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Abstract. In the last decade, many data mining tools have been devel-
oped. They address most of the classical data mining problems such as
classification, clustering or pattern mining. However, providing classical
solutions for classical problems is not always sufficient.

This is especially true for pattern mining problems known to be “repre-
sentable as set”, an important class of problems which have many appli-
cations such as in data mining, in databases, in artificial intelligence, or
in software engineering. A common idea is to say that solutions devised
so far for classical pattern mining problems, such as frequent itemset
mining, should be useful to answer these tasks. Unfortunately, it seems
rather optimistic to envision the application of most of publicly available
tools even for closely related problems.

In this context, the main contribution of this paper is to propose a mod-
ular and efficient tool in which users can easily adapt and control several
pattern mining algorithms. From a theoretical point of view, this work
takes advantage of the common theoretical background of pattern mining
problems isomorphic to boolean lattices. This tool, a C++ library called
1Zi, has been devised and applied to several problems such as itemset
mining, constraint mining in relational databases, and query rewriting
in data integration systems. According to our first results, the programs
obtained using the library have very interesting performance characteris-
tics regarding simplicity of their development. The library is open source
and freely available on the Web.

1 Introduction

In the last decade, many data mining tools have been developed [1]: standalone
algorithm implementations [2, 3], packages [4], libraries [5], complete softwares
with GUI [6,7] or inductive databases prototypes [8,9] . They address most of
the classical data mining problems such as classification, clustering or pattern
mining.



However, providing classical solutions for classical problems is not always
sufficient. For example, frequent itemset mining (FIM) is a classical data min-
ing problems with applications in many domains. Many algorithms and tools
have been proposed to solve this problem. Moreover, several works, such as [10],
shown that FIM algorithms can be used as a building block for other, more so-
phisticated pattern mining problems. This is especially true for pattern mining
problems known to be “representable as set” [10], an important class of prob-
lem which have many applications such as in data mining (e.g. frequent itemset
mining and variants [11,12]), in databases (e.g. functional or inclusion depen-
dency inference [13,14]), in artificial intelligence (e.g. learning monotone boolean
function [15]), or in software engineering (e.g. software bug mining [16]).

In this setting, a common idea is to say that algorithms devised so far should
be useful to answer these tasks. Unfortunately, it seems rather optimistic to
envision the application of most of publicly available tools for frequent itemset
mining, even for closely related problems. For example, frequent essential itemset
mining [17] (as well as other conjunctions of anti-monotone properties) is very
closely related to FIM. Actually, only the predicate test is different. In the same
way, mining keys in a relational database is a pattern mining problem where,
from a theoretical point of view, FIM strategies could be used. However, in both
cases, users can hardly adapt existing tools to their specific requirements, and
have to re-implement the whole algorithms.

Paper contribution In this context, the main contribution of this paper is
to propose a modular and efficient tool in which users can easily adapt and
control several pattern mining algorithms. From a theoretical point of view, this
work takes advantage of the common theoretical background of pattern mining
problems isomorphic to boolean lattices. This tool, a C4++ library called iZi, has
been devised and applied to several problems such as itemset mining, constraint
mining in relational databases and query rewriting in data integration systems.
According to our first results, the programs obtained using the library have very
interesting performance performance characteristics regarding simplicity of their
development. The library is open source and freely available on the Web.

Paper organization Section 2 discusses the value of our proposition w.r.t.
existing related works. Section 3 introduces the Zi library. This section presents
the underlined theoretical framework, points out how state of the art solutions
can be exploited in our generic context, and describes the architecture of the iZi
library. A demonstration scenario is presented in Section 4. Experimentations are
described in Section 5. The last section concludes and gives some perspectives
of this work.

2 Related works

One may notice that algorithm implementations for pattern mining problems
are “home-made” programs, see for example implementations available in FIMI
workshops [2, 3].



Packages, libraries, software, inductive databases prototypes have also been
proposed, for instance Illimine [4], DMTL [5], Weka [6], ConQuest [8] and [9].
Except DMTL, they provide classical algorithms for several data mining tasks
(classification, clustering, itemset mining...). However, their algorithms are very
specific and could not be used to solve equivalent or closely related problems. For
example, even if most of these tools implement an itemset mining algorithm, none
of them can deal with other interesting pattern discovery problems. Moreover,
their source codes are not always available.

DMTL (Data Mining Template Library) is a C++ library composed of al-
gorithms and data structures optimized for frequent pattern mining. Different
types of frequent patterns (sets, sequences, trees and graphs) using generic al-
gorithms implementations are available. Actually, DMTL supports any types of
patterns representable as graphs. Moreover, the data is decoupled of the algo-
rithms, and can be stored in memory, files, Gigabase databases (an embedded
object relational database), and PSTL [18] components (a library of persistent
containers). This library currently implements an exploration strategy: a depth-
first approach (eclat-like [19]). Moreover, some support for breadth-first strate-
gies is also provided. These algorithms could be used to mine all the frequent
patterns of a given database.

To our knowledge, only the DMTL library has objectives close to ¢Zi. Even if
objectives are relatively similar w.r.t. code reusability and genericity, the moti-
vations are quite different: while DMTL focuses on patterns genericity w.r.t. the
frequency criteria only, iZi focuses on a different class of patterns but on a wider
class of predicates. Moreover, iZi is based on a well established theoretical frame-
work, whereas DMTL does not rely on such a theoretical background. However,
DMTL encompasses problems that cannot be integrated into iZi, for instance
frequent sequences or graphs mining since such problems are not isomorphic to
a boolean lattice. The iZi library is complementary to DMTL since it offers the
following new functionalities:

1. any monotone predicate can be integrated in iZi, while DMTL “only” offers
support for the “frequent” predicate;

2. the structure of the patterns does not matter for iZi, while the patterns stud-
ied by DMTL must be representable as graphs (e.g. inclusion dependencies
cannot be represented in DMTL);

3. while DMTL only gives all frequent patterns, iZi is able to supply different
borders of “interesting” patterns (positive and negative borders). These bor-
ders are the solutions of many pattern mining problems. Moreover, end-users
often do not care about all the patterns and prefer a smaller representation
of the solution.

3 A generic and modular solution for patterns discovery

3.1 A generic theoretical framework

The theoretical framework of [10] formalizes enumeration problems under con-
straints, i.e. of the form “enumerate all the patterns that satisfy a condition”.



When the condition must be verified in a data set, the word ”enumerate” is com-
monly replaced by “extract”. Frequently, the problem specification requires that
patterns must be maximal or minimal w.r.t. some natural order over patterns.

Consequently, common characteristics of these problems are: 1) the predicate
defining the interestingness criteria is monotone (or anti-monotone) with respect
to a partial order < over patterns, 2) there exists a bijective function f from the
set of patterns to a boolean lattice and its inverse f~! is computable, and 3) the
partial order among patterns is preserved, i.e. X <Y < f(X) C f(Y).

3.2 Algorithms

The classical way to solve pattern mining problems is to develop ad-hoc solu-
tions from scratch, with specialized data structures and optimization techniques.
If such a solution leads to efficient programs in general, it requires a huge amount
of work to obtain a sound and operational program. Moreover, if problem specifi-
cations slightly change over time, a consequent effort should be made to identify
what parts of the program should be updated.

One of our goal is to factorize some algorithmic solutions which can be
common to any pattern mining problem representable as sets.

Currently, many algorithms from the multitude that has been proposed for
the FIM problem could be generalized and implemented in a modular way, from
well knowns Apriori algorithm [20] or depth-first approaches, to more sophis-
ticated dualization-based algorithms (Dualize and Advance [21] or ABS [14,
22)).

However, some algorithms don’t fit in this framework because they are not
based on a clear distinction between the exploration strategy and the problem.
For example, FP-growth like algorithms [23] cannot be used into this framework
since their strategy is based on a data structure specially devised for FIM. In
the same way, condensed representations based algorithms like LCM [24] cannot
be applied to any pattern mining problem representable as sets.

The need to have multiple strategies in a pattern mining tool is twofold.
First, note that the type of solution discovered by each algorithm is specific.
For example, the Apriori algorithm discover (without any overhead) the theory
and the two borders, whereas dualization-based algorithms “only” discovers the
two borders. Since depending on the studied problem, we might be interested
in either the theory, or the positive border, or the negative border, it is neces-
sary to have multiple strategies to enable the discovery of the required solution.
Secondly, as shown by the FIMI workshops, the algorithms performance depend
on dataset/problem characteristics. For example, the Apriori algorithm is more
appropriate when the theory is composed of relatively small elements, i.e. so-
lutions are small patterns. Consequently, several algorithms must be integrated
into a pattern mining tool to have the best performances according to problem
properties.



3.3 The iZi library

Based on the theoretical framework introduced in Section 3.1, we propose a
C++ library, called iZi, for this family of problems. The basic idea is to of-
fer a toolkit providing several efficient, robust, generic and modular algorithm
implementations. The development of this library takes advantage of our past
experience to solve particular pattern mining problems such as frequent item-
sets mining, functional dependencies mining, inclusion dependencies mining and
query rewriting.

Architecture Figure 1 represents the architecture and the “workflow” of our
library: The algorithm is initialized (initialization component) with patterns
corresponding to singletons in the set representation, using the data (data access
component). Then, during the execution of the algorithm, the predicate is used
to test each pattern against the data. Before testing an element, the algorithm
use the set transformation component to transform each set generated into the
corresponding pattern.
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Fig. 1. iZi “workflow”

This architecture is directly derived from the studied framework and has the
main advantage of decoupling algorithms, patterns and data. Only the predicate,
set trans formation and initialization components are specifics to a given prob-
lem. Consequently, to solve a new problem, users may have to implement or reuse
with light modifications some of these components.

The algorithm component represents generic algorithm implementations pro-
vided with the library and used to solve pattern mining problems. As shown in
Figure 1, algorithms are decoupled from the problems and are a black box
for users. Each algorithm can be used directly to solve any problem fitting in
the framework without modifications. This leads to the rapid construction of
robust programs without having to deal with low level details. Currently, the
library offers a levelwise algorithm [10], a dualization-based algorithm, and two



other variants of these algorithms. These variants globally have the same strat-
egy but explore the search space in a different way (top-down exploration instead
of bottom-up)which is more appropriate for some predicates. Finally, depth-first
strategies are also currently being integrated.

Another important aspect of our library is that data access is totally de-
coupled of all other components (see Figure 1). Currently, data access in most
of the other implementations is tightly coupled with algorithm implementations
and predicates. Consequently, algorithms and “problem” components can be
used with different data formats without modifications.

Figure 2 presents how the library works for the IND (INclusion Dependency)
mining problem. We suppose in this example that the algorithm used is the
levelwise strategy.
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Fig. 2. IND mining example

Data  structures Since internally each algorithm only manip-
ulates sets, we wuse a data structure based on prefix-tree (or
trie) specially devoted to this purpose [25]. For example, Fig-
ure 3 represents the prefix-tree data structure associated to the set
{{A4,C},{A,D,F},{A,D,G},{A,E},{D,E},{E,F,G},{E,G}}.

They have not only a power of compression by factorizing common prefix in
a set collection, but are also very efficient for candidate generation. Moreover,
prefix-trees are well adapted for inclusion and intersection tests, which are basic
operations when considering sets. Of course, as for algorithms, one can imagine
to extend our library with alternative structures for sets, like bitmaps. The use
of indexes is also an important issue but not considered yet.



{A,C}, {A,b,F}, {A,D,G},
{AE}, {D.E}, {E,F.G}, {E,G}

Fig. 3. Example of trie data structure

Note that template trie container and iterator are provided with the library.
Actually, two trie implementations are available with the library: one optimized
for data compression and one optimized for data search. Their implementation
have been mapped on the implementations of the standard C++ STL (Standard
Template Library) containers. This class also contains an implementation of an
incremental algorithm, based on trie data structures, for the minimal transversals
computation of an hypergraph.

Implementation issues Figure 4 presents, from an implementation point of
view, a UML model of the library. In particular, this model specifies how pat-
terns and sets interact with the other components: patterns are used in problem
specific components and sets are used internally by the algorithms. This model
also points out the possibility to do predicate composition which is the case
in many applications (e.g. itemset mining using conjunction of monotone con-
straints). For data access, this model distinguishes two cases: input data and
output data. Input data is used by the predicate to test patterns and is totally
independent of the algorithms. Output data is used by the algorithm to output
the solutions (theory and/or positive border and/or negative border).

Moreover, thanks to this model and to the object-oriented paradigm, users
can also implement algorithm and predicate variants/refinements, i.e. use in-
heritance to define new algorithms or predicate based on existing ones. Fig-
ure 5 presents an example of algorithm and predicate variants/refinements al-
ready implemented. In this figure, the frequent class represents the frequent
itemset mining predicate, and the frequent essential class represents the predi-
cate for a condensed representation of frequent itemsets. In the same way, the
Dualization class represents the dualization based algorithm provided in ¢Z7 and
the ReverseDualization class represents a variant of this algorithm changing the
exploration strategy.

In our context, another interesting property is method overloading which can
be used to optimize some predicates sub-methods w.r.t. specific data structures.
For example, the support counting method is crucial for frequent itemset mining
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Fig. 5. Example of algorithm and predicate variants/refinements

algorithms. Using method overloading, it is for example possible to have a generic
support counting method and one optimized for trie data structures. Thanks
to this property, it is possible to have a good trade-off between components
genericity and algorithms performances.

Finally, to solve a new problem, users only have few implementations con-
straints. For example, their predicate and set transformation classes have to
be functors (i.e. function objects) with the same signature for the operator()
method, and output data classes must only have a push_back() method. To fa-
cilitate these developments, abstract base classes are provided with the library
as well as sample components.

4 Demonstration scenario

From our past experience in the development of pattern mining algorithms, we
note that the adaptation of existing implementations is extremely difficult. In
some cases, it implies the redevelopment of most of the implementation and
could take more time than developing a new program from scratch.

As shown in Table 1, many problems have been implemented in our library
along with several data types and data sources components. For itemset mining,



Table 1. Problems and data sources experimented with iZi

Data type Problem File (format)| DBMS

tabular inclusion dependencies [14] CVS MySQL
FDEP [26]

tabular keys [10] CVS MySQL
FDEP [26
binary frequent itemsets [11] FIMI [2,3
binary frequent essential itemsets [17 FIMI [2,3

set sub-problems of query rewriting [27]| specific

the format considered is the FIMI file format which has been defined by the
FIMI workshops [2, 3] to store transactional databases in a text file. This data
format is widely used for this family of problems. For constraint mining in re-
lational databases, components have also been developed to access data in files
(CSV format of Excel and FDEP format defined by [26]) and in the MySQL
DBMS. For query rewriting in integration systems, we have studied two combi-
natorial sub-problems (i.e. two different predicates). The data access and output
components processed specific file formats.

As indication, the use of our library to implement a program for the key
mining problem in a relational database has been done in less than one working
day. Based on these components, the following scenario will show the simplicity
of solving a new problem using iZi.

Let us suppose that a user wants to solve a new pattern mining problem
using iZi: for example inclusion dependencies mining. First, the user has to
check some theoretical aspects:

1. Is the problem an “enumeration problem under constraint”?

An inclusion dependency (IND) is an expression of the form R[X] C S[V],
where R and S are relation schemas of a same database schema D. Such a
constraint ensures that, for any relations r and s over R and S, any X-value
into r is a Y-value into s . If Y is a key in S, then X is a foreign key in R.
Inclusion dependency discovery is a way to discover foreign keys and other
more general semantic constraints. It can be stated as follows:

IND mining problem (referred to as IND): Let d be a database over
a schema D, extract (maximal) inclusion dependencies satisfied in d. Let

IND(d) ={R[X]C S[Y]|R,S € D,R[X] C S[Y] is satisfied in d}.

2. What are the patterns, the partial order and the predicate? Is the
predicate (anti-)monotone?

a. The pattern language L;,q is composed of all the IND expressions that
can be expressed into a database schema.

b. The predicate Pynq(R[X] C S[Y],d) is true, if 7x(r) C 7y (s) (with =
the projection operator of the relational algebra).



c. From a well known inference rule for INDs [28], if an IND is satisfied,
then any IND obtained by applying the same projection on the left and
right-hand sides is satisfied. As an example, if R[ABC] C S[EFG] is
satisfied, then the following INDs (not exhaustive) are satisfied: R[A] C
S[E], R[B] C S[F],R[C] C S[G],R[BC] C S[FG],R[CB] C S[GF]...
Consequently, the partial order is defined by projections over INDs.

Considering the partial order defined by projections over INDs, the predicate
Pinqa(R[X] C S[Y],d) is anti-monotone (see [14] for the proof).

The IND mining problem can be reformulated as follows [14]:

IND(d) = Bd* (Th(Ling, d, Pina))

What is the function f that guarantees the isomorphism with a
boolean lattice ? (see [14] for more details on this point)

The search space of IND is not a boolean lattice at all. As an example,
consider the two INDs R[X] C S[Y] and R[X'] C T'[Z]. They do not have an
upper bound (i.e. a common specialization), such as R[XX'] C S[Y Z] for
R[X] C S[Y] and R[X'] C S[Z], since they don’t consider the same relations.
To solve this, we have to consider the subproblems IND(r, s) for each pair of
relations {r,s} in d. However, the search spaces of these subproblems are still
not boolean lattices. For example R[A] C S[E] and R[B] C S[F] have two
possible least upper bound, which are R[AB] C S[EF] and R[BA] C S[FE].
In order to fit each subproblem into a boolean lattice context, we define the
function f which transforms any IND into the set of all unary INDs (i.e.
INDs between single attributes) obtained by projection. Thus, f(R[AB] C
S[EF]) = {R[A] C S[E]; R[B] C S[F]}. Now, the desirable property is that
f must be a bijection between IND search space and the powerset of all
unary INDs. However:

— f is not a one-to-one function, since f(R[AB] C S[EF]) = f(R[BA] C
S[FE]). The solution is to restrict the IND search space to INDs with a
sorted left-hand side. Thanks to the “permutation inference rule”, this
restriction leads to no loss of knowledge [28].

— f is not surjective, since e.g. f~1({R[A] C S[E]; R[B] C T[G]}) cannot
be defined. To cope with this problem, one needs to mine INDs from
pairs of relations one by one. Moreover, duplicate attributes must be
allowed in IND definition as it is done in [29].

With the above restrictions, one can easily verify that f is an isomorphism
between IND search space and the powerset of unary INDs.

The search space C of INDs over (R, S) is defined by: C(R,S) = {R[<
A1 A, > CS[<B..By > |[V1<i<j<n, (A <A)V(A=4;ANB; <
B;)} where n = min(|R|,|S]).

Let I; be the set of unary INDs over R. The function f : C — P(I) is
defined by: f(i) = {j € I | j < ¢}. The function f: C — P(I1) is bijective
and its inverse function f ! is computable. Moreover, given i and j two IND
expressions of C, i = j < f(i) C f(j)-



Consequently, f is an isomorphism from (C, <) to (P(I1), C), that is to say
that the search space of INDs is representable as sets.

Let L;nq = C(R, S), the search space of IND(r, s) is isomorphic to a boolean
lattice, and the function f is f : C — P(I1) (see [14] for the proof).

This example is a typical case: the problem becomes representable as sets by
restricting the language to be used to define the search space (without any
loss of knowledge thanks to patterns properties).

Secondly, the user has to develop (or adapt) several components:

4. the data access component. Suppose in this scenario that the data is
stored in a MySQL database, and that a component for this data source is
already implemented.

5. the initialization component, which will initialize unary INDs using
databases schemas.

6. the set transformation component, which will transform an IND in a
set of unary INDs (and inversely).

7. the predicate component, which will test if the IND in parameter is
satisfied in the database (using the data access component).

Note that as shown by their source code, all these components are simple
with few lines of code. Moreover, if some of them are already developed, the
user can directly reuse them without modifications. See as an example Figure 6
for an implementation of the predicate component for IND mining in a MySQL
database.

From this moment, the user can directly use any algorithm provided with iZ:
in his/her source codes, compile and execute the algorithm to find all satisfied
INDs.

5 Experimentations

Our motivation here is to show that our generic library has good performance
characteristics w.r.t. specialized and optimized implementations.

We present some experimental results for frequent itemset mining, since it is
the original application domain of the algorithms we used and the only common
problem with DMTL. Moreover, many resources (algorithms implementations,
datasets, benchmarks...) are available on Internet [30] for frequent itemset min-
ing. For other problems such as key mining, even if algorithms implementations
are sometimes available, it is difficult to have access to the datasets. As an
example, we plan to compare iZi with the proposal in [31] for key mining. Un-
fortunately, neither their implementation, nor their datasets have been made
available in time.



template< class DBMS> #include "SatisfiedIND.h"
class SatisfiedIND: public Predicate
{ /' Operator that test if an inclusion dependency is satisfied or

protected: /I not in two relations
/' Pointer on the dbms template< class DBMS>
DBMS * mydbms; template< class lterator, class Measure >
public: bool SatisfiedIND<DBMS>::operator()(Iterator itCand,
/' Constructor Measure & mesCand)
1l {
\param inDbms pointer on the DBMS and the db studied IIsearch the attributes in the left part of the IND
*/ string left= itCand->left[0] ;
SatisfiedIND_DBMS( DBMS * inDbms ) for(inti=1; i< itCand->left.size(); i++)

left+=" "+itCand->left[i] ;
mydbms = inDbms ;
/Isearch the attributes in the right part of the IND
if( mydbms->get_relation(1) && mydbms->get_relation(2) ) string right= itCand->right[0] ;

for(inti = 1; i < itCand->right.size(); i++)

/I store a parameretrized query to test inclusion right+=","+itCand->right[i] ;
/I dependencies between the two input relations
string query = "select count(*) from " left=""+left+" ";
+ mydbms->get_relation(1)->name right=""+right+" ";
+ " where (var1) not in( SELECT distinct var2 FROM "
+ mydbms->get_relation(2)->name +" )" ; IIreplace the variables by the attributes of the IND
mydbms->store_query( (char *)(query.c_str()) ); mydbms->replace_in_query(" var1 ", (char *)(left.c_str()) );

mydbms->replace_in_query(" var2 ", (char *)(right.c_str()) );
}

/lexecute the query

/1" Operator that test if an inclusion dependency is satisfied string nb_notin = mydbms->exec_query();

/I or not in two relations

1! /Ire initialize the variables for the next predicate test
\param itCand iterator on the pattern to test mydbms->replace_in_query( (char *)(left.c_str())," var1 ");
\param mesCand measure associated wih the pattern and mydbms->replace_in_query( (char *)(right.c_str())," var2 ");

processed in the predicate

* /I test if values of the first projection are in the second one
template< class Iterator, class Measure > if( nb_notin =="0") return true ; // the IND is satisfied
bool operator() ( Iterator itCand, Measure & mesCand ); else return false ;

Fig. 6. Example of IND predicate implementation

Implementations for frequent itemset mining are very optimized, specialized,
and consequently very competitive. The best performing ones are often the re-
sults of many years of research and development. In this context, our experimen-
tations aims at proving that our generic algorithms implementations behave well
compared to specialized ones. Moreover, we compare iZi to the DTML library,
which is also optimized for frequent pattern mining.

Experiments have been done on some FIMI datasets [2,3] on a pentium
4.3GHz processor, with 1 Go of memory. The operating system was Ubuntu
Linux 6.06 and we used gcc 4.0.3 for the compilation. We compared our
Apriori generic implementation to two others devoted implementations: one
by B. Goethals [32] and one by C. Borgelt [33]. The first one is a quite natural
version, while the second one is, to our knowledge, the best existing Apriori im-
plementation, developed in C' and strongly optimized. Then, we compared “iZi
Apriori” and “iZi dualization based algorithm” to the eclat implementation
provided with DMTL.

In Table 2, three Apriori implementations are compared w.r.t. their execu-
tion times (in milliseconds) for datasets Connect (129 items and 67 557 trans-
actions), Pumsb (2 113 items and 49 046 transactions) and Pumsbx (2 088
items and 49 046 transactions). One can observe that our generic version has
good performance with respect to other implementations. These results are very
encouraging, in regards of the simplicity to obtain an operational program.



Table 2. Comparison of three Apriori implementations (in milliseconds)

Apriori iZi|Apriori Goethals|Apriori Borgelt
Connect 90%| 23 000 133 000 1 000
Pumsb 90% | 18 000 14 000 1 000
Pumsb* 60%| 2 000 4 000 1 000

Table 3. Comparison of iZi and DMTL implementations (in milliseconds)

Apriori iZi|ABS iZi|eclat DMTL
Connect 90%| 23 000 8 000 17 000
Pumsb 90% 18 000 18 000 8 000
Pumsb* 60%| 2 000 2 000 5 000

In Table 3, iZi and DMTL are compared w.r.t. their execution times (in mil-
liseconds) for the same datasets. Even if DMTL is optimized and specialized for
the frequent predicate, algorithm implementations of iZi have good performances
w.r.t. eclat DMTL . The difference between the two libraries is mainly due to the
algorithm used during the experimentations. This could be easily confirmed by
looking at the performances of Apriori, Eclat and dualization based algorithms
observed during FIMI benchmarks [30].

6 Discussion and perspectives

In this paper, we have considered a classical problem in data mining: the discov-
ery of interesting patterns for problems known to be representable as sets, i.e.
isomorphic to a boolean lattice. In addition to the interest of our library to solve
new problems, iZi is also very interesting for algorithm benchmarking. Indeed,
thanks to the modularity of i7i, it is possible to test several data representations
(e.g. prefix tree or bitmap) or several predicates, with the same algorithm source
code. Thus, it enables a fair comparison and test of new strategies. iZi has also
been used for educational purpose. Using the library, students can better un-
derstand where the key issues are in pattern mining. For example, for frequent
itemset mining, they often underestimate the importance of support counting in
the algorithm performance. By allowing to easily change the strategy used for
support counting, iZi enables to better understand how this affects algorithms
performances.

To our knowledge, this is the first contribution trying to bridge the gap
between fundamental studies in data mining around inductive databases [10, 21,
34] and practical aspects of pattern mining discovery. Our work concerns plenty
of applications from different areas such as databases, data mining, or machine
learning.

Many perspectives exist for this work. First, we may try to integrate the
notion of closure which appears under different flavors in many problems. The
basic research around concept lattices [35] could be a unifying framework. Sec-
ondly, we are interested in integrating the library as a plugin for a data mining



software such as Weka [6]. Analysts could directly use the algorithms to solve al-
ready implemented problems or new problems by dynamically loading their own
components. Finally, a natural perspective of this work is to develop a declarative
version for such mining problems using query optimization techniques developed
in databases [36].
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