
Algorithms for Structural and Dynamical
Polychronous Groups Detection

Régis Martinez1 and Hélène Paugam-Moisy2

1 LIRIS, UMR CNRS 5205, Université de Lyon, F-69676 Bron, France
2 TAO - INRIA, LRI - Université Paris-Sud 11, F-91405 Orsay, France
regis.martinez@liris.cnrs.fr, hpaugam@lri.fr

Abstract. Polychronization has been proposed as a possible way to investigate
the notion of cell assemblies and to understand their role as memory supports
for information coding. In a spiking neuron network, polychronous groups (PGs)
are small subsets of neurons that can be activated in a chain reaction according
to a specific time-locked pattern. PGs can be detected in a neural network with
known connection delays and visualized on a spike raster plot. In this paper, we
specify the definition of PGs, making a distinction between structural and dynam-
ical polychronous groups. We propose two algortihms to scan for structural PGs
supported by a given network topology, one based on the distribution of connec-
tion delays and the other taking into account the synaptic weight values. At last,
we propose a third algorithm to scan for the PGs that are actually activated in the
network dynamics during a given time window.

1 Introduction

One of the main challenges in cognitive science is to understand how knowledge is
represented and processed in the brain. From the early notions of cell assemblies [5]
and “grand-mother cells” (see [4]), many open questions are still debated. What is the
support of memory? How and where information is coded in the brain activity? The
recent hypothesis that information could be encoded by precise spike timings gives
arguments for the thesis of temporal rather than spatial cell assemblies. Pointing out
the fact that connection delays have non uniform values between neurons in the brain,
Izhikevich proposed the concept of polychronization [7], which is far richer than the
current concepts of synchronization and synfire chains [1]. Also in computer science
the concept of polychronization yields valuable tracks for defining new learning rules
in spiking neuron networks [10] and polychronous groups have been confirmed to play
the role of dynamical cell assemblies in a classification task [9]. Studying PGs and
understanding their role in information coding could help improving both the network
structure and the effectiveness of learning rules acting on delays.

So far, no formal definition has been given for a polychronous group, and only spe-
cific methods to inventory them have been proposed [6,8]. In section 2 we give a precise
definition of a polychronous group (PG), making a distinction between structural and
dynamical PGs. In section 3 we present three algorithms and data structures to inven-
tory all polychronous groups of a given network topology and to detect which groups

C. Alippi et al. (Eds.): ICANN 2009, Part II, LNCS 5769, pp. 75–84, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

76 R. Martinez and H. Paugam-Moisy

are triggered in spike activity. In section 4 we give a complexity analysis of the al-
gorithms, and we present experimental measurements: Number of PGs (mean values,
from several experiments) when varying different parameters.

2 Definition of Polychronous Groups

2.1 PG Definition

In the founding paper [7] polychronization denotes the fact that several neurons can be
activated in a chain reaction according to a specific time-locked pattern of firings, not
only in pure synchrony. A polychronous group is characterized by a precise temporal
pattern of firings, in a subset of neurons, that is more likely to happen than just by
chance in neural activity. Such patterns are intrinsically based on the network topology:
connectivity, synaptic weights and especially conduction delays.

In recent work [8] a polychronous group, referred to as a polygroup1, is defined as
the set of neurons that supports the time-locked pattern. We state that the set of neu-
rons involved in the temporal pattern is not enough to characterize the PG. Indeed, if
one neuron can appear in more than one PG, it is clear that a given set of neurons
could also fire with several different timings, and support or participate to more than
one PG. The chain reaction that defines a PG is a series of causal interactions between
neurons, such as [N1, t1], [N2, t2], ..., [Ni, ti] ⇒ [Nj , tj], where a pair [Nk, tk] denotes
a spike fired by neuron Nk at time tk. The chain is started by a specific firing pat-
tern of a small number s of neurons, the triggering neurons, further named triggers.
Hence we propose to define a PG by a list of triggers associated to a temporal firing
pattern:

Fig. 1. Graphs for two polychronous groups: the 21 − 52 − 76 (7, 7, 0) (left PG) and the
19 − 55 − 76 (0, 11, 13) (right PG). They share neuron 76 among their respective sets of
triggers.

Definition 1. A s-triggered polychronous group refers to the set of neurons that can
be activated by a chain reaction whenever the triggers Nk(1 ≤ k ≤ s) fire according to
the timing pattern tk(1 ≤ k ≤ s). The PG is denoted by: N1−N2−...−Ns(t1, ..., ts)
where the firing times tk are listed in the same order as the corresponding triggers Nk.

1 We do not use the term polygroup because it might bring confusion with other uses in Physics.

Algorithms for Structural and Dynamical Polychronous Groups Detection 77

To decide whether a neuron could be activated by counting the number of spikes it
recieves simultaneoulsy, we follow Izhikevich [7] by extending the notion of simulta-
neous arrival to a short time range denoted jitter.

A graphical representation of a PG can be plotted on a spike raster plot of the net-
work activity, focusing attention on a subset of neurons, and drawing additional links
for representing the causality of interactions (see Figure 1). Such a representation is a
subgraph of the neural activity, where a vertex is a pair [Nk, tk], and a directed edge
denotes the causal influence from a pre-synaptic neuron to a post-synaptic one.

2.2 Structural PGs vs. Dynamical PGs

Definition 1 allows to inventory all the possible s-triggered polychronous groups sup-
ported by a given spiking neuron network with known connectivity and conduction
delays, disregarding weight values. Since such PGs depend on the network architecture
only, they are structural and we call them the supported PGs.

However, synaptic weights are usually subject to learning rules and their values
change through time, which can influence the decision whether a certain amount of
spikes simultaneoulsy incoming to a neuron Nj is sufficient or not for triggering a spike
fired by Nj . Then we define adapted PGs by applying Definition 1 in taking into ac-
count the membrane potential dynamics of neurons and the values of synaptic weights
for finding the causal relations yielding a neuron Nj to actually fire a spike at time tj .
Since activated PGs do not depend on the network dynamics (e.g. under the influence
of a given input), they are also structural PGs.

Another question is to find which PGs actually appear in the spike activity of a neu-
ron network during a given time window. These PGs are a subset of the structural PGs
and we call them activated PGs. Unlike structural PGs, activated polychronous groups
are dynamical PGs, since they depend on the network dynamics.

3 Scanning for Polychronous Groups

Algorithms 1 and 2 are designed to scan for supported PGs and adapted PGs respec-
tively. They are based on a given network topology, with known connectivity, conduc-
tion delays and synaptic weights. In Algorithm 1, all the combinations of s neurons are
tested as possible triggers, under the hypothesis that NbSpikesNeeded are required
to generate a causal relation making a neuron Nj to spike (s and NbSpikesNeeded
are set by the user). Actual post-synaptic potentials (PSPs) are not taken into account
in Algorithm 1 whereas in Algorithm 2, the decision to let a neuron Nj spike requires
the computation of the weigthed PSPs recieved by Nj . In Algorithm 2, the amount of
incoming spikes can differ from NbSpikesNeeded, a parameter which is no longer
useful (s is still required and set by the user). Algorithm 3 is written to scan for the ac-
tual appearance of previously inventoried adapted polychronous groups in the network
activity during a time slice of simulation data (with varying inputs, for instance).

All three algorithms are suited for any model of neuron that can be run in event-
driven mode. Algorithm 2 uses the neuron model equation to decide whether the neuron
spikes or not, on the basis of its recent PSP history. This constraint may be relaxed for

78 R. Martinez and H. Paugam-Moisy

Algorithm 1 that can be straightforward adapted to more general neuron models, since it
is only based on spike events, and do not take care of the intrinsic dynamics of neurons.

The model neuron we used for experiments has the following characteristics (based
on SRM0 [2]): The firing threshold ϑ is set to a fixed negative value (e.g. ϑ = −50 mV)
and the threshold kernel simulates an absolute refractory period τabs, when the neuron
cannot fire again, followed by a reset to the resting potential urest, lower than ϑ (e.g.
urest = −65 mV). We assume that the simulation is computed in discrete time (with
0.1 ms time steps). The variables of each neuron are updated at each new incoming
spike (event-driven programming), which is sufficient for computational purpose.

The network structure is typical of Reservoir Computing methods: Connections be-
tween neurons are drawn randomly, according to a given connectivity; Weights start
from 0.5 as initial value and can vary under STDP, a temporal Hebbian rule of synaptic
plasticity; Delays are fixed but random, between 1 and 20 ms.

3.1 Definitions

Notations
n : number of neurons in the network
Ni : neuron numbered i

NTk : triggering neuron numbered Tk, with k from 1 to s

t : current time (virtual biological time, in simulations)
dij : conduction delay on the connection from Ni to Nj

wij : synaptic weight from Ni to Nj , equals 0 if connection does not exist.

Data structures
Post-Synaptic Potentials. A PSP is denoted PSPtpsp,Nl,Nm : Post-Synaptic Potential

evoked at time tpsp by a pre-synaptic neuron Nl on a post-synaptic neuron Nm.
Event queue. The queue EventQueue is the structure for processing simulation

events (evoked PSPs). It contains the events ordered by their chronological occurence
in the future.

PSP list stored in neurons. For the purpose of our algorithms, we need to store, for
each neuron, the list of the spikes it recieved during a given time course elapsed, the
Jitter (see Section 2.1). This list is called PSPListi, for neuron Ni.

Data structure for a PG. When a PG is calculated, informations have to be stored :

– timings tT1 , ..., tTs of the triggers NT1 to NTs ;
– for each PSP, PSPtpsp,Nl,Nm , the ID of Nm and its spike-firing time, the ID of Nl

and the time of evocation of the PSP.

Variables
NbTriggeringConnectionsi : number of connections received by Ni from triggers
MaxPotentiali : maximum membrane potential that neuron Ni might reach under the action
of triggers
tLastSpikei : time of most recent firing of neuron Ni, initialized to −RefractoryPeriode, so
that previous spikes are already out of refractory periode

Algorithms for Structural and Dynamical Polychronous Groups Detection 79

Parameters
s : number of triggers, fixed for every polychronous groups
NbSpikesNeeded : number of simultaneous impinging spikes necessary to trigger a new spike
in any neuron
Jitter : time range for spikes to be considered as “simultaneous”
NbSpikesMax : maximum number of spikes in a polychronous group
NbSpikeMin : minimum numer of spikes in a polychronous group for it to be saved
MaxT imeSpan : maximum time span of the polychronous group
MinT imeSpan : minimun time span of the polychronous group
PSPStrength : amplitude of a Post Synaptic Potential (PSP)
RestingPotential : default membrane potential of a neuron when it has no input
Threshold : membrane potential value above which the neuron spikes
RefractoryPeriode : time after a spike, during which a neuron cannot fire again

3.2 Algorithms

Algorithm 1. In order to list the supported PGs, we first look at all the combinations
of a given number s of neurons. We check each combination, looking for neurons that
might be excited enough to fire in turn, because they recieve more than a certain amount
of spikes, NbSpikesNeeded. If such neurons exist, then the combination becomes a
set of triggers. We simulate the firing of the triggers with the right starting timing and
record the propagation of the neural activity, until it dies or it reaches an upper limit
MaxT imeSpan set for the time span of a PG. Moreover, we limit the record to a given
number of neurons NbSpikesMax in order to truncate the possible cyclic PGs.

In this algorithm, the propagation of the activity is based on the number of spikes
recieved by each neuron in a time window. For instance, the neurons may be param-
eterized so that they fire whenever they are impinged by at least three spikes within a
millisecond. A full description, in pseudo-language, is given in Annex.

Algorithm 2. The principle of this algorithm is very similar to the previous one, except
that the decision of firing or not is based on the level of the membrane potential, which
depends on (a) the weights of the incoming connections that will modulate the increase
of the membrane potential and thus the probability to generate a new spike and (b) the
elapsed time since the previous PSP.

As in Algorithm 1, we look at all the possible combinations of s triggers, except that
neuron activity is calculated upon its membrane potential exceeding or not the firing
threshold. In this algorithm, the propagation of the activity is based on the fact that the
mambrane potential exceedes the threshold. See Annex.

Algorithm 3. Algorithm 3 is written to scan for the appearance of known polychronous
groups (already detected by Algorithm 1 or 2) in the activity recorded from a simulation,
during a given time range.

In order to detect the activation of a PG in a particular time window in the recorded
activity of a simulation (Algorithm 3), it would be ideal to check if the whole group is
activated. For sake of computational time, we only look for the firing of the triggers of

80 R. Martinez and H. Paugam-Moisy

the PG, with the good timing pattern within a precision of Jitter. We based this algo-
rithmic simplification on the assumption that the activation of the triggers will activate
the tail of the polychronous group with little change, which is likely if the known PG
has been previously detected to be an adapted PG, but could fail in case of supported
PGs.

1: // We look for the actual activation of known PGs in a temporal range [Start; End]. For
each neuron Ni, the list of spikes fired by this neuron between times Start and End is
stored already (i.e. we assume that the spike raster has been recorded).

2: Let Spikemi be the mth spike of the list of spikes fired by Ni, at time tSpikemi

3: for all PG triggered by {NT1 , NT2 , ... , NTs } with timing {tT1 , tT2 , ... , tTs } do
4: ∀SpikemT1 at time tSpikemT1
5: if ∀k ∈ [T2; Ts], ∃ SpikemTk at time tSpikemT1

+ (tTk − tT1) then
6: Save activation of PGs at time tSpikemT1

− tT1

7: end if
8: end for

4 Complexity Study and Experiments

4.1 Computational Complexity

First, the complexity estimation for Algorithm 1 is developed below. The complexity
of Algorithm 2 and Algorithm 3 will be discussed afterwards.

Let c be the connectivity of a network, i.e. the probability that one neuron projects
a connection to another. Let AC = (n − 1) × c be the average number of connections
recieved by any neuron in the network. Remind that s is the number of triggers.

The number of combinations to parse is Cs
n = n!

s!(n−s)! . For each combination, we
search for neurons that recieve concurrent connections from triggers and count such
connections. This step is computed with complexity O(n + s × AC).

The probability that a neuron recieves k = NbSpikesNeeded connections from
other neurons, with k ≤ s, is ck. We watch which neurons have enough input connec-
tions to trigger a new spike. For each excited neuron, we initialise the calculation of the
corresponding PG and enqueue the spike events, i.e. s × AC operations.

The while block is the most difficult to evaluate because of the various parameters it
envolves. In worst case, all n neurons will recieve NbSpikesNeeded spikes, and spike
in turn. Then there would be n× k events to process, and n×AC new PSP to enqueue.
Neurons would spike again as soon as they can, in regard to their refractory period.
There should be at most M/R × n × AC events to process in the whole calculation,
where M = MaxT imeSpan and R = RefractoryPeriode.

Hence, the overall complexity Xalgo1 of Algorithm 1, in worst case, is :

Cs
n

︸︷︷︸

combin.

×[(n + s × AC)
︸ ︷︷ ︸

search triggers

+ (s × AC) × (ck)
︸ ︷︷ ︸

nb triggers

×(s × AC
︸ ︷︷ ︸

init. spikes

+ M/R × n × AC)
︸ ︷︷ ︸

worst case events

]

Algorithms for Structural and Dynamical Polychronous Groups Detection 81

Since s � n, the number of combinations Cs
n can be approximated by

(

n
s

)s
and

AC = (n − 1) × c replaced by c × n, which yields an upper bound for Xalgo1:

Xalgo1 ≤ 1 + s × c

ss
ns+1 +

ck+2

ss−2
ns+2 +

M

R
× ck+2

ss−1
ns+3 (1)

It results that the complexity Xalgo1 is of order O(ns+3) in worst case. In practical
cases, spiking neuron networks usually have a sparse connectivity. Fixing the order
of magnitude of the connectivity c to 1/

√
n looks like a realistic estimation, both for

artificial networks (e.g. c = 0.1 in a network of 100 neurons, when computing with
spiking neuron networks) and biological networks (around 105 connections per neuron
between 1011 neurons in the human brain). Replacing c by n−1/2 in Equation (1) gives:

Xalgo1 ≤ 1
ss

ns+1 +
1

ss−1
ns+1/2 +

1
ss+2

ns +
M

R
× 1

ss−1
ns+1 since k ≥ 2 (2)

Finally, in practical cases, the complexity of Algorithm 1 is of order O(ns+1).
The complexity Xalgo2 of Algorithm 2 is similar to Xalgo1 because both algorithms

have the same control structure. Running Algorithm 2 should be slightly more time
consuming if the neuron model is complex.

The complexity Xalgo3 of Algorithm 3 is of order O(P ∗ S/n), where P is the
number of known polychronous groups (computed by Algorithm 1 or 2), and S the
total number of spikes in the time slice chosen for scanning the network activity.

4.2 Experiments

A direct comparison with other algorithms is not straightforward since the Izhikevich’s
code available on [6] starts from cutting off the weights under an arbitrary value of
0.95, and does not exactly compute any of the PG categories we defined. The Maier &
Miller’s method [8] (noted “MM algo” in Table 1) is close to Izhikevich’s one: both are
based on a n × tmax matrix of spike arrival counts, with the risk of consuming a huge
amount of memory, since tmax is the maximum time to which the simulation is run.

In Table 1, NbSpikesNeeded = s = 3. The first two lines show the strong influence
of the connectivity c on the number of PGs. In the next three lines, the network size is
varied with an adapted value of c in order to keep fixed the degree of the connection
graph. Different parameters of the neuron model (with coherent value of Jitter) highly

Fig. 2. PGs timespan comparison

Table 1. Experimental measurements

n c Jitter supported PGs adapted PGs MM algo.
100 0.1 1ms 13.6 13.2 13.6
100 0.2 1ms 1295 1308 1300
100 0.18 1ms / 0.4 697 / 697 702 / 72 732
200 0.09 1ms / 0.4 295 / 295 274 / 16 289
500 0.036 1ms / 0.4 103 / 103 112 / 6 107
200 0.09 1.2ms 431 434
200 0.09 1.0ms 295 289
200 0.09 0.7ms 176 167
200 0.09 0.5ms 79 67
200 0.09 0.1ms 0 0

82 R. Martinez and H. Paugam-Moisy

influence the number of adapted PGs (but not sructured PGs). The last line shows that an
absence of tolerance (Jitter = 0.1ms = simulation time step) could lead to an absence
of PGs. With NbSpikesNeeded = 2, n = 100 and c = 0.18 (not in Table 1), there are
387 supported PGs with s = 3 triggers, but only 4 with s = 2.

Figure 2 shows that the distribution of the PGs timespans (time from the spike of
the earliest trigger to the spike of the latest neuron belonging to the PG) is similar for
supported and adapted PGs, for different network sizes. Moreover, such a time span
distribution is comparable to Izhikevich’s observation ([7], p.127).

5 Discussion

We have proposed to clarify the definition of a polychronous group and set a standard
notation, taking into account both the set of triggers and their specific firing pattern. We
make a distinction between three categories of PGs, whether they are scanned from the
network architecture only, or they take into account the variations of weights under a
learning algorithm, or they are scanned for reflecting the dynamical activity inside the
network in response to input data. Though designed for the analysis of simulations with
spiking neuron network models, the algorithms could also be applied to real data since
multi-neuron activities appear to be recordable in natural neuron networks [3].

References

1. Abeles, M.: Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge Press, New York
(1991)

2. Gerstner, W., Kistler, W.: Spiking Neuron Models: Single Neurons, Populations, Plasticity.
Cambridge University Press, Cambridge (2002)

3. Gourévitch, B., Eggermont, J.: Maximum decoding abilities of temporal patterns and syn-
chronized firings. In: NeuroComp. 2008 (2008) hal-00331583

4. Gross, C.G.: Genealogy of the "grandmother cell". The Neuroscientist (2002)
5. Hebb, D.O.: The Organization of Behaviour. Wiley, New York (1949)
6. Izhikevich, E.M.:

http://vesicle.nsi.edu/users/izhikevich/
publications/spnet.htm (2006)

7. Izhikevich, E.M.: Polychronization: Computation with spikes. Neural Computation 18(2),
245–282 (2006)

8. Maier, W.L., Miller, B.N.: A minimal model for the study of polychronous groups.
arXiv:0806.1070v1 [cond-mat.dis-nn] (2008); (presented at the TS4CF08 Meeting of The
American Physical Society)

9. Martinez, R., Paugam-Moisy, H.: Les groupes polychrones pour capturer l’aspect spatio-
temporel de la mémorisation. In: NeuroComp. 2008 (2008) hal-00331613

10. Paugam-Moisy, H., Martinez, R., Bengio, S.: Delay learning and polychronization for reser-
voir computing. Neurocomputing 71(7-9), 1143–1158 (2008)

A Algorithm 1

1: // Lines starting with // are comments.

2: for all combination of s neurons out of n neurons of the network do
3: // Look for PGs triggered by this combination

http://vesicle.nsi.edu/users/izhikevich/publications/spnet.htm
http://vesicle.nsi.edu/users/izhikevich/publications/spnet.htm

Algorithms for Structural and Dynamical Polychronous Groups Detection 83

4: for all i from 1 to n do
5: NbTriggeringConnectionsi = 0
6: end for

7: // Count connections comming from triggers, to find common triggers output neurons
8: for all p from 1 to s do
9: for all i with wiTp �= 0 do
10: NbTriggeringConnectionsi = NbTriggeringConnectionsi + 1
11: end for
12: end for

13: for all p from 1 to s do
14: for all i with wiTp �= 0 do

15: NbPSPi = 0 // Reset count of PSP evoked in Ni in the last Jitter ms

16: if NbTriggeringConnectionsi � NbSpikesNeeded then
17: // Reset NbTriggeringConnectionsi

18: NbTriggeringConnectionsi = 0

19: // A spike from Ni is triggered.
20: We will calculate the PG with trigger neurons {NT1 , NT2 , ... , NTs } firing at Ni

21: firing with timing {dmax − dT1i , dmax − dT2i, ... , dmax − dTsi}
22: with dmax = max(dT1i, dT2i, ..., dTsi)

23: thus triggering neuron Ni.

24: Add triggering spikes to PG. // Store triggering spikes to the PG data structure
25: PGSpikeCount = s // Count of spikes in this PG
26: t = 0 // Initialise clock

27: // Enqueue PSPs from triggers starting at t = 0.
28: for all neuron Nh recieving a connection from NTk

, ∀k from 1 to s do
29: Enqueue the new upcoming PSP evoked in Nh at time t + (dmax − dTki) + dTkh by the spike

from NTk

30: end for

31: while (PGSpikeCount<NbSpikesMax) and (PSP queue not empty) and (t<MaxTimeSpan)
do

32: Consider next upcoming PSP PSPtpsp,Nl,Nm evoked at time tpsp with

33: Nl : firing pre-synaptic neuron of the spike that evoked PSPtpsp,Nl,Nm

34: Nm : post-synaptic neuron in which the PSP is evoked

35: t = tpsp

36: NbPSPm = NbPSPm + 1
37: for all PSPtpsp,No,Nm with t − tpsp > Jitter do

38: Erase PSP // Erase PSPs evoked in Nm older than t − Jitter ms.
39: end for

40: if (t − tLastSpikem > RefractoryPeriode) and (NbPSPm � NbSpikesNeeded)
then

41: // Nm fires a spike
42: tLastSpikem = t
43: Add a spike from Nm at time t, to PG
44: PGSpikeCount = PGSpikeCount + 1
45: for all neuron Nm recieving a connection from Nl do
46: Enqueue an upcoming PSP evoked in Nm at time t + dlm by the spike from Nl

47: end for
48: end if
49: end while

50: if PGSpikeCount > NbSpikeMin then
51: Save the PG
52: end if
53: end if
54: end for
55: end for
56: end for

84 R. Martinez and H. Paugam-Moisy

B Algorithm 2

N.B. Red printing is for the lines that differ from Algorithm 1.

1: for all combination of s neurons out of n neurons of the network do
2: // Look for PGs triggered by this combination

3: for all Neuron Ni, output of a triggering neuron do
4: NbPSPi = 0 // Count of PSP evoked in Ni in the last Jitter ms
5: Potentiali = RestingPotential // Set initial membrane potential for Ni

6: MaxPotentiali = Potentiali +
∑

Tj
wTjiPSPStrength

7: if MaxPotentiali � Threshold then
8: // A spike from Ni is triggered.
9: We will calculate PG with trigger neurons {NT1 , NT2 , ... , NTs } firing at Ni

10: firing with timing {dmax − dT1i , dmax − dT2i, ... , dmax − dTsi}
11: with dmax = max(dT1i, dT2i, ..., dTsi)

12: thus triggering neuron Ni.

13: Add triggering spikes to PG. // Store triggering spikes to PG data structure
14: PGSpikeCount = 0 // Count of spikes in this PG
15: t = 0

16: // Enqueue PSPs from triggers
17: for all neuron Nh recieving a connection from NTk

, ∀k from 1 to s do
18: Enqueue the new upcoming PSP evoked in Nh at time t +(dmax − dTki)+dTkh by the spike from

NTk

19: end for

20: while (PGSpikeCount<NbSpikesMax) and (PSP queue not empty) and (t<MaxTimeSpan)
do

21: Consider next upcoming PSP PSPtpsp,Nl,Nm evoked at time tpsp with

22: Nl : firing pre-synaptic neuron of the spike that evoked PSPtpsp,Nl,Nm

23: Nm : post-synaptic neuron in which the PSP is evoked

24: t = tpsp

25: for all PSPtpsp,No,Nm with t − tpsp > Jitter do

26: Erase PSP // Erase PSPs evoked in Nm older than t − Jitter ms.
27: end for

28: // Re-evaluate decreasing membrane potential, with regard to last spike impact recieved tf

29: Potentialm = η(Potentiall , tf)
30: Potentialm = Potentialm + wlm × PSPStrength

31: if (Potentialm � Threshold) then
32: // Nm fires a spike
33: Add a spike to from Nm at time t, to PG
34: PGSpikeCount = PGSpikeCount + 1
35: for all neuron Nm recieving a connection from Nl do
36: Enqueue an upcoming PSP evoked in Nm at time t + dlm by the spike from Nl

37: end for
38: end if
39: end while

40: if PGSpikeCount > NbSpikeMin then
41: Save the PG
42: end if
43: end if
44: end for
45: end for

	Algorithms for Structural and Dynamical polychronous Groups Detection
	Introduction
	Definition of Polychronous Groups
	PG Definition
	Structural PGs vs. Dynamical PGs

	Scanning for Polychronous Groups
	Definitions
	Algorithms

	Complexity Study and Experiments
	Computational Complexity
	Experiments

	Discussion
	Algorithm 1
	Algorithm 2

