representative churches for each parish in the 

zone. The chrio layer (shown in green color) represents a river crossing Puebla downtown. 

 

It is important to remark that a parish is a spatial object grouping several blocks in the zone. 

Each parish has a church as its agglomerative element (people used to live around a 

church). Figure 6.2 shows the 6th parishes (each shown in a different color) and their 

representative church: 

1. El Sagrario. 

2. San José. 

3. San Marcos. 

4. San Sebastián. 

5. Santa Cruz. 

6. Santo Angel. 

 

Figure 6.2. Parishes in Puebla downtown from the 1777 year. 
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All use-cases presented in this section were developed using all graph-based models 

(currently five models). However, the description of the generated results corresponds only 

to model #2 (named single replication of relations types, complete information). In section 

6.2 we present a comparison among the generated results by each proposed model using a 

Popocatépetl volcano database. Some of the discovered patterns were used by the domain 

expert to validate facts already known (i.e. distribution of the population in the census) and 

other allows him to know unknown relationships among spatial objects and non-spatial 

attributes in the census (i.e. common characteristics of people living along the two borders 

of the river crossing Puebla downtown). 

6.1.1 Use-case:  El Sagrario 

Suppose we want to know what people have in common in the spaces within a radius of 

150 meters from the representative church in parish #1 (El Sagrario). Our experiment will 

be focused to find regularities related to the following issues: 

• Number of habitation spaces in a house. 

• Members of a family. 

• Type of family. 

• Ethnic group of each family member. 

 

The guideline to select a radius of 150 meters from the church is that this value allows us to 

include in our sample dataset at least one block in all directions around the church as we 

show in Figure 6.3. Thus, by using the prototype system we selected the chpuebla and 
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chiglesia spatial layers. Once we selected the spatial layers to work with, the following 

steps are to select the spatial relation(s) to be validated among the spatial objects and the 

non-spatial attributes that will be related to the spatial objects in the graph. The selected 

parameters were the following: 

• Spatial layers: chpuebla and chiglesia. 

• Pivot: representative church in parish #1. 

• Spatial relation: distance. 

o Value: 150 meters within a radius from the representative church to the 

blocks. 

• Spatial graph-based model: model #2. 

 

The generated graph was composed of 24,167 vertices, and 24,166 edges according to the 

proposed graph-based model structure. 

 

Figure 6.3. Blocks 150m. from representative church, parish “El Sagrario”. 
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This graph was used as input data to the Subdue system. For the experiment we used the 

following Subdue’s parameters: 

• Predefined substructure: yes (we used “UH CONTAIN MEMBER” since these 

elements are grouping components in our graph-based model for representing non-

spatial data in the census). See chapter 5.1 for details. 

• Overlap: yes. 

• Limited overlap: no/yes (first, we used standard overlap; next, we used limited 

overlap). 

 

Once Subdue completed the mining process, the generated results (patterns) were evaluated 

by the domain expert. Figure 6.4 shows three examples the discovered patterns using the 

standard overlap option. According to the lecture of the results, the expert’s opinions were 

based on the following issues: the patterns are based on the population distribution schema 

in the census from the year of 1777 (large population inhabits in parish #1). 65% of the 

population, in this area, did not given its ethnic group, this can be interpreted in 

demography history domain, as a possible dissolution of the racial element for grouping 

people (creation of groups or classes) in benefits of alternative grouping parameters such as 

salary, family networks (how they lived and whom they lived with), consumption levels, 

type of house. 16% said to be “Spanish”. People lived based on the model “Jefe con 

Familiares y Agregados”. 
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a) b) 

 

c) 

Figure 6.4. Examples of discovered patterns by using standard overlap in use-case “El Sagrario” (1). 

 

The next step in our experiment was to evaluate our limited overlap proposal in Subdue. 

Thus, for the limited overlap, we proposed to allow overlap only in vertices representing 

the ethnic group of the family members. These vertices are used to guide the pattern-

oriented search. 

 

The discovered patterns by using the standard and limited overlap features, for this 

example, were slightly different. Figure 6.5 presents three examples of discovered patterns 

using the limited overlap. For example, both cases reported as the first substructure a 

pattern telling us “Undefined” is the predominant ethnic group in the dataset. The second 

discovered substructure, for both cases, tells us that “Spanish” is the next predominant 
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ethnic group. In the case of the third substructure, using standard overlap Subdue reported a 

pattern related to the number of habitation spaces in a house, but through limited overlap 

Subdue found a relationship among the “Undefined” ethnic group and the family type “Jefe 

con Familiares y Agregados”. An interpretation of these results is that limited overlap 

reports in all discovered substructures a vertex representing ethnic group because we 

oriented the search over this type of vertices when we specified that vertices representing 

ethnic group were allowed for overlap. 

  

a) b) 

 

c) 

Figure 6.5. Examples of discovered patterns by using limited overlap in use-case “El Sagrario” (1). 

 

Since our intention is to prove our objective of a processing time reduction by using the 

limited overlap feature, Figure 6.6 presents the processing time comparison chart for the 
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experiment. In the figure, time by using standard overlap is shown in pink color (193,426 

seconds). On the other hand, processing time by using limited overlap is shown in yellow 

color (36,042 seconds). As we can see, we obtained a time reduction gain about 81.37% 

using limited overlap. 

 

Figure 6.6. Processing time standard vs. limited overlap: use-case “El Sagrario” (1). 

 

Now, we are going to modify slightly our study zone to show the way we can use two or 

more spatial relations in the experiments. For instance, to use two spatial relations 

belonging to the same type (i.e. topological), or to different types (i.e. topological and 

distance). Suppose we want to search for regularities about people and habitation spaces in 

a radius of 150 meters from the same representative church in parish #1, but this time, we 

only want to evaluate blocks located on the North side as shown in Figure 6.7. Our 

experiment will be focused over the same discovery issues as the previous test. 

 

By using the prototype system we selected the following parameters: 

• Spatial layers: chpuebla and chiglesia. 

• Pivot: representative church in parish #1. 

193,426
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• Spatial relation: distance. 

o Value: 150 meters. 

• Spatial relation: direction 

o Value: North. 

• Spatial graph-based model: model #2. 

 

The generated graph was composed of 12,021 vertices, and 12,026 edges according to the 

proposed graph-based model structure. 

 

Figure 6.7. Blocks 150m. North side from representative church, parish “El Sagrario”. 

 

Such as the previous example, the graph was used as input to Subdue. For the experiment 

we selected the following Subdue’s parameters: 



 124

• Predefined substructure: yes (we used “UH CONTAIN MEMBER” since these 

elements are grouping components in our graph-based model for representing non-

spatial data in the census). See chapter 5.1 for details. 

• Overlap: yes. 

• Limited overlap: no/yes (first, we used standard overlap; next, we used limited 

overlap). 

 

Once Subdue completed the mining phase, the generated results were evaluated by the 

domain expert. The expert found the following facts: the predominant ethnic group in the 

area remains as “Undefined” because of the proximity to the parish center and the 

continuous racial and social interchange from the North side. As consequence, they share 

the same family type structure. The “Spanish” population is the most important (15%) and 

the next one is “Mestizos” (7.13%). The family nucleus which includes “other people living 

with” (added people) employs “Mestizos” as subordinated workers (i.e. waiters and 

salesmen). It is important to remark that they do not employ “Indígenas” (maybe because 

they do not speak the Spanish language and their limited cultural level). 

 

This is the domain expert evaluation but we also needed to evaluate how the new limited 

overlap feature worked. Therefore, the same experiment was performed using the standard 

and then the limited overlap. For limited overlap, the vertex allowed for overlap was the 

same as the previous test. The discovered patterns by using standard and limited overlap 

were very similar to those obtained in the first test. In fact, the first and second reported 

substructures were the same although the third one was different (see Figure 6.8). By using 
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standard overlap Subdue reports “Mestizos” as the third predominant ethnic group. Limited 

overlap reports a relationship among the “Undefined” ethnic group and the family type 

“Jefe con Familiares y Agregados”. This last pattern was the same one as reported in the 

previous test. 

  

a) b) 

Figure 6.8. Examples of discovered patterns in the use-case “El Sagrario” (2) 

 

Figure 6.9 shows the processing time comparison chart by using the standard and limited 

overlap features. In this figure, the time taken when using the standard overlap feature is 

shown in pink color (30,532 seconds) while the processing time of using limited overlap is 

shown in yellow color (2,471). It is important to note that we obtained a time reduction 

gain about 92% in our experiment. 
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Figure 6.9. Processing time standard vs. limited overlap: use-case “El Sagrario” (2). 

6.1.2 Use-case: People living along the borders of the river crossing 

Puebla downtown 

As we mentioned at the beginning of this chapter, a river crosses Puebla downtown. 

Suppose that we are interested about knowing characteristics about family types and ethnic 

groups of people living along the borders of the river. 

 

For this, we defined as our study area all blocks located at most 50 meters from the borders 

of the river as shown in Figure 6.10. We selected this distance since it allows us to select, 

both side, at least one block along the entire border of the river. We used the following 

parameters in our use-case: 

• Spatial layer: chpuebla and chrio. 

• Pivot: the river. 

• Spatial relation: distance. 

o Value: 50 meters. 

30,532

2,471

0 10000 20000 30000 40000

Seconds

1 Limited Overlap 
Overlap



 127

• Spatial graph-based model: 2. 

 

The generated graph was composed of 16,597 vertices, and 16,596 edges according to the 

proposed graph-based model structure. 

 

Figure 6.10. Blocks 50m. from river crossing Puebla downtown. 

 

The created graph was used to feed the Subdue system. For this test we selected the 

following Subdue’s parameters: 

• Predefined substructure: yes (we used “UH CONTAIN MEMBER” since these 

elements are grouping components in our graph-based model for representing non-

spatial data in the census). See chapter 5.1 for details. 

• Overlap: yes. 
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• Limited overlap: no/yes (first, we used standard overlap; next, we used limited 

overlap). 

 

Figure 6.11 shows two examples of discovered substructures in this use-case. Our domain 

expert evaluated the generated results focusing in the following issues: there is a 

modification for the population agglomerative criterion on the East side (“San Francisco”, 

“El Alto Xonaca”, and “Los Remedios” neighborhoods) and on the West side (“San José”, 

“El Sagrario” and “El Carmen” neighborhoods) of the river. The “Mestizos” is the 

predominant ethnic group (24.5%); the “Spanish” is the next one (almost has the same 

percentage). This pattern may outline that the “Mestizos” ethnic group played the role of 

intermediator between the “Spanish” and “Undefined” groups on the West side, and 

between the “Spanish” and “Indígenas” on the East side. 

  

a) b) 

Figure 6.11. Examples of discovered patterns in use-case “people around the river crossing Puebla 

downtown” 
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We needed to compare the previous results (using overlap) with the results using limited 

overlap, then, we used the same parameters as the previous test. We proposed to allow 

overlap only in vertices representing the ethnic group. 

 

It is important to mention that, if our overlap label list has many elements, it could be more 

useful (concerning to processing time) to use standard overlap because of the overhead that 

results from the validation process. Remember that when we use the limited overlap 

feature, each time that an overlap among instances of a substructure is detected, the overlap 

is evaluated in order to know if it is allowed or not. 

 

After comparing the results of using overlap and limited overlap, we found that the 

generated results were the same but not in processing time. Figure 6.12 shows the time 

comparison chart, standard overlap is shown in pink color (15,572 seconds) and limited 

overlap in yellow color (14,021 seconds). 

 

Figure 6.12. Processing time standard vs. limited overlap: use-case “people around the river crossing Puebla 

downtown”. 
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The two use-cases presented in this section show the functionality of our proposal for 

modeling and mining spatial data using a graph-based representation. The discovered 

patterns in the population census from the year of 1777 were analyzed by a domain expert. 

Some of these patterns allow the user to validate facts already known. For instance, the 

predominant ethnic groups classified by parish, and population distribution according to the 

social status in the zone. But other patterns allow him to know implications, previously 

unknown, among spatial concepts and non-spatial attributes in the census. For instance, 

racial and economic interchange among people in the parishes, which are the common 

characteristics of population living along the borders of the river crossing downtown (on 

the West and East sides), social structure according to the ethnic group, common 

regularities among the family type and habitation space. Processing time comparison 

among standard and limited overlap features was other topic evaluated in these use-cases. 

We presented time processing comparison charts showing the time reduction gain obtained 

by using the new approach. We also show that by using limited overlap we can orient the 

search over substructures (patterns) containing elements that in our domain might represent 

relevant issues. For instance, in that time period the ethnic group represented a significant 

element to know characteristics about a family and their habitation space. Next section 

presents a use-case using a Popocatépetl volcano database. The objective in this illustrative 

use-case is to evaluate/compare the generated results by each proposed graph-based model. 
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6.2 Popocatépetl volcano 

In chapter 4.3 we presented a preliminary use-case showing the applicability of our 

methodology using a Popocatépetl volcano database. This section presents an extended use-

case employing the same database. First, we describe the study area, next the used method, 

and finally the generated results from the data mining phase. 

 

As already mentioned, the database contains data related to several issues such as 

settlements, rivers, and evacuation roads in the zone. Figure 6.13 shows a fragment of the 

Popocatépetl volcano area. For the experiments we will use three spatial layers: roads 

(representing the roads in the area), rivers (representing the rivers in the area), and 

settlements (representing population areas). To illustrate the use-case we have delimited the 

study zone as shown in the figure. 

 

Figure 6.13. Popocatépetl volcano. 
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The experiments will focus in identifying relationships and characteristics shared among 

settlements, roads and rivers in the study zone. Suppose we want to know characteristics 

shared by these elements that can help us to implement/evaluate evacuation plans in case of 

a volcanic contingence”. For example, characteristics of roads starting in or crossing a 

settlement, material used to build those roads and their current status (i.e. paved, unpaved), 

characteristics of the roads and rivers meeting a relationship (i.e. they cross, touch) in the 

zone, rivers near to settlements that in case of huge pluvial concentration might represent a 

potential risk. 

6.2.2. Use-case: Popocatépetl 

To illustrate the capabilities of our model we will use as our study zone that shown in 

Figure 6.14 (Southwest side of the volcano crater). The experiment is focused on 

discovering characteristics among roads, rivers, and settlements in the zone. However, the 

presentation of generated results is structured in the following way: discovered patterns 

among roads and rivers, roads and settlements, and rivers and settlements. The idea to 

choose this structure is only to show the different patterns that we can find among these 

elements. 
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Figure 6.14. Popocatépetl volcano: study zone.  

 

Therefore, we used our prototype system to select the river, settlement, and road spatial 

layers. The next step is to select the spatial relationships to be validated among the spatial 

objects under consideration. To develop our test, we take advantage of a special feature 

implemented in the Spatial Oracle module (our SDBMS system): Oracle has the capability 

to examine two geometry objects to determine their topological spatial relationship. 

Moreover, it is possible to indicate that the same SDBMS determines and returns the 

topological relationship that best matches the geometries. 

 

So, to create our dataset, we first select the spatial layers to work with and then we use that 

feature to evaluate the relationships among the spatial objects. The experiments are 

implemented based on the following parameters: 

• Spatial layers: rivers, settlements and roads. 
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• Spatial relation: topological relations supported by Oracle Spatial. 

• Spatial graph-based model: all models. 

 

The experiment was performed using the five proposed graph-based models. The objective 

was to evaluate the results generated by each of them. Additionally, we ran the test using 

no overlap, standard overlap and limited overlap. In the following figures we show the 

generated results in the experiment. In the figures the generated result by using no overlap 

is labeled as “a)”, via standard overlap is labeled as “b)”, and through limited overlap is 

labeled as “c)”. In the case of limited overlap, we stated that Subdue allows overlap only 

for vertices representing roads in the zone since this element represents a primary item in 

our study (evaluation and implementation of population evacuation plans). 

 

Since our intention with this experiment is to compare the results using the proposed graph-

based models, we present as the most significant discovered pattern (by using no overlap, 

standard overlap and limited overlap), the one covering the following restrictions: 

• Complete pattern. A pattern reporting at least two spatial objects (i.e. road and 

river), the spatial relation among them (i.e. touch), and some non-spatial attribute(s) 

(i.e. “road category unpaved” and “river category draining”). 

• Maximum number of reported instances. A pattern with the highest score of 

reported instances of a substructure. 

 

The following subsections present the generated results using model 1 to 5. By each model 

we describe the discovered patterns according to the proposed structure: road and river, 
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road and settlement, and finally river and settlement. At the end of the section 6.2.2, we 

present comparison tables and conclusions of the generated results by each model.   

6.2.2.1 Model #1 - base model 

Road and River. Figure 6.15 shows the most significant discovered pattern between roads 

and rivers. The pattern describes a relationship among “road category unpaved overlapping 

a river category draining” in the zone. This pattern may be considered as an indicator of the 

number of roads that need to be supervised in case of a volcanic contingence since the 

material type they are built with, and because they cross rivers (the lecture may be done in 

inverse order) that in case of huge pluvial concentration may overflow and make roads 

useless. Subdue found by using no overlap 46 instances (second iteration) of the pattern; 

via standard overlap found 85 instances (first iteration), and through limited overlap also 

found 85 instances (second iteration). As we can see in the figure, standard and limited 

overlap found the same number of instances, but limited overlap required two iterations to 

find the same pattern. However, this fact does not mean that standard overlap is better than 

limited overlap because analyzing the overall processing time required by limited overlap 

to finish the substructure discovery phase we note that it was lower than the required by 

standard overlap. 
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a) b) 

 

c) 

Figure 6.15. Relationships among roads and rivers by using model #1. 

 

Road and Settlement. The most significant discovered pattern describes a relationship 

among “road category unpaved touching a settlement category construction” in the zone as 

shown in Figure 6.16. “Settlement category construction” represents in the Popocatépetl’s 

settlement spatial layer inhabit areas with huge population, buildings and several 

constructions used to offer services to the people. If we assume that people may require to 
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be evacuated in case of an eruption and that the roads that will be used are unpaved then 

this situation may become a problem (i.e. a bottleneck, water and soil may become mud 

and this may make roads useless). For this experiment Subdue found via no overlap 6 

instances (ninth iteration) of the pattern, through standard overlap 9 instances (fourth 

iteration), and by using limited overlap 8 instances (tenth iteration). In all cases Subdue was 

able to discover the same pattern; the difference was the number of computed iterations. 

 
 

a) b) 

 

c) 

Figure 6.16. Relationships among roads and settlements by using model #1. 
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River and Settlement. Figure 6.17 shows the most significant discovered pattern for these 

spatial objects. It describes a relationship among “river category draining crossing a 

settlement category either (a) block or (b)(c) construction” in the zone. “Settlement 

category block” represents in the Popocatépetl´s settlement spatial layer inhabit areas but 

with little population, in fact there exist several uninhabited areas, few buildings and 

constructions. The pattern may be used to identify potential inundation zones because it 

represents rivers close to (may be some of them crossing) areas inhabited by people. 

Through no overlap Subdue found 5 instances (twelfth iteration), by using standard overlap 

found 5 instances (eighth iteration), and via limited overlap also found 5 instances (eighth 

iteration). Subdue discovered the same pattern in the three cases, however, by using 

standard overlap and limited overlap the lecture of the pattern is simpler. 
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a) b) 

 

c) 

Figure 6.17. Relationships among rivers and settlements by using model #1. 

 

The previous experiment was done using model 1, now we perform the same experiment 

using model 2 to 5. We will be focused to compare the same discovered patterns for the 

three “object-object” structures (i.e. road-river, road-settlement, and river-settlement). The 
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generated results show in the figures follow the same organization: by using no overlap is 

labeled as “a)”, via limited overlap is labeled as “b)”, and through limited overlap is labeled 

as “c)”. The most significant differences between the generated results, in this experiment, 

based on the number of reported instances and the number of iterations needed to discover 

the pattern. More iterations means more processing time to discover the pattern. 

6.2.2.2 Model #2 - single replication of relations types, complete 

information 

Road and River. By means of model #2 Subdue discovered the pattern shown in Figure 

6.18. Subdue found by using no overlap 41 instances (second iteration) of the pattern, via 

standard overlap found 85 (third iteration), and through limited overlap found 64 (second 

iteration). All cases reported “road category unpaved and river category draining” as the 

predominant spatial objects. 
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a) b) 

 

c) 

Figure 6.18. Relationships among roads and rivers by using model #2. 

 

Road and Settlement. For these spatial objects Subdue was able to discover, by means of 

model #2, the pattern shown in Figure 6.19. Via no overlap Subdue found 5 instances 
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(fourteenth iteration) of the pattern, through standard overlap found 8 (sixth iteration), and 

by using limited overlap found 7 (tenth iteration). No overlap reported “settlement category 

block” whereas standard and limited overlap reported more instances of “settlement 

category construction”. 

 
 

a) b) 

 

c) 

Figure 6.19. Relationships among roads and settlements by using model #2. 
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River and Settlement. The pattern discovered, by means of model #2, for these objects is 

shown in Figure 6.20. Through no overlap Subdue found 5 instances (sixteenth iteration) of 

the pattern, by using standard overlap found 10 (seventh iteration), and via limited overlap 

found 5 (fourteenth iteration). No overlap and limited overlap reported “settlement category 

construction” whereas limited overlap reported more instances of “settlement category 

block”. 

 

a) b) 

 

c) 

Figure 6.20. Relationships among rivers and settlements by using model #2. 
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6.2.2.3 Model #3 - double replication of relations types, no complete 

information 

Road and River. The pattern discovered, by means of model #3, for these objects is shown 

in Figure 6.21. Through no overlap Subdue found 39 instances (second iteration) of the 

pattern, by using standard overlap found 85 (second iteration), and via limited overlap 

found 34 (ninth iteration). In all cases Subdue reported as the predominant spatial objects 

“road category unpaved and river category draining”. 
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a) b) 

 

c) 

Figure 6.21. Relationships among roads and rivers by using model #3. 
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Road and Settlement. By means of model #3 Subdue discovered the pattern shown in 

Figure 6.22. Subdue found by using no overlap 4 instances (fifteenth iteration) of the 

pattern, via standard overlap found 8 (sixth iteration), and through limited overlap found 5 

(thirteenth iteration). No overlap and limited overlap reported “settlement category block” 

as the predominant spatial object whereas standard overlap reported “settlement category 

construction”. 

 

a) b) 

 

c) 

Figure 6.22. Relationships among roads and settlements by using model #3. 
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River and Settlement. For these spatial objects Subdue was able to discover, by means of 

model #3, the pattern shown in Figure 6.23. Via no overlap Subdue found 5 instances 

(twelfth iteration) of the pattern, through standard overlap found 19 (fourth iteration), and 

by using limited overlap found 5 (tenth iteration). No overlap and limited overlap reported 

less instances of “settlement category construction” whereas standard overlap reported 

more instances of “settlement category block”. 

 

a) b) 

 

c) 

Figure 6.23. Relationships among rivers and settlements by using model #3. 
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6.2.2.4. Model #4 - single replication of relations types, no complete 

information 

Road and River. For these spatial objects Subdue was able to discover, by means of model 

#4, the pattern shown in Figure 6.24. Via no overlap Subdue found 39 instances (second 

iteration) of the pattern, through standard overlap found 85 (first iteration), and by using 

limited overlap found 60 (second iteration). All cases reported as the predominant spatial 

objects “road category unpaved and river category draining”. 
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a) b) 

 

c) 

Figure 6.24. Relationships among roads and rivers by using model #4. 

 

Road and Settlement. The pattern discovered, by means of model #4, for these objects is 

shown in Figure 6.25. Through no overlap Subdue found 6 instances (twelfth iteration) of 

the pattern, by using standard overlap found 8 (tenth iteration), and via limited overlap 
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found 8 (seventh iteration). The representative spatial objects are “road category unpaved 

and settlement category construction” in all cases. 

 
 

a) b) 

 

c) 

Figure 6.25. Relationships among roads and settlements by using model #4. 

 

River and Settlement. By means of model #4 Subdue discovered the pattern shown in 

Figure 6.26. Subdue found by using no overlap 5 instances (sixth iteration) of the pattern, 
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via standard overlap found 10 (sixth iteration), and through limited overlap found 5 

(eleventh iteration). No overlap and limited overlap reported less instances of “settlement 

category construction” whereas standard overlap reported more instances of “settlement 

category block”. 

  

a) b) 

 

c) 

Figure 6.26. Relationships among rivers and settlements by using model #4. 
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6.2.2.5 Model #5 - double replication of relations types, complete 

information 

Road and River. The pattern discovered, by means of model #5, for these objects is shown 

in Figure 6.27. Through no overlap Subdue found 45 instances (fifth iteration) of the 

pattern, by using standard overlap found 85 (first iteration), and via limited overlap found 

45 (fifth iteration). Subdue reported in all cases as the representative spatial objects “road 

category unpaved and river category draining”. 
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a) b) 

 

c) 

Figure 6.27. Relationships among roads and rivers by using model #5. 
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Road and Settlement. By means of model #5 Subdue discovered the pattern shown in 

Figure 6.28. Subdue found by using no overlap 6 instances (seventh iteration) of the 

pattern, via standard overlap did not find a complete pattern (in the figure, the category of 

the settlement is not reported), and through limited overlap found 7 (seventh iteration). No 

overlap and limited overlap reported as the representative spatial objects “road category 

unpaved and settlement category construction”. 

 

a) b) 

 

c) 

Figure 6.28. Relationships among roads and settlements by using model #5. 
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River and Settlement. For these spatial objects Subdue was able to discover, by means of 

model #5, the pattern shown in Figure 6.29. Via no overlap Subdue found 5 instances 

(thirteenth iteration) of the pattern, through standard overlap found 5 (sixth iteration), and 

by using limited overlap found 5 (tenth iteration). Subdue reported in all cases “river 

category draining and settlement category construction” as the predominant spatial objects. 

 

 

a) b) 

 

c) 

Figure 6.29. Relationships among rivers and settlements by using model #5. 
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Table 6.1 presents a comparison, by model, among the number of discovered 

instances/iteration need to discover them and the overlap features. For example, by using 

model #1, Subdue found 46 instances (in second iteration) of a “complete” pattern 

(according to our definition for reporting a complete pattern) involving the spatial objects 

road-river via no overlap. Higher score means a model allowing us to discover more 

instances of a substructure. Remember Subdue reported as the best pattern (by iteration) a 

substructure with the highest score of discovered instances of that substructure. This 

comparison is reported by each “object-object” structure. 

 

Note: NO (No overlap), SO (Standard overlap), LO (Limited overlap). 

Model #1 Model #2 Model #3 Model #4 Model #5  

NO SO LO NO SO LO NO SO LO NO SO LO NO SO LO 

Road-River 

Instances 46 85 85 41 85 64 39 85 34 39 85 60 45 85 45 

Iterations 2 1 2 2 3 2 2 2 9 2 1 2 5 1 5 

Road-Settlement 

Instances 6 9 8 5 8 7 4 8 5 6 8 8 6 0 7 

Iterations 9 4 10 14 6 10 15 6 13 12 10 7 7 0 7 

River-Settlement 

Instances 5 5 5 5 10 5 5 19 5 5 10 5 5 5 5 

Iterations 12 8 8 16 7 14 12 4 10 6 6 11 13 6 10 

Table 6.1. Instances/iterations by each graph-based model: Popocatépetl use-case. 
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Table 6.2 presents a comparison of maximum/minimum discovered instances by overlap 

features. A model with the highest score is better since it allows discovering more instances 

of a substructure (patterns). The comparison is presented by each “object-object” structure. 

For example, in the structure road-river, model #1 reported 46 discovered instances in the 

second iteration (the highest score). See Table 6.1 for details. 

 Maximum Minimum 

Road and River 

No overlap model #1 (second iteration) models #3 and #4 (second iteration) 

Overlap models #1, #4 and #5 (first iteration) model #2 (third iteration) 

Limited overlap model #1 (second iteration) model #3 (ninth iteration) 

Road and Settlement 

No overlap model #5 (seventh iteration) model #3 (fifteenth iteration) 

Overlap model #1 (fourth iteration) model #5 (no completed pattern) 

Limited overlap model #4 (seventh iteration) model #3 (thirteenth iteration) 

River and Settlement 

No overlap model #4 (sixth iteration) model #2 (sixteenth iteration). 

Overlap model #3 (fourth iteration) model #1 (eighth iteration). 

Limited overlap model #1 (eighth iteration) model #2 (fourteenth iteration) 

Table 6.2. Max/Min of discovered instances by “object-object”/overlap feature. 

 

Table 6.3 presents a comparison among the average of discovered instances by model. 

Higher score means a model allowing us to discover more instances of a substructure 

(patterns). Each value represents the average of discovered substructures by using no 

overlap, standard overlap and limited overlap. The comparison is reported by each “object-

object” structure. 
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 Model #1 Model #2 Model #3 Model #4 Model #5 

Road and River 72.0 63.3 52.7 61.3 58.3 

Road and Settlement 7.7 6.7 5.7 7.3 4.3 

River and Settlement 5.0 6.7 9.7 6.7 5.0 

Table 6.3. Average of discovered instances by model/“object-object”. 

 

Table 6.4 presents a comparison among the average of discovered instances by model. 

Higher score means a model allowing us to discover more instances of a substructure 

(patterns). The comparison is reported by each overlap feature. 

Model #1 Model #2 Model #3 Model #4 Model #5 

NO SO LO NO SO LO NO SO LO NO SO LO NO SO LO 

19.0 33.0 32.7 17.0 34.3 25.3 16.0 37.3 14.7 16.7 34.3 24.3 18.7 30.0 19.0 

Table 6.4. Average of discovered instances by model/overlap feature. 

 

Table 6.5 presents a final comparison among the average of discovered instances by model. 

We can see in the table that model #1 reported the highest score of discovered instances 

(according to our parameters for reporting complete instances) in this illustrative 

Popocatépetl use-case. The following ones are model #2 and model #4 respectively. 

Model #1 Model #2 Model #3 Model #4 Model #5 

28.2 25.6 22.7 25.1 22.6 

Table 6.5. Average of discovered instances by model. 
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6.3 Conclusion 

In this chapter we have presented three illustrative use-cases of our proposal for modeling 

and mining spatial data. The test contexts were two spatial databases, the first one related to 

a population census from the year of 1777 in Puebla downtown, and the second one related 

to the Popocatépetl volcano. 

 

The use-cases developed using the population census database were focused to exemplify 

the graph-based model to represent together spatial data, non-spatial data and spatial 

relations, the new limited overlap feature implemented in the Subdue system (processing 

time and specialized overlapping pattern oriented search), and the generated results by the 

mining phase. We have presented in each use-case evaluations performed by the domain 

expert over the discovered patterns. 

 

The use-case developed using the Popocatépetl database was focused to compare/evaluate 

the generated results by each proposed graph-based model. The tests were implemented 

upon the supposition of evacuation plans implementation in case of volcanic contingences. 

We presented comparison tables describing which model(s) allow(s) to discover more 

instances of a substructure via no overlap, standard overlap, and limited overlap features. 

Subdue reported as the best pattern (by iteration) a substructure with the highest score of 

discovered instances of that substructure. 

 

Next chapter presents conclusion about our research work and final remarks. 
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Chapter 7 

CONCLUSIONS 

The continuous interaction among people and their natural home, the earth planet, generates 

everyday new requirements associated to spatial data. For example, urban analysis, natural 

risks prevention, space exploration, contamination in oceans, and reforestation of lands just 

to mention some of them. Spatial data mining involves the integration of methods from 

different scientific fields which help us, by means of data analysis and discovery algorithms 

produce a particular enumeration of patterns from spatial data. 

 

In chapter 2 we presented several approaches developed for mining spatial data (i.e. 

generalization-based methods, clustering, spatial associations, approximation and 

aggregation, mining in image databases, spatial classification, and spatial trend detection). 

However, our argumentation about those approaches was that they do not consider all the 

elements found in a spatial database (spatial data, non-spatial data and spatial relations 

among the spatial objects) in an extended way. We proposed in this dissertation a new 

approach based on graphs. Our feeling is that if we are able to represent those elements as a 

unique dataset and if we are also able to mine them as a whole, then, we might be able to 

get patterns that might contain both types of data and spatial relationships enhancing the 
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quality of the results since the generated pattern(s) would describe (a) spatial object(s) 

meeting (a) spatial relation(s) with other spatial object(s) and which is(are) that(those) 

relationship(s). We proposed to use a graph-based representation since it provides the 

desirable flexibility to describe these elements and their relations together. 

 

As mentioned, in our model spatial relations among spatial objects are included since a 

significant characteristic of spatial data is the influence of the neighbors of an object may 

have on the object itself. In the model we included the representation of three types of 

spatial relations. 

 

Derived from the general graph-based schema we have proposed five operative models. 

Three aspects define the characteristics of a graph created from those models: first, the 

representation of equivalent spatial relations (the relation A touch B can be represented by 

two directed edges, A B and B A, or by one undirected edge, A──B; we used the second 

approach). Second, the representation of symmetric spatial relations (the relation A 

North_of B implies a relation B South_of A, some models represent only the first relation 

and other both relations). The third aspect is the model itself. Our intention is to represent 

the spatial objects and their relation as much as possible but also considering a balance 

among the representative of the data and the complexity of the created graph. This last issue 

has a major importance since the closer relation among the complexity of the created graph 

and the mining phase. For examples, huge graphs may require more computational 

resources than small graphs, but by creating small graphs we may loss data 

representativeness and perhaps we may not to discover significant patterns. 
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As component of our methodology for mining spatial data using a graph-based approach, 

we used the Subdue system as our mining tool. The overlap feature plays a relevant role in 

the Subdue’s substructure discovering system. But, as we described, it is implemented in an 

orthodox way: allows overlap among any instances of a substructure or allows overlap 

among all instances of a substructure. The first option is better regarding processing time, 

but the second one may discover more instances of a substructure (pattern). Both cases do 

not give to the user the capacity to specify the set of vertices allowed for overlap. 

 

Therefore, we proposed a new overlap approach named limited overlap. The new approach 

gives to the user the means to specify over which vertices the overlap will be allowed. 

These vertices may represent significant elements in the context we work with. For 

example in the use-case presented in chapter 6.2, implementation of evacuation plans in 

case of volcanic contingences in the Popocatépetl volcano zone, vertices representing roads 

were allowed for overlap since these spatial objects represent relevant elements in the 

evacuation plans. Moreover, we visualized three motivation issues to propose the 

implementation of the new approach. First, we demonstrated by using limited overlap that 

we obtain a search space reduction in the substructure discovering process since we allow 

overlap but it is restricted to the elements stated by the user. Second, as result of a search 

space reduction we also get a processing time reduction. Remember as part of the 

substructure discovery process there exist a validation and discarding phase over the 

instances of a substructure. Instances no discarded may become candidates to further 

expansion in order to discover new substructures. Third, by giving the user the capability to 

state the set of vertices where overlap is allowed, we are orienting the search over particular 

overlapped instances and, at the same time, discarding no relevant overlapped instances. 
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In order to be able to demonstrate the feasibility, capacity to mine and to discover patterns 

by using a graph-based approach as proposed, we developed a prototype system 

implementing our model to create graph-based datasets, to mine those datasets (by calling 

the Subdue system), and to visualize the discovered patterns. 

 

In chapter 6 we described three illustrative use-cases showing the applicability of our 

proposal. We used two test contexts from the real world: a population census from the year 

of 1777 in Puebla downtown, and a Popocatépetl volcano database. The generated results 

from those test contexts give us a panorama respect to how and to what we could achieve 

by using this approach. It is important to remark the fact that we can use this approach in 

any domain that can be represented as a graph. 

 

We have shown the feasibility of our model for modeling and mining spatial data. In this 

context, perspectives related to enhance our overall work (graph-based model, data mining 

algorithm, and prototype system) include the following issues: 

• Visualization of discovered knowledge. For example, visualization of discovered 

knowledge over the spatial layers, by using chart, and navigation through the 

discovered patterns hierarchy using a hypergraph approach. 

• Enhancing the algorithms used to create the graph-based datasets according to 

the proposed models. Validation of spatial relations among spatial object is a phase 

that in most cases requires several computational resources. So, our algorithms must 

implement efficiently this task (i.e. discarding noise, using spatial indices, etc.). 
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• Mining the graph. We proposed and used the Subdue system as our data mining 

tool, moreover we implemented a new algorithm name limited overlap. Subgraph 

isomorphism is a NP-complete problem, so we must be able to face this problem in 

order that our processing times for discovering knowledge meet acceptable 

parameters of efficiency, 

• Relationships among non-spatial data describing spatial objects. Implicit 

relations among attributes describing the spatial objects may be included in the 

model in order to enhance the representativeness of the data. 

 

Spatial data mining is a promising research field. Several approaches have been developed, 

and without any doubt, new approaches will be proposed. It is a field in continuous 

improvement. Our contribution to the spatial data mining goes in that direction. 
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