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Introduction 

1.1 Research Topic 

The progress in information technologies and appearance of more and more powerful front-end 

devices lead to a constantly growing amount of digitized video used in various fields of 

application, including video archives, distance learning, communication, entertainment etc. A 

content-based access could greatly facilitate navigation in huge video storages, providing, for 

instance, hierarchical tables of content and allowing a user to locate the segment of interest by 

browsing at first longer high level semantic units and moving then to shorter low level ones. 

Organizing video according to its semantic structure could also benefit the task of automatic 

video retrieval, restricting the search by the scope of meaningful semantic segments. Another 

potential area of application is an automatic generation of video summaries or skims preserving 

the semantic organization of the original video. 

Manual indexing the content of video often is not appealing as it is tedious and requires 

much time and human resources. This is aggravated by the fact that a content structure is not 

always unique and various definitions can be proposed depending on the needs of a particular 

user such as a desirable level of detailing. The aim of this work is to develop approaches to 

automatic generation of video content table representing temporal decomposition into 

meaningful semantic units. This generation of high-level content table is based on lower-level 

indexes and is called a macro-segmentation. We adopt and test the developed approaches for the 

scope of sports video (tennis) and feature films hoping that they will be general enough to be 

applied to other types of video as well. 

1.2 Problems and Objectives 

As the basic building blocks of professional video are the shots – sequences of contiguous 

frames recorded from a single camera, it is natural to divide a video into these units. Many 

effective and quite reliable shot segmentation techniques have been proposed [ARD 00, BOR 96, 

LIE 99, LIE 01]. Unfortunately, the semantic meaning provided by shots is of a too low level. 

Common video of about one or two hours, e.g. a full length movie film, contains usually 

hundreds or thousands of shots – too many to be efficient representation of the content. In this 

work we focus on the task of automatic segmentation of video into more meaningful high-level 

time units which share a common semantic event. These units are usually considered as 

aggregates of shots and can have various semantic meaning depending on the type of video and 
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desirable content structure definition. For narrative films they are defined as narrative segments 

representing a common dramatic event or locale. For sports video semantic segments can 

distinguish logical parts of a match, e.g. points, games or sets in tennis video which can be 

collected into a hierarchical content structure where a higher-level segment can include several 

nested lower-level ones. 

Many existing works aim to elaborate specific signal-based features destined to 

distinguish only some particular segments or short-time events. To unfold the whole content 

structure of a given video there is often the need to combine multiple features that sometimes are 

dispersed through time and to take into consideration grammar constraints imposed into possible 

content structures. The aim of this work is to propose quite a general approach which allows one 

to express his knowledge about a specific content structure of a specific type of video in terms of 

combinations of detectable features (that can have quite a general semantic meaning) 

characterizing semantic segments and to impose grammar constraints so as to enable automatic 

content parsing. 

In real-world applications features of one or just several types often cannot provide reliable 

segmentation accuracy due to erroneous detections of the features and ambiguities in their 

relation to semantic segments. It is usually possible to find several types of features, extracted 

sometimes from different modalities, providing the evidence about the same entity. For instance, 

in the task of narrative film segmentations into scenes visual similarity between two adjacent 

groups of shots can be used to separate scenes together with audio dissimilarity characterizing a 

change of sound sources. So, there is a need to properly combine these multiple features so as to 

compensate for their inaccuracies. The common approach uses a set of rules according to which 

one source of information is usually chosen as the main one, used to generate initial segment 

boundaries, while the others serve for their verification or further decomposition into segments. 

Rules based techniques, however, are convenient for a small number of features, generally do not 

take into account fine interaction between them and are hardly extensible. Another frequent 

drawback inherent to such methods is binarization of real-valued features that often leads to 

losses of information. In this work we attempt to include excessive features into the 

segmentation approach in a systematic and flexible manner, without the need to make 

intermediate restricting decisions as it is done in many rule-based techniques. 

1.3 Our Approach and Contributions 

We propose a deterministic approach for the task of automatic video segmentation which is a 

sort of a finite automaton whose states relate to content units [PAR 05a]. The approach allows 

for multilevel hierarchical content structures which are generated recursively, beginning at the 
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highest semantic level. At each semantic level the parsing automaton is governed by specific 

templates which cause state transitions according with grammar restrictions. These templates are 

defined as combinations of intermediate semantic features or short-term events connected by 

certain relationships in time. They allow one to express prior knowledge about particular 

characteristics of semantic segments, usually relying on specific production rules that are 

typically employed by video producers to convey semantic information to a viewer. 

An advantage of the proposed segmentation approach is in its expressiveness and low 

computational complexity. As it is based solely on prior knowledge, it does not require 

preliminarily learning and can be employed at once, without the need of tedious manual 

annotation of learning data. We apply and experimentally evaluate this approach on the task of 

tennis video segmentation where output content is naturally represented in a hierarchical manner 

so as an input tennis match at first is divided into sets and pauses between sets, or breaks, then 

each set is further decomposed into games and breaks etc. Automatically recognized score 

boards and tennis court views are used as intermediate events in this task. 

In practical applications the detectable features often cannot be related to the semantic 

segments unambiguously. To reduce this ambiguity and, hence, to enhance the segmentation 

performance, multiple features should be fused into the final decision. So, there is a need to 

resolve properly the conflicts between these features. The number of possible combinations 

growth exponentially with the number of features, and it becomes too difficult to enumerate all 

these combinations in the framework of the deterministic approach, especially when the features 

are real-valued. To enable inferring the fusion rules automatically based on a set of manually 

labeled learning data, when available, we also propose a stochastic segmentation approach [PAR 

05b], where the feature uncertainty is modeled explicitly. Moreover, the approach deals properly 

with probabilistic time constraints imposed on semantic segments durations. Its stochastic nature 

allows for fusion of multi-modal audio-visual evidences in a symmetrical, consistent and 

scalable manner. Instead of definitive rules of the deterministic approach, the posterior 

probability of semantic segment transitions is estimated first. Segment boundaries are then 

positioned so as to maximize the total posterior probability. It is shown that such a decision rule 

yields the maximal recall and precision which are commonly used segmentation performance 

measures. A computationally tractable algorithm for the corresponding task of constrained 

maximization is proposed. The posterior probability of segment boundaries is estimated using, in 

particular, a variable duration hidden Markov model which has been proved to be a powerful 

mean in modeling of time sequences. In contrast to the Viterbi segmentation procedure, which is 

commonly used with hidden Markov models to find the most probable path, we, however, select 

optimal segment boundaries so as to maximize the segmentation performance directly. 
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As an alternative to the posterior probability maximization total for the whole input 

video, a one-pass version of segmentation approach is proposed which selects each subsequent 

segment boundary as the most probable one assuming that the previous boundary is known 

definitively [PAR 06]. This modification is particularly useful for real-time applications where 

segmentation is performed already before the end of video is attained. 

The proposed stochastic approach has been applied and experimentally evaluated on the 

task of narrative film segmentation into scenes. The test results showed enhancement of 

segmentation performance when multiple audio-visual segment evidences of segment boundaries 

are fused and time constraints are taken into account. The resulting performance was higher as 

compared to deterministic rule-based fusion techniques. Higher segmentation performance was 

also observed in the case where our segmentation criterion, that maximizes the total posterior 

probability of segment boundaries, was applied using a hidden Markov model instead of the 

commonly used Viterbi segmentation algorithm. 

In this work we are also concerned with the problem of video summarization – compact 

representation of the original video. A video summary can have an independent meaning aimed 

to quickly get acquainted a viewer with the content of video or it can be generated for each 

semantic segment of a content table forming so called digest. Pictorial digests provide a 

convenient interface for navigation with content tables where each unit is visually represented 

with one or just several key frames. We propose a versatile approach which can be used to create 

summaries that are customizable to specific user’s preferences to different type of video [PAR 

04]. A high versatility of the approach is based on a unified importance score measure of video 

segments which fuses multiple features extracted from both the audio and video streams. This 

measure provides the possibility to highlight the specific moments in a video and at the same 

time to select the most representative video shots. Its coefficients can be interactively tuned due 

to a high computational speed of the approach. 

1.4 Organization of the Thesis 

The rest of the thesis is organized as follows. In the next chapter we give a review of the related 

work in the field of semantic video segmentation. In particular, we consider separately two video 

genres of interest in this work – sports video and narrative films, aiming to describe the state of 

the art, give semantic segments definition and provide some background information. Then we 

provide discussion concerning the related work and motivate our segmentation approach. 

 In chapter 3 we present our deterministic approach which infers a hierarchical content 

table based on mid-level events extracted from a raw video. We apply this approach to sports 

game video, namely to tennis one, as it has a well-defined temporal content structure whose 
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segments can be unambiguously related to mid-level events. As a result, a fully automatic 

content parsing system is built and tested on a ground-truth video. 

 In chapter 4 a stochastic approach to the video segmentation task is proposed. We first 

consider the general principles how to chose the optimal segments based on the corresponding 

probability estimates so as to maximize recall and precision metrics of system performance. 

Then we consider the video segmentation task based, more specifically, on a hidden Markov 

model and its extensions. 

 In chapter 5 we adopt and experimentally evaluate our stochastic segmentation approach 

to the task of narrative films segmentation into scene segments. We give a strict definition of a 

scene and describe our database of ground-truth video used for performance comparisons. Then 

we propose audio-visual features which provide evidence about scene boundaries. After this we 

derive and evaluate several particular segmentation techniques. 

 In chapter 6 we propose a video summarization approach using a shot-based approach 

that allows generating both a static storyboard and a video skim in the same manner. Video 

summary is generated based on our unified measure of video segment importance which fuses 

multiple features extracted from both the audio and video streams. 

 In chapter 7 we present final conclusions concerning this thesis and discuss some 

directions of our future work. 
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2 State of the Art 

Semantic segmentation of video requires that several decisions be made. First, the underlying 

content structure and the meaning of the corresponding semantic segments must be defined. 

While the lower-level segments of professional video are traditionally chosen to be camera shots, 

the definition of the higher-level semantic segments is highly dependent on the type or genre of 

video and the specific of the practical needs. Second, if we consider the task of automatic 

indexing, relevant signal-level features or mid-level events should be properly chosen. Third, 

robust content indexing usually requires the use of multiple features extracted from multiple 

modalities, so there is a need to choose the method of their integration to obtain the final 

segmentation. As videos of different types or genres convey different semantic meaning and are 

produced using different production models, the genre of video has a strong impact on an 

automatic content parsing system to be developed, especially as it concerns the first two 

decisions mentioned above. In this chapter we consider these choices separately for two video 

genres of interest in this work – sports video and narrative video, aiming to describe the state of 

the art, give semantic segments definition and some background information and discuss the 

motivations of our segmentation approach. 

2.1 Sports Video Segmentation 

Works concerned with sports video content indexing problem usually aim at detection and 

classification of only one or several specific semantic segments or events of interest. These 

segments, referenced hereafter as events, are often distinguished based on signal-level features 

using domain-specific models or pattern recognition techniques and can be used as independent 

indexes or as intermediate-level semantic keys or syntactic elements for further analysis. In this 

section we first consider several approaches to event detection and then describe works 

concerned with complete content structure analysis of sports video where event detection is often 

used as a necessary preliminary step of video processing. 

2.1.1 Event Detection 

Sports video is often taken by a number of cameras mounted in fixed positions, each providing a 

certain unique view. The cameras are switched in a manner that certain views correspond to 

specific events, such as serves or rallies in tennis and pitching in baseball. Detection of these 
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events, hence, can be performed as shot segmentation followed by recognition of the 

correspondent shots. 

In [DIZ 01] views covering tennis court field with players (referenced hereafter as global 

court views, see Figure 2-1) are detected to distinguish serve or rally scenes. Corresponding 

camera shots are represented by a color histogram feature computed for shot key frames. A 

supervised k-means learning algorithm is used to cluster manually labeled court view shots so 

that each cluster represents a specific tennis match model. To make their approach applicable to 

various types of match models, the authors propose to include learning samples extracted from as 

many different tennis broadcasts as possible. A shot then is considered to be a court view if it is 

close enough to one of the clusters. To remove false alarms the authors also use an additional 

procedure verifying that players on the tennis court have consistent locations based on an 

automatic player segmentation technique. 

 

 

Figure 2-1. Global court views in tennis match 

In [ROZ 98] court views are detected using multimodal data extracted from the image 

sequence and the audio track of an input video. The second moment of the Hough transform 

[HOU 59] of the edges averaged over the frames of a shot is used as the feature extracted from 

the image sequence, the idea being to catch the geometry of tennis court lines. In the auditory 

domain the corresponding feature reflects the possibility of racket hits to be present in the shot 

sound track and is calculated as follows. First, a learning set of acoustic vectors (power spectrum 

coefficients) corresponding to rocket hits is collected. A principal component analysis is then 

performed over these training data and J eigenvectors corresponding to the J highest eigenvalues 

are retained to span the eigenspace. The audio feature is finally calculated as a distance between 

the closest acoustic vector of an input shot and the eigenspace. The decision rule is based on the 

likelihood value of both the audio and visual features which are modeled with the Gaussian 

distributions and considered to be independent given the shot class. An input shot is claimed to 
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be a general view if the joined likelihood exceeds a threshold value. Experimental evaluations on 

a ground-truth video has shown that the fusion of multi-modal data sources enhance the 

precision of view classification. 

After the event segments have been localized with one of quite general view 

classification technique, more specific detectors can be applied to further classify tennis events 

based on analyses of players’ positions and their movements. Miyamori and Iisaku [MIY 00] 

automatically annotate different tennis actions considering three representation methods: based 

on player position only, based on player and ball position and based on both positions plus 

player’s behavior. Player and ball position is considered with respect to tennis court geometry 

extracted using static color filters corresponding to several standard court types. Player’s 

behavior is modeled with a hidden Markov model (HMM) [RAB 89] which allows the authors to 

categorize player’s swings into three classes: backside, foreside and over-the-shoulder swing. 

Zivkovic et al. [ZIV 01] recognize different classes of tennis strokes, such as service, 

smash, backhand slice etc. by modeling player action in the visual domain with a HMM. First, 

the player in the lower rectangle of global court view frames is segmented from the background. 

A robust player segmentation algorithm is proposed which separates player region pixels from 

the tennis field and court lines based on estimated statistics of tennis field dominant color and a 

3D model of court geometry. Then, the authors extract a number of different features from the 

player binary representation: orientation and eccentricity of the whole shape, the position of the 

upper half of the mask with respect to the mass center, sticking-out parts of the shape etc. 

Finally, player activity represented by an input frame sequence is classified into different tennis 

stroke types using discrete left-to-right HMMs pre-trained on a set of manually labeled data. 

The progress of certain events in sports broadcasts are captured by several cameras 

switching according to specific production rules. Thus, these events normally correspond to 

sequences of views or scene shots of certain types which can be recognized and tracked 

automatically using rule-based or stochastic techniques. In [CHA 02] seven types of scene shots 

are recognized for the purpose of baseball game highlights detection: pitch view, catch overview, 

catch close-up, running overview, running close-up, audience view and touch base close-up (see 

Figure 2-2). The authors distinguish four baseball highlights (nice hits, nice catches, home runs 

and plays within the diamond) by modeling the corresponding shot scene sequences with 

HMMs. Hidden states of these models represent the mentioned above types of scene shots. The 

state probability values are estimated using the following features extracted from the image 

sequence: a field shape descriptor (positions of field grass or sand blocks), an edge descriptor, 

camera motion, the amount of grass and sand, player height. 
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Figure 2-2.  Seven types of scene shots of a baseball game [CHA 02]. 

 Ekin, Tekalp and Mehrotra [EKI 03] propose a technique for the task of automatic soccer 

goal detection which is based on a set of rules used to combine information about specific shot 

scenes types and their duration. A goal event leads to a break in the game which is used by the 

producers to convey the emotions on the field to the TV audience and show one or more replays 

for a better visual experience. As a result, occurrence of a goal is generally followed by a special 

pattern of cinematic features. To detect this pattern, the authors define a cinematic template 

which is a set of constraints imposed on the appearance of certain shot scene types (player close-

up, out of field and slow-motion replay) and their relative positions. The required shot 

classification is performed automatically based on the ratio of grass color pixels for player close-

ups and out-of-field shots and on analysis of frame-to-frame change dynamics for slow-motion 

replays. 

2.1.2 Semantic Structure Analysis 

Sports videos, especially sports games, usually have a quite well-defined content structure. A 

number of techniques have been proposed by now aiming at automatic content parsing of these 

videos based on intermediate-level semantic events or low-level features. In the simplest case the 

content structure is represented by a simple one-level chain of semantic segments. In a more 

general case this structure is represented hierarchically so that semantic levels of a higher level 

can include several nested lower level segments. For example, a tennis match is divided first into 

sets, each set is decomposed into games which in their turn are further divided into points. 

 A rule-based technique of one-level decomposition of a soccer video into a chain of 

semantic segments of two types – play and break [SOC] is proposed in [XUP 01]. Each frame of 

an input video is first classified into three kinds of view (global, zoom-in and close-up, see Figure 

2-3) using a unique domain-specific feature, grass-area-ratio. To handle possible variations of 

lighting and filed conditions, this feature is calculated based on grass color estimated adaptively 
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for each video clip. Then heuristic rules are used in processing the view label sequence to obtain 

play/break segmentation. These rules take into consideration the time duration of views and their 

relative positions in time. 

 

 
Figure 2-3. Three kinds of view in soccer video [XUP 01]. 

 In [XIE 02] a stochastic approach based on HMMs is proposed for the same task of 

soccer video segmentation into plays and breaks. Instead of discrete labels identifying view type 

of each video frame, real-valued observations are used: dominant color ratio and motion 

intensity. The color ratio indicates mainly the scale of view in the current shot, taking high 

values for wide shots and low values for close-ups. Motion intensity roughly estimates the gross 

motion in the whole frame, including object and camera motion. HMMs are applied to classify a 

smoothed feature vector sequence in a fixed-length sliding window. The resulting probabilities 

of play/break classes are then smoothed using a dynamic programming technique to obtain the 

final segmentation. The experimental evaluations has shown the performance improvements of 

the HMM-based approach with respect to the discrete rule-based one described above. 

 Relevant information about semantic segments of sports video can be provided, if 

available, by the close-caption text which is the speech transcript of the announcers. Nitta and 

Babaguchi [NIT 02] propose a generic scheme for segmentation of TV sports game programs 

into “Live”, “Replay”, “Others” and “Commercial Message” scenes. The closed-caption text is 

used as the only data source. Segmentation is performed through the labeling of each of the 

close-captioned segments into one of the four target scene categories listed above. Six features 

are first extracted for each closed-caption segment: the name of the announcers, the number of 

sentences, the length of the sentences, the number of players’ names, the situational phrases and 

the numbers. Then a Bayesian network is used to estimate the probability that each segment 

belongs to one of the category x as: 

∑ ∏
=

=
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F

j
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where b stands for the category of the previous segment, ,...},{ 21 ffF ≡  is the feature space. 

Thus, the category of a closed-caption segment depends on the category of the previous segment 

as well as its own features. Finally the category of the each segment is set to the one which has 

the maximal probability. Unfortunately the authors do not fuse the textual information with the 

audio and visual modalities to possibly achieve better performance. 

 Hierarchical semantic content analysis for sports game video is considered in [CHE 04]. 

The authors define recurrent important semantic parts during the game as “Basic Semantic Unit” 

(BSU). An example of such a BSU is a serve in tennis or pitching in baseball. Accordingly, the 

residual less-important parts are non-BSUs, e.g. commercial breaks or changes of players. Thus, 

sports video is modeled as a sequence of BSUs interleaved with non-BSUs, where each BSU can 

be further decomposed into the same sequence of the lower semantic level. An automatic 

technique for segmentation of soccer video according to two-level semantic structure is realized. 

The first-level segmentation is performed through advertisement detection based on the fact that 

advertisement shots are short duration and are accompanied with speech and music sound. At the 

second semantic level non-advertisement parts are further decomposed into plays and breaks 

based on view classification and using heuristic rules similar to [XUP 01] considered above.   

In [KOL 04] the authors propose to parse the evolution of a tennis match through tracking 

elementary events, such as the tennis ball being hit by the players, the ball bouncing on the court, 

the players’ positions etc. Guided by the rules of the game of tennis they build a graphical model 

which allows them for awarding of a tennis point. Two-level hierarchical representation of this 

model is given in Figure 2-4. The evolution of a tennis point can be inferred using statistical 

reasoning tools (such as HMMs) or rule based tools – such as grammars. The authors have 

applied deterministic rules in their experimental evaluations carried out on a ground-truth tennis 

video comprising about 100 points. As the elementary events in these experiments were 

extracted manually, without errors, and the deterministic rules were not broken, the perfect 

accuracy of 100% was achieved. However they propose to use statistical reasoning tools if these 

events are detected automatically to deal properly with detection errors. A little extension is 

required to the proposed point awarding model to move on to the award of games and sets in the 

match. For instance, games of a tennis match are awarded out of points won by both sides as 

follows: if a player has scored 4 or more points in the current game and his/her opponent has at 

least 2 points less, then this player has won the game – otherwise the game goes on. 
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Figure 2-4. Two-level graphical model for awarding a point in a tennis match [KOL 04]. 

 
 A statistical approach based on a hierarchical hidden Markov model (HHMM) [SHA 98] 

is used in [KIJ 03a, KIJ 03b] for full content structure parsing for tennis video. According to 

such a structure a tennis match is first divided into tennis sets and breaks (pauses between sets), 

each set is decomposed into tennis games and breaks and each game is finally divided into a 

chain of tennis points. HMMs are used to classify tennis points into several types: missed first 

serve and rally, rally, replay and break. These HMMs are included as the lowest level of into a 

HHMM used to represent the syntactical constraints stemming from tennis game rules (see Figure 

2-5). It allows the authors to take into account the long-term structure of a tennis match. The 

content decomposition of an input tennis video is performed as follows. At first the video is 

segmented into shots and per-shot feature vectors are computed. The feature vectors combine the 

data extracted from both the image sequence and the audio modality and include shot duration, 

dominant colors and their respective spatial coherencies, a measure of camera motion and audio 

classes (speech, applause, ball hits, noise and music). The sequence of feature vectors 
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constitutes, then, the input chain to the HHMM. Segmentation and classification of the observed 

sequence into the different structural elements are finally performed simultaneously using a 

Viterbi algorithm [VIT 67] which finds the most likely sequence of the HHMM states. 

 

  
Figure 2-5. Content hierarchy of broadcast tennis video [KIJ 03a]. 

 

2.1.3 Discussion 

The large diversity of sports videos and semantic segments/events leads to a variety of proposed 

video segmentation techniques, which especially concerns event detection or feature extraction. 

To attain the reliable detection of events or their detailed classification, various domain-specific 

fine-tuned techniques are often elaborated. Instead of elaboration of specific detectors, in the task 

of sports video segmentation we rather rely on quite common characteristics of video stemming 

from production rules, such as specific views or score boards. These events appear to be enough 

to achieve the final goal – the full video decomposition into content elements. Moreover, being 

quite common properties, such events provide us with quite a general basis to deal with the 

diversity of video sub-genres in a unified fashion. Using common elements allows us to avoid 

the difficult task of semantic understanding of the video content and to be based solely on the 

video organization syntax provided by producers. 

Currently we do not try to elaborate complicated event detectors, applicable to the possibly 

largest number of videos representing the same sport, since this usually requires the use of 
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domain-specific models. Also we do not adopt statistical techniques, such as hidden Markov 

models, as they usually require that quite a large set of manually marked-up learning data be 

provided. We aim to propose quite a simple segmentation technique which needs the minimum 

preparations, such as learning. To attain the reliable event detection, we apply quite common 

signal processing techniques that do require some simple learning to be adapted to a particular 

type of video, but this learning does not consume a lot of time. Different views, for example, can 

be identified using dominant colors matching or visual similarity with learning samples; score 

boards are distinguishable due to their fixed form and position on the screen etc. Each of these 

events needs only one learning sample for a set of videos produced at the same setting using the 

same rules, e.g. all tennis matches of the same championship broadcasted over the same TV 

channel. 

Instead of detection of semantic segments of just one or several types, that is often the 

case in the related work, in this thesis we aim at reconstructing the total content structure of 

video. It is a more general task as the elements of an output content table can contain specific 

segments of interest. Moreover, grammar restrictions and time duration constraints that are 

generally imposed into the content structure provide useful additional information restricting the 

choice of allowable semantic segments and their duration given the context. 

Semantic segmentation of video usually integrates multiple low and mid-level features and 

is performed using generally two types of methods – deterministic rule-based and stochastic 

(usually based on HMMs). In spite of the powerful capacity of stochastic methods to deal 

properly with the uncertainty of observable data, they, however, generally require preliminary 

learning to fit data distributions. This takes additional computational resources and, which is 

often more problematic, gives rise to a need of manually labeled training data, thus making 

stochastic methods less appealing, especially in our case where the event detectors are adapted to 

specific production rules and, hence, a change of these rules requires the re-learning of the whole 

system. The advantage of rule-based techniques is that they allow us to express directly our 

understanding of relationships between detectable features and the semantic structure of a 

particular type of video. The applied rules, however, are not usually formulated on a regular 

basis, which makes us to rebuild the whole content generation system when these rules are 

changed. Moreover, such a set of rules can become too complicated if many constraints are taken 

into consideration simultaneously. In this thesis we develop a deterministic approach based on a 

finite state automaton which allows us to formulate video content parsing rules as grammar 

constraints and feature templates that control transitions between semantic segments. The 

approach can be realized as a generic engine adaptable to different types of video and content 

configurations. It is suitable for video having complex hierarchical content structure for which 
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reliable feature templates can be specified. In this thesis we adopt and test this approach for the 

task of tennis video segmentation. 

2.2 Segmentation into Scenes 

In this section we consider some basic ideas and related work concerned with the problem of 

automatic segmentation into logical story units or scenes. These units combine one or several 

shots and are basic meaningful elements of the organizational structure of narrative films such as 

feature films or sitcoms. Viewers often identify scenes intuitively as important events that have a 

complete meaning necessary for perceiving the whole story, e.g. scenes showing dialogue 

between two persons, pursuit scenes etc. However, as a notion of scene is based on human 

understanding of its meaning, it is difficult to give an objective and concise definition that covers 

all possible scenes judged by humans. 

In cinematography a scene is defined as “a segment in a narrative film that takes place in 

one time and space or that uses crosscutting to show two or more simultaneous actions” [BOR 

97] or “a series of shots that communicate a unified action with a common locale and time” 

[BOG 00]. Even these definitions, commonly accepted by researchers, are somewhat vague. It is 

not always clear, for instance, how to interpret the “common locale” property of a scene. Indeed, 

since the establishing shot often precedes a scene showing the outside of the building where the 

scene takes place, the “common locale” part of the scene definition allows for broad 

interpretations. Another difficulty is how to treat several actions showed simultaneously or 

parallel events. 

To overcome this uncertainty, a more precise definition often is given. In [WAL 04] 

establishing shots are merged with the subsequent scenes; parallel actions are merged into one 

scene. A specific traveling scene is additionally defined which shows a traveling person passing 

through many locales very briefly. The shots of such a scene are unified by a common traveler 

rather then by a common place. In [VEN 02] a scene defined based on 4 important editorial 

techniques: elliptical editing, montage, establishing shot and parallel cutting. Due to the first two 

techniques viewers perceive scenes being continuous in space and time; an establishing shot is 

considered to be the part of the scene for which it determines the setting; the parts of parallel 

events are merged into one scene if they are composed from three or less shots. To avoid the 

problem of semantic understanding of scenes, Sundaram [SUN 02] focuses in his research on the 

detection of so-called computable scenes. These scenes are defined looking at the relationships 

between contiguous chunks of video and audio and structured segments (such as dialogues which 

are composed from interleaving shots). The only useful property of computable scenes which the 

author is interested in is that they are computable, i.e. they can be computed automatically using 
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low-level audio-visual features. Their semantic meaning is no of high importance since the goal 

of the proposed scene segmentation algorithm is to assist in the solution of another problem. 

In spite of some diversity in scene definitions, the basic principles of segmentation often 

remain the same. Segmentation into “generic” scenes, without specifying their precise semantic 

meaning, is commonly based on the similarity of the constituent shots which stems from the 

production rules applied during the creation of narrative films and the common locale. Indeed, 

the underlying organizational structures depend on certain human expectations about the timing 

and placement of camera shots within a single scene. According to this most scenes are shot 

from several viewpoints with several cameras that are switched repeatedly. So, they can be 

detected from the image track as a group of interleaving visually similar shots. The similarity is 

established using the low level visual features such as color histograms or motion vectors [MAH 

02, KEN 98, RAS 03, WAL 04, VEN 00]. On the other hand, a scene transition in movie video 

usually entails abrupt change of some audio features caused by a switch to other sound sources 

and by film editing effects [HAR 03c, CAO 03, SUN 00, CHE 02]. Hence, sound analysis 

provides useful information for scene segmentation as well. 

Further in this section we first consider separately approaches based on shot similarity 

measured in visual and audio domains in the corresponding two subsections. Then the principles 

of fusing features from multi-modal data sources are described. After this we consider several 

segmentation systems that extract specific scenes or classify them into predetermined classes 

based on specific semantic keys. The final discussion then finishes up this section. 

2.2.1 Visual Similarity-Based Segmentation 

The common approach to video scene segmentation in the visual domain exploits the visual 

similarity between shots provided by specific editing rules applied during film montage [BOR 

97]. According to these rules video scenes are usually shot by a small number of cameras that are 

switched repeatedly. The background and often the foreground objects shot by one camera are 

mostly static and, hence, the corresponding shots are visually similar to each other. In the 

classical graph-based approach [YEU 96] these shots are clustered into equivalence classes and 

are labeled accordingly. As a result, the shot sequence of a given video is transformed into a 

chain of labels identifying the cameras. Within a scene this sequence usually consists of the 

repetitive labels. When a transition to another scene occurs, the camera set changes. This 

moment is detected at a cut edge of a scene transition graph built for the video. For example, a 

transition from a scene shot by cameras A and B to a scene taken from cameras C and D could 

be represented by a chain ABABCDCD, where the scene boundary would be pronounced before 

the first C. Analogous approach was proposed in [RUI 99], where shots were first clustered into 
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groups which then were merged into scenes. Wallapak Tavanapong and Junyu Zhou [WAL 04] 

in their ShotWeave segmentation technique use additional rules to detect specific establishment 

and re-establishment shots which provide a wide view over the scene setting at the beginning and 

the end of a scene. They also suggest using only specific regions of video frames to determine 

more robustly the inter-shot similarity. 

 Two shots belonging to different scenes can be found visually similar because of their 

accidental resemblance or a reuse of the same locale, e.g. several scenes can take place at the 

same room. Grouping these shots into one cluster in the graph-based approach would lead to 

undesirable merging of the corresponding scenes. To reduce the probability of this merging, time 

constrained clustering is used where two shots which are far apart in time are never combined 

into one cluster as they are unlikely belonging to one scene. In [YEU 96] a fixed temporal 

threshold is used to delimitate distant shots. As this threshold should be dependent on the scene 

duration, an adaptive temporal delimitation is proposed in [MAH 00]. According to this work an 

input video is first divided into so-called sequences – narrative unities formed with one or with 

several scenes. The shot clustering is then performed within sequences. The resulting 

segmentation technique is based on temporal relationships between shots, such as meets, during, 

overlaps and before, defined according to Allen’s algebra [ALL 83]. Instead of the scene 

transition graph of [YEU 96], a temporal-clusters graph is built in [MAH 00], where the 

aforementioned temporal relationships connect the nodes representing the shot clusters. Meets 

relationships in this graph separate sequences, as they correspond to gradual transitions between 

shots, while scenes boundaries are discerned using before relationships. 

To overcome the difficulties resulting from a discrete nature of the segmentation 

techniques based on shot clustering, such as their rigidity and the need to choose a clustering 

threshold, continuous analogues have been proposed. Kender and Yeo [KEN 98] reduce video 

scene segmentation to searching of maxima or minima on a curve describing the behavior of a 

continuous-valued parameter called video coherence. This parameter is calculated at each shot 

change moment as an integral measure of similarity between two contiguous groups of shots 

based on a short-memory model which takes into consideration the limitation and preferences of 

the human visual and memory systems. Rasheed and Shah [RAS 03] propose to construct a 

weighted undirected shot similarity graph and detect scene boundaries by splitting this graph into 

subgraphs so as to maximize the intra-subgraph similarities and minimize the inter-subgraph 

similarities. 
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2.2.2 Audio Similarity-Based Segmentation 

As the physical setting of a video scene remains usually fixed or change gradually (when, for 

instance, the cameras follow moving personages), the sources of the ambient sound rest stable or 

change their properties smoothly and slowly. A scene change results in a shift of the locale and, 

hence, the majority of the sound sources changes too. This change can be detected as the 

moment of a drastic change of audio parameters characterizing the sound sources. 

Since short-term acoustic parameters often are not capable to represent properly the 

sound environment [CHE 02], these parameters are often combined within a long-term window. 

The resulting characteristics are evaluated within two contiguous time windows adjoining a point 

of potential scene boundary (usually shot breaks) or its immediate vicinity (as sound change 

sometimes shifted by a couple of seconds during montage to create an effect of inter-scene 

connectivity) and then compared. A scene boundary is claimed if their difference is large 

enough. 

Sundaram and Chang [SUN 00] model the behavior of different short-term acoustic 

parameters, such as cepstral flux, zero crossing rate etc, with correlation functions characterizing 

a long-term properties of the sound environment. A scene change is detected when the decay rate 

of the correlation functions total for the all acoustic parameters reaches a local maximum, as it 

means low correlation between these parameters caused by the change of the sound sources. Cao 

et al. [CAO 03] approximate long-term statistical properties of short-term acoustic parameters 

using normal distribution. At a potential scene boundary these properties are compared by 

applying a weighted Kullback-Leibler divergence distance. The experimental evaluations are 

reported which suggest the better integral performance is attained when this distance is used as 

compared to the model proposed in [SUN 00]. Harb and Chen [HAR 06] segment the audio track 

of an input video into so-called audio scenes and chapters using an acoustic dissimilarity 

measure which combines two terms. The first one is the Kullback-Leibler distance between 

distributions of spectral parameters. The second term is a so-called semantic dissimilarity 

measure which is a difference between the results of sound classification into semantic classes: 

speech, music and noise. 

2.2.3 Audio-Visual Data Fusion 

While several ad hoc techniques have been proposed for narrative video segmentation into 

scenes in the visual or audio domains only, there is a lack of methods which fuse both the 

modalities in a systematic and symmetrical way so as to compensate for their inaccuracy and, 

hence, achieve better segmentation performance. The common approach to segmentation of 

narrative video into scenes is based only on visual keys extracted from the image stream. In 
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order to combine information extracted from the audio and image streams into one more reliable 

decision, a set of simple rules is usually applied. The audio stream can be used as an auxiliary 

data source to confirm or reject scene boundaries detected from the image sequence. For 

example, Cao et al. [CAO 03] first segment video into scenes in the visual domain and then 

apply sound analysis to remove a boundary of suspiciously short scenes, if it is not accompanied 

by a high value of audio dissimilarity. In [JIA 00] it is proposed first to segment the video in the 

audio domain and find potential scene boundaries at shot breaks accompanied by a change in the 

sound environment; these boundaries are then kept in the final decision if they are confirmed by 

low visual similarity between preceding and succeeding shots. Sundaram and Chang [SUN 00] 

first segment video into scenes independently in the video and audio domains and then align 

visual and audio scene boundaries as follows. For visual and audio scene boundaries lying within 

a time ambiguity window, only the visual scene boundary is claimed to be the actual scene 

boundary; the rest of the boundaries are treated as the actual scene boundaries. 

2.2.4 Semantic Cues-Based Segmentation 

While similarity-based segmentation techniques aim at grouping shots into scenes according to 

the common setting and disregarding the precise semantic meaning, some approaches have been 

proposed that additionally assign semantic labels to scenes or detect segments only of one or 

several specific types using the corresponding semantic keys. A HMM-based method is proposed 

in [ALA 01] to distinguish dialog scenes – groups of shots containing conversations of people. 

The states of the used HMMs correspond to camera shots. The per-shot observable data include 

classification into speech, music and silence for the soundtrack; face detection result (face or no-

face label) and scene location change (obtained using a conventional shot visual similarity-based 

method) for the image sequence. Two types of HMM topology are proposed – circular and left-

to-right, the states representing establishing scene, transitional scene or dialogue scene. The final 

segmentation result is obtained by finding the most probable state path using a Viterbi algorithm. 

 A technique for violent scenes detection in general TV drama and movies is presented in 

[NAM 98]. It integrates cues obtained from both the video and audio track. In the visual domain 

these cues are the spatio-temporal dynamic activity of a shot and specific events. The former is 

the measure that has a high value for short shots with much motion, which are typical for 

dynamic action scenes. The events are flame and gunfire/explosion segments which are detected 

using a predefined color table. In the auditory domain the corresponding cue is energy entropy 

allowing the authors to detect abrupt changes of the sound energy level which signify bursts of 

sound such as explosions. A knowledge-based combination of the audio-visual features is used 

to obtain the final scene classification. 
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 Segmenting a video into four basic scene types (dialogues, stories, actions and generic) is 

considered in [SAR 98]. The following audio-visual features are used. An inter-shot visual 

similarity measure is computed within a time window and groups of similar shots are identified 

and labeled. The sound track is divided into silence, speech, music and miscellaneous segments. 

Scenes are detected using the following pre-defined rules. Dialogues are distinguished as 

alternating patterns of visually similar shots occurring together with speech. Stories are detected 

as repetitive patterns of visually similar shots. Progressive patterns of shots corresponding to 

non-speech audio segments are marked as stories. Scenes that do not fulfill the aforementioned 

criteria are recognized as being generic. 

2.2.5 Discussion 

In order to avoid the difficult problem of automatic understanding of video, scenes are 

sometimes defined as groups of shots having the similar visual content or/and the consistent 

audio properties. While this definition justifies the use of simple low-level similarity measures, it 

does not always correspond to the notion of scene admitted in cinematography. In this work we 

define scenes as important semantic units of a narrative video unified by a dramatic event or 

action. The continuity of the locale and time, being a typical property of scenes, together with the 

video production rules indeed allow us to distinguish scenes as segments of similar visual and 

audio content, but only with some degree of confidence. To reduce this ambiguity to the 

maximum extent, we have to choose the proper signal-based features which enable to establish 

the similarity in the visual and audio domains and to use both the modalities at the same time so 

as to compensate for their inaccuracy. 

 To establish the similarity of scene content in the visual domain, we derive a new 

measure, called video coherence, by considering a continuous generalization of the conventional 

discrete clustering-based technique which is analogous to the approach of [KEN 98] in the sense 

that it seeks for scene boundaries at local minima of a continuous measure of video coherence. In 

contrast to the binary output of the clustering-based segmentation, this measure provides a 

flexible confidence level of the presence or absence of a scene boundary at each point under 

examination; so that the lower is this measure, the more possible is the presence of a scene 

boundary. In contrast to the video coherence of Kender [KEN 98] which is a total sum of inter-

shot similarities, our measure integrates only the similarity of the shot pairs that possibly taken 

from the same camera. In the audio domain we adopt Kullback-Leibler distance as it was been 

proved to be effective measure for the task of video segmentation into scenes. This distance 

serves as an audio dissimilarity feature providing the evidence of the presence or absence of a 

scene boundary in the audio domain. It represents the divergence between distributions of shot-
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term spectral parameters estimated using the continuous wavelet transform. Currently we do not 

use specific semantic keys like speech detection, aiming to elaborate a generic segmentation 

approach which does not assign semantic labels to scenes. 

In the common approach the audio-visual keys are fused into more reliable decision using 

a set of simple rules. While such rule-based fusion is convenient when being applied to binary 

features which can be combined using Boolean and time-ordering operators, it becomes too 

restrictive when these features are real-valued. The rule-based approach in this case suffers from 

rigidity of the logic governing the feature fusion. Generally, each feature provides evidence 

about the presence or absence of a scene boundary with a different level of confidence, 

depending on its value. Making intermediate decisions, rule-based techniques ignore this 

difference for one or several features, which leads to undesirable losses of information. 

Moreover, these techniques require the proper choice of thresholds which usually are the more 

numerous, the more rules are applied. 

As the dependency between the values of audio-visual keys and the optimal segmentation 

can be hardly established a priori, automatic inferring based on a set of learning data seem to be 

more appropriate. For this purpose we derive a segmentation approach which fuses multiple 

evidences in a statistical manner, dealing properly with the variability of each feature. In this 

approach we consider the segmentation task as detection of segment boundaries by estimating 

their probabilities and applying time alignment so as to maximize the segmentation performance. 

The probability of scene boundaries is calculated in different ways depending on basic 

assumption about the input features, in particular with HMMs. Though we adopt and test our 

statistical approach to the task of narrative video segmentation into scenes, it is quite general to 

be applied for other genres of video, possibly having more complex content structure which can 

include multiple semantic segments at different levels of coarseness. As we could see it from the 

related work concerned with sports video segmentation, HMMs are quite widespread in this task. 

The novelty of our approach, when applying HMMs, is in using auto-regressive modeling to deal 

with feature interdependencies which are crucial in the task of narrative video segmentation into 

logical story units. Another peculiarity is in using the time alignment that maximizes the 

segmentation performance instead of the commonly used Viterbi alignment. The advantage of 

the proposed approach is that it is easily extensible to new features, in contrast to rule-based 

techniques that often become too complicated and cumbersome when many features are treated. 

The approach also takes into consideration a non-uniform distribution of scene durations by 

including it as prior information. 
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2.3 Conclusions 

The related work in the field of semantic video segmentation reveals a large diversity of the 

processing techniques that stems from different specificity of different genres and sub-genres of 

video; this is especially the case for sports programs where domain-specific fine-tuned event 

detectors are often applied. In spite of this, we can notice that much of this work is based on the 

common idea of using production rules that are followed during creation of video. These rules 

determine specific syntactical organization which is related to semantic structure of video and, 

hence, can be exploited to perform automatic video content reconstruction. According to such 

organization of sports video semantic segments often are represented by the corresponding views 

or patterns of views. Also, in order to constantly keep the audience informed about the current 

game state, score or statistics boards are regularly inserted into the broadcast according to the 

rules of the game. In narrative films logical story units are composed from interleaving visually 

similar shots, while the corresponding soundtrack exhibits the consistency of the acoustic 

parameters caused by the common locale and specific editing used to convey the scene mood. In 

this thesis we rely on such quite common characteristics of video stemming from production 

rules and propose the corresponding feature detection techniques. 

Instead of detection of semantic segments of just one or several types, that is often the 

case in the related work, in this thesis we aim at reconstructing the total content structure of 

video. Semantic segmentation of video usually integrates multiple low and mid-level features 

and is performed using generally two types of methods – deterministic rule-based and stochastic 

(usually based on HMMs). The advantage of rule-based techniques is that they allow us to 

express directly our understanding of relationships between detectable features and the semantic 

structure of a particular type of video, without the need to prepare a large set of manually 

marked-up learning data. In this thesis we develop a deterministic approach based on a finite 

state automaton which allows us to formulate video content parsing rules as grammar constraints 

and feature templates that control transitions between semantic segments. In contrast to the many 

existing rule-based techniques this approach is formulated on a regular basis and does not require 

rebuilding the whole content generation system when the underlying content parsing rules are 

changed. We adopt and test the deterministic approach for the task of tennis video segmentation. 

Deterministic methods, however, seem not to be appropriate in the case where multiple weak 

features should be fused into a single reliable decision, e.g. in the task of multi-modal 

segmentation of narrative video into scenes. Therefore we also derive a segmentation approach 

which fuses multiple evidences in a statistical manner, dealing properly with the variability of 

each feature. This approach is adopted and tested for the task of narrative video segmentation 

into scenes. 
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3 Deterministic Segmentation 

In this chapter we present our deterministic approach which infers a hierarchical content table of 

video based on mid-level events extracted from raw video. We apply this approach to sports 

game video, namely to tennis video, as it has a well-defined temporal content structure whose 

segments can be unambiguously related to mid-level events. As a result, a fully automatic 

content parsing system is built and tested on a ground-truth video. 

3.1 Introduction 

Sports video is chosen as being one of the most popular types of the TV broadcasting that 

appeals large audience. Nowadays, however, we often cannot permit ourselves to spend hours on 

watching full-time long games such as tennis matches. Moreover, some people might find it 

boring to watch all the video and they are interested only in the most impressive scenes. This is 

especially the case if one just wants to refresh in memory some episodes of an already seen game 

record. As it is difficult to quickly localize an interesting scene in a long video using ordinary 

media playing tools which provide simple functions like a forward/backward rewind, there is an 

evident need to provide convenient means of effective navigation. Sports video has usually a 

well-defined temporal content structure which could be used to efficiently organize a content-

based access that allows for such functions as browsing and searching, as well as filtering 

interesting segments to make compact summaries. As for a tennis match, it can be represented, 

for example, according to its logic structure as a sequence of sets that in their turn are 

decomposed into games etc. 

To detect regular content units of video we rely on some particular characteristics and 

production rules that are typically employed to convey semantic information to a viewer. A 

tennis match, like a lot of other sports games, is usually shot by a number of fixed cameras that 

yield unique views during each segment. For example, a serve typically begins with switching of 

the camera into a global court view (see Figure 2-1). Since a tennis match occurs in a specific 

playground, this view can be detected based on its unique characteristics (we employ its color 

homogeneity property). In order to constantly keep the audience informed about the current 

game state, score or statistics boards are regularly inserted into the broadcast according to the 

rules of the game. In our content parsing technique these inserts are detected and used as 

indicators of transitions between semantic segments. We propose quite a general framework 
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which can be considered as a kind of a final state machine whose states relate to content units. It 

receives at the input a time-ordered sequence of instantaneous events like the beginning of a 

global view shot and processes it recursively according to pre-defined grammar rules. Some of 

these events, such as score board appearances are used as transition indicators while others 

allows for exact positioning of segment boundaries. 

This chapter is organized as follows. In the next section we present a general scheme of 

our parsing system, define tennis content structure and give a detailed description of the parsing 

technique. After this we describe algorithms developed for automatic detection of the relevant 

events. In the next section the results of experimental evaluations are presented and discussed. In 

the section “Application: Tennis Analyzer” we describe our software realization of the proposed 

segmentation approach for the purpose of automatic content table generation and browsing of 

tennis video. Final conclusions then finish up the chapter. 

3.2 Segmentation Framework 

3.2.1 Semantic Structure of Video 

We define a content table of video hierarchically as a sequence of nested temporal segments which are 

contiguous at each semantic level. Different content structures can be usually proposed depending on the 

needs of a user. An example of two configurations for tennis video is presented in Figure 3-1. It shows 

segment types allowed at each semantic level; segments of a higher level can comprise segments of 

several types in the lower level. The first configuration corresponds to the logical structure of a tennis 

match. According to this structure the match is decomposed into sets separated by breaks at the second 

semantic level; each set is divided into games and breaks at the third level etc. The second configuration 

just separates the scenes of tennis rallies (“play”) from the rest parts of the video (“break”). Such more 

simple decomposition allows for building compact summaries consisting only of playing parts and can be 

used to reduce the duration of the video and the bandwidth for resource limited devices [CHA 01]. 

 

 
Figure 3-1. Two samples of a tennis video content structure. 
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3.2.2 Segmentation Principles 

If we asked a person to segment video records of the same type, he would need to make up a 

decision concerning two interrelated problems. First, a desirable semantic structure has to be 

defined: how many levels of details and what segments can be included at each level. Two 

possible semantic structures for the tennis video are described above (see Figure 3-1). Second, a 

set of rules has to be clearly stated that are to be followed in segmenting. If the segmentation is 

performed only intuitively, without clear understanding of underlying principles, it will be 

subjective and unstable. The segmentation rules can be usually formulated as events or their 

combinations which signify transition between semantic segments. It is often the case when 

these events are suggested by the production principles, which is not surprising as these 

principles are based on the predefined semantic intention of the producer. For example, the 

beginning of a game in a tennis match could be recognized by a corresponding score board 

appearance or by switching to the court view after a pause and change of the serving player. 

In order to segment video automatically we state the rules of transition between semantic 

segments explicitly at each semantic level as combinations or templates of primitive events that 

can be detected automatically. These templates are defined as sets of events satisfying some 

temporal constraints. As it was shown by Allen [ALL 83], thirteen relationships are sufficient to 

describe the relationship between any two intervals: before, meets, overlaps, starts, during, 

finishes, equals and their inverses. Additionally we determine relationship “precedes” between 

two point events s1 and s2 belonging to detectable classes of events c1 and c2, saying that s1 

precedes s2 if s1 occurs before s2 and there is no other events of type c1 and c2 between them. 

Templates can be defined hierarchically so that templates of a higher level are composed from 

templates of the lower level or primitive events. The templates that determine the transition 

between semantic segments are referenced hereafter as transition templates. In the general case 

these templates depend on segment types. Hereafter we suppose that they are dependent only on 

the type of the segment to which the transition occurs; in the other words each transitional 

template determines the beginning of the corresponding semantic segment. 

To decompose tennis video according to the semantic structure presented in Figure 3-1.I, 

we propose the following definitions of the semantic segments and the corresponding event 

templates. Let’s suppose that the set of detectable primitive events consists of global court view 

(denoted as GCV) shots (see Figure 2-1), rocket hits (RH) sounds and specific score or statistics 

boards of three types inserted by the producer between tennis points, games and sets 

respectively. At first we determine the template for the event of tennis serve or rally. When a 

serve/rally begins, a switch occurs to the camera providing global court view. When it finishes, 

the view is change so as to show, for instance, players’ close-ups or the audience. So, in the 
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simplest case a serve/rally can be defined as a global court view shot. In order to distinguish a 

serve/rally from replay shots which correspond sometimes to the same or similar view, rocket 

hits event can be additionally used. In this case a serve/rally (SR) event is defined as a template 

of two primitive events GCV and RH related as RH during GCV, since rocket hits are not heard 

during replays. Let’s consider the segmentation at semantic level 2 (level of sets) in Figure 3-1.I. 

We imply that a tennis set begins with its first serve/rally. Therefore the corresponding transition 

template is the beginning of event SR, denoted as SR.begin (the beginning of a template is 

defined as the earliest beginning of its constituent events/templates; the end is defined similarly). 

A unique score/statistics board is usually inserted a little time after the end of a set which is 

defined as the end of the last rally. Hence, we detect the beginning of a break as the end of a 

serve/rally event which precedes the beginning of the corresponding score board for sets (SBS), 

i.e. the template is written as {SR.end precedes SBS.begin} (the first event in this case is used to 

precise the beginning time of the break segment). Sometimes score boards stands on the screen 

all the playing time. In this case transitions to break segments could correspond to the changes of 

the printed score. The semantic segments and the corresponding templates for semantic level 3 

and 4 (level of games and points) are defined in a similar way.  

Note that the defined above templates are easily detectable with a computationally 

effective procedure. If the beginning and the end of detected events or lower-level templates are 

ordered in time and thus form an input sequence of instantaneous events, these templates can be 

recognized in one path using state variables for event tracking. For example, the during relation 

of score/rally event is easily checked at the end of a global court view by verifying that the 

beginning and the end of the rocket hits segment (if they exist) are between the beginning and 

the end of the global court view. 

The general scheme of our parsing system is shown in Figure 3-2. First, relevant semantic 

events are detected from visual and audio sequences of an input video: score boards, global court 

views and rocket hits segments. These events are then looked for to distinguish transitional 

templates that are fed as the input to the content parser. Generally there are some constraints on 

possible chains of segments at each semantic level that are given by the corresponding grammar. 

In our case bi-grammars are employed that are sets of allowable transitions between two 

contiguous segments. A content table is finally generated by the content parser governed by the 

sequence of transition templates and by predefined grammar constraints. 
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Figure 3-2. Parsing chain. 

 

3.2.3 Segmentation Algorithm 

The output content table is generated by a state machine whose states correspond to the appropriate 

semantic segments. The multilevel content structure of video is generated recursively, beginning at the 

highest semantic level. At each semantic level the parsing is driven by its grammar that imposes state 

transition constraints and transition template detectors that control the transition from one state to another. 

The corresponding parsing rules developed for the content structure of Figure 3-1.I are given in Table 

3-1, Table 3-2 and Table 3-3. Column “Transition template” corresponds to the beginning of a state 

listed in the first column of the tables. The transition time specifies the precise transition moment for the 

corresponding template. In the general case it is supposed that the initial segment of a given video is 

unknown. That is why the state machine starts from initial undefined state at the second semantic level. 

For the lower semantic levels the initial machine state is chosen according to column “Initial state of the 

sublevel”. Our recursive parsing algorithm for a given semantic level is the following: 

• Detect transition templates from primary events. 

• For each transition template extracted in the time order do: 

o Check whether the template corresponds to an allowed next machine state. If so, do: 

 If the semantic segment corresponding to the current machine state has to be 

further decomposed into the segments of the lower level, initialize the current 

state for that level accordingly and perform the parsing recursion for that 

segment. 

 Go to the next machine state according to the detected pattern. 

• For the remaining semantic segment corresponding to the current machine state: if it has to be 

further decomposed into the segments of the lower level, perform the parsing recursion for this 

segment. 

As it was mentioned above, transition templates can be detected from an input sequence of time ordered 

point events in one pass. Therefore the two first steps of the algorithm can be merged into one step 

performed in one pass as well. 
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State Allowable next 

states 

Initial state of 

the sublevel 

Transition 

template 

Transition time 

Initial undefined Set - - - 

Set Break Game SR.begin SR.begin 

Break Set - SR.end precedes 

SBS.begin 

SR.end 

Table 3-1. Parsing rules for semantic level 2 (of tennis sets). 
 

State Allowable next 

states 

Initial state of 

the sublevel 

Transition 

template 

Time adjustment 

event 

Game Break Point SR.begin SR.begin 

Break Game - SR.end precedes 

SBG.begin 

SR.end 

Table 3-2. Parsing rules for semantic level 3 (of tennis games). 
 

State Allowable next 

states 

Initial state of 

the sublevel 

Transition 

template 

Time adjustment 

event 

Point Break - SR.begin SR.begin 

Break Point - SR.end precedes 

SBP.begin 

SR.end 

Table 3-3. Parsing rules for semantic level 4 (of tennis points). 
 

3.3 Event Detection 

Our scheme of the automatic tennis video parsing requires a proper choose of events detected in the raw 

visual and audio streams at the preprocessing stage. The following is a description of algorithms 

developed for automatic detection of global court views and score boards. 

3.3.1 Global Court View 

Tennis video like a lot of other types of sport video is usually shot by a fixed number of cameras 

that give unique views for game segments. A transition from one such view to another is 

sometimes an important indicator of semantic scene change. In tennis video a transition to a 

global court view that shows the whole field area with the players commonly signifies that a 

point starts and a rally begins. When the rally finishes, a transition to another view such as a 

player close-up or the audience usually happens. Thus, court view recognition is important for 

rallies scenes detection. 
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 The first step in the detection of a specific view is segmentation of the video into views 

taken by a single camera or, in the other words, segmentation into shots. Color histogram 

difference between consecutive frames is applied in order to detect shot transitions. We use 64-

bins histograms for each 3 components of the RGB-color space and concatenate them into one 

192-dimensional vector. The difference between histograms of two consecutive frames is given 

by the dissimilarity analogue of the cosine measure: 
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where )(kH i  indicates k-th bin of the color histogram of frame i. 

A simple shot detection algorithm puts a shot boundary at a frame for which the 

difference climbs above some threshold value. It is suitable for abrupt shot transitions that yield 

strong maxima of the difference value. However, in order to detect gradual transitions we need to 

set a low threshold value that would lead to unacceptable level of false alarms caused by fast 

camera motion or a change in lighting conditions. That is why we use a twin-threshold algorithm 

capable to reliably detect both type of shot transition [DON 01]. Abrupt shot transitions (hard 

cuts) are detected using a higher threshold T1 applied to the histogram difference between two 

consecutive frames. In order to find a gradual shot boundary, a lower threshold T2 is used. If this 

threshold is exceeded, the cumulative difference is calculated and compared with the threshold 

T1.  

In order to exclude false positives of the shot detection algorithm caused by flashlights, 

additional check is made for abrupt transitions. A flashlight usually changes the color histogram 

considerably for one or several frames, while the frames that follow right after the flashlight 

resemble the frames that are before it. We compare the frames lying to the left and to the right of 

a potential abrupt shot transition within a window T by computing the following value: 

 ),(min)(
, jiTtjttiTtflash HHDtD

+≤<<≤−
= , (3-2) 

where t – the time index of the potential shot transition, inter-frame difference D is defined 

according to expression (3-1). If this value is below a threshold, the shot transition is rejected. 

We also merge the shot boundaries that are too close to each other (they are usually generated 

when a gradual shot transition occurs) in order to exclude very short or false shots. 

 Color distribution of global court view shots does not change much during the tennis 

match. This allows us to detect them based on their comparison with sample frames of the court 

view that are selected manually at the learning stage. A shots is recognized as a court view if it is 

close enough (in the sense of the color histogram difference defined by the expression (3-1)) to 
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the appropriate sample view. Only homogeneous regions of the tennis field are taken from the 

learning frames in order to exclude players’ figures and outliers. Several court samples and the 

corresponding rectangular tennis field areas selected at the learning stage of experimental 

evaluations are shown in Figure 3-3. Each learning sample is selected only once for a game or a 

series of games played at the same court (e.g. during the same championship). 

 
Figure 3-3. Global court view samples where the rectangular regions bounds learning areas. 

 
In tennis video there are usually several types of shots that contain a big part of the tennis 

field at the background and, thus, resemble much the global court views. An example of such 

shots is players’ close-up views; one such a view is shown in Figure 3-4 along with a court view 

sample. However, the court views usually take a longer part of the tennis video. Hence, we can 

enhance the robustness of the court view detection by grouping the shots into similarity clusters 

and, then, rejecting rare clusters. Let each cluster i be represented by its color histogram (which 

is an average histogram for all the shots of the cluster) Hi and the number of its shots Mi. In order 

to describe our clustering algorithm, denote the set of all the clusters as C and the total number of 

clusters - as N. Then the algorithm can be written as the following. 

• Initialize C as an empty set. 

• For each shot of the given tennis video do: 

o Calculate a mean histogram of the shot Hshot. 

o Find the number k of the cluster closest to the shot as ),(minarg
,...,1

ishot
Ni

HHDk
=

= , 

where D(.) is the difference measure between the histograms defined by (1). 

o If the distance D(Hshot,Hk) is less than the threshold t1, then set 1+= kk MM  and 
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= . Else create a new cluster N+1 that contains one shot and 

has the histogram Hshot, set N=N+1. 

• Merge clusters that are close enough to each other. 
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So, we can resume the global court view detection algorithm as the following. 

• Segment the tennis video into the shots. 

• Combine visually similar shots into the clusters. 

• Calculate the time duration of each cluster for the whole video; exclude from the further 

consideration the clusters that last less then a predefined fraction (0.2 in this work) of the 

maximally long cluster. 

• Recognize as court views the shots that belong to the cluster closest to the learning court 

view frames. 

 

 
Figure 3-4. Player’s close-up and court view sample frames that have similar color distributions. 

 

3.3.2 Score Board Detection 

As reflecting the state of the game, score boards could provide useful information for tennis 

video parsing into its logical structure (shown in Figure 3-1.I). Since these boards are inserted 

regularly according to the game rules, the mere facts of their appearance/disappearance can be 

used as reliable indicators of the semantic segment boundaries. Moreover, they present important 

information about the game and, hence, we can choose the appropriate frames as the key frames 

of the corresponding semantic units and thus provide convenient visual interface for browsing 

through the content table. 

 The same tennis video usually has several types of score boards that can be used to 

separate the segments at different levels of the semantic hierarchy. Score boards of the same type 

have the fixed positions on the screen and similar color bitmaps near their boundaries. The only 

difference between them lies in their textual content, the horizontal size (which is changed so as 

to hold all required data) and somewhat in their color (caused by the partial transparency). 

Several sample frames which contain score boards along with their bounding rectangle are 

shown in Figure 3-5 and Figure 3-6. We detect score boards, if we find horizontal lines of enough 
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length placed near their upper and bottom borders. The Hough transform [HOU 59] is applied to 

edge points in order to detect the lines. The positions of the score boards borders are given 

manually during the learning – a user selects from sample tennis video the frames that contain 

required score tables and picks out their bounding rectangle (see Figure 3-5 and Figure 3-6). In 

order to enhance the robustness of detection results, smoothing is used – score boards scenes are 

pronounced only when the corresponding boards are detected in several frames during a period 

of time. 

 

 
Figure 3-5. Samples of score boards inserted between tennis points and their bounding rectangle. 

 
 

 
Figure 3-6. Samples of score boards inserted between tennis games and their bounding rectangle. 

 

3.4 Experimental Evaluations 

The performance of our parsing system was experimentally evaluated on three tennis video 

records captured from Eurosport satellite channel. One of them shows an excerpt of a tennis 

match of Australia Open (AO) 2003 championship, two others represent fragments of two 

matches of WTA tournament. The former lasts about 51 minutes, the rest two – 8.5 and 10 

minutes. The two tournaments have different score board configuration and color distribution of 
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the court which can be seen from Figure 3-3, Figure 3-5 and Figure 3-6 representing these 

tournaments. So, we extracted two sets of learning samples for the events detectors. 

 In the parsing accuracy evaluations we used the content structure presented in Figure 

3-1.I and parsing rules of Table 3-1, Table 3-2 and Table 3-3. Rocket hits detectors were not 

used in these evaluations, so a template for a score/rally event was represented by a single 

general court view. Automatically parsed videos were compared with manually labeled data 

where the segments were defined in the same way as those used to derive the transition templates 

above in this chapter: the segments “set”, “game” and “point” begin with the first serve and end 

when the last rallies are over (we relate these moments to the beginning and the end of 

corresponding general court views). The results of segmentation performance evaluations are 

presented in Table 3-4. Semantic levels 3 and 4 (see Figure 3-1.I) were treated separately; level 2 

was not considered as there are few set segments in the ground-truth. The values of recall, 

precision and F1 are calculated as 
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where Nc, Nmiss and Nf.a. are the number of correct, missed and false alarm boundaries 

respectively. A manually labeled boundary was considered as detected correctly if it coincided 

with an automatically obtained one within an ambiguity time window of 1 second. The value Nb 

in Table 3-4 stands for the number of tested boundaries in manually labeled video. In order to 

reduce the influence of “edge effects” on the segmentation evaluations results, the first and the 

last segments of the lowest semantic level were cut off by half from comparison intervals for 

each video record. The results of classification accuracy evaluations are given in Table 3-5. The 

value of recall and precision are computed in a similar way as expressions (3-4) and (3-5), where 

instead of the number of boundaries the time duration of the segments should be used. The “total 

duration” of segments in table 3 is measured in seconds. 
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Tournament Semantic level Recall Precision F1 Nb 

AO 
3 0.84 0.62 0.71 19 

4 0.82 0.91 0.86 153 

WTA 
3 1 0.83 0.91 10 

4 0.94 0.98 0.96 63 

AO+WTA 
3 0.90 0.68 0.78 29 

4 0.86 0.93 0.89 216 

Table 3-4. Segmentation results. 
 

Semantic Level Segment Recall Precision F1 Total duration 

3 
Game 0.97 0.99 0.98 3320 

Break 0.97 0.91 0.94 778 

4 
Point 0.83 0.98 0.90 1670 

Break 0.97 0.89 0.93 1650 

Table 3-5. Classification results total for both the tournaments. 
 

As for processing time, our parsing technique is quite fast provided that the events are 

already extracted and takes less than 1 second for a usual tennis match on modern personal 

computers. This is because the computational complexity is approximately proportional to the 

number of events and the number of semantic levels. The major computational power is required 

to decompress the video and detect the relevant events. On our Intel Pentium 4 1.8 GHz 

computer this task is performed nearly in real time for MPEG1 coded video, though we did not 

make a lot of optimizations. 

 The most of the segmentation errors are caused by unreliability of event detectors. High 

rate of false score boards result in relatively low precision of segmentation on games and breaks 

for AO tournament. It is caused by resemblance of the score board, which is a true indicator of 

the segment transitions, to a statistics board which was inserted in any place during games 

(sample frames are shown in Figure 3-7). One of the sources of the errors at semantic level 4 is a 

high false alarm rate for global court views which is caused by confusions with replay shots 

(they shift the transition between a point and a break). So, there is a need to improve the events 

detector or use additional ones. For instance, game and set score boards are often shown together 

with wide views (see the left frame of Figure 3-7). This allow us expect that their combining into 

a pattern would give a more reliable transition indicator. 
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Figure 3-7. Game score board (at the left) and its false counterpart. 

 
In order to estimate the accuracy of our parsing engine without the influence of event 

detection errors, segmentation performance was evaluated on manually corrected events. We 

considered shots as global court views only if they were not replayed episodes. The evaluation 

results are given in Table 3-6. There are only few segmentation errors at the semantic level 4 for 

AO tournament that steam from the parsing rules. They are caused by the fact that sometimes the 

producer forget to show a score board or insert it after the first serve of a point. 
 

Tournament Semantic level Recall Precision F1 

AO 
3 1 1 1 

4 0.91 0.95 0.93 

WTA 
3 1 1 1 

4 1 1 1 

AO+WTA 
3 1 1 1 

4 0.94 0.96 0.95 

Table 3-6. Segmentation results for manually detected events. 

 

3.5 Application: Tennis Analyzer 

A computer program called “Tennis Analyzer” was developed and realized in C++ programming 

language using MS Visual C++ development environment. It is aimed at completely automatic 

generation of a content table for tennis video and provides a graphical user interface (GUI) for 

browsing. The block scheme of the program is depicted in Figure 3-8. Tennis video is given in the 

form of AVI or MPEG-code file. In order to extract visual and audio features that are to be used 

for content parsing and browsing through them, tennis video at first is split into a frame sequence 

and an audio samples stream. The frame sequence is segmented into shots using the twin-

threshold method described above. For each shot it is calculated a key frame – the frame that has 
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the color histogram closest to the mean histogram of the shot. Key frames are used to visually 

represent the corresponding shots and to classify them into court views. Score boards are 

detected using the learning board samples extracted from the database which is prepared with the 

help of the learning module. The learning interface allows a user to select a sample frame with 

the score board of interest and to define its bounding rectangle. The audio stream is used to 

detect applauses segments. The applauses are used to generate an importance mark of semantic 

segments, so that the longer are the applauses, the higher is the mark. At first the audio classifier 

produces the applauses class probabilities for every sound chunk of one second length. Then, in 

order to reduce the rate of the false alarms, the smoothing module detects as applauses segments 

only the groups of several contiguous sound chunks with high probability. As the feature 

extraction is slow enough, all the features are computed only once and saved to the 

corresponding data files, whereupon they can be used for fast browsing. 

 
Figure 3-8. Block scheme of the Tennis Analyzer. 

 
The Tennis Analyzer provides several views for tennis video browsing and analyses, as 

shown in Figure 3-9. The player window (shown at the upper right corner) allows for playing of 

the video using standard controls: play/stop and rewind buttons and a scrolling slider. The 

content view (shown at the upper left corner) represents the content table as a tree structure and 

allows for browsing through the content synchronously with the player window. For each 

selected semantic segment it represents a list of the nested segments with their attributes. The 

most interesting segments of the video can be filtered out based on the desirable range for the 

importance mark. In addition, the content view provides interface for entering the textual 

description for segments and for manual editing of the content structure that allows a user to 

correct automatically parsed structures and save them to persistent memory. The view shown at 
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the bottom of Figure 3-9 represents the key frames of the shots and the frames that contain a score 

table. It allows for synchronous browsing with the content view and the player window as well – 

for the content view it can represent only the segment selected in the content tree; the player 

window can be rewind to any selected key frame by a simple mouse click. 

 
Figure 3-9. Tennis analyzer GUI. 

 

3.6 Conclusions 

A deterministic approach is proposed for hierarchical content parsing of video. It is adopted and 

tested for tennis video. The approach is based on some particular characteristics and production 

rules that are typically employed to convey semantic information to a viewer, such as specific 

views and score boards in tennis broadcasts. We use our notion of a tennis content structure to 

select unique template of events that indicate transitions to semantic segments of each type. 

These events along with grammar restrictions drive the parsing process. 

 The advantage of our approach is in its expressiveness and low computational 

complexity. Moreover, the experimental evaluations showed quite high segmentation accuracy, 

especially when high reliability of event detectors is provided. Further improvements of the 

proposed technique could be done in several directions. First, more robust event detectors could 

be elaborated, as the experimental evaluations showed that such an improvement would enhance 
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significantly the segmentation accuracy.  Second, parsing rules could be extended to include 

additional informational sources such as rocket hits detection, time constraints, speech 

recognition. Third, the currently used semantic structure could be extended so as to contain a 

larger variety of semantics which could provide additional possibilities for content based 

navigation. For instance, the points could be split into several classes such as rallies, missed first 

serve, ace or replay. 
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4 Stochastic Approach 

In practical applications it is difficult to find keys which would enable unambiguous 

segmentation of video. The ambiguity can be caused by the unreliability of the key detection or 

by the absence of the direct dependency. In the conventional deterministic approach this 

uncertainty is often ignored or is taken into account very roughly at the expense of the significant 

growth of system complexity. In this chapter we propose a statistical approach, enabling the keys 

to be treated in a probabilistic manner. This allows one to take into account “soft” grammar 

constraints imposed on the semantic structure and expressed in the form of probability 

distributions. Moreover, the multiple keys, being considered as statistical variables, can be more 

easily fused into one, more reliable decision in the case of their collisions. Based on the theory of 

hidden Markov models and their extensions, we consider a video as a stochastic automaton – 

statistical generalization of the finite state machine, proposed in the previous chapter. This 

enables us to take into account the correlation between semantic segments at different levels of 

abstraction (for hierarchical models) and the non-uniform distribution of segment duration. 

 Further in this chapter we first consider the general principles how to chose the optimal 

segments based on the corresponding probability estimates. In contrast to the conventional 

approach which chooses the single best path for the state variables, we focus on the state 

transitions so as to find the optimal segmentation in terms of recall and precision. Then we 

consider the video segmentation task based, more specifically, on a hidden Markov model and its 

extensions. 

4.1 Segmentation Principles 

4.1.1 Optimality Criterion 

We consider video segmentation as detection of segment boundaries at discrete time moments 

given an input set of features extracted from raw video. These time moments or candidate points 

of segment boundaries can be chosen in various ways. In the tasks considered in this thesis they 

are camera shot boundaries since the semantic segments of interest are defined as groups of 

shots. Alternatively the candidate points might be determined by the boundaries of mid-level 

events or simply chosen at discrete times regularly spaced with an interval providing acceptable 

temporal resolution. 

To indicate the absence or presence of a segment boundary at time index t we use a 

binary variable }1,0{∈ts . So, the aim of segmentation of a video is to find an optimal 
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sequence },...,,{ 21 Tssss ≡ , where T is the number of candidate points within the video. If 

segments differ by their semantic meaning, we should also provide semantic labels },{ tt fp of 

contiguous segments adjacent to each segment boundary at time t, where p is the type of the 

preceding segment and f – the type of the following one. Let’s denote the sequence of N time 

indexes corresponding to scene boundaries as },...,,{ 21 Nbbbb ≡ . As each segment must have the 

same semantic label at the ends, the following constraints are imposed: 

 1,...,2,1,
1

−=∀=
+

Nipf
ii bb . (4-1) 

In the general case of hierarchical content structure semantic segments are identified by their 

type defined at the current semantic level and by the type of the corresponding higher-level 

segments. For example, a break between tennis games according to Figure 3-1.I is represented as 

a pair {set, break}. We suppose in this case that all these nested identifiers for each segment are 

enumerated into one label. 

 To deal properly with the uncertainty of real observable data, we consider the 

segmentation task in a probabilistic manner by modeling the video as a stochastic process. The 

task is, then, to find optimal values of random variables st at each time index t as well as the 

corresponding segment labels given a set of observable data generated according to a 

probabilistic law. But what criterion of optimality should be used? The common approach is to 

find the most probable sequence of appropriate state variables related to an input video. In 

boundary-based segmentation methods, when semantic labels of segments are not of interest, 

these variables are our binary indicators of segment boundaries s, as it is the case for story 

segmentation in [HSU 03, HSU 04]. Alternatively, in segment-based segmentation methods, the 

temporal dynamics within segments are modeled by a sequence of states, often using hidden 

Markov models (HMM). For example, TV news broadcasts are segmented into story units in 

[LEK 02] using a four-states ergodic HMM; in [EIC 99] logical units of news programs are 

segmented and classified into six main types where each unit type is represented with a HMM. 

The most probable sequence of states is computed using computationally effective procedures 

based on dynamic programming, such as a Viterbi algorithm. 

Let’s consider this approach from the perspective of the measures used to numerically 

evaluate the segmentation performance. Recall and precision frequently serve as such measures. 

They are widespread in information retrieval [RIJ 79, LEW 91] and are standard in story 

segmentation [GUI 04]. The performance measures are obtained by comparing the actual and 

claimed segment boundaries of the same video. This is illustrated in Figure 4-1 where the chain of 

actual segments is represented by the upper stripe and that of claimed ones – by the lower; 

different segment types are encoded by different color. An actual boundary is defined to be 
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detected if there is at least one claimed boundary which lies in the vicinity measured by a 

temporal ambiguity τ and both the boundaries separate the segments of the same type. Otherwise 

the actual boundary is defined as a miss. Similarly a claimed boundary is defined as a correct one 

if there is at least one actual boundary within the limits of the ambiguity τ (which is assumed to 

be the same as for actual boundaries) and both the boundaries separate the segments of the same 

type. Otherwise the claimed boundary is defined as a false alarm. In fact, an ambiguity window 

2τ (see Figure 4-1) is considered around each actual boundary – if one or several claimed 

boundaries, which separate the same segments, fall into this window, the corresponding 

boundaries are defined to be detected and correct (similarly we could place the ambiguity 

window around each claimed boundary, as the ambiguity time is the same for the actual and 

claimed segments). If the time interval between two consecutive claimed boundaries is less than 

2τ, then it is possible that they are both correct and correspond to the same actual boundary and 

vice versa. Therefore the number of correct and detected boundaries is not generally the same. 

 

Actual segments:

Claimed segments:

2τ

Detected boundaries

Correct boundaries  
Figure 4-1. Comparison of segment boundaries. 

 
Recall and precision measure the proportion of actual segment boundaries detected and 

the proportion of correct claimed segment boundaries respectively. Denoting the number of 

actual boundaries detected as Na.d., the number of correct clamed boundaries – as Nc.c., the 

number of false alarms  – as Nf.a., the number of misses – as Nm, recall r and precision p are 

written as: 
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System performance measured by recall and precision focuses on time indexes 

corresponding to segment boundaries. Thus there is no need to take into account all the candidate 

points at the same time, like in the methods where the most probable sequence of states is found 
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for the whole video. Moreover, in the most cases the moments of absence of segment boundaries 

are predominant, and the minor points of segment boundaries become negligible when 

optimizing the whole state sequence. This can deteriorate considerably the segmentation 

performance. Consider, for example, the situation where a segment boundary can be surely 

detected in a time range covering several candidate points, but the probability to find this 

boundary at each single point is quite low. Segmentation through finding the most probable state 

path for the whole video is likely to ignore the boundary, resulting in increase of number of 

misses and, hence, low recall. 

In this thesis we derive the optimal decision rule for the segment boundary detection 

based on recall and precision which are chosen to measure the system performance. Let’s 

suppose that a fixed number N of distinct candidate points are claimed as segment boundaries 

and the total number of actual boundaries is Na. It is not difficult to see that the denominator in 

expression (4-2) and (4-3) is equal to Na and N respectively. Hence, in order to maximize recall 

and precision, N claimed boundary should be selected so that to provide the maximum values for 

Na.d. and Nc.c.. This minimizes the number of false alarms and the number of misses written as 

 .... ccaf NNN −= , (4-4) 

 ..daam NNN −= . (4-5) 

Let’s further assume that segments cannot be of zero duration and that the coincidence between a 

claimed boundary and an actual one (allowing us to consider the claimed boundary to be correct 

and the actual one to be detected) is established only in the case where these boundaries occur 

exactly at one time (i.e. the time ambiguity τ is zero). Under these assumptions each correct 

claimed boundary correspond to one and only one actual boundary detected and, hence, 

 .... ccda NN =  (4-6) 

which is the only value to be maximized. 

Let’s now derive an expression for Nc.c. To distinguish the claimed (computed) segment 

boundaries the actual ones, we use a tilde. Thus, the result of computed segmentation for an 

input video is denoted as a sequence of tuples }~,~,~{ ttt fps  while the actual subdivision into 

segments is represented as },,{ ttt fps where, as earlier, }1,0{∈s  is an indicator of the presence 

(s=1) or absence (s=0) of segment boundary, p and f – the labels of segments preceding and 

following the point under consideration, t – a time index. Then, since each claimed segment 

boundary bi is considered to be correct if it coincides with an actual one, Nc.c is written as 

 ∑
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where the discrete delta function δ  is defined for three arbitrary variables x, y, z as 

Commentaire [LC1]:  Ça se discute !!!
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As an input video is modeled as a stochastic process, Nc.c is a random variable, and we consider 

its expected value instead: 

 ∑∑
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where ),,1( iii fpsP =  denotes the posterior probability of the presence of a boundary between 

segments pi and fi at candidate point i. 

Hence, assuming that the probability ),,1( ttt fpsP = of segment boundary is pre-

calculated for each candidate point t and each segment labels pair },{ tt fp , the optimal 

segmentation selects N segment boundaries so as to maximize the rightmost sum of expression 

(4-9). The more is N, the more points of low probability are generally selected and, hence, the 

less is the relative expected number of correct boundaries among them. On the other hand, the 

value N should be high enough to provide an acceptable level of misses. So, this value controls 

the trade-off between the number of false alarms and the number of misses and, hence, between 

precision and recall.  

N can be chosen so as to provide the maximum of an integral performance measure. In 

this thesis it is a F1 measure which is a harmonic mean of recall and precision: 

 pr
prF

+
=

**21 . (4-10) 

As it follows from experimental evaluations, F1 has a maximum when recall and precision are 

approximately equal. From expression (4-4) - (4-6) follows that equal recall and precision are 

provided when N=Na, or, as Na is considered as a statistical variable, N is selected as expected 

number of Na: 

 }.{ aNEN =  (4-11) 
By analogy with expression (4-9) the expected number of Na is calculated as: 
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4.1.2 Computing Optimal Segment Boundaries 

According to our optimal decision rule for segmentation we wish to select N segment boundaries 

so as to maximize expression (4-9). A straightforward exhaustive search over all possible 

boundary arrangements has an exponential computational complexity on N and thus is unfeasible 

in most cases. A simple and computationally effective algorithm can be proposed in the 
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particular case where the segments are not labeled. In this case the only input data are a sequence 

of segment boundary probabilities },...,,{ 21 TPPP , where )1( =≡ ii sPP . N maximal values can be 

selected by scanning this sequence and extracting the maximal value N times, which yields the 

computational complexity on the order of TN ⋅ . Alternatively, the sequence can be sorted in 

descending order of probability and N first values be related to segment boundaries, which yields 

the complexity on the order of )log(TT required for sequence sorting. 

 In the general case, where the segments are distinguished by their label, segment 

boundaries cannot be selected independently from each other because of constraints of 

expression (4-1) imposed on segment labels. To attain feasible computational complexity in this 

case, we propose the following procedure. Omitting variable s we denote the probability of 

transition from segment pt to a segment ft at time moment t as ),( tt fpP . Given this probability 

for each time point Tt ,...,1= and for each pair of segment labels, the task is to select N distinct 

segment boundaries },...,,{ 21 Nbbb and the corresponding segment labels
ibp and

ibf so as to 

maximize the sum 
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taking into account the constraints of expression (4-1). We define the following variable: 
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where it is assumed that tbb n ≤<<≤ ...1 1 and expression (4-1) holds true. ),,( tfnM  is the best 

score of expression (4-13) corresponding to n segment boundaries selected for first t candidate 

points given that the last segment is labeled as f. By induction we have 
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(4-15) 

where m denotes the number of segment labels. To actually retrieve the sequence of optimal 

segment boundaries, we need to keep track of arguments which maximized expression (4-15). 

We do this via the arrays ),,( tfnL and ),,( tfnB . The complete procedure for finding the best 

segment boundaries can now be stated as follows: 

1) Initializaton: 
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 )},({maxmaxarg),,1(
11
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ffpPtfB bbmptb b
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, mf ≤≤1 , Tt ≤≤1  
(4-18) 

2) Recursion: 
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 Nn <≤2 , mf ≤≤1 , Ttn ≤≤ .  

3) Termination: 
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4) Segment boundaries backtracking: 

 ),,( 11 ++
= nbn bfnBb

n
, (4-23) 

 ),,( 11 ++
= nbb bfnLp

nn
, (4-24) 

 
1+

=
nn bb pf , (4-25) 

 1,...,2,1 −−= NNn .  

As calculation ),,( tfnM requires on the order of 2Tm ⋅ operations for each possible 

triple },,{ tfn , the resulting computational complexity of the procedure is on the order of 

32 TNm ⋅ . 

4.1.3 Ambiguity of Segment Boundary Position 

In practical applications segmentation performance measures tolerate some temporal ambiguity τ 

between detected and actual boundaries when deciding whether there is correspondence between 

them [GUI 04]. Taking into account this ambiguity allows us to detect boundaries more reliably. 

In this subsection we propose a required extension to our optimal segmentation rule. For the 

purpose of simplicity we suppose hereafter in this subsection that labels of segments are not of 

interest and consider only their positions. 

 A typical value ofτ is about 5 sec [GUI 04] which is normally less than segment length. 

We assume that segments cannot be shorter than τ2 . In this case it is not possible that two or 

more actual boundaries correspond to one claimed boundary. As so, if we wish to minimize the 

number of misses for a fixed number of claimed boundaries, these boundaries should be placed 

no closer than τ2 from each other as this provides the maximum number of potential 

correspondences. Several claimed boundaries, however, can still correspond to one actual 
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boundary. This can be used to “artificially” augment precision by claiming several boundaries in 

the vicinity of highly probable actual ones where the probability of false alarms is low. That is 

why we propose a stricter criterion of one-to-one correspondences between claimed and actual 

boundaries. The maximal number of these correspondences is the number of correct claimed 

boundaries Nc.c. and the number of actual boundaries detected Na.d.. As it was earlier, expression 

(4-6) holds true and our task is to select N boundaries so at to maximize Nc.c.. According to the 

stricter correspondence criterion these boundaries must be spaced no closer to each other 

than τ2 to minimize the number of misses and false alarms at the same time. 

 Given an input sequence of segment boundary probabilities },...,,{ 21 TPPP let’s derive an 

optimal segmentation rule.  Denote as Gi the set of candidate points lying in the 

vicinity ],[ ττ +− ii tt of an arbitrary candidate point i occurring at time ti. Under our assumption 

only one actual boundary can be found in this region. Hence, the probability of a single claimed 

boundary placed at point i to be correct is written as 

 ∑
∈

==
iGj

jPicP )1)(( , 
(4-26) 

where }1,0{)( ∈ic is indicator function which is equal to 1 when a boundary claimed at point i is 

correct and 0 otherwise. Since claimed boundaries are not closer to each other than τ2 and, 

hence, their corresponding regions G are not overlapped, the expected number of correct 

boundaries Nc.c. is calculated as 
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Optimal segment boundaries are chosen so as to maximize expression (4-27). We propose to do 

this iteratively. At each iteration step the sum of expression (4-26) is computed at each candidate 

point. The point i with the maximal sum is claimed then as a segment boundary and the points in 

Gi are excluded from the further analysis. 

4.2 Hidden Markov Models 

To obtain estimates of segment boundary probability which are required by our optimal 

segmentation rules considered above, we need to properly choose a model describing an input 

video. Hidden Markov models (HMM) are powerful tools for modeling the dynamics of different 

processes evolving in time, such as video [DIM 00, HUA 99, BOR 98] and speech signals [RAB 

89, BEN 99]. In this section we provide basic definition and assumptions that underlying these 

models, consider their different variations suitable for the purpose of video modeling and derive 

expressions required for segmentation. 
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4.2.1 Basic Model 

A basic HMM is a stochastic process which at any discrete time Tt ,...,2,1=  is at one of a set of 

N distinct states },...,2,1{* NQ = . We denote the actual state at time t as *Qqt ∈ . The dynamics of 

the process is then described as a sequence },...,,{ 21 TqqqQ = . At each time moment the model 

changes the state (or remains at the same state) according to the probability values associated 

with the state. A complete probabilistic description of a stochastic process requires specification 

of the current state depending on all the predecessor states. The HMM is defined as the special 

case of a first order Markov chain, where the probability to be in the current state tq is 

determined completely by the predecessor state, i.e. 

 ijttttt aiqjqPqiqjqP ≡===== −−− )|(,...),|( 121 , (4-28) 

where ija denotes the probability of transition from state i to state j. It is supposed that the HMM 

is stationary and, hence, ija is independent on the time index. The initial state is chosen 

according to the probability denoted as 

 )( 1 iqPi =≡π . (4-29) 

 We collect all state transition probabilities into one matrix }{ ijaA = which satisfies the 

following stochastic constraints: 

 0≥ija , Ni ≤≤1 , Nj ≤≤1 , (4-30) 

 
1

1
=∑

=

N

j
ija , Ni ≤≤1 . (4-31) 

Depending on applications, additional constraints can be imposed to matrix A. Forcing some 

coefficients to be zero we can forbid the corresponding transitions. Thus, different topologies can 

be defined that are usually depicted graphically so that the allowed state transitions are shown by 

arrows. One such model is presented in Figure 4-2. This is a left-right or Bakis model [BAK 76], 

for which low numbered states can only make transitions to higher number states or to 

themselves, i.e. 0=ija for each ij < . This model is suitable for processes whose properties 

change over time, such as speech signals. If every state of the HMM could be reached from 

every other state in a single step, the corresponding topology includes all possible connections 

and is called an ergodic or circular model. 
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Figure 4-2. A 4-state left-right HMM. 

 
The states of the HMM are not observable directly (i.e. “hidden”) but generate a vector of 

measurable features according to a probabilistic function. We denote the feature vector observed 

at time t as tD . It is assumed that this vector is conditioned only on the current state. We denote 

the corresponding probability distributions as )}({ tj DbB = , where 

 )|()( jqDPDb tttj == , Nj ≤≤1 . (4-32) 

 The presented above HMM describes double stochastic process. The primary process is 

not observable, or is hidden, and is determined as a first order Markov chain. The secondary 

process },...,,{ 21 TDDDD = is an observable representation of the primary process generated 

according to a probabilistic rule. The joint description of these two processes is given by 

defining the matrix of initial state probabilities }{ iπ=Π , matrix of transition probabilities A and 

probability distributions for generating observations B. This description is a complete 

specification of a basic HMM. 

A widespread approach to the task of video segmentation is to model an input video with 

a single HMM. The states of the HMM are stationary parts of the video, such as frames or 

camera shots. Semantic segments are then related to subsequences of the states. The HMM can 

be thought as an opaque box, where the sequence of features D is observable, while the sequence 

of the states is hidden. In the simplest case each segment is assigned to a unique state. For 

example, two different HMM topologies – a two-states ergodic and a left-right one (see Figure 

4-3) – are explored in [ALA 01]. The aim is to separate dialog scenes from non-dialog scenes in 

movies. The elementary time units in this example are camera shots and state transitions are 

explored at shot change moments. The limitation of such an approach is that it is not general 

enough to separate several contiguous semantic segments of the same type. In the more general 

case each segment is represented by a sequence consisting of different HMM states. For 

example, news video is divided into story units of the same type in [LEK 02] using a four-states 

ergodic HMM. This model allows the authors to track dynamic patterns of shots corresponding 

to news stories. 

1 2 3 4 
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Figure 4-3. Left-right (a) and circular (b) HMM for modeling dialog scenes in movies [ALA 01]. 

 
 Semantic segments are commonly detected through reconstructing the full sequence of 

the HMM states. If each segment is represented by a unique state, then the resulting segments are 

the corresponding groups of repetitive state labels. If segments are modeled as subsequences of 

states of several types, then segment boundaries are found as transition to or from unique states 

which begin or terminate the corresponding subsequences. The common criterion used to find 

the best sequence of HMM states is maximizing the posterior probability of the 

sequence )|( DQP which is equivalent to maximizing the joint probability ),( DQP . This 

probability is written as 

 
∏
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The straightforward maximization of this expression using full search over all possible state 

sequences requires on the order of TTN2 operations which is infeasible for the most applications. 

Fortunately, there exists a computationally effective technique for finding this best state 

sequence, based on dynamic programming, and it is called the Viterbi algorithm [VIT 67]. 

 To write down the Viterbi algorithm, let’s first define the following variable: 

 ),...,,,,...,,(max)( 2121,...,, 121
ttqqqt DDDiqqqPi

t

==
−

δ . 
(4-34) 

This variable is the highest probability for the first 1−t states. It allows one to find the probability 

of the whole optimal path recursively using the following rule: 

  )(])(max[)( 11 ++ = tjijtit Dbaij δδ . (4-35) 
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In addition, we define for each t and j the variable )( jtψ  which is the argument maximizing 

expression (4-35). This variable is needed to retrieve the best state sequence after the maximum 

probability of the whole state sequence has been found. Denoting as P~ the optimal value for the 

probability and as }~,...,~,~{~
21 TqqqQ = the optimal state sequence, the Viterbi algorithm is 

resumed as follows: 

1) Initialization: 

 )()( 11 Dbi iiπδ = , 0)(1 =iψ , Ni ≤≤1  (4-36) 
2) Recursion: 

 )(})({max)( 111 +
≤≤

+ = tjijtNit Dbaij δδ , (4-37) 
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 Tt <≤1 , Nj ≤≤1 .  

3) Termination: 
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(4-40) 

4) State sequence backtracking: 

 )~(~
11 ++= ttt qq ψ , 1,...,2,1 −−= TTt . (4-41) 

It is easy to see that the computational complexity of the Viterbi algorithm is on the order of 

TN ⋅2 . 

 As it was discussed above in this chapter, segmentation via reconstruction of complete 

state sequence does not necessarily lead to the optimal system performance. To find the optimal 

segment boundaries according to our optimality criterion, we need to estimate the posterior 

probability of segment boundaries at each candidate point. For this purpose we first 

define ),( jitξ , the probability of transition from state i at time t to state j at time 1+t , given the 

observation D: 

 )|,(),( 1 DjqiqPji ttt === +ξ . (4-42) 
For computationally effective calculation of this value we use the forward-backward procedure 

[RAB 89] as follows. Consider the forward variable )(itα defined as the probability of the partial 

observation sequence until time t and state i at time t: 

 ),,...,,()( 21 iqDDDPi ttt =≡α . (4-43) 
This variable is calculated by induction as 



 60

 
)()()( 1

1
1 +

=
+ ⎥

⎦

⎤
⎢
⎣

⎡
= ∑ tj

N

i
ijtt Dbaij αα , Tt <≤1 , Nj ≤≤1 , (4-44) 

where initial value is 

 )()( 11 Dbi iiπα = , Ni ≤≤1 . (4-45) 

In a similar manner a backward variable )(itβ is defined as 

 ),,...,,()( 21 iqDDDPi tTttt =≡ ++β . (4-46) 
Initialized with 

 1)( =iTβ , Ni ≤≤1 , (4-47) 
it is calculated by the following induction 
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After applying the forward-backward procedure, variable ),( jitξ is calculated as 
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where )(DP can be calculated, for instance, as 
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 Segment boundaries are related to transitions between the HMM states. Hence, the 

candidate points of these boundaries are 1−T potential transitions within the sequence of T states. 

If a segment boundary corresponds to a single pair of states i and j, as for instance in the case 

where each segment is represented by one state, then its posterior probability is ),( jitξ . In the 

general case segments are modeled by subsequences consisting of different states. To separate 

these subsequences, one could mark their beginning or the end with a special state or model 

segments with non-overlapping sets of states. Let’s denote the set of states which can end an 

arbitrary segment s1 as G1 and the set of states which can begin an arbitrary set s2 – as G2. Then 

the probability that a boundary between segments s1 to s2 corresponds to the transition between 

states qt and 1+tq is computed as 

 ∑ ∑
∈ ∈1 2

),(
Gi Gj

t jiξ . 
(4-51) 

4.2.2 Hierarchical Model 

The content of video is often organized in a hierarchical manner, e.g. a tennis match can be 

divided first into sets, then the sets are decomposed into games etc. In this subsection we present 

a generalization of the basic HMM, called a hierarchical HMM (HHMM) [SHA 98], which 
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models this organization directly. These models have found a wide use in many domains of 

application with hierarchical structure, such as image and video segmentation [PHU 05, ZHE 

04], visual action recognition [NGU 05, MOO 01, HOE 01], spatial navigation [BUI 01, THE 

01] and handwriting recognition [SHA 98]. The advantage of HHMMs is that they take into 

account statistical dependences existing between structural elements at multiple levels of 

coarseness, thus enabling to model long-term correlations between observable feature vectors. 

A HHMM is a structured process defined as a Markov chain whose states are hidden and 

modeled with their proper lower-level Markov chains. At the lowest level of the hierarchy this 

process is an ordinary HMM, whose states generate observable feature vectors according to a 

probabilistic rule. The states of higher levels aggregate the lower-level state chains. Therefore 

they generally correspond to sequences of feature vectors. These sequences are generated in a 

recursive manner by activation the corresponding sub-models which may be composed of sub-

models as well. This process terminates when states of the lowest-level are reached. The lowest-

level states are called production states as they are the only states which emit observable data. 

The states of the higher-levels do not generate observable features directly and are called 

internal or abstract states. 

 

Figure 4-4. DBN representation of a HHMM at level l and 1+l at time t, t+1, t+2. l
tq denotes the state at 

time t, level l; l
te is an indicator variable that the HMM at level l has finished at time t; Dt is the 

observable feature vector. 
 

A HHMM can be graphically represented as a dynamic Bayesian network (DBN) [MUR 

01], as shown in Figure 4-4. The state of the model at level l and time t is denoted as
l
tq . When 

the model enters the abstract state, the corresponding sub-model is activated in a recursive 

manner. This activation is called a vertical transition. When the sub-model is finished (which 
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may engender activations of lower level states recursively), the control returns to the upper-level 

state it was called from. Then a state transition within the same level, called a horizontal 

transition, occurs. A sub-model finishes when a special end state is reached. This state never 

emits observable data and immediately engenders the transition to the calling state. To indicate 

that the sub-model is about to enter the end state, the corresponding indicator variable of the 

DBN representation }1,0{∈l
te is set to 1, otherwise it is equal to 0. 

The calling context of vertical transitions is stored in a depth-limited stack. Any HHMM 

can be converted to an ordinary HMM by enumerating all possible states in the stack, from the 

highest model level up to the lowest one. Assuming that the HHMM has L levels and that all 

production states are at the lowest level L, the states of the equivalent HMM are encoded by 

mapping the calling context },...,{ 1:1 L
tt

L
t qqq = of each production state into integers. The same 

sub-model of the HHMM can be shared by several sub-models of the upper level. In the HMM 

representation this shared sub-model must be duplicated for each calling context, which 

generally results in a larger model. So, the power of the HHMMs is in the ability to reuse its 

substructures. As a result, they have a more compact representation, and the less number of 

parameters simplifies their learning. The hierarchical representation of HHMMs also allows us to 

specify their topology or constraints on possible state transition in a more natural way. Consider, 

for example, the HHMM topology for a tennis video shown in Figure 2-5 (note that the 

underlying semantic structure of the video is slightly different from that used in our deterministic 

segmentation approach described above in this work, e.g. points are not separated by break 

segments). Using a chain of sub-models allows the authors to impose a constraint on the 

minimum number of the corresponding semantic segments, e.g. a game segment consists of no 

less than 4 points. At the same time, these sub-models are not duplicated superfluously. 

In order to give a strict formal definition of the HHMM, let’s specify conditional 

probability distributions of each node type in the corresponding DBN representation (see Figure 

4-4). Consider first the lowest level L of the model. The states of this level follow the rules of a 

regular HMM, whose parameters are determined by its position in the HHMM encoded by the 

vector of higher state variables },...,{ 111:1 −− = L
tt

L
t qqq . For simplicity of notations we represent this 

vector by the integer k. When the HMM is activated, its initial state j is selected according to the 

prior distribution )( jL
kπ defined for the parent state vector encoded by k. Then at subsequent time 

moments it undergoes a change of state according to the state transition matrix L
kA until the end 

state is reached. In the DBN representation the system never enters the end state, but the 
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corresponding variable L
te is set to 1 instead, indicating that the higher-level sub-model can now 

change its state. Thus the conditional probability of a state at level L is written as 
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where it is assumed that endji ≠, . Matrix l
kA~ is the state transition matrix at level l given that the 

parent variables are in state k and the end state is never reached, i.e. it is defined from the 

following equality: 
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k =− . (4-53) 

The conditional probability for L
te is determined as 
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The observable feature vector tD is generated according to a probability function conditioned on 

the whole stack configuration L
tq :1 . 

 To write down the conditional probabilities for intermediate level l, we need also to take 

into consideration the variable 1+l
te indicating whether the sub-model has finished or not. If this 

variable is 0, which means that the sub-model has not finished, the state transition at level l is 

forbidden. Hence, the conditional probability of state l
tq is written as 
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 (4-55) 

where ijδ is the Kronecker delta. The variable l
te can be set to 1 only when the state l

tq is allowed 

to enter a final state. Therefore, its conditional probability is written as 
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The conditional probabilities for the top level of the HHMM are written similarly to expression 

(4-55) and (4-56).  The only difference that the no parent states are to be specified, that is why 

the conditioning on kq l
t =−1:1 must be omitted. 

4.2.3 State Duration Modeling 

The proper modeling of semantic segments of video should account for their duration constraints 

which can be formulated as the corresponding probability distribution. If a segment is modeled 

with a single state of a HMM, the inherent duration probability density is always meet a 
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geometric distribution. Indeed, the probability of the Markov chain to remain at a state i during 

first d time moments is written as 

 ( ) )1(),,...,( 1
11 ii

d
iidd aaiqiqiqP −=≠== −

− . (4-57) 

This geometric distribution is often not appropriate. For example, segments of short duration are 

unlikely as they have not enough time to convey the semantics to a viewer, while according to 

this distribution they should be of the highest probability (see the left part of Figure 4-5). 

 
Figure 4-5. A sample plot of the inherent duration probability for the 1-state (a) and 2-state (b) Markov 
chain (a=0.96). 
 

 The duration distribution can be fit more freely if the segment is modeled by a chain 

consisting of several different states. To make this distribution to be decreasing when the 

duration approaches zero, two state are enough. Consider the two-state chain presented in Figure 

4-6. Denoting as )(1 xP and )(2 xP the probability of remaining x times in state 1 and 2 respectively, 

the probability of remaining in the whole chain is written as 
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where the second equality follows from expression (4-57). Assuming for simplicity that 

aaa ≡= 2211 , expression (4-58) is continued as 
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This is a second-order Erlang distribution, a discrete counterpart of the gamma-distribution, 

which, for instance, has been shown to be good fit for the probability density function of shot 

duration in [VAS 97]. A sample plot of this distribution is shown in the right part of Figure 4-5. 

a) b) 
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Figure 4-6. A two-state HMM. 

 

 Markov chains of sufficient size can model general probability distributions [CRY 88]. 

Hence, in order to properly realize the state duration, the HMM can be expanded so that its states 

are expanded to sub-models which have their own topology and transition probability. The 

resulting structure is called the expanded state HMM (ESHMM) [RUS 87]. The lower-level sub-

models are regular HMMs whose states have the same emission probability functions. They 

usually have a compact left-right topology. The transition coefficients can be learned with the 

Baum-Welch procedure [RAB 89], an EM-algorithm commonly used for HMM parameters 

estimation. Alternatively, these coefficients can be calculated directly from the estimated 

statistical moments [BON 96]. 

 In many applications the state duration distributions in the ESHMM are fitted with quite 

compact sub-models, thus not increasing crucially the computational complexity with respect to 

the original HMM. For instance, in [BON 96] three states are assumed to be enough for 

modeling phone durations in the task of speech recognition. Since the complexity of the 

probability computations for the regular HMM is quadratic with respect to the total number of 

the states, the resulting three times growing in the total size of the model engender at most a nine 

times increase in the computational burden. 

The ESHMM is suitable for the tasks where the segment duration distributions are fixed 

and can be fitted only once during the preliminary learning. Sometimes, however, there is a need 

to recalculate these distributions at each time step. These recalculations with the ESHMM lead to 

unacceptable computational complexity. Such a need in the re-estimation of the duration 

probability arises, for example, when the time units corresponding to the states are not of regular 

duration, while the distributions of segment duration are defined in the domain of natural time 

measured in regular units. This is the case in our task of narrative video segmentation into logical 

story units, or scenes. The elementary time units are camera shots whose duration is not regular 

and can change from 1-2 seconds to half a minute or even more. The shot length can change 

considerably from one scene to another, depending on the conveyed semantic, while the time 

distribution of scene duration remains more or less stable. We estimate the probability of a scene 

change as a function of shots length and the time duration of the scene. The resulting state 

1 2 

a11 a22 
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transition probabilities of the corresponding model are dependent from these terms as well and 

change from one candidate point to another. Such a non-stationary system seems to be modeled 

more effectively with an extension to the regular HMM where the state duration probability is 

modeled explicitly. This kind of a model is called a variable duration HMM [RAB 89] or a 

hidden semi-Markov model (HSMM) [RUS 85]. 

  The functional difference of the HSMM in respect to the regular HMM, is that in the 

HSMM the transitions from the states back to themselves are prohibited, i.e. the diagonal 

elements of the state transition matrix 0=iia . Instead of the value of iia , which implicitly 

define the state duration in the regular HMM, the occupancy of the state is now determined by an 

explicit probability distribution. For the practical aspects discussed above, in this thesis we 

extend the HSMM to be non-stationary in the sense that state duration distributions are defined at 

each time step. The evolution of the process described by the HSMM is defined as follows. An 

initial state q1 is chosen according to the initial state distribution iπ . Once activated, each state i 

remains unchanged during x consecutive time moments, where x is chosen according to the state 

duration density )(xpt
i , which is supposed to be non-stationary and dependent on the state 

activation time t. It is assumed that the duration density )(xpt
i  is defined to be non-zero up to a 

maximum possible duration value t
iτ . When state i is finished, the sequence of observable 

feature vectors is generated according to the joint observation density )( 1: −+xtti Db . The next state 

j ( ij ≠ ) is chosen then according to the state transition probabilities ija . 

 To be applied to the HSMM, the forward-backward procedure, used for computationally 

effective calculation of the posterior state transition probabilities, is modified as follows. We 

assume that the first state begins at time 1=t , and the last state ends at Tt = , i.e. the model 

comprises only entire state duration intervals. The forward variable )(itα  is now defined as 
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where jiD : , ij > , denotes the sub-sequence of observable data jii DDD ,...,, 1+ . In the other 

words, the forward variable defines the probability of observing t first data vectors and the state i 

finishing at time t. The variable is initialized as 

 )()1()( 1
1

1 Dbpi iii ⋅= πα , Ni ≤≤1 . (4-61) 

For the subsequent time moments Tt ,...,2=  we have the following induction: 
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The first term of this expression disappears when time t exceeds the maximum possible state 

duration 1
jτ . The value k

jτ  limits the range for the second sum of the second term for time t so 

that the state duration does not exceed its maximum allowed value (in algorithmic realization 

this limit can be effectively tracked with a queue of values k
jτ , whose elements are discarded 

when kt k
j +> τ ). The probability of observing the whole sequence of feature vectors is written 

in terms of the α ’s as 
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We also define two backward variables as 

 ),|()( 1:1 iqiqDPi ttTtt ≠== ++β , Ni ≤≤1 , (4-64) 
 ),|()( 1:1

* iqiqDPi ttTtt =≠= ++β , Ni ≤≤1 , (4-65) 

i.e. )(itβ  and )(* itβ  are the probabilities of partial feature vector sequence TtD :1+  given that 

state i ends at time t and given that state i begins at time 1+t  respectively. We initialize the 

recursion as 

 1)( =iTβ , Ni ≤≤1 . (4-66) 
Then for 1,...,2,1 −−= TTt  by induction we have 
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The posterior probability of state transitions are computed based on the forward-backward 

variables as 
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 To find the most probable sequence of HSMM states, the Viterbi algorithm must be 

modified so that to account all possible durations of states. Defining the variable )(itδ  to be the 

probability of the best state sequence such that the last state i ends at time t, by induction we 

have 



 68

 )()()}()()({maxmax)( :1
1

:1111 tjjjtkj
k
jijk

tk
tkNit DbtpDbktpaij

k
j

πδδ
τ

+−= +

−≥
−≤≤≤≤

, Nj ≤≤1 . 
(4-70) 

 The observable feature vectors are usually assumed to be conditionally independent on 

each other. Therefore the joint probability of these vectors measured at an arbitrary time run 

from j to k at a model state i is calculated as 
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Taking into account this equality, the comparisons of the expressions for the forward-backward 

variables for the basic HMM (4-44)-(4-48) and the HSMM (4-61)-(4-68) allows us to conclude, 

that the HSMM requires about 2/2τ  times the computation, where τ  denotes the average value 

of k
jτ . The same is true for the Viterbi procedure as well. This increase in computational burden 

is, however, not crucial in our task of narrative video segmentation, since the model is applied 

only once for an input video and the main computational efforts are still required for the feature 

vector extraction. A pruning theorem is proposed in [BON 93], which reduces significantly the 

search space in the Viterbi induction (4-70).  The resulting increase of computational effort is 

reported to be about 3.2 times with respect to a conventional HMM, which is usually 

considerable lower than the use of the original technique. The pruning theorem requires, 

however, that the state duration distributions be log-convex, which is difficult to provide for our 

non-stationary model. 

4.2.4 Autoregressive Model 

The conventional HMM assumes that the observable feature vectors are statistically dependent 

only on the current states. However it is often the case that there is a strong inherent correlation 

between consecutive feature vectors, which breaks this assumption. To deal properly with 

unwanted dependencies, we could consider the joint probabilities of several consecutive feature 

vectors. But this would require expanding the dimension of the probability functions, which 

would make more difficult their learning. Alternatively, we could fit the time series of feature 

vectors with some model, which would allow us to get rid of the information redundancy and 

pass to a sequence of independent data. An extension to the conventional HMM, where the initial 

sequence of feature vectors is considered as an autoregressive process, is called an 

autoregressive HMM (ARHMM). This model was initially proposed for speech signals [JUA 

85]. 

 A time series Tddd ,...,, 21  is said to represent an autoregressive process, if it can be 

written as 
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where ka  are p constant coefficients, μ  is the process mean, te  is assumed to be a white noise 

process with mean zero and variance 2δ . The functional difference of the ARHMM is that it 

does not assume any longer the conditional independence of the current observable feature 

vector from the past observations, i.e. in the general case 

 )|(),...,,;,...,,|( 12111 ttttttt qDPDDDqqqDP ≠−−− . (4-73) 
We assume that observable vector Dt consists of K statistically independent components, i.e. 

},...,,{ 21 K
tttt dddD = . Thus, an autoregressive model can be applied independently for each 

component and, hence, its upper index is hereafter omitted. As it follows from expression (4-72), 

an observable feature can be written as 

 
ttt edd += ˆ , (4-74) 

where td̂  denotes the predicted value calculated as 
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In the other words, values ka  can be considered linear prediction coefficients. Then the 

independent statistical variable te  is written as the difference between the real and predicted 

values of the feature: 
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In the ARHMM te  is assumed to be conditionally dependent only on the current state and, in 

fact, replaces the feature value of the conventional HMM. We additionally assume that this value 

has a Gaussian distribution. The probability of observing te  at model state i is substituted in the 

ARHMM by the following value 
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where iσ  and iμ  are the deviation and the mean corresponding to state i, i
la  - l-th autoregressive 

coefficient corresponding to state i. It is assumed that in the general case the observation are 

generated by different mechanisms at different states. That is why the autoregressive parameters 

in expression (4-77) are defined depending on the current state. 

 To estimate the autoregressive parameters of the ARHMM, we use the maximum 

likelihood learning criterion. As our final task is the video segmentation, it is assumed that the 



 70

model is trained on a pre-segmented set of videos. We further assume that each semantic 

segment corresponds to a single state, i.e. the learning videos are, in fact, marked up into states. 

Given a training video of length T, the maximum likelihood estimates are selected so as to 

maximize the log-likelihood of the observable sequence written as 
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Substituting expression (4-77) for )( ti eb , we write the log-likelihood as 
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where α  and β  are inessential constants. The optimal autoregressive parameters can be found 

independently for each state by equaling the partial derivatives to zero: 
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The resulting system of linear equations can be rewritten as 
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After solving this system with respect to i
ka  and iμ , these parameters can be used to estimate 

variation 2
iσ  by equaling the corresponding partial derivative to zero, which yields 
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Expression (4-82) and (4-83)  can be easily generalized for the case where several learning 

videos are provided by extending the sums on t to all the available data. 
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4.3 Conclusions 

A statistical framework has been proposed for the task of video segmentation which focuses on 

the detection of segment boundaries. The common approach to the task is to select the single best 

model of the whole video. This does not necessarily lead to the optimal segmentation 

performance which is commonly measured in terms of recall and precision. In our approach we 

select segment boundaries so as to maximize the performance metrics directly. The approach is 

based on the posterior probabilities of the boundaries estimated at each candidate point. It is 

finally formulated as a task of constrained optimization, for which a computationally feasible 

algorithm, applicable to the general case of multiple semantic segments, is proposed. 

 The posterior probabilities of segment boundaries can be estimated in different ways, 

depending on the particular model of the video. In this chapter we describe a hidden Markov 

model and its modifications which have been shown to be effective tools for modeling the 

dynamics of time sequences, such as video. A basic model is first defined, and its application to 

the video segmentation task is considered. Several modifications of this model are presented 

then, which allow us to overcome some inherent limitations: a hierarchical extension used to 

model multi-level semantic structure; a hidden semi-Markov model which enable the use of 

arbitrary distributions of state duration; an autoregressive version which deals properly with 

statistical interdependencies existing between consecutive feature vectors. 
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5 Narrative Video Segmentation 

In this chapter we adopt and experimentally evaluate our stochastic segmentation approach to the 

task of narrative films segmentation into scenes, sometimes called also logical story units or 

sequences (hereafter in this chapter we reference them as scenes, which is the more specific 

term, used for narrative video, than more general term “logical story units”). These units are 

meaningful semantic elements of the whole story told by a narrative video. They can be 

identified based on features extracted from both the image sequence and the audio track of the 

video. We propose feature extraction techniques which have been shown to provide a high 

segmentation performance. To apply our statistical approach, we treat these features as statistical 

variables and describe them with two models, depending on the assumptions on their conditional 

dependencies. As the result, two statistical segmentation methods are derived, called a maximum 

likelihood and a hidden Markov model-based one. We also develop a statistical segmentation 

technique which selects scene boundaries sequentially and is called a sequential segmentation 

algorithm. It performs scene segmentation in one pass and has surprisingly high performance. 

This chapter is organized as follows. First we specify the segmentation task, giving a strict 

definition of a scene and describing our database of ground-truth video used for performance 

comparisons. Then we propose audio-visual features which provide evidence about scene 

boundaries. After this we propose and evaluate a deterministic rule-based segmentation 

technique so as to provide benchmarking data for subsequent comparisons with the statistical 

methods which are described and evaluated in the last three subsections. 

5.1 Segmentation Task 

5.1.1 Scene Definition 

Scenes are distinguished by viewers intuitively as temporal units showing an action or an 

interaction between characters, such as a dialog and a chasing episode. However, to give an 

objective and quite general definition of a scene is not a simple task. In cinematography a scene 

is defined as “a series of shots that communicate a unified action with a common locale and 

time” [BOG 00]. We accept this definition and give some more precise specifications based on 

particular video editing techniques so as to avoid the subjectivity as much as possible. 

The unity of action, place and time, being expressed as the same objects, background or 

settings and lighting conditions, causes the visual resemblance of shots composing a scene. In 

addition, in order to facilitate the perception of scenes as unified segments, video producers hold 
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some common principles or editing rules, aiming to provide temporal and spatial continuity. One 

of these principles concerns the positioning of the cameras and reads that they should be placed 

at one side of an imaginary line. As a result, the action is shown at the same background, and the 

perceived relative location of the characters remains unchanged. According to another principle, 

a scene is usually taken by several cameras simultaneously, yielding parallel long shots which 

are then cut and juxtaposed into one image sequence during the montage. The resulting scene 

can be distinguished as a sequence of interleaving visually similar shots which correspond to the 

same locale taken from different points or to different locales. For example, a conversation 

between two persons is typically shown by switching the camera periodically from one talking 

person to the other. This conversation can occur at the same locale, or it can be a dialogue on the 

telephone where the personages are at different places. A scene transition sometimes can be 

visually distinguished by a change in the lighting conditions, corresponding to a change in time, 

or by a change of the color tone, used to underscore the specific mood of the scene. 

 To introduce the overall space and the main characters, an establishing shot is often 

inserted at the beginning of a scene. This shot often shows an outside view of the building where 

the action takes place and can be interpreted broadly whether it has the common locale with the 

following shots, so as to be related to the same scene, or not. We consider the establishing shot 

as a part of a scene for which they establish the settings and the main characters. Sometimes 

several auxiliary shots can precede the main action, e.g. they can show characters coming up and 

then entering the building. Also a re-establishing shot can be added at the end of the action, 

describing the overall space again. We always merge these shots with the main action which they 

precede or finish up. 

 Several semantically related events, which take place at the same time but at different 

locales, can be shown simultaneously using a parallel cutting technique. This results in a 

sequence of interleaving segments which are changed quite fast to be perceived as one scene. 

However, it is often difficult to say objectively, whether these segments are independent scenes 

or not. In spite of the fact that such parallel events do not occur at the same place, we merge 

them into one scene if the segments corresponding to the same locale are quite short, i.e. their 

duration is under a threshold value, set to 25 seconds in our case. We also merge a sequence of 

short retrospective episodes and the shots showing the current dramatic incident into one scene 

using the same threshold of 25 seconds. This threshold is chosen somewhat arbitrarily to provide 

the maximum objectivity of scene definition. Note, however, that it is not applied frequently. 

Commentaire [LC2]:  needs some 
images and examples to illustrate all these 
principles 
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5.1.2 Ground Truth Video and Performance Evaluation Criteria 

For the lack of common benchmark data, a database of four ground-truth movies of different 

genres – drama “A beautiful mind”, mystery “Murder in the mirror”, French comedy “Si j’etais 

lui” and romance “When Harry met Sally” – was prepared and manually segmented into 

semantic scenes, providing reference data. The comparative performance of different 

segmentation techniques is measured hereafter in this chapter in terms of recall and precision and 

the integral measure F1 defined by expression (4-2), (4-3) and (4-10) respectively. Detected 

scene boundary is considered as correct if it coincides with a manual scene boundary within 

ambiguity of 5 sec (the same ambiguity of 5 sec was admitted in TRECVID evaluations for the 

task of news video segmentation into stories [GUI 04]). Otherwise it is considered as a false 

alarm. A manual scene boundary is considered as missed if it does not coincide with any of 

automatically detected boundaries within the same ambiguity of 5 sec. The beginning of the first 

scene and the end of the last one are assumed to be given a priory and are excluded from 

consideration. Clamed scene boundaries are related to reference ones within a time interval 

which begin at the middle of the first scene and ends at the middle of the last one. The 

performance comparisons are made inside time intervals which have the total duration of about 

22000 seconds and include 234 manually labeled scene boundaries. 

 As a scene is defined as a continuous sequence of camera shots, the candidate points of 

scene boundaries are chosen at the shot transitions. We do not assign any specific semantic label 

to scenes and consider them as being of the same type. An input raw video is supposed to be pre-

segmented into shots using an automatic twist-threshold method [DON 01] based on color 

histogram measure of inter-frame similarity. 

5.2 Feature Extraction 

In this section we consider the basic ideas underlying the segmentation separately in the visual 

and audio domains and propose visual and audio features - video coherence and audio 

dissimilarity - providing evidence of the presence or absence of a video scene boundary. These 

features form the input data sequence for the segmentation techniques considered later in this 

chapter. 

5.2.1 Video Coherence 

To derive our video coherence measure we start from description of two conventional methods 

of video segmentation scenes – the scene transition graph-based and short memory-based ones. 

This provides us with motivations for our proper visual feature and with the reference enabling 

performance comparisons which are carried out using the ground-truth data. 



 76

5.2.1.1 Graph-Based Method 

According to the editing rules, scenes of narrative video are shot by a small number of cameras. 

The position of each camera usually does not change much during a scene. Therefore the 

background and often the foreground objects shot by one camera are mostly static and, hence, 

the corresponding shots are visually similar to each other. In the clustering-based approach 

[MAH 00, YEU 96] these shots are clustered into equivalence classes and are labeled 

accordingly. As a result, the shot sequence is transformed into a chain of labels identifying the 

cameras. Within a scene this sequence usually consists of the repetitive labels. Consider, for 

example, a typical scene which shows a dialog of two persons. As a rule, such a scene is mostly 

produced by two cameras; each of them shots a view of the corresponding person. Let’s denote 

these cameras as A and B. Then the sequence might be looked as ABABAB. 

 When a transition to another scene occurs, the camera set changes. For example, a 

transition from a scene shot by cameras A and B to a scene produced by cameras C and D could 

be represented by a chain ABABCDCD. If within a scene a shot change can be followed then by 

return to a shot of the same cluster, after a scene transition such return is impossible. Hence, the 

only possible transitions between the shots that precede a scene boundary and the shots that 

follow it are “before” and “meets” according to Allen’s definitions [ALL 83], whereas the 

possible relationships between shots within a scene are “overlaps” or “during”. So, scene 

transition can be detected through classification of the temporal relations between the shot 

clusters. In [MAH 00] these relations are generated through a temporal-clusters graph built for 

the cluster chain. 

 In practice two shots belonging to different scenes can be found visually similar because 

of their accidental resemblance or a reuse of the same locale, e.g. several scenes can take place at 

the same room. The graph-based method fails to separate scenes in this case. In order to reduce 

the probability of this undesirable situation, an additional constraint is imposed on clustering: the 

shots which belong to different sequences (narrative units combining several scenes) [MAH 00] 

or are temporally far apart [YEU 96] are considered to be non-similar and are never merged at 

the same cluster. 

5.2.1.2 Short Memory Model 

The segmentation method based on a short memory model [KEN 98, SUN 00] allows for scene 

boundary detection through continuous coherence measure. In comparison with the discrete 

clustering-based approach it is more flexible and takes into consideration shot length and 

spacing. The approach based on the short memory model views segmenting of video as the 
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ability to recall the past data stored in a memory buffer, given the present data stored in an 

attention span. The recall between two shots a and b is formalized as follows: 
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where Ta and Tb are the ratio of the length of shots a and b to the total memory size TM, tΔ  is the 

time difference between these shots (it is supposed that MTt <Δ , otherwise the recall is equal to 

0), Sim(a,b) is their visual similarity. 

Scene boundaries are detected in the local minima of the visual coherence curve. The 

coherence is defined as a measure of how two segments stored in the attention span and the 

memory buffer are similar to each other. It can be written as follows: 
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where CMM(i) is the coherence value at the shot boundary i, Tas means the duration of the 

attention span; the normalizing denominator CMM max(i) is obtained by setting the similarity to its 

maximum possible value when computing recall R using (5-1) (the normalization is needed to 

take into account the different number of terms when computing CMM). 

 Computational complexity of expression (5-2) grows quadratically with the number of 

shots contained in the memory and can become crucial for short shots or when the parts of the 

shots are used (so called shot-lets proposed in [SUN 00]). In practice, in order to reduce this 

complexity, we propose to employ the method of storing partial sums. A matrix Sum of partial 

sums is calculated for each shot of the given video according to the following expression: 
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where the sums for each b are computed using simple recursion. 

Then the coherence value is calculated as 
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where Nas denotes the number of shots in the attention span. The normalizing denominator is 

calculated in a similar manner. The use of the partial sums reduces the cost of computation of 

one coherence value so as it becomes linearly proportional to the number of shots contained in 

the memory.  
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5.2.1.3 Our Measure of Video Coherence 

The shot clustering implies comparison of the inter-shot similarity measure with some threshold 

value in order to decide which shots are similar enough to be grouped into the same cluster. This 

threshold should be low enough to allow for variability of visual appearance of shot frames shot 

from one camera position. On the other hand, it should be as high as to separate the shots taken 

form from different camera positions. In practice, however, it is usually difficult to choose the 

threshold satisfying both of these contradicting requirements at the same time. In this thesis we 

propose continuous generalization of the clustering-based method which does not require the 

quantization of shot similarity measure and, hence, it is more flexible and less dependent on its 

parameters. Like the segmentation method which uses the short-memory model, it detects scene 

boundaries at the local minima of a continuous curve. In our method we, however, do not 

accumulate visual similarity for the shots which are probably taken from different camera 

positions, as these shots usually differ much from each other and, thus, add non-regular noise to 

the coherence measure. Being direct generalization of the clustering-based technique, our 

method yields local minima that are better pronounced and has better segmentation performance 

with respect to the memory model-based method. 

 Let’s consider the following shot clustering technique. First, similarity matrix for the 

given video is built, each element sij of which is the similarity value between shots i and j. Then 

each pair of shots which are similar enough (i.e. their similarity is higher then a threshold) is 

merged into one cluster until the whole matrix is exhausted. This is almost a conventional 

clustering procedure except that the radius of the clusters is not limited. 

Since scenes are usually composed of repetitive shots, similarity matrix elements of a 

high value are grouped at the intersections of the corresponding rows and columns that form 

square regions in the similarity matrix. Let’s quantize the similarities into binary values that can 

be equal to 0 or 1, so as the value 1 corresponds to a pair of similar shots (which are related to 

the same cluster) and the value 0 means that the corresponding shots are non-similar. Then an 

example of the resulting matrix could be looked as the following: 
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     i   

 1 0 1 0 0 0 0 

 0 1 0 1 0 0 0 

 1 0 1 0 0 0 0 

 0 1 0 1 0 0 0 

i 0 0 0 0 1 0 1 

 0 0 0 0 0 1 0 

 0 0 0 0 1 0 1 

 

In this example a scene boundary occurs at the beginning of shot i represented by the 

corresponding row and column. As the shots situated before this boundary never repeat in the 

future, their temporal relation with the following shots are just “before” or “meets”. So, the 

clustering-based algorithm can be reformulated as searching of such square regions along the 

main diagonal of the quantized similarity matrix and detecting scene boundaries at the points of 

their contact. 

As in the graph-based method [YEU 96], we impose a temporal constraint on the shot 

similarity: the shots which are temporally far apart are considered to be non-similar, i.e. their 

similarity is set to 0 (which is the minimum possible value). We do not pre-segment an input 

video into sequences to separate shot clusters belonging to different sequences as proposed in 

[MAH 00] since such pre-segmenting in the general case is quite a difficult task itself. In [MAH 

00] the sequence boundaries are distinguished as gradual inter-shot transitions, which is not the 

general case where these transitions can be inserted within scenes. 

In addition, if we suppose that the similarity measure is symmetric, the similarity matrix 

is symmetrical too and its elements lying on the main diagonal are equal to one (i.e. the maximal 

possible value, since the shot is considered similar to itself). Hence, only non-zero values of the 

similarity matrix which are concentrated near the main diagonal and lie only below or above it 

(due to the symmetry) have to be calculated and stored. 

Let’s define for each shot i of given video the following variable: 

 ),(max)(
,

0 baSimiC
ibia ≥<

= , (5-5) 

According to our clustering-based segmentation scheme this variable, being computed for the 

quantized similarities, takes on a value 0 for shots whose beginning corresponds to a scene 

boundary and a value 1 otherwise. Hence, the segmentation procedure can be reformulated as 

follows. At first the value C0 defined by expression (5-5) is calculated for each shot of the given 

video based on its shot similarity matrix. Then scene boundaries are detected at the beginning of 

the shots for which this value is below the similarity quantization threshold. 
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Figure 5-1. C0 curve sample for real-value shot similarity (a) and for quantized similarity (b). 

 
The shift from the clustering to the curve-based technique makes the segmenting simpler 

and more illustrative. In addition, it does not require recalculating of the shot clusters in case of a 

change of the quantization threshold. An example of a curve described by the variable C0 with 

time and its quantized analogue are given in Figure 5-1. Since scenes usually consist of several 

contiguous shots, this curve falls below the threshold mostly in the single points that form sharp 

local minima. Hence, scene detection can be implemented as searching of such minima. This 

allows us not to use a quantizing threshold and, as a result, enhance segmentation accuracy. In 

practical implementation another threshold can be used in order to reject weak minima. This 

threshold, however, does not govern the segmenting procedure so crucially and can be selected 

less accurately. 

In real movies visual similarity between shots within the same scene often is not high 

enough, especially near scene boundaries due to the use of establishing shots and in action films, 

where there are many dynamic episodes. Because of this, minima of the variable C0 are often 

badly pronounced and it can happen that a shot from some scene resembles the shot from the 

previous or the next scene. In this case the segmenting procedure can miss scene boundaries. 

Consider, for example, two scenes represented by a shot clusters chain ABABCDADCD, where a 

real scene boundary occurs before the first shot of cluster C and, because of accidental similarity, 

one of the shots from the second scene was misclassified as A. Since the shot clusters in this 

example cannot be divided into two non-intersecting groups, clustering-based segmenting 

procedure fails to detect the scene boundary.  

In order to enhance the robustness of the segmenting procedure, we can try to implicitly 

exclude isolated misclassified shots from consideration. At first glance, the next maximal value 

after C0 could be taken in expression (5-5). However, if a single shot is similar to a shot from 

another scene, it is likely to resemble other shots of the same cluster. In the previous example of 

a cluster chain the shot from the second scene, misclassified as cluster A, is likely to be similar to 

two shots of this cluster for the first scene. Hence, exclusion of a single pair of maximally similar 

a) 

0 

1 
C0 

Time 
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0 

1 
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Time
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shots does not definitely exclude the influence of a single misclassified shot. So, in addition to 

this pair, we propose to not take into consideration all the maximally similar shots that follow or 

precede it and define for each shot i the following variable: 

 )},(max),,(maxmin{)(
)(,,)(.,

1

00

baSimbaSimiC
ibbibiaiaaibia ≠≥<≠≥<

= , (5-6) 

where the variables a0 and b0 are the shot numbers, for which expression (5-5) attains the 

maximum: 
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By recursion we can derive variables to exclude the influence of the second misclassified shot, 

the third one etc: 
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 The variable Ck has sharp local minima at scene boundaries only if they correspond to k 

misclassified shots. Otherwise these minima are not well pronounced. Generally, as the same 

pair of maximally similar shots can correspond to several contiguous shots, the defined above 

variables C can remains constant during a period of time. If this period corresponds to a local 

minimum, the scene boundary position cannot be located precisely. In order to use all the 

variables C together and reduce the probability of wide local minima, an integral variable is 

defined: 
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where N denotes the number of variables C determined by expression (5-5) - (5-10). 

By analogy with [KEN 98] we refer variable )(int iC  as video coherence and consider its 

single local value as the visual feature. This value provides flexible evidence of the presence or 

absence of a scene boundary at the beginning of shot i so that the lower is this value, the higher 

probability of the scene boundary. 

5.2.1.4 Inter-Shot Similarity Measure 

The similarity Sim(a,b) between shots a and b involved in expression (5-5) - (5-10) can be 

calculated in different manners, depending on what frames are chosen to be the shot 

representatives, what features are used to represent the frames etc. The following measure was 

found experimentally to work quite well in this thesis. 
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 The visual similarity measure between two arbitrary video shots a and b is defined as the 

maximum similarity Sfr between any key frame fak in the shot a and any key frame fbl of the shot 

b: 

 ),(max),(
, blakfrlk

ffSbaSim = , (5-12) 

Frame-to-frame similarity Sfr is calculated as a difference measure between the color histograms 

representing the frames. The color histograms are defined in HSV-color space and have three 

dimensions. They have 18 bins for hue, 4 – for saturation and 3 – for value and additionally 

include 16 shades of grey. 

 The measure of similarity between two frames fi and fj is defined to be: 

 nhhffS
b

jbibjifr /1),( ∑ −−= , (5-13) 

where hib is bin b in the histogram of frame i, and n is the total number of pixels in each frame. 

The second term in this expression is l1 distance measure normalized to a range [0, 1]. So, the 

similarity measure takes the values from the same range. 

In order to take into consideration dynamic nature of shots, we divide them into quasi-

stationary contiguous segments called sub-shots using a sequential one-pass clustering algorithm. 

For each shot this algorithm is the following: 

• Set the beginning of the first sub-shot to the time position of the first frame of the shot. 

• For each resting frame f taken in the time order from the shot do: 

o Calculate similarity between frame f and the first frame of the current sub-shot. 

o If this similarity exceeds a clustering threshold, begin the new sub-shot starting 

from f. Else add this frame to the current sub-shot. 

• Remove all short sub-shots. If no segments are left, consider the whole shot as one sub-

shot. 

The key frames in expression (5-12) are representatives of sub-shots. In this work each sub-shot 

is represented by a frame whose color histogram is the closest to the mean histogram of all the 

frames in this sub-shot. A result of shot segmenting into sub-shots is illustrated in Figure 5-2, 

where color histogram is schematically presented along a single color axis. 
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Figure 5-2. A schematic example of color dynamics in a shot divided into two quasi-stationary sub-shots. 
 

5.2.1.5 Experimental Evaluations 

The effectiveness of our video coherence was experimentally tested using our ground truth video 

database. In these experiments we did not apply the statistical approach, as a conventional 

deterministic one, which seeks for scene boundaries at the local minima of the video coherence 

curve, works quite well when a single curve is used as the input data (the statistical approach can 

use implicitly the timing information included as scene duration prior). The simplest scene 

segmentation algorithm which uses a video coherence curve detects scene boundaries when its 

point just falls below a threshold. Experimental evaluations show, however, that better 

segmentation precision can be attained if scene boundaries are detected in local minima. We 

found that the following algorithm works well enough. First, all the local minima are detected as 

potential scene boundaries. Two contiguous windows w1 and w1 that adjoin each local 

minimum to the left and to the right are defined (see Figure 5-3). They typically contain 3 shot 

boundaries. Two parameters a and b are related to the local minima: they are respectively the 

difference between the maximum in the windows w1 and w2 and these minima. A scene 

boundary is detected in a local minimum, if the following conditions hold true: 

• The given local minimum is a global one in the windows w1 and w2. 

• It is less than a threshold t1. 

• The value min(a.b) exceeds a threshold t2. 

 
Figure 5-3. Local minimum parameters used in the scene segmentation algorithm. 

 
The performance of the segmentation algorithm described above was experimentally 

tested for our coherence measure Cint  (5-11) and that of the short memory model CMM (5-2). The 
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performance evaluations results total for all the ground-truth video are given in Table 5-1. 

Threshold values t1 and t2 of the local minima search algorithm was selected so as to maximize 

integral performance measure F1 individually for each type of coherence curve. As it can be seen 

from Table 5-1, the use of the video coherence Cint yields the gain in recall and F1 measure. The 

results obtained for coherence CMM look worse than those reported in [SUN 00] (in this work the 

authors apply the video coherence measure to so-called shot-lets – 1 sec parts of shots, which, 

however, does not improve the performance for our database). Besides some possible differences 

in technical realizations of the segmentation procedure, it might be explained by the fact that we 

used different ground truth video (for the lack of a common reference database) and that in our 

case the scenes were defined in a different way, being considered as semantic ones rather than as 

only groups of visually similar or repetitive shots. Typical behavior of the curves described by 

the two coherence measures is presented in figure 3. As it could be expected they are somewhat 

correlated with each other. The measure Cint however is more stable, more regular which results 

in higher segmentation performance. 

 

Video coherence Precision, % Recall, % F1, % 

Cint  54.1 64.3 58.8 

CMM  55.8 49.6 52.5 

 Table 5-1. Segmentation performance comparison for different video coherence measure 
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Figure 5-4. Video coherence Cint (the upper curve) and CMM  (the bottom curve) defined by expression 
(5-11) and (5-2) respectively for the film “Murder in the mirror”. Two vertical dash-dot lines delimit 
scenes. 
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5.2.2 Audio Dissimilarity 

A scene transition in video usually entails abrupt change of some audio features caused by a 

switch to other sound sources and, sometimes, by film editing effects [CHE 02, SUN 00, CAO 

03]. Hence, this change can be used as an indicator of the presence of a scene boundary. Since 

short-term acoustic parameters often are not capable to represent properly the sound 

environment, we accumulate these parameters within a long-term window. Comparing the 

resulting descriptors for two adjacent time windows at the point of a potential scene change (shot 

transition in this thesis) provides us with the evidence whether the scene change really occurs or 

not. The measure of the difference between these descriptors is referenced hereafter as the audio 

dissimilarity or an audio feature and is calculated as follows. 

 To calculate the short-term acoustic feature vector for a sound segment we divide the 

spectrum obtained from Continuous Wavelet Transform (CWT) into windows by application of 

triangular weight functions Wi with central frequencies fi in Mel scale as it is done in the case of 

Mel Frequency Cepstrum Coefficients calculation (see Figure 5-5). Unlike the FFT, which 

provides uniform time resolution, the CWT provides high time resolution and low frequency 

resolution for high frequencies and low time resolution with high frequency resolution for low 

frequencies. In that respect it is similar to the human ear which exhibits similar time-frequency 

resolution characteristics [TZA 01]. 

 

 
Figure 5-5. Triangular weight functions with central frequencies in Mel scale. 

 

Then energy values Ei in each spectral window are computed and finally, the matrix of 

spectral band ratios is obtained as 

 ) E / E log(  K jiij = , (5-14) 

The elements lying above or below the main diagonal (i.e. the top-right or bottom-left triangular) 

of the matrix K are taken as our acoustic features. The resulting acoustic feature vector is not 

affected by main volume change unlike spectral coefficients. At the same time it allows us to 

detect changes in acoustic environment. 

The procedure of audio dissimilarity curve calculation is done by moving of two 

neighboring windows (with size 8 and step 0.5 seconds in our experiments) along the audio 

stream and obtaining the distance between the distributions of the corresponding acoustic 
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features. Various measures may be used as a distance or dissimilarity for the task of acoustic 

segmentation:  Bayesian Information Criterion [CHE 98], Second-Order Statistics [BIM 95], 

Kullback-Leibler (KL) distance applied directly to distribution of spectral variables [HAR 03a]. 

The KL-measure is a distance between two random distributions [COV 03]. In the case of 

Gaussian distribution of random variables the symmetric KL distance is defined as: 
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where μ and σ are the mean value and the variance of compared distributions. 

Instead of multi-dimensional KL applied to a feature vector of spectral bands ratios a sum 

of KL distances applied to each element of the vector is used in this work as audio dissimilarity 

measure: 

 ∑=
ij

ijij KKKLD )2,1( , 
(5-16) 

where K1 and K2 – feature matrices for the neighboring windows. As an observable feature of a 

scene boundary in the audio domain in this work we extract the maximal value of audio 

dissimilarity in a time window of about 4 seconds centered in the corresponding candidate point 

so as to tolerate small misalignments between the audio and image streams of video. 

5.3 Rule-Based Segmentation 

In real applications neither the video coherence nor the audio dissimilarity can determine 

unambiguously the presence or absence of a scene boundary. Low values of the video coherence 

can be encountered within scenes due to, for example, intensive camera movements or the use of 

establishing shots, while the high values do not necessarily signify the absence of the scene 

transition (which is more rare though) because of accidental coincidences. As for the audio 

dissimilarity, abrupt changes in the sound environment can occur naturally within scenes or be 

the result of editing effects, such as music. So, to detect scene boundaries more reliably, both the 

audio and video features should be taken into account. The conventional rule-based approach 

seeks for potential scene boundaries based on one of these features and then uses the other to 

confirm or reject them in the final decision. The same principles underlie our rule-based 

segmentation which is described and experimentally evaluated further in this section. 

5.3.1 Segmentation Algorithm 

We find the potential scene boundaries based on the video coherence curve. This curve, 

however, provides more information for combined scene segmentation than just potential scene 

boundaries. High values of such measure signify a high level of repetitiveness of the 
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corresponding shots that are likely to be produced in the same physical settings. Therefore, these 

values correspond to low probability of scene transition. That is why in our segmentation 

algorithm shot boundaries having video coherence higher than a threshold v1 are always 

rejected. On the other hand, the value of video coherence in local minima is an indicator of 

reliability of the corresponding scene transition candidates. The lower are these local minima, the 

more probably they are accompanied by scene transitions. Therefore, low minima falling below a 

threshold v2 are always accepted as reliable scene transitions. 

We use audio the audio dissimilarity to confirm or reject potential scene boundaries that 

correspond to intermediate values of video coherence lying between thresholds v2 and v1. Much 

as for video coherence, the parameters of audio dissimilarity picks can be used for estimating of 

scene transition probability. The most significant quantity is the value of these picks – the higher 

is this value, the higher is the probability. Experimental evaluations of scene segmentation based 

solely on audio data show that better performance is achieved if scene boundaries are detected 

using simple comparison of audio dissimilarity with a threshold value at shot boundaries. In the 

combined segmentation algorithm potential scene transitions are confirmed if the corresponding 

dissimilarity value exceeds a threshold a, else they are rejected. 

The resulting segmentation algorithm for a given video is referenced hereafter as a three- 

threshold algorithm. It is written as follows: 

1. Preset the threshold parameters – v1, v2 and a. 

2. Calculate the value of video coherence at the shot boundaries. 

3. For each shot boundary B and the corresponding value C of video coherence do: 

o Compare C with the threshold v1. If greater, continue with the step 3. 

o Check whether C is a strong local minimum detected using two-window approach 

described above (see Figure 5-3). If no, continue with the step 3. 

o If C<v2, add the shot boundary B to the set of scene boundaries and continue with 

the step 3. 

o Calculate audio dissimilarity A for the shot boundary B. If A>a, add B to the set 

of scene boundaries. 

An example of real video coherence and audio dissimilarity curves, normalized to a comparable 

value ranges, are shown in Figure 5-6. Both the scene boundaries in this figure are detected 

correctly. The first one corresponds to a strong minimum of the video coherence value which is 

below the threshold v2. The second boundary is detected because its video coherence value takes 

a local minimum between the thresholds v1 and v2 and is confirmed by a high value of audio 

dissimilarity. 
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Figure 5-6. An example of video coherence (“video”) and audio dissimilarity (“audio”) curves. “Scenes” 
lines mark the scene boundaries. 
 

5.3.2 Performance Evaluation Results 

In this subsection we describe the results of experimental evaluations of our rule-based 

segmentation algorithm. To provide the best performance, the video coherence was computed 

according expression (5-11) included 3 terms, i.e. in N was equal to 3; the video similarity was 

calculated within two contiguous groups of 5 shots adjoining the point under consideration. 

The results obtained for each of the four films of the database are presented in Table 5-2. 

The threshold values in this trial were chosen so as to maximize (through the full search) the 

integral measure F1 total for all the films. As it can be seen from the table, the precision and 

recall has sometimes quite different values, resulting in the decrease of the integral measure F1. 

This is caused by the various behavior of the audio-visual features depending on the specific 

film, which does not allow us to choose the thresholds providing the balanced values of recall 

and precision for all the films at the same time. Quite a low recall for film “Murder in the 

window”, for example, is caused by too low threshold values for the video coherence which are 

more suitable for films where the scene changes are often accompanied with changes in the color 

tone and, hence, with low video coherence. 
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Film Precision, % Recall, % F1, % 

A beautiful mind 64.4 67.1 65.7 

Murder in the mirror 81.8 42.9 56.3 

Si j’etais lui 56.8 68.9 62.2 

When Harry met Sally 70.2 57.9 63.5 

Total 65.6 59.4 62.3 

Table 5-2. Performance of the three-threshold segmentation algorithm. The thresholds are chosen so as to 
maximize F1 measure for all 4 films: v1=0.78, v2=0.64, a=130. 
 

The capability of our segmentation approach to fuse audio-visual features can be revealed 

from Table 5-3. The results are total for all 4 films. The first row presents the segmentation 

performance when only the visual feature was used and scene boundaries are claimed at the local 

minima of the coherence curve. The performance of the segmentation algorithm which is based 

solely on the audio dissimilarity is given at the second row. In this algorithm scene boundaries 

are claimed when the audio dissimilarity exceeds a threshold value. The performance of the three 

threshold algorithm fusing both the video and audio features is presented at the third row. The 

threshold values are chosen separately for each algorithm so as to maximize the measure F1. As 

it follows from the table, fusing the visual and audio features enhances the integral performance. 

 

Feature used Precision, % Recall, % F1, % 

Visual 54.1 64.3 58.8 

Audio 29.6 64.1 40.5 

Visual + audio 65.6 59.4 62.3 

Table 5-3. Audio-visual data fusion capability of the three-threshold segmentation algorithm. 
 

 To estimate how general are the threshold values obtained for a separate set of the 

training data, cross-validation tests have been carried out. The learning set, used to choose the 

optimal thresholds, included three films and the test set consisted of the resting forth. The 

performance evaluation results are given in Table 5-4 along with the corresponding threshold 

values. The comparison with Table 5-2 allows us to notice a considerable deterioration in the 

performance when the thresholds are chosen for a separate data set. One of the reasons of this is 

an even more disproportion between recall and precision caused by inappropriate threshold 

values which are strongly dependent on the particular learning data.  
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Film Precision, % Recall, % F1, % v1 v2 a 

A beautiful mind 65.6 60.9 63.2 0.74 0.61 70 

Murder in the mirror 78.6 18.0 29.3 0.69 0.64 130 

Si j’etais lui 56.8 41.7 48.1 0.75 0.61 60 

When Harry met Sally 66.7 29.6 41.0 0.75 0.55 70 

Total 64.4 38.5 48.2 - - - 

Table 5-4. Performance of the thee-threshold algorithm in cross-validation tests. 
 

5.4 Maximum Likelihood Ratio Segmentation 

A deterministic segmentation algorithm performs quite well if it is adapted in a heuristic manner 

to a specific feature, such as video coherence. This algorithm, however, is hardly extensible to 

multiple data sources, which is required for further performance enhancements. As we could see 

it above, the fusion of multiple data in a deterministic manner leads to the use of numerous 

thresholds which are difficult to be selected properly. Moreover, the data, being compared with 

the thresholds, are coarsened excessively. The different nature of the features makes difficult 

their fusion into a single measure. In our stochastic approach we assume the features to be 

random variables and treat them in the same terms of conditional probabilities, which allows us 

to fuse the features in a flexible unified manner. The posteriori probabilities of scene boundaries 

in this approach can be estimated in different ways, depending on the assumption on the 

conditional dependencies and the prior distributions. In this section we derive quite a 

segmentation procedure, called a maximum likelihood ratio algorithm, which, however, 

performs well in the task of scene segmentation provided that the features are chosen properly. 

5.4.1 Segmentation Algorithm 

At each candidate point of scene boundary (in this work it is a shot change moment) let’s 

consider a posterior probability p(s|D), where {0,1}s∈ is a random variable corresponding to the 

presence (s=1) or absence (s=0) of a scene boundary, D – a locally observable feature providing 

information about s. According to the Bayesian rule 
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where 
)0|(
)1|(

=
=

≡
sDp
sDpL  is likelihood ratio, p(s) – the prior probability of s. Let’s assume that 

feature vectors are conditionally dependent only from the value s at the current time moment and 

that the prior probabilities of scene boundaries are fixed for a given video. Then the posterior 

probabilities defined by expression (5-17) can be estimated independently at each candidate 

point. Suppose that our segmentation algorithm claims N distinct scene boundaries at the points 

of their maximum posterior probability )|1( Dsp =  which provide the optimal performance 

according to our optimality criterion. As the posterior probability is an increasing function of L, 

N points with maximal value of likelihood ratio L can be selected instead. 

 Remind that in our stochastic approach N is chosen to be equal to the expected number of 

actual scene boundaries, so as to provide approximately equal recall and precision. In real 

applications the given above assumptions seem to be too strong to estimate this number 

correctly. Therefore we propose the following estimate: 

 
S
TN = , (5-18) 

where T denotes the duration of a video to be segmented, S is the mean scene duration evaluated 

from a learning data set. In this expression it is assumed that a mean duration of scenes does not 

depend much on the specific film (the per-film mean scene duration for our ground-truth video 

changes from 78 to 117 sec while the total mean scene duration is 96 sec). 

 Experimental evaluations of the proposed segmentation algorithm have shown that its 

performance is greatly improved if it is constrained to select scene boundaries which are 

temporally apart from each other at least by some threshold value Smin. This can be explained by 

the fact that each observable local feature vector D used in this work is in fact conditionally 

dependent from its context and a high value of likelihood ratio in a point corresponding to an 

actual scene boundary is often accompanied by high likelihood ratio values at surrounding 

candidate points which should be excluded from consideration (see an example of likelihood 

ratio curve for video coherence and audio dissimilarity features presented in Figure 5-7). 
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Figure 5-7. Log-scale likelihood ratio versus frame number. Vertical dashed lines delimit scenes. 

 

So, the scene segmentation algorithm is finally formulated as follows. 

1. Segment an input video into shots and select shot transition moments as candidate points of 

scene boundaries. 

2. At each candidate point calculate the likelihood ratio for the corresponding observable feature 

vector. 

3. Pronounce N scene boundaries at the points with maximal likelihood ratio separated from 

each other at least by the temporal interval Smin, where N is calculated according to expression 

(5-18). 

In multimodal segmentation observable feature vector D integrates M sources of 

information each described by its own vector di, i.e. },...,{ 1 MddD = . We suppose that these 

sources are conditionally independent given the value s. So, we can write 

 
∏
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M

i
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1 )|()|,...,()|( , (5-19) 

and, hence, likelihood ratio of the whole data D is calculated as the product of likelihood ratio 

values li evaluated for each i-th informational source independently: 
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Note that this expression provides extensibility of the segmentation algorithm since it allows us 

to easily add new features as they are available. 

 In this work we integrate two types of evidence about the presence or absence of scene 

boundaries – video coherence and audio dissimilarity measure. To provide low dependence of 

the video coherence feature from the surrounding values, only one term is included in its 

definition given by expression (5-11). In the other words this feature is defined as variable C0 by 

expression (5-5). In the ideal case this variable has a low value in a single point of a scene 

boundary and is not dependent on the values at the surrounding points. To calculate the 

likelihood ratio of the features, we use non-parametric estimates of the corresponding 
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probabilistic distributions [DUD 73]. The resulting dependences between feature and likelihood 

ratio values for video coherence and audio dissimilarities, obtained for the learning set of all 4 

films, are shown in Figure 5-8 and Figure 5-9. The estimates of likelihoods were obtained using 

the Gaussian kernel with a fixed standard deviation parameter (0.04 for video coherence and 40 

for audio dissimilarity). 
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Figure 5-8. Log-scale likelihood ratio versus video coherence. The horizontal dotted line depicts 
extrapolated values which fall beyond the domain of stable estimate. 
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Figure 5-9. Log-scale likelihood ratio versus audio dissimilarity. The horizontal dotted line depicts 
extrapolated values which fall beyond the domain of stable estimate. 
 

In fact the proposed segmentation algorithm detects scene boundaries at local maxima of 

likelihood ratio curve and thus reminds conventional unimodal techniques searching for 

extremums of some scene consistency measure [KEN 98, CHE 02]. From this point of view 

expression (5-20) can be considered as a way of combining several measures calculated 

independently for each mode into a single curve. 
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5.4.2 Experimental Evaluations 

In this subsection we report the results of experiments designed to test the proposed maximum 

likelihood ratio algorithm. Likelihood ratio values for both audio and video features were 

calculated based on nonparametric estimates of the corresponding conditional probabilities using 

Gaussian kernel function. Table functions with linear interpolation were used to speed up the 

calculations. To account for small misalignments between the manually labeled scenes and the 

actual ones in a learning set, the feature statistics conditioned on the presence of a scene 

boundary were collected in the time window of 2 sec centered at the position of the 

corresponding scene boundary label. In the domains (fixed through all experiments described 

below) where probability estimates became unstable due to the lack of data the likelihood ratio 

values were extrapolated as constant functions. Only a small portion of data fell in these domains 

and experimental evaluations demonstrated that their choice was not crucial for segmentation 

performance. 

 The evaluated performance of the proposed segmentation algorithm total for all ground 

truth video available is reported in Table 5-5. The tests were conducted both inside the learning 

set and using cross-validation technique. The cross-validation allows us to evaluate the 

generalization capability of the parameters estimation approach as it concerns both the likelihood 

ratio and mean scene duration. It was performed using the learning set included three films and 

the test set consisted of the resting forth one until all data were tested. Table 5-5 reports the 

results which were obtained using the fusion of visual and audio features and those obtained for 

one of these features only. In the last case the performance would not change if the feature curve 

itself were used without its transform to likelihood ratio, which is expected since such transform 

is monotonous. 

 As it can be seen from Table 5-5, the feature fusion yields significant improvements both 

in recall and precision. Minor degradation caused by applying cross-validation suggests that 

these improvements steams from proper modeling rather than parameter overfitting. Note that 

the video coherence was calculated in a different way with respect to that of the previously 

described experiments (Table 5-1, Table 5-2, Table 5-3) so as to better fulfill the underlying 

assumptions on the conditional dependencies. This video coherence has a worse performance 

when being used alone but is more effective when being combined with the audio dissimilarity. 
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Features 

used 

Using cross-

validation 

Precision, 

% 
Recall, % F1, % 

Visual + 

audio 

No 63.2 63.2 63.2 

For LR only 61.1 61.1 61.1 

Yes 60.5 61.5 61.0 

Visual only 
No 51.7 51.7 51.7 

Yes 50.0 50.9 50.4 

Audio only 
No 41.5 41.5 41.5 

Yes 39.9 40.6 40.3 

Table 5-5. Performance of the maximum likelihood ratio segmentation algorithm, total for all ground-
truth video. Abbreviation LR means “likelihood ratio”. 
 

5.5 Hidden Markov Model 

In this section we adopt and experimentally evaluate a hidden Markov model (HMM) which is 

used to get the estimates of the posteriori probability of scene boundaries, required in our 

stochastic segmentation approach. In comparison with the maximum likelihood ratio algorithm, 

described above, the resulting segmentation technique is more complicated but is based on less 

restrictive assumptions. In particular, this technique takes into account the non-uniform nature of 

scene duration priors and allows for dependencies of the observable data on the context, adopting 

an autoregressive HMM and explicit state duration modeling. 

5.5.1 Conditional Dependence Assumptions about the Features 

Let’s consider an observable audio-visual feature vector Di measured at a scene boundary 

candidate point i independently from the rest of vectors. In the general case this vector is 

conditioned on the fact of presence or absence of a scene boundary not only at this point but at 

the neighboring points as well. Indeed, in the visual domain the corresponding feature represents 

visual similarity between two groups of shots adjoining to the point under examination. If a 

scene boundary appears exactly between these groups, the similarity measure usually has a local 

extremum. But if a scene boundary lies inside one of these groups, the similarity measure takes 

an intermediate value which is the closer to the extremum, the closer is the scene boundary (see, 

for example, Figure 5-6). The similar considerations hold true for the audio data too. 

For the purpose of simplification we assume that local features are conditionally 

dependent on the distance to the closest scene boundary and are independent from the position of 

the rest of scene boundaries. As the visual feature used in this work is a measure of similarity 
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between shots which changes only at the points of shot transitions, it is reasonable to assume the 

conditional dependence of this feature on the distance expressed in the number of shots. Let’s 

denote a time-ordered sequence of scene boundaries as },...,,{ 21 nbbbB = , where each boundary 

is represented by the order number of the corresponding candidate point. As the scene boundary 

closest to an arbitrary candidate point i is one of two successive boundaries 1−kb  and bk 

surrounding this point so as kk bib <≤−1 , the likelihood of video feature vi measured at point i 

given partitioning into scenes B can be written as 

 )|(),|()|( 1 iikkii vPbbvPBvP Δ== − , (5-21) 

where iΔ  is the distance (measured in the number of shots) from point i to its closest scene 

boundary bc defined as 

 ci bi −=Δ , (5-22) 
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We define the audio feature as a change in acoustic parameters measured between two 

contiguous windows of the fixed temporal duration. Therefore, we assume conditional 

dependence of this feature on the time distance to the closest scene boundary. Denoting the time 

of i-th candidate point as ti, the temporal distance from point i to its closest scene boundary - as 

iτ , we write the likelihood of audio feature ai measured at point i as 

 )|(),|()|( 1 iikkii aPbbaPBaP τ== − , (5-24) 
where 

 cii tt −=τ , (5-25) 
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Taking into account expression (5-21) and (5-24), the likelihood of the total feature 

vector },{ iii avD =  given partitioning into scenes B can be reduced to 

 ),|()|( 1 kkii bbDPBDP −= , (5-27) 
We assume conditional independence of the components of Di given B: 

 ),|(),|()|()|()|( 11 kkikkiiii bbaPbbvPBaPBvPBDP −−== . (5-28) 
If more observable data are available, expression (5-28) can be easily extended to include 

additional feature vector components. 

We calculate likelihood values )|( iivP Δ  and )|( iiaP τ  using the corresponding 

probability density functions (pdf) considered to be stationary (i.e. independent of time index i). 
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It is assumed that observable features are dependent on the closest scene boundary only if the 

distance to it is quite small, i.e. is lower than some threshold which is on the order of the length 

of the time windows used to calculate these features. This assumption facilitates to learn 

parameters of pdf estimates based on a set of learning data. 

To evaluate the likelihood of the video coherence, we use a non-parametrical estimate of 

the corresponding pdf based on a Gaussian kernel and obtained for a set of pre-segmented 

ground-truth data. It is calculated separately for each possible value of the distance to the closest 

scene boundaryΔ . We assume that this distance is limited by a range ],[ 21 nn− , where n1 and n2 

are natural numbers of the order of number of the terms N included in expression (5-11). If it 

happens that 1n−<Δ , we set 1n−=Δ , and if 2n>Δ , we set 2n=Δ . 

The likelihood of the audio dissimilarity feature is calculated from the joint probability as 

 
)(
),()|(

τ
ττ

P
aPaP = , (5-29) 

where, as earlier, a stands for the feature value, τ  - for the time distance to the closest scene 

boundary. We approximate the joint probability with a non-parametric estimate of pdf using a 

Gaussian kernel on a set of learning data. Just as for the visual feature, we limit the range of τ  

by a value having the order of duration of the neighboring time windows used to calculate the 

audio dissimilarity. 

5.5.2 HMM Specification and Optimal Scene Boundaries Selection 

We assume that a priori probability of the presence of a scene boundary at any candidate point is 

determined by the position of the previous scene boundary. Hence, each scene, beginning at a 

time t, can be described by a state of a hidden semi-Markov model, whose duration τ  is chosen 

according to a probability distribution )(τtp , which is supposed to be estimated from learning 

data. To detect scene changes as corresponding state transitions we need to assign to scenes 

different states of the model or use several states to model each scene. As this leads to an 

undesirable growth of the model, we propose to generalize it so as to make possible the use of 

only one common state. The resulting model is presented in Figure 5-10. To distinguish the 

transition from one scene to another, an auxiliary state qend is used. This state does not emit 

observable data, but acts as an indicator of the transition and switches immediately to the regular 

model state 1. We define a transition indicator variable ts  which is set to 1 if a transition takes 

place at time t and 0 otherwise. 



 98

 
Figure 5-10. A generalization of a hidden semi-Markov. 

 

In order to reduce the statistical dependency between contiguous feature vectors, we 

adopt an autoregressive model for the video coherence samples. Therefore the linear prediction 

error of the video coherence is assumed to be the visual component of the feature vectors. As our 

model has only one state which emits observable data, all the video coherence values are 

generated by a single autoregressive process. Therefore the linear prediction error can be 

obtained at the preprocessing stage and then be used as a regular feature. We don’t apply an 

autoregressive model to the audio data, assuming that the time distance between contiguous 

audio features is quite large and their dependence is not so crucial. 

The posterior probability of the presence of scene boundaries is calculated using the 

forward-backward procedure, which is rewritten for our model as follows. As earlier, we assume 

that there are T candidate points },...,2,1{ T  where a scene transition can occur, the first scene 

begins at time t=1, and the last scene ends at t=T. The forward variable tα  is defined as 

 )1,( :1 == ttt sDPα , (5-30) 

where tD :1 denotes the subsequence of observable features tDDD ,...,, 21 . The variable is 

initialized as 

 11 =α . (5-31) 
For the subsequent time moments Tt ,...,2=  we have the following induction: 
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(5-32) 

where kτ is the maximum possible scene duration. It is assumed in this expression that the 

feature vectors are conditioned only on positions k and t of the two surrounding scene 

boundaries, as it follows from (5-27). The probability of observing the whole sequence of feature 

vectors is written in terms of the α  as 

 TTDP α=)( :1 . (5-33) 

1 

qend 

)(τtp  
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The backward variable tβ  is defined now as the probability of partial feature vector sequence 

TtD :1+  given that a scene transition occurs at time t: 

 )1|( :1 == + tTtt sDPβ . (5-34) 
This variable is calculated recursively, initialized first as 

 1=Tβ  (5-35) 
and then by induction 
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The posterior probability of a scene transition at time t is finally written as 
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 We assume that the minimum possible scene duration is limited by the value which 

exceeds the time length of the ambiguity window of 10 seconds (5 seconds in each direction) 

admitted for reference scene boundaries. At most only one scene boundary can correspond to a 

reference boundary under this assumption. Therefore, to provide the optimal values of recall and 

precision, we select N scene boundaries so as to maximize the expected number of the correct 

ones using expression (4-27), where N is calculated according to expression (4-12). 

5.5.3 Scaling 

It is easy to see that tα , defined by expression (5-30), consists of the sum of terms which are 

written as 

 )1,|()1,( 1:11:1 == −− ttitt ssDPssP , (5-38) 

where jis : , ji ≤ , denotes the subsequence of scene transition indicator variables jii sss ,...,, 1+ . 

Since the likelihood of the feature vector )1,|( 1:1 =− tti ssDP  often differs considerably from 1, 

each term takes the value too high or too low to be within the limits of the precision range of 

standard floating-point number representations; the same is true for variable tα  as well. To 

tackle this problem, log-values of this variable could be used instead. However, as expression 

(5-32) includes summation, this would lead to additional computational efforts required to 

transform and normalize the log-values to and from their regular representation at each step of 

the recursion. Therefore instead of the use of log-values we propose to perform the computation 

by applying a scaling procedure. 

 The scaling consists of multiplying the feature likelihood values by scaling coefficients 

tc dependent on time index t. This multiplying does not change the posterior probability of a 
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scene transition )|1( :1Tt DsP = . Indeed, denoting the sequence },...,,{ 21 Tsss  as S, this 

probability is written as 
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The multiplying of the data likelihood by an arbitrary 0≠tc  evidently does not change this 

ratio. 

 We choose the scaling coefficients so that the scaled version of tα , denoted as tα̂ , 

becomes equal to 1. For this purpose we use first the recursion (5-32) to calculate tα . Then we 

multiply the likelihood of the feature vector measured at time t by scaling coefficient tc  

calculated as 

 ttc α/1= . (5-40) 

It can be easily seen that tα̂ , calculated from expression (5-32), becomes equal to 1 and can be 

omitted in the following recursions both for tβ  and tα . The same scaling coefficient tc  is used 

at each subsequent recursion for tα̂  and tβ̂  given by expression (5-32) and (5-36), where the 

feature likelihood )|( SDP i  is substituted by the value )|(ˆ SDP i  written as 

 )|()|(ˆ SDPcSDP iti = . (5-41) 

As it follows from expression (5-37), the posterior probability that a scene boundary is present at 

time t is written finally as 

 
tTt DsP β̂)|1( :1 == . (5-42) 

5.5.4 Prior Probability Estimate 

We assume that the duration of scenes has a stable probabilistic distribution at the domain of 

regular time (as opposed to the time measured in number of shot units whose duration varies in 

quite a large range) and does not depend much on a specific input video. Therefore the prior 

probability of scene transition )(τtp  is calculated based on the probability density function (pdf) 

of scene duration, denoted as )(δsp . To obtain the expression for the prior probability we first 

make two hypotheses. 

 According to the first hypotheses h1 the prior probability of the presence of a scene 

transition at a candidate point i is proportional to pdf  )(δsp  and is written as 
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 )(1 isph δα ⋅= , (5-43) 

where iδ  is the time elapsed from the previous scene transition, α  - normalizing coefficient. 

Denoting the index of the previous scene transition point as j, we choose α  so that the total 

probability of scene transition at the subsequent candidate points }1,...,1,1{ −++ Tjj  is equal to 

the integral probability of scene duration, i.e. 
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where ti denotes the time of i-th candidate point. To reduce the computational burden, we limit 

the maximum possible scene duration by a value maxδ  (which is of about 5 minutes). Therefore 

the summation at the left side of expression (5-44) is stopped when maxδ>− ji tt  (in this case 

the integral of the right side is equal to 1). 

 The second hypothesis accounts for the variability of the shot duration which defines the 

time interval between contiguous candidate points so that the larger is this interval, the more 

probable is the scene transition. We suppose that a scene ends somewhere within a shot but is 

really observed only at the shot transition. Therefore the probability of a scene boundary at point 

i according to the second hypothesis is calculated as integral value 
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 To obtain the final estimate of the prior probability, we combine both the hypotheses into 

one using a weighted sum. The resulting prior probability )( jip j −  that a scene boundary is 

present at point i given that the previous scene boundary occurs at point j, j<i,  is written as 

 
21 )1()( hahajip j −+⋅=− , (5-46) 

where a is a weight coefficient, 10 ≤≤ a . 

We choose a so as to obtain the best probability estimate based on the maximum 

likelihood criterion. For this purpose let’s assume that there is a set of learning instances 

)},,(),...,,,{( 111 mmm sijsijL =  which are selected from manually marked up videos so that jk are 

the candidate points where a scene transition occurs, while ik are the subsequent candidate points 

where sk indicate the presence or absence of a scene boundary given that the previous boundary 

occurs at point jk. More strictly, these instances are defined as follows: jk and ik are all the pairs 

of candidate points so that a scene boundary is present at point jk, kk ji > , and the time difference 

between points jk and ik does not exceed the maximum possible scene duration maxδ ; sk – a 

binary variable which is set to 1 if there is a scene boundary at point ik and there no scene 
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boundaries between points jk and ik, otherwise this variable is 0. Assuming that each learning 

instance is drawn independently, the likelihood of the all data is written as 
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It can be shown [MIT 96] that the maximization of this expression leads to the maximization of 

the cross entropy E written as 
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 The dependence between the averaged value of E and a, experimentally obtained for the 

total set of 4 ground-truth videos, is shown in Figure 5-11. As it can be seen from this curve, the 

best estimate of the scene boundary prior is obtained when hypothesis h1 and h2 are combined. 

The optimal value of a is chosen to be 0.4. 
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Figure 5-11. Cross entropy versus a. 

 

 The pdf of scene duration ps is calculated using non-parametric estimate with Gaussian 

kernel and limit its range of definition by lower and upper boundaries. A sample plot of the 

resulting estimate, obtained for the 4 films of the ground truth is shown in. 
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Figure 5-12. Scene duration pdf. 
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5.5.5 Experimental Evaluations 

In this subsection we present the results of performance evaluations of the HMM-based 

segmentation technique. In these evaluations the observable data likelihoods were estimated non-

parametrically at the domains where the learning samples provide a sufficient statistics. Outside 

these domains the likelihoods were extrapolated as constant values so as to diminish the 

influence of the outliers (this breaks the normalization of the likelihoods, which is not crucial as 

only their ratio is taken into account). Table functions with linear interpolation were used to 

speed up the calculation of likelihood values, so the segmentation procedure itself was 

considerably faster with respect to the computations required to extract feature vectors and took 

several seconds for an one-hour video on our Intel Pentium M 1.8 GHz computer. To provide the 

best performance, the video coherence feature was computed according expression (5-11) 

included 3 terms, i.e. in N was equal to 3; the video similarity was calculated within two 

contiguous groups of 5 shots adjoining the point under consideration. 

 The segmentation performance, obtained for each film from the ground-truth database, is 

given in Table 5-6. The probabilistic distributions for observable data and scene duration in this 

trial were obtained from the same set including all 4 films of the ground truth. The generalization 

capability of the algorithm was tested using cross validation where the learning set included 

three films and the test set consisted of the resting forth one until all data were tried. The results 

of the cross-validation tests are given in Table 5-7. The comparisons with Table 5-6 allows us to 

conclude that using of new data does not degrade the performance considerably. In the test 

results reported hereafter in this subsection we suppose that the learning is performed for all 4 

films of the ground-truth. 

 

Film Precision, % Recall, % F1, % 

A beautiful mind 58.0 72.3 64.3 

Murder in the mirror 90.2 61.7 73.3 

Si j’etais lui 53.2 57.9 55.5 

When Harry met Sally 64.2 65.4 64.8 

Total 63.7 64.5 64.1 

Table 5-6. Performance of the HMM-based segmentation algorithm. The probabilistic distribution 
estimates were learned once for the same set of the 4 films. 
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Film Precision, % Recall, % F1, % 

A beautiful mind 54.7 72.3 62.3 

Murder in the mirror 88.9 53.3 66.7 

Si j’etais lui 49.3 57.9 53.2 

When Harry met Sally 63.5 63.5 63.5 

Total 62.0 60.2 61.1 

Table 5-7. Results of the cross-validation tests for the HMM-based segmentation algorithm. 
 

 The capability of the HMM-based technique to fuse audio-visual data can be evaluated 

from Table 5-8 which presents the segmentation performance for 3 trials: first one is based only 

on visual data, the second – on audio dissimilarity only, the third trial fuses the audio and visual 

features. The comparisons with the results obtained for the rule-based technique (see Table 5-3) 

and the maximum likelihood ratio segmentation (see Table 5-5) shows that the HMM provides 

the better performance for visual data, which can be explained, in particular, by the fact that this 

model includes additionally the priory information about the scene duration. In contrast, the 

audio feature yields relatively low performance and does not contribute much when both audio 

and visual data are fused. One of the reasons of this is the neglect of the probabilistic 

dependencies between adjacent audio features, which, in particular, causes significant 

overestimates or underestimates of the posterior probability of scene transitions. So, the further 

improvements might include the better modeling of these dependencies.  

 

Feature used Precision, % Recall, % F1, % 

Visual 66.2 60.3 63.1 

Audio 34.3 35.5 34.9 

Visual + audio 63.7 64.5 64.1 

Table 5-8. Audio-visual data fusion capability of the HMM-based algorithm total for 4 films. 
 

 We have also tested our HMM for the conventional Viterbi algorithm which performs 

scene segmentation by finding the most probable sequence of scene transition indicator variables 

},...,,{ 21 TsssS =  for the entire set of candidate points. The results are reported in Table 5-9. 

Significant degradations can be remarked with respect to our segmentation technique (see Table 

5-6) which, remind, is based on the optimality criterion aimed to maximize the performance 
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metric directly. The most considerable performance deterioration is observed for recall, as the 

Viterbi algorithm tends to produce long scenes, claiming scene boundaries only at the points 

where there is strong evidence of their presence. Another drawback of this algorithm is that the 

number of claimed boundaries cannot be changed so as to provide the desirable ratio between 

recall and precision. 

 

Film Precision, % Recall, % F1, % 

A beautiful mind 43.8 21.6 28.9 

Murder in the mirror 57.1 13.3 21.7 

Si j’etais lui 50.0 28.1 36.0 

When Harry met Sally 66.7 23.1 34.3 

Total 52.1 21.4 30.3 

Table 5-9. The performance of the Viterbi segmentation algorithm. 
 

5.6 Sequential Segmentation Algorithm 

According to our statistical approach a video is segmented in two stages: first the posterior 

probability of scene boundaries is computed at each candidate point, and only then the optimal 

boundaries are finally selected. In this section we derive and test a segmentation algorithm 

according to another statistical approach where scene boundaries are selected sequentially in one 

pass. The algorithm can be used in real-time systems where the result is obtained as new data 

available with a delay of the maximum possible scene duration. 

5.6.1 Segmentation Principles 

As earlier, we assume that feature vector iD , measured at a time point i, is conditionally 

dependent from the position of the closest scene boundaries 1−kb  and kb  which surround this 

point, i.e. expression (5-27) holds true. Furthermore, the posterior probability of a scene 

boundary bk at point i assumed to be conditionally dependent solely on local feature vector Di 

given the position 1−kb  of the previous scene boundary. This assumption agrees with the intuition 

that evidence of the presence or absence of a scene boundary at an arbitrary point is determined 

by the feature vector measured at the same point. Indeed, this feature vector reflects the degree 

of change in the visual and audio environment of a scene and the larger is this change, the higher 
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is the probability of a scene change. Using Bayes rule, the posterior probability of k-th scene 

boundary at point i given 1−kb  is written as 
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In expression (5-49) we further assume that the next scene boundary 1+kb  takes place 

long time after boundary bk, so that the likelihood of Di given ibk <  is always conditioned on bk 

when computed according to expression (5-21) - (5-26). We denote this assumption as 

+∞=+1kb . It is also supposed that scene boundary duration is limited in time by a threshold 

value maxδ . Then a possible position of k-th scene boundary is limited by a value mk defined as 

 }|max{ max1
δ≤−=

−kblk ttlm . (5-50) 

Under these assumptions expression (5-49) is continued as 
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We propose to segment an input video into scenes sequentially, choosing each next scene 

boundary based on the position of the previous one. So, the video can be segmented in real-time 

with a time delay of the order of the maximal scene duration maxδ . Knowing the position of 

scene boundary 1−kb , we select the next boundary bk using the posterior probability estimated at 

each candidate point i, 1−> kbi , on time length maxδ  according to expression. In this paper the 

boundary bk is placed at the point of the maximal probability, as such a decision criterion has 

appeared to work well in experimental evaluations. This criterion is based on a relative 

comparison of the evidence of a scene boundary at each point under consideration provided by 

the feature vector measured at the same point. In this manner, the resulting segmentation 

procedure resembles the conventional techniques which pronounce scene boundaries at the 

points of local extremum of some visual or audio similarity curve, expression (5-51) being 

considered as a way of fusing multiple data into one cumulative measure. Four posterior 

probability curves along with audio dissimilarity and video coherence curves obtained for a 

ground-truth film are depicted in Figure 5-13. The probability curves are shown partly 

overlapped; each curve begins at the first candidate point inside a scene, achieves the global 
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maximum at the point of transition to the next scene and is interrupted at the middle of the next 

scene (in order not to encumber the figure). As it can be seen from the figure, the probability 

curves have peaks which are better pronounced and, hence, better detectable with respect to the 

feature curves. 
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Figure 5-13. Audio dissimilarity (upper curve), video coherence (middle curve) and scene boundary 
posterior probability in sequential segmentation approach (partially overlapping curves in the bottom) 
versus frame number. Vertical dashed lines delimit scenes. 
 

It is assumed that in expression (5-51) the prior probability )|( 1−kk bbP  of scene 

boundary bk is determined by the duration of the scene which ends up at this boundary and is 

calculated using pdf of scene duration ps as 

 )()|(
11 −

−=− kk bbskk ttpbbP α , (5-52) 

where it  is the time of candidate point i. Normalizing coefficient α  can be omitted when this 

expression is substituted in expression (5-51) as only the ratio of probability values is taken into 

account. We do not take into account the shot duration in this expression, as it was done in our 
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HMM-based segmentation technique, since this would make the probability curve more irregular 

because of the significant difference in shot length. 

 We deliberately include only one local feature vector Di in expression (5-51) and exclude 

surrounding data from consideration. Otherwise there would be a need to treat properly the 

strong dependence which usually exists between contiguous observable data. This would 

complicate the proposed approach and would possibly require more learning data. Experimental 

tests on a more complicated model which includes the complete set of observable data up to the 

point under examination, much as the model proposed in [VAS 97] for the task of shot 

segmentation, suggest that simple neglect of this dependence in such a model degrades 

considerably the segmentation performance, let alone the increase of the computational 

complexity. The problem of dependence between feature vectors is avoided in our model, as the 

single feature vector Di in expression (5-51) is usually placed far enough from boundary 1−kb  at 

the most points under examination and, thus, does not strongly depends on the feature vector 

measured at this boundary. 

5.6.2 Final Algorithm 

The final segmentation algorithm used in this work is resumed as follows. 

• Segment an input video into shots and assign candidate points of scene boundaries to be 

the shot transition moments. Estimate feature vector Di at each point i. 

• Place the initial scene boundary b0 at the beginning of the first scene (which is supposed 

to be given). Select recursively each subsequent scene boundary bk based on the position 

of the previous one 1−kb  through the following steps: 

o Calculate the posterior probability of k-th scene boundary at each candidate point 

i of set },...,1{ 1 kk mb +−  according to expression (5-51), where mk is defined by 

expression (5-50) and is limited by the last candidate point. 

o Place the next scene boundary bk at the point of the highest posterior probability. 

o If a stopping criterion is fulfilled, exit the algorithm. 

The stopping criterion is used mostly to keep inside the narrative part of the input video. We 

suppose that the position of the last scene boundary is given and the stopping criterion is fulfilled 

when the current scene boundary bk appears to be closer in time to the last scene boundary than a 

predefined threshold value which is approximately equal to the mean scene duration. 

5.6.3 Experimental Evaluations 

In this subsection we report the results of experiments designed to test the proposed video scene 

segmentation algorithm. As earlier for the HMM-based segmentation technique, the feature 
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likelihoods and the scene duration pdf were estimated non-parametrically using a Gaussian 

kernel. To provide the best performance, in all the experiments the video coherence feature was 

computed according expression (5-11) included 3 terms, i.e. in N was equal to 3; the video 

similarity was calculated within two contiguous groups of 5 shots adjoining the point under 

consideration. 

Segmentation performance of the proposed sequential segmentation algorithm relative to 

different films entered into our database is compared in Table 5-10. The feature likelihoods and 

the scene duration pdf were estimated on the learning set including all 4 films. The highest 

integral performance F1 for film “Murder in the mirror” was caused mainly by the most stable 

behavior of the video coherence curve as the scenes were shot by relatively slow-moving or 

static cameras. In contrast, the outsider film “Si j’etais lui” was characterized by intensive 

camera movements. A reason of a relatively low performance for film “A beautiful mind” was 

less accurate shot segmentation for gradual shot breaks which merged sometimes shots 

contiguous to a scene boundary. Comparison with the results given in the sections above (Table 

5-2, Table 5-5, Table 5-6) allows us to conclude that the sequential segmentation approach has the 

best performance measured by both the precision and recall. 

 

Film Precision, % Recall, % F1, % 

A beautiful mind 67.7 67.7 67.7 

Murder in the mirror 88.9 66.7 76.2 

Si j’etais lui 66.7 63.2 64.9 

When Harry met Sally 69.8 71.2 70.5 

Total for 4 films 72.4 67.1 69.6 

Table 5-10. Performance of the sequential segmentation algorithm for different films. 
 

In order to evaluate the generalization capability of the segmentation approach learned on 

a set of pre-segmented data, the cross-validation tests were carried out. The learning set included 

three films and the test set consisted of the resting forth. The overall results for all 4 films are 

given in Table 5-11. Three trials were made: the first one did not used cross-validation at all, 

serving as a reference; the second used a separate set to learn only the pdf estimates for the audio 

and visual features while the scene duration pdf was estimated on a common set including all 4 

films; the third trial supposed separate learning and test sets for all the pdf estimates. As it 

follows from Table 5-11, our segmentation approach does not suffer much from parameters over-

fitting, providing quite a general model for video scene segmentation. The perceptible sensitivity 

to the estimate of scene duration pdf suggests importance of taking into account of prior 
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information about scene duration. The results given below in this section assume the same 

learning and test set which includes all 4 films of the ground truth. 

Using cross-validation Precision, % Recall, % F1, % 

Non 72.4 67.1 69.6 

For the feature pdf only 69.9 67.5 68.7 

Total for the feature pdf 

and the scene duration pdf 
67.6 65.0 66.2 

Table 5-11. Performance of the sequential segmentation algorithm in cross-validation tests. 
 

The capability of our sequential segmentation approach to fuse audio-visual features can 

be revealed from Table 5-12, where the first row presents the segmentation performance when 

only the visual feature was used, the second one gives the performance only for the audio feature 

and the third – for both the features. As it follows from the table, fusing the visual and audio 

features enhances both the recall and precision. 

 

Feature used Precision, % Recall, % F1, % 

Visual 61.7 64.1 62.9 

Audio 39.9 48.7 43.8 

Visual + audio 72.4 67.1 69.6 

Table 5-12. Performance of the sequential segmentation algorithm for audio-visual feature fusion. 
 

As for computational time required by our sequential segmentation algorithm, it is quite 

fast given that audio-visual features are pre-computed and takes less than a second on our Intel 

Pentium M 1.8GHz computer for one film. This is because the computational complexity is 

approximately linear with respect to the film length due to limited time search for each scene 

boundary. The main computational burden for a raw video file stems from its decoding and 

feature extraction which, though, can be done in real time without much optimization for MPEG 

4 video format. 

5.7 Conclusions 

In this chapter we have adopted our stochastic approach to the task of narrative video 

segmentation into semantic scenes. Several particular segmentation techniques were derived 

based on different assumptions about the feature dependencies and the priori distribution of 

scene duration. Because of the lack of common benchmarking data, the performance of the 

proposed techniques was tested comparatively using our database of 4 ground-truth videos. To 
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reliably detect scene boundaries, we proposed two informational sources providing evidence 

about possible scene transitions – video coherence and audio dissimilarity. It was experimentally 

shown that our video coherence measure leads to a better segmentation performance with respect 

to the conventional measure which is based on a short memory model. 

While the conventional rule-based segmentation algorithm attains the performance 

improvements when fusing multiple data sources, it suffers from excessive coarseness and is too 

sensitive to the chose of its threshold parameters. The multi-modal data are fused more 

effectively in our statistical maximum likelihood ratio algorithm. The cross validation tests 

showed that this algorithm generalizes learning data quite well and can be applied to new data 

without significant losses in performance. Further improvements were made in our HMM-based 

segmentation algorithm which models the dependences of the observable data from the scene 

boundary positions and takes into consideration the non-uniform priori distribution of scene 

duration. Being based on our optimality criteria, this algorithm has better performance than the 

conventional Viterbi procedure. We also proposed a statistical algorithm, called a sequential 

segmentation one, which segments video in one pass, selecting scene boundaries sequentially as 

new data are available, and, hence, is suitable for real-time applications. The algorithm is not 

sensitive to the statistical dependencies between adjacent feature vectors and has the best 

performance.  
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6 Video Summarization 

6.1 Introduction  

Being compact representations of the content, video summaries provide a fast way to get 

acquainted with the main points at a glance, without the need to see the entire video. The input 

video can be summarized at a whole and can be used, for example, in the form of trailers to 

allow users to choose quickly an interesting movie from a huge collection, or in the form of 

personalized summaries for mobile devices. Alternatively, video summaries can be used together 

with content tables as convenient interface for navigation within a video, providing compact 

visual representation of the semantic units. 

 Video summary can be produced in the form of a static storyboard called sometimes a 

pictorial summary. In this case it is represented as a collection of still images arranged in time 

order to convey the highlights of the content. These images can be simply the most 

representative frames called key-frames that are extracted from the video stream. In the more 

complicated case they are produced synthetically, e.g. mosaics which represent the panoramic 

views capturing the moving of the camera [PEL 00]. The static storyboards, being rendered on a 

screen, may provide to a user the possibility to grasp at a glance the concise information about 

the whole content or the moments of interest. Another commonly used style of video summary is 

a video skimming which is a trimmed video consisting of a collection of image sequences. This 

type of summary usually requires more memory space and longer time to be viewed but its 

advantage is that it conveys the audio information and the motion as well. 

In this chapter we propose a video summary using a shot-based approach that allows 

generating both a static storyboard and a video skim in the same manner. The video is 

decomposed into consecutive shots and the most important of them are left to compose a 

summary. For each shot we choose the most representative frame (i.e. key frame) which is used 

to build a pictorial summary and to calculate some features like the similarity of the different 

shots. This approach is justified when the shots are static enough and are shot by a still camera. 

A lot of summarization approaches proposed by today are rule-based. They use sets of 

rules to identify important moments in the video combining the different characteristics extracted 

from both the audio and video streams [SMI 98, LIE 97]. Pattern recognition algorithms are 

often employed to detect the events of interest to be included in the summary, especially in the 

domain-specific tasks such as sport video summarization [MUR 03]. The drawback of these 

approaches is that they qualitatively select the important moments and thus do not allow tuning 
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of the compression ratio. This is not the case for another class of summarization methods which 

use mathematical criteria to quantitatively evaluate the importance of video segments. For 

example, Uchihashi et al. [UCH 99] numerically estimate the importance score of video 

segments based on their rarity and duration; Yihong Gong and Xin Liu [YIH 00] use for this 

purpose singular value decomposition.  

We propose a generalized quantitative criterion that includes some quantitative 

parameters and simple rules defined by a user as desirable constraints on different features of 

video segments: their classification into day or night, exterior or interior, shot duration, sound 

classification into speech, noise, silence and music etc. So, our method can be considered as the 

generalization of the rule-based approaches as well. It is however more flexible and allows 

customizing to the needs of a user. Indeed, a video summary is generated according to the user’s 

preferable configuration of constraints and the desirable compression ratio or/and the threshold 

set on the importance scores. 

The using of a global arrangement of the shots of a video according to their importance 

score leads sometimes to the fact that several important semantic segments are not represented in 

the summary at all. To overcome this we additionally propose a summarization approach that 

prevents the semantic structure of the video that consists of the higher level segments than shots. 

In this approach each higher level segment (scenes in our case) is given the equal opportunity to 

be presented in the target summary. This type of summary we will call hereafter a “digest”. 

6.2 Summarization Principles 

6.2.1 System Architecture 

The general architecture of our summarization system is shown in Figure 6-1. To build a 

summary of a video, the shot segmentation is first applied to its frame sequence. Then the 

different features describing the shots are computed. For the video stream these features 

currently are: time of a day for outdoor shots – day or night – which is determined using 

percentage of the illuminated parts in the key frame image [MAH 02]; place of the action – 

exterior or interior – that is defined based on color temperature of the selected parts of the key 

frame [MAH 01]; percentage of the human skin pixels calculated based on the pixel spectral 

distribution [HAM 03]; clustering of the shots based on the color histogram dissimilarity 

described above; average quantity of motion. The audio stream of the video is used to calculate 

the expected duration of the semantic segments in the shots (speech, music, silence, and noise) 

based on the approach described in [HAR 03b]. The multiple features of each shot are then fused 

into the importance score measure according to the user preferences. The target summary is built 
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from the shots that have the maximum score until the compression ratio limit is exceeded or 

shots having acceptable score are exhausted. The details of the score assignment are given 

further in this section. 

 
Figure 6-1. Architecture of the summarization system. 

 
 

6.2.2 Importance Score Estimation 

It seems difficult to propose a numerical importance score estimation approach that would be 

quite general to comprise all conceivable combination of the shot features on the one hand, and 

simple and expressive to be easily tuned by a user on the other hand. The possible decision is to 

formulate the problem as the function approximation task and to use the automatic learning 

techniques to tune the coefficients of the function representation formula. In this case, however, 

the user will have to provide the learning set each time when he decides to accustom the system 

to his specific needs. The problem of the most appropriate function representation remains 

anyway. 

It is often the case when the user finds some difficulties in numerical estimating of the 

importance score, but he can express his wishes concerning the desirable content of the video 

summary in the form of simple assertions (negative and positive) on the features. That is why it 

seems reasonable to combine these assertions into the importance estimation formula in such a 

simple way as a weighted sum. In this case the score represents a simple calculation of the points 

gained (or lost) by the positive answers to the simple tests. Similar technique is used to build the 

summary of the key-word annotated video by the video semantic summarization systems of IBM 
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[IBM], where the tests check the presence of the key-words in the annotation. Xingquan Whu et 

al. [XIN 03] put into a video summary the shots that have the maximum number of key-words 

(the idea is that these shots are most representative). Their approach is a particular case of our 

concept where tests check the presence of the key-words and all the weights are positive and 

equal. 

In our case the user formulates his preferences specifying the inequalities (“greater”, 

“less” or “equal” relations) applied to the wide-range shot parameters (duration of shots, percent 

of human skin, quantity of movement, expected duration of sound semantic segments) and 

desirable classification result (day/night, exterior/interior). Each such a preference number i we 

represent by the binary value denoted as ib  which is set to 1 if the corresponding constraints is 

true and to 0 otherwise. We also give to the user opportunity to formulate his favor to some of 

the numerical shot features by adding terms which are functions of these features. We denote 

these terms as if . The resulting expression for importance score S estimation is written as 
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where b
iw  and f

jw are the weights of the corresponding terms ib  and jf . 

 In this work the terms f are: 

• The “coverage” of the shot which express the relative length of the video belonging to the 

same cluster. We define it as )log(
e

Ci

L

Li∑
⊂ , where iL  denotes the duration of the shot i, e – 

the index of the estimated shot, C – set of the shot numbers that belongs to the same 

cluster as the shot e. 

• The “originality” of the shot which is decreasing function of the number of shots 

belonging to the same cluster which are already included in the summary. In our work it 

is a reverse value of this number. As this term is depended of the process of the summary 

building, the connection between the stages of importance score estimation and of 

summary building in Figure 6-1 is bidirectional. 

These terms may be used to select the original shots of the clusters and the most repetitive 

clusters as the most representative ones. Note that they have approximately the same value area 

as the binary values, e.g the minimum possible value of the coverage term is 0 (for the unique 

shots) and the maximum value is limited due to the logarithm function. So, they give 

approximately the same contribution to the importance score. 



 117

6.2.3 Video Digest 

The summarization method described above selects the shots globally for the whole video and 

does not take into consideration its high level semantic structure. Therefore, some high level 

semantic segments may not be presented in the summary at all, especially when the high 

compression is desirable. We propose to a user an additional summarization approach aimed to 

build a digest – the summary which, in fact, is compounded of the summaries of each its high 

level semantic segments. To each high level semantic segment, which we reference hereafter in 

this chapter as a scene, we give the equal opportunity to be presented in the digest. The following 

algorithm is used: 

1. Perform shot segmentation and their features extraction according to the scheme 

described above. 

2. Perform scene segmentation and collect the detected scenes (represented by groups of 

corresponding shot descriptors) into the set SCENES. 

3. While the set SCENES is not empty do: 

a. For each scene in the set SCENES do: 

i. Extract the shot with the highest importance score from the scene and add it to the 

set CANDIDATE_SHOTS. 

ii. If the scene does not contain the shots with the importance score higher then the 

score threshold, remove the scene from the set SCENES. 

b. For each shot extracted in the decreasing order of its importance mark from the set 

CANDIDATE_SHOTS do: 

i. Add the shot to the digest. 

ii. If the size limit of the digest is achieved, exit. 

6.3 Implementation and Experiments 

The summarization algorithms described above has been implemented as a computer program 

that was used for their experimental evaluations. Three windows of the graphic user interface 

(GUI) provided by the program are shown in Figure 6-2. The window of the player allows to a 

user to view a summary or a digest (and the original video as well) by playing the corresponding 

video skim clip using rewind and positioning controls for navigation along the time line. The 

window of the key frames control presents a summary or a digest as a static storyboard that 

contains the key frames of the video shots. The window of the filter allow to a user to specify his 

preferences concerning the shot features which are used to calculate the importance score of the 

video shots. These preferences are expressed by imposing “less”, “equal” and “greater” relations 

on the shot features and by setting of the corresponding weights. In the window of the filter the 
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user can set a threshold value on the importance score as well so that to leave in the summary 

only the most important video segments. 

 

 
Figure 6-2. GUI of the summarization program. 

 

The summarization program makes a summary or a digest from a video file at two steps. 

First, the video file is segmented into the shots and their audio and visual features are extracted, 

i.e. the stages shown before the importance score estimation in Figure 6-1 are executed. The shot 

grouping into scenes are implemented as well, and the result is saved to a persistent storage. This 

step is slow enough and, therefore, is executed only once. The summary or the digest is built at 

the second step which is very fast (it requires less than a second for a one-hour video on a 

modern personal computer) and may be executed many times without making the user to wait. 

As the configuration of the user’s preferences influences only on this second step, he can execute 

it many times to interactively select the best combination of his preferences for the loaded video. 

A lot of configuration of the preferable constraints can be proposed to adapt the system to 

specific needs. The user can highlight emotional episodes in the film choosing the shots 

containing musical tracks, dialog scenes including long speech and a portion of skin, try to select 

“erotic” shots containing a lot of skin etc. At the same time he can suppress some undesirable 

moments, e.g. annoying commercial inserts choosing the shots with long duration and high 

coverage (because of the fact that the commercials are often compounded of the short and non-

repetitive shots). 
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Figure 6-3. Storyboard fragments for an original video (a), its summary (b) and digest (c). Their images 
are the shot key frames. Three first numbers in the textual labels are the ordinal shot number, the scene 
number and the cluster number. 
 

Selecting the “originality” and “coverage” terms the user can build a “semantic” 

summary briefly depicting the main shot types of the longest episodes. Figure 6-3b shows a static 

storyboard of such a “semantic” summary of an excerpt of a detective film captured from one of 

the French TV channel. The originality term weight was set to 30, the coverage term weight – to 

2; the minimum shot duration was limited by 2 second with the weight set to 100; the 

compression ratio was set to 15%. Comparing this summary with the original video (Figure 6-3a) 

a) 

b) 

c) 
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we can see that it is capable to represent more semantic episodes on the same screen surface. 

Figure 6-3c shows a storyboard for a digest corresponding to the same part of the video. It 

rigorously prevents the semantic structure of the video, uniformly representing all the scenes. 

6.3.1 Conclusions 

In this chapter we have proposed a versatile approach which can be used to create summaries 

that are customizable to specific user’s preferences to different type of video. A high versatility 

of the approach is based on a unified importance score measure of video segments which fuses 

multiple features extracted from both the audio and video streams. This measure provides the 

possibility to highlight the specific moments in a video and at the same time to select the most 

representative video shots using the “coverage” and “originality” terms. Its coefficients can be 

interactively tuned due to a high computational speed of the approach. 

Additional terms can be easily added to the importance score estimation formula to 

extend our approach. For example, they might be assertions of a new form concerning the video 

shot features or additional features not mentioned in this work. Our digest building algorithm can 

be extended as well to prevent the structure of the video on the levels higher than scenes. 
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7 Conclusions and Future Work 

Automatic video segmentation into semantic units is important to organize an effective content 

based access to long video. The review of related work in the field of semantic video 

segmentation has revealed a large diversity of the processing techniques stemming from the 

variety of genres and sub-genres of video; this is especially the case for sports programs where 

domain-specific fine-tuned event detectors are often applied. In spite of this, we could notice that 

much of this work is based on the common idea of using production rules that are followed 

during creation of video. In this thesis we proposed several segmentation techniques relying on 

common characteristics of video stemming from production rules by the following reasons. First, 

they provide us with quite a general basis to deal with the diversity of video properties in a 

unified fashion. Second, such characteristic can be reliably detected using common signal 

processing techniques that may require some learning to be adapted to a particular type of video. 

Moreover, instead of detection of semantic segments of just one or several types, that is often the 

case in the related work, in this thesis we aimed at reconstructing the total content structure of 

video. 

 In the case where an input video has a well-defined temporal content structure whose 

segments can be unambiguously related to mid-level events, we proposed a deterministic 

approach which is based on a finite state automaton. This approach provides a regular basis 

which allows one to formulate video content parsing rules as grammar constraints and feature 

templates that control transitions between semantic segments. It is suitable for video having 

complex hierarchical content structure for which reliable feature templates can be specified. In 

this thesis we adopted and tested this approach for the task of tennis video segmentation. The 

resulting segmentation technique is based on production rules that are typically employed to 

convey semantic information to a viewer, such as specific views and score boards in tennis 

broadcasts. In this technique we used our notion of a tennis content structure to select unique 

template of events that indicate transitions to semantic segments of each type. These events 

along with grammar restrictions drive the parsing process. The advantage of our approach is in 

its expressiveness and low computational complexity. Moreover, the experimental evaluations 

showed quite high segmentation accuracy, especially when high reliability of event detectors was 

provided. 

 For the task where sufficient learning data can be provided, we proposed a statistical 

segmentation approach. Treating an input video in a probabilistic manner we can take into 
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account “soft” grammar constraints imposed on the semantic structure and expressed in the form 

of probability distributions. Moreover, the multiple keys, being considered as statistical 

variables, can be more easily fused into one, more reliable decision in the case of their collisions. 

In contrast to the common statistical approach which selects the single best model of the whole 

video, in our approach we claim segment boundaries so as to maximize the performance metrics 

directly. The approach is based on the posterior probabilities of the boundaries estimated at each 

candidate point. These probabilities can be estimated in different ways, depending on the 

particular model of the video. In particular, we adopted the theory of hidden Markov models and 

their extensions and considered a video as a stochastic automaton – statistical generalization of 

the deterministic finite state machine. 

 We adopted our stochastic approach to the task of narrative video segmentation into 

semantic scenes. Several particular segmentation techniques were derived based on different 

assumptions about the feature dependencies and the priori distribution of scene duration. 

Experimental evaluations showed that the multi-modal data are fused more effectively in our 

statistical approach with respect to the conventional rule-based one. Based on the cross 

validation tests we also showed that the derived algorithms generalize learning data quite well 

and can be applied to new data without significant losses in performance. As for our HMM-

based segmentation algorithm, the tests allowed us to conclude that the use of our optimality 

criterion leads to significantly better segmentation performance than the conventional Viterbi 

procedure. 

 In addition to the video segmentation, we also proposed a versatile approach to the video 

summarization task which is customizable to specific user’s preferences to different type of 

video. A video summary can have an independent meaning aimed to quickly get acquainted a 

viewer with the content of video or it can be generated for each semantic segment of a content 

table forming so called digest. Pictorial digests provide a convenient interface for navigation 

with content tables where each unit is visually represented with one or just several key frames. 

The high versatility of the approach is based on a unified importance score measure of video 

segments which fuses multiple features extracted from both the audio and video streams. The 

coefficients of this measure can be interactively tuned due to a high computational speed of the 

approach. 

 Further improvements of the proposed techniques could be done in several directions. To 

provide higher performance, we could extend the particular applications by adding new features. 

For example for the tennis segmentation these features could include additionally the results of 

rocket hits detection, time constraints and the output of speech recognition. Additional useful 

information for the narrative video segmentation could be provided by automatic person 
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tracking, as the same scene usually includes the same personages. The inclusion of new features 

could require dealing properly with possible dependencies between them, as currently in our 

statistical approach we fuse the multiple features assuming that they are independent. In addition, 

the currently used semantic structure could be extended so as to contain a larger variety of 

semantics which could provide additional possibilities for content based navigation. For instance, 

the points of tennis video could be split into several classes such as rallies, missed first serve, ace 

or replay. Also we are going to apply our approach to other types of video, e.g. sports 

broadcasting, news programs or documentary video. 
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