

N° d’ordre: 2007-ISAL-0108 Année 2007

Thèse

Services Pervasifs Contextualisés : Modélisation et
Mise en Œuvre

Présentée devant
L’Institut National des Sciences Appliquées de Lyon

(INSA de Lyon)

Pour obtenir

Le grade de Docteur
École doctorale Informatique et Information pour la Société

Spécialité : Informatique

Par

Dejene Ejigu Dedefa

Soutenue le 12 Décembre 2007 devant la Commission d’examen

Jury

Prof. Bruno DEFUDE INT Paris Rapporteur

Prof. Lionel BRUNIE INSA de Lyon Directeur de thèse

Dr. Marian SCUTURICI INSA de Lyon Co-Directeur de thèse

Prof. Aris OUKSEL Université d’Illinois à Chicago Examinateur

Prof. Jean-Marc PETIT INSA de Lyon Examinateur

Dr. Thierry DELOT Université de Valenciennes Examinateur

Dr. Richard CHBEIR Université de Bourgogne Examinateur

Ordering N°: 2007-ISAL-0108 Year 2007

Thesis

Context Modeling and Collaborative Context-Aware
Services for Pervasive Computing

Submitted to the
National Institute of Applied Sciences

(INSA de Lyon)

In fulfillment of the requirement for

Doctoral Degree

Doctoral School of Computer and Information Sciences (EDIIS)
Affiliated Area: Computer Science

Prepared by

Dejene Ejigu Dedefa

Defended on 2 December 2007 in front of the Examination Committee

Committee Members

Prof. Bruno DEFUDE INT Paris Reviewer

Prof. Lionel BRUNIE INSA de Lyon Supervisor

Dr. Marian SCUTURICI INSA de Lyon Co-Supervisor

Prof. Aris OUKSEL University of Illinois at Chicago Examiner

Prof. Jean-Marc PETIT INSA de Lyon Examiner

Dr. Thierry DELOT University of Valenciennes Examiner

Dr. Richard CHBEIR University of Bourgogne Examiner

v

Acknowledgement
During my doctoral study, I have been accompanied and supported by many people. It is a pleasure
that I have now the opportunity to express my gratitude to all of them.

I owe my most sincere gratitude to my supervisor Prof. Lionel Brunie. His sympathetic personality,
enthusiasm and integral view on research with a mission for providing “only high-quality work and
not less” have made a deep impression on me. Besides being an excellent advisor, he was as close as
a relative and a good friend to me and all his students. I should also mention the hospitality of his
wife Benedict and their children. I am really glad that I have come to know Lionel and his family in
my life.

I also feel honoured and grateful to thank my co-supervisor Dr. Marian Scuturici, who has always
kept an eye on the progress of my work and was always available when I needed his advice. His
encouragement, guidances and critiques were valuable at each step of my work.

I am deeply indebted to Prof. B. Defude for reviewing my thesis and being a member of my Ph.D.
examination committee, Prof. M. Parashar for reviewing my thesis. I would also like to extend my
thanks to the other members of the examination committee, Prof. A. Ouksel, Prof. J. PETIT, Dr. T.
Delot and Dr. R. Chbeir.

I warmly thank all colleagues in the LIRIS laboratory, INSA de Lyon, and specifically those in the
SIP research group, Dr. Nadia Bennani, Addisalem Negash, Atechian Talar, Julien Gossa, Lyes
Limam, Ny-Haingo Handrianarisoa, Omar Hasan, Rachid Saadi, Yaser Fawaz, Yonny Cardenas,
Zeina Torbey and Françoise Conil. Similar thanks to the secretaries, Mrs Mabrouka Gheriassa and
Mrs Christiane Ripon who were always available to make our lab a convivial place to work.

My sincere thanks go to the French Embassy in Addis Ababa for sponsoring my study, Dr. Dawit
Bekele for encouraging me to decide to accept the offer and facilitating the process with the
embassy, the department of Computer Science, AAU, for allowing me to use this opportunity. I am
also grateful to the members of the Department of Computer Science and the Department of
Mathematics, AAU, for their hospitality and care to my family while I am away.

My special thanks go to all members of the Ethiopian community and students in and around Lyon
who, one way or another, have contributed to the success of my work. I thank Araya-Yohannes
Bekele for his support to translate and edit the French version of the extended summary of the thesis.
Similar thanks go to Girma Berhe with whom we share our daily dinner for three years and whose
encouragement has been with me after he left Lyon.

I am also grateful to my friends, Girma Taye, Mulugeta Dinka, Sori Ararsa, Tadesse Degefu and
their family who have always been a constant source of encouragement both for me and my family.
Furthermore I extend my sincere thanks to all friends and relatives in Ethiopia, all over the world
whose encouragement to me and my family has contributed to the success of this work.

Finally, I am thankful to my mother in-law, w/o Asegedech, on whose constant care and love for my
family I have relied throughout my stay. I am grateful to my wife Rahel for the very special person
she is and for her love and patience during my study. Similar thanks go to my children Eden,
Robenus and Abigiya who suffered a lot by my absence from home and whose patience and love
enabled me to complete my study successfully. « Hey kids, dad is back-home! » I am deeply grateful
to my mother, w/o Nuritu, who sacrificed part of her life for that of mine and who formed part of my
vision and taught me the good things that really matter in life.

Last but not least, thanks God, may your name be honored and glorified !

Dejene Ejigu, December 12, 2007 Lyon, France

vii

Remerciements
Pendant mes études doctorales, j'ai été accompagné et soutenu par plusieurs personnes. C'est un
plaisir pour moi de saisir cette occasion pour exprimer ma gratitude à tous.

Je dois ma gratitude la plus sincère à mon directeur de thèse, Prof. Lionel Brunie. Sa sympathique
personnalité, son enthousiasme et sa vue intégrale sur la recherche avec une mission pour fournir
‘seulement un travail de haute qualité et pas moins’ m'ont profondément impressionné. En plus
d’être un encadrant excellent, il était proche comme un parent et un bon ami à tous ses étudiants. Je
devrais également mentionner l'hospitalité de son épouse Benedict et de leurs enfants. Je suis
vraiment heureux de connaître Lionel et sa famille dans ma vie.

Je tiens également à remercier mon co-directeur de thèse, Dr. Marian Scuturici, qui a toujours gardé
un œil sur le progrès de mon travail et qui était disponible quand j'avais besoin de ses conseils. Son
encouragement, ses conseils et ses critiques étaient toujours très important à chaque étape de mon
travail.

Je suis profondément endetté à Prof. B. Defude qui a passé en revue ma thèse et qui était aussi un
membre du Jury lors de ma soutenance ainsi qu’au Prof. M. Parashar pour avoir passé en revue ma
thèse. Je voudrais également remercier les autres membres du Jury, Prof. A. Ouksel, Prof. J. PETIT,
Dr. T. Delot et Dr. R. Chbeir.

Je remercie fortement tous les collègues dans le laboratoire de LIRIS à l’INSA de Lyon et
spécifiquement ceux du groupe de recherche de SIP, Dr. Nadia Bennani, Addisalem Negash,
Atechian Talar, Julien Gossa, Lyes Limam, Ny-Haingo Handrianarisoa, Omar Hasan, Rachid Saadi,
Yaser Fawaz, Yonny Cardenas, Zeina Torbey et Françoise Conil. Je voudrais également remercier
les secrétaires, Mme Mabrouka Gheriassa et Mme Christiane Ripon, qui étaient toujours disponibles
pour rendre notre laboratoire un endroit fonctionnel et convivial.

Mes remercîments sincères vont à l'Ambassade de France à Addis Ababa pour le financement de
mes études, à Dr. Dawit Bekele pour m'avoir encouragé à décider d'accepter cette bourse de
recherche et pour avoir facilité le processus avec l'Ambassade de France, et au département de
l'informatique de l’Université d’Addis Abeba (AAU). Je suis également reconnaissant aux membres
du département de l'informatique et du département de mathématiques d’AAU pour leur hospitalité
et avoir veillé sur le bien-être de ma famille lors de mon absence.

Mes remercîments spéciaux vont à tous les membres de la communauté et des étudiants éthiopiens
de Lyon qui ont contribué au succès de mon travail. Je remercie Araya-Yohannes Bekele pour la
traduction et édition de la version française du résumé étendu de la thèse. Je remercie également
Girma Berhe avec qui nous avons partagé nos diners quotidiens pendant trois années et dont
l'encouragement a été toujours avec moi après son départ de Lyon.

Je suis également reconnaissant à mes amis, Girma Taye, Mulugeta Dinka, Sori Ararsa, Tadesse
Degefu et leur famille qui ont toujours été une source constante d'encouragement pour moi et ma
famille. En outre, mes remerciements sincères vont aux amis et parents qui sont en Ethiopie et par
tout dans le monde dont l'encouragement à moi et à ma famille a contribué au succès de ce travail.

En conclusion, je suis reconnaissant à ma belle-mère, w/o Asegedech, sur qui j'ai compté pour le
soin et l'amour constants qu’elle apportait à ma famille pendant tout mon séjour. Je suis très
reconnaissant à mon épouse Rahel, pour la personne très spéciale qu'elle est et pour son amour et
patience pendant mes études. Je remercie également mes enfants Éden, Robenus et Abigiya qui ont
souffert beaucoup de mon absence de la maison et dont la patience et l'amour m'a permis d'achever
mes études avec succès. « Hé les enfants, papa est à la maison! » Je suis profondément
reconnaissant à ma mère, w/o Nuritu, qui a sacrifié une partie de sa vie pour la mienne et qui a
contribué à ma vision en m’apprenant de bonnes choses qui sont vraiment importantes dans la vie.

Enfin, et pas des moindres, merci mon Dieu, que ton nom soit honoré et glorifié !

Dejene Ejigu, Décembre 12, 2007 Lyon, France

ix

Résumé
Les systèmes pervasifs visent à intégrer des services fournis par des dispositifs répartis

communicants. De tels environnements ont comme objectif d'optimiser l'interaction de

l'utilisateur avec les dispositifs intégrés, par exemple en permettant à l'utilisateur d'accéder à

l'ensemble des informations disponibles et en adaptant celles-ci aux conditions matérielles

effectives (qualité de service réseau, caractéristiques du matériel de connexion). Cela

impose aux applications d'adapter dynamiquement leur fonctionnement aux

caractéristiques de l'environnement (notion de "contexte d'exécution").

Pour réaliser cette adaptation il est important de disposer d’un mécanisme efficace de

capture et gestion du contexte et d’un mécanisme de raisonnement approprié. La gestion du

contexte comprend la représentation, l'agrégation, l'interprétation, le stockage et le

traitement des données contextuelles. Le raisonnement est le processus de déductions des

nouveaux faits à partir des données contextuelles observées.

Dans cette thèse, nous proposons un modèle sémantiquement riche pour la

collaboration, la représentation et la gestion du contexte. Nous utilisons un modèle de

représentation du contexte fondé sur une approche hybride utilisant des ontologies et des

bases de données relationnelles (nommè modèle HCoM : Hybrid Context Management

model). Le modèle HCoM utilise l'ontologie pour la modélisation et la gestion des

métadonnées riches en sémantique du contexte, et le schéma de la base de données

relationnelles pour la modélisation et la gestion des données brutes du contexte. Les deux

sont liés à travers des relations sémantiques construits dans l'ontologie. La séparation des

ces deux éléments de modélisation nous permet d'extraire, charger, partager et utiliser

seulement les données du contexte relevant afin des limiter la quantité de données dans

l’espace de raisonnement.

Les éléments constitutifs du modèle HCoM sont les données contextuelles brutes,

l’ontologie et les règles de inférence. Ces éléments sont organisés dans un modèle que nous

appelons EHRAM: Entité, Hiérarchie, Relation, Axiome et Métadonnée. EHRAM est

mappé à un schéma de base de données relationnelle pour la représentation des données

contextuelles et permet une représentation compatible avec les langages à bas de balises

pour son ontologie et ses règles d’inférence.

x

Cette richesse de modélisation nous permet de sélectionner de manière efficace les

informations contextuelles pertinentes et ainsi d'améliorer les performances du processus de

raisonnement mis en oeuvre dans l'analyse du contexte d'exécution.

Nous présentons également la plateforme logicielle d'intégration de services pervasifs

que nous avons développée (nommé CoCA : Collaborative Context-Aware service

Plateform). Cette plateforme s'appuie sur la méthodologie et les modèles de représentation

et de gestion du contexte proposés dans la thèse. Elle permet une interaction

"contextualisée" des services fournis par les dispositifs participants, offrant en particulier

des mécanismes d'adaptation au contexte et de déclenchement proactif ou réactif de services

en réponse à une évolution du contexte. Cette plateforme implémente le protocole JXTA

dans ses composants de collaboration et utilise la librairie JENA pour le raisonnement

(déclaration et interprétation des règles d'analyse du contexte).

Des démonstrateurs ont été développés et testés illustrant l'utilisation de la plate-forme

dans trois cas d'utilisation liés à des domaines applicatifs variés : les réseaux sociaux,

l'hôpital intelligent, l'adaptation d'IHM au contexte.

Les résultats obtenus illustrent la performance, la robustesse et l'extensibilité de

l'approche proposée.

Les Mot clé : Informatique Pervasif, Réactivité au Contexte, Contexte Modélisation,

Raisonnement Sémantique, Ontologie du Contexte, Informatique Collaborative.

xi

Abstract
Pervasive or ubiquitous computing aims to integrate computing and computing

appliances into the environment rather than having computers as distinct objects. This can

be realized through applications that adapt their behavior to every changing environment.

Such systems need to ensure that the adaptive behavior experienced is useful, relevant, non-

distracting and consistent with individual and organizational goals. Such adaptation needs

proper capturing, management and reasoning of constantly changing context. Context

capturing involves extracting relevant context data about selected entities in the

environment. Context management deals with representation, aggregation, interpretation,

storage and processing of context data. Context reasoning is the process of drawing

inferences or conclusions (unknowns) from known facts using information from the various

sources of context.

The computationally intensive characteristics of context reasoning process, the presence

of handheld or wearable, tiny and resource hungry computing devices, and the lack of a

semantically rich context model have been a bottleneck for the development of such

applications. Moreover, most of the current context-aware systems are based on ad-hoc

models of context, which causes lack of the desired formality and expressiveness. They do

not separate processing of context semantics from processing and representation of context

data and structure.

In this thesis, we propose a semantically rich and a collaborative context representation

and management model that uses a hybrid of ontology and database management

approaches (called HCoM model: Hybrid Context Management model). HCoM model uses

ontology for modeling and management of context semantics and relational database

schema for modeling and management of context data. These two modeling elements are

linked to each other through the semantic relations built in the ontology. Separation of the

two context modeling elements allows us to extract, load, share and use only relevant

context data into the reasoner in order to limit the amount of context data in the reasoning

space. By doing this, we considerably improve the performance of the reasoning process

The building blocks of the HCoM model are context data, context ontology, and

deduction rules. These data elements are organized into a context representation structure

(called EHRAM: Entity, Hierarchy, Relation, Axiom and metadata). EHRAM is a graphical

xii

context representation structure that serves as a context conceptualization model. EHRAM

is mapped to a standard relational database schema for representation of its context

component and is serialized to markup languages for representation of its ontology and rule

component.

We also present a domain independent context-aware middleware platform (called

CoCA: Collaborative Context-Aware service platform) under which our proposed context

management model is implemented and used. CoCA uses data organized into the HCoM

model as its data source and provides reasoning and decision services based on changing

contexts. It triggers proactive and/or reactive actions and provides a collaboration interface

between the pervasive peers. CoCA collaboration is based on JXTA protocols and its

reasoning is based on Jena framework.

To evaluate the scalability and extensibility of the proposed model, reusability of the

platform and performance of the collaboration process, we have developed a test case of the

use of our context model in the platform using data from multiple scenarios: Community

based network in a campus, smart hospital and adaptation of HCI to context.

Results obtained from our experiment show that compared to other related works in the

domain, our approach gives a robust, extensible and scalable model and platform for the

development of context-aware applications in pervasive environment.

Keywords: Pervasive Computing, Context-Aware Computing, Context Modeling,

Semantic Reasoning, Context Ontology, Collaborative Computing.

xiii

Table of Contents
Acknowledgement... v

Remerciements ..vii

Résumé ... ix

Abstract ...xi

Table of Contents ...xiii

List of Figures..xvii

List of Tables... xx

Résumé Etendu.. 1

Chapter 1 Introduction .. 25

1.1 Background .. 25

1.1.1 Pervasive computing.. 25

1.1.2 Context-Aware computing... 26

1.1.3 Elements of pervasive context-aware computing.. 28

1.2 Motivations... 29

1.3 Research problems ... 32

1.3.1 Context acquisition and management .. 33

1.3.2 Context semantics and reasoning... 33

1.3.3 Context-aware system development support ... 35

1.3.4 Collaboration and security ... 35

1.4 Scopes and contributions.. 36

1.5 Structure of the thesis... 38

Chapter 2 State of the Art in Context-Aware Computing... 39

2.1 Introduction .. 39

2.2 Related works in context management modeling .. 40

2.2.1 An overview of context modeling approaches .. 41

2.2.2 Context models that use markup scheme approaches.................................... 42

2.2.2.1 CCML.. 42

2.2.2.2 CSCP.. 43

2.2.2.3 CC/PP .. 43

2.2.2.4 CDF.. 43

2.2.3 Ontology based context models... 44

2.2.3.1 CONON ... 44

2.2.3.2 CoBrA-ONT .. 45

xiv

2.2.3.3 SOUPA.. 45

2.2.3.4 GAS ontology..46

2.2.4 Summary.. 46

2.3 Related works in context-aware computing services... 48

2.3.1 Overview of context-aware computing services ... 48

2.3.2 Agent, blackboard and widget based context-aware systems........................ 49

2.3.2.1 Context Toolkit.. 49

2.3.2.2 CMF... 50

2.3.2.3 ACAI ... 51

2.3.2.4 CAMidO.. 52

2.3.3 Broker middleware based context-aware systems... 54

2.3.3.1 RCSM.. 54

2.3.3.2 Gaia ... 56

2.3.3.3 CoBrA ... 57

2.3.4 Service oriented middleware based context-aware systems.......................... 59

2.3.4.1 CFNs... 59

2.3.4.2 ConFab... 59

2.3.4.3 SOCAM... 60

2.3.4.4 PACE... 61

2.3.4.5 MobiLife.. 63

2.3.4.6 PerSE... 64

2.4 Review of technologies and tools .. 65

2.4.1 RDF and RDFS.. 66

2.4.2 Ontology and OWL ... 67

2.4.3 Protégé editor and tools ... 68

2.4.4 Jena reasoning framework ... 70

2.4.5 The SPARQL query language ...73

2.4.6 JXTA collaboration protocols ... 74

2.5 Summary .. 80

Chapter 3 Context Modeling: The EHRAM Model.. 83

3.1 Introduction.. 83

3.2 What is Context?.. 83

3.3 The EHRAM context representation model ..86

3.3.1 EHRAM model presentation ... 86

3.3.2 EHRAM Model by example..88

xv

3.4 More on layers, axioms and metadata.. 89

3.5 From the EHRAM conceptual model to UML... 91

3.6 EHRAM and relational models .. 93

3.7 EHRAM and the RDF data model ... 94

3.8 Summary .. 96

Chapter 4 Context Management: The HCoM Model.. 99

4.1 Introduction .. 99

4.2 Mapping from EHRAM to ER model ..100

4.3 The need for semantic context management model ... 104

4.4 EHRAM and semantic ontology for context management 105

4.4.1 Representing EHRAM context ontology using directed graph 106

4.4.2 EHRAM model and the OWL language.. 107

4.4.3 The GCoM model .. 109

4.5 Limitations of relational and ontology approaches .. 113

4.6 HCoM: Hybrid context management model .. 114

4.6.1 HCoM model overview ... 114

4.6.2 HCoM architecture .. 115

4.6.3 HCoM components .. 116

4.6.4 HCoM and the selection of appropriate context entities.............................. 119

4.6.4.1 Heuristics selection by example .. 120

4.6.4.2 Selection/pruning algorithm .. 122

4.6.4.3 Performance issues in the selection process.................................. 124

4.7 Summary .. 126

Chapter 5 Collaborative Context-Aware Services: The CoCA Platform.......................... 129

5.1 Overview on context awareness... 129

5.2 Acquisition of context data: Example on indoor positioning................................. 130

5.2.1 Learning phase... 131

5.2.2 Prediction phase... 132

5.2.3 Experimental results .. 133

5.3 The CoCA Service platform... 134

5.4 RAID-Action engine in CoCA... 138

5.4.1 Action Trigger.. 140

5.5 Proactivity in CoCA... 142

5.6 Collaboration in CoCA... 142

5.7 Summary .. 148

xvi

Chapter 6 Implementation and Discussion ... 151

6.1 Implementation plan .. 151

6.2 Implementation .. 152

6.3 Use case scenarios.. 154

6.3.1 Smart campus scenario: PiCASO.. 154

6.3.2 Smart hospital scenario: patient monitoring and follow-up 161

6.3.3 Adaptation scenario: adaptation of applications to context......................... 163

6.4 Demonstration on reasoning in CoCA using PiCASO.. 165

6.5 Measuring performance ... 169

Chapter 7 Conclusions and Future Works .. 173

7.1 Summary of contributions.. 173

7.2 Conclusions.. 174

7.3 Future works .. 176

Glossary of Acronyms... 179

Bibliography.. 181

Annexes .. 191

I. OWL vocabularies for semantic reasoning..193

II. Major CoCA implementation classes .. 199

III. PiCASO demonstration sample ontology .. 201

IV. PiCASO demonstration sample context data... 206

V. PiCASO demonstration sample rules... 210

VI. Sample ontology for the smart hospital scenario...213

xvii

List of Figures
Figure 1: Réactivité au contexte dans la chaîne d’évolution de l’informatique 1

Figure 2: Scénario use case dans l’hôpital intelligent ... 2

Figure 3: Représentation des composants de l’EHRAM... 4

Figure 4: Un exemple des composants de l’EHRAM ... 4

Figure 5: Représentation d’UML du modèle EHRAM ... 6

Figure 6: La représentation de la métadonnée de contexte en utilisant réification 8

Figure 7: Modèle de RDF pour les métadonnées de contexte réifiées 8

Figure 8: Schéma généralisé de la RCDB ... 9

Figure 9: Architecture pour le modèle HCoM .. 12

Figure 10: Algorithme pour le filtre du contexte... 13

Figure 11: Algorithme pour la sélection du contexte pertinent... 14

Figure 12: Flux du processus HCoM... 15

Figure 13 : Architecture de CoCA... 17

Figure 14: Principes de la collaboration et de la découverte dans CoCA 18

Figure 15: Algorithme de collaboration dans CoCA... 19

Figure 16 : L’ontologie du contexte du PiCASO montrant la relation advisorOf................. 21

Figure 17 : Quelques règles de PiCASO pour déclencher des messages et des sonneries.... 21

Figure 18: Résultats des mesures de GCoM et HCoM (2x1.83 GHz CPU).......................... 23

Figure 19: Performance de raisonnement pour CONON (2,4 GHz CPU) 23

Figure 1-1: Context awareness in the computing evolution chain ..26

Figure 1-2: Conceptual framework of a pervasive context-aware computing 27

Figure 1-3: Smart Hospital use-case scenario ... 30

Figure 2-1: Components of Context-Aware Systems.. 48

Figure 2-2: CMF Architecture... 51

Figure 2-3: The ACAI layered architecture... 52

Figure 2-4: CAMidO architecture ... 53

Figure 2-5: RCSM’s integrated components. .. 55

Figure 2-6: Context Broker Architecture .. 58

Figure 2-7: SOCAM Architecture ... 61

Figure 2-8: Layered context-aware infrastructure... 62

Figure 2-9: MobiLife communication spheres .. 63

Figure 2-10: PerSE Architecture ... 65

Figure 2-11: RDF graph example.. 66

xviii

Figure 2-12: Overlay of the virtual peer-to-peer collaboration network............................... 75

Figure 2-13: JXTA protocols .. 77

Figure 3-1: Context Entities, hierarchies and relationships .. 84

Figure 3-2: Layered representation of EHRAM components ... 87

Figure 3-3: Example of context data using EHRAM components.. 88

Figure 3-4: UML representation of the EHRAM model... 91

Figure 3-5: Context metadata represented using reification ... 95

Figure 3-6: RDF data model for the reified context data .. 95

Figure 3-7: RDF/OWL data model for context, axiom and metadata representation 96

Figure 4-1: Generalized schema of the RCDB.. 102

Figure 4-2: Sample demonstration context data for from medical application................... 103

Figure 4-3: Simplified ontology graph showing base and domain ontology classes 106

Figure 4-4: Ontology graph for sample base and domain specific classes and instances... 107

Figure 4-5: An excerpt of the EHRAM based ontology for the medical application 108

Figure 4-6: Architecture of the GCoM model... 109

Figure 4-7: Part of the context ontology for the ringing tone scenario 110

Figure 4-8: Context representation for the ringing tone scenario 111

Figure 4-9: Rule representation for the ringing tone scenario .. 112

Figure 4-10: Architecture for Layered HCoM model ... 115

Figure 4-11: Context Filter Algorithm.. 117

Figure 4-12:Steps in prediction... 121

Figure 4-13: A pruning graph showing a portion of the context data space 122

Figure 4-14: Context selection/pruning algorithm.. 123

Figure 4-15: HCoM process flow ... 125

Figure 5-1: Architecture of our learning and prediction model .. 131

Figure 5-2: Effects of classification of a region into sub regions 133

Figure 5-3: Layout of the floors used as a test-bed in our experiments. 134

Figure 5-4: CoCA layered architecture ... 135

Figure 5-5: Component view of the CoCA platform .. 137

Figure 5-6: Internal data exchange among CoCA components .. 138

Figure 5-7: Principles of multifaceted action processing in CoCA 140

Figure 5-8: CoCA collaboration architecture.. 143

Figure 5-9: CoCA peer collaboration and discovery principles..144

Figure 5-10: CoCA collaboration algorithm ... 147

Figure 5-11: CoCA collaboration process... 147

xix

Figure 5-12: Sample code and data for advertisement and discovery................................. 148

Figure 6-1: Generalized CoCA implementation algorithm ...151

Figure 6-2: CoCA Class Diagram ... 153

Figure 6-3: Part of context ontology graph for PiCASO scenario 155

Figure 6-4: An excerpt from the PiCASO ontology.. 156

Figure 6-5: An excerpt from PiCASO context representation .. 157

Figure 6-6: An excerpt from PiCASO rule representation.. 158

Figure 6-7: An excerpt of code for creation and initialization of the CoCA data model 160

Figure 6-8: Screen shots from the PiCASO scenario in the CoCA platform 161

Figure 6-9: Part of context ontology for the hospital scenario.. 162

Figure 6-10: Example of context ontology for adaptation of application 164

Figure 6-11: PiCASO context ontology showing some advisorOf relationships................ 166

Figure 6-12: Some PiCASO rules for message trigger and ringing tone 166

Figure 6-13: Segment of code that shows SPARQL query on HCoM model..................... 168

Figure 6-14: Part of the screen showing new context data and the resulting action 168

Figure 6-15: Reasoning performance for GCoM and HCoM (2x1.83 GHz CPU) 171

Figure 6-16: Reasoning performance for CONON (2.4 GHz CPU) 171

xx

List of Tables
Table 2-1: Summary of appropriateness of modeling approaches.. 47

Table 2-2: Sample output from a SPARQL query .. 74

Table 2-3: Comparison on middleware support for context-aware systems......................... 81

Table 3-1: Sample generic and domain based definition of relationships 85

Table 4-1: Demonstration on the need for context semantics... 104

Table 4-2: Mapping between EHRAM model and ontology.. 108

Table 4-3: Comparison of relational and ontology approaches on appropriateness 113

Table 4-4: HCoM/EHRAM and appropriateness of modeling approaches 126

Table 5-1: Sample measures of signal strength by room and access point 132

Table 5-2: Sample ontology based and user defined rules.. 139

Table 5-3: Comparison of performance of CoCA platform with other relatede works 149

Table 6-1: Mapping layers in CoCA architecture and the implementation classes 153

Table 6-2: Trace of reasoning process using the LibraryRules... 159

Table 6-3: Examples of new context data and the resulting set of action triggers.............. 167

Table 6-4: Summary of response time from the experiment...170

Résumé Etendu
Services Pervasifs Contextualisés

(Modélisation et Mise en Œuvre)

1. Introduction

Le nombre croissant d’ordinateurs et d’utilisateurs d'Internet a conduit au

développement de structures de coopération telles que la technologie pair-à-pair en

informatique qui a un grand potentiel d’évolutivité. L'intégration des clients mobiles dans

un environnement distribué et la mise en réseau ad-hoc des composants dynamiques

deviennent de plus en plus importantes dans tous les domaines d'application. [Mattern,

2003] a indiqué que, vu le progrès technique continu en informatique et en communication,

nous nous dirigeons vers l'utilisation de réseaux informatiques tout englobant nommée

l'informatique pervasif ou ubiquitaire.

Les systèmes de l’informatique pervasif visent à adapter leur comportement en vue de

répondre aux besoins des utilisateurs suivant le changement du contexte de l’environnement

et de ses composants. Les dispositifs pervasifs établissent une connexion ad-hoc entre eux et

peuvent être connectés aux différents types d’appareils capturant les changements dans

l'environnement. La Figure 1 montre le flux dans la chaîne de l'évolution de l'informatique

centralisée à l'informatique pervasif tel que présenté par [Satyanarayanan, 2001] et [Strang,

2004]. Cette classification présente le problème de réactivité au contexte (context

awareness) au cœur du problème de l'informatique pervasif. Avec l'addition de nouvelles

composantes de la chaîne, la complexité de ces problèmes augmente de façon multiplicative

(⊗) plutôt que de la façon additive (⊕).

Centralized
Computing

Distributed
Computing

Mobile
Computing

Pervasive
Computing ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕

⊗⊗⊗⊗ ⊗⊗⊗⊗ ⊗⊗⊗⊗

Remote Communication

Fault Tolerance & availability

Remote Information Access

Mobile Networks

Mobile Information Access

Adaptive Applications

Context Awareness

Ad-hoc Networks

Smart Sensors & Devices
Research Problems

Figure 1: Réactivité au contexte dans la chaîne d’évolution de l’informatique

1.1 Motivation

En voici un scénario pour motiver l'informatique pervasive réactive au contexte : le

scénario de l’hôpital intelligent. Considérons un hôpital intelligent où des patients, des

infirmières, des médecins, etc. sont impliqués. Supposons que l’hôpital est équipé de

technologies (matériel et logiciel) de capteur de contexte dans les chambres, les couloirs et

 Introduction

2

le jardin à la disposition des individus impliqués. Un système de l'informatique pervasive

réactive au contexte adapté pour la surveillance et le suivi des patients dans les hôpitaux

aide à minimiser l'engagement des spécialistes aux activités moins importantes.

L’intervention humaine pourrait être nécessaire uniquement lors d’une alerte par le système.

La Figure 2 illustre un cas d’utilisation spécifique du scénario de l’hôpital intelligent. Un

matin, le docteur Pascal et ses collègues sont en réunion de consultation hebdomadaire (1).

Michel, le patient, est dans un jardin pour profiter du soleil matinal (2). Soudain, Michel se

sent épuiser et tombe par terre (3). Les portables et les insignes qu'il porte remettre

immédiatement tous les informations nécessaires au dispositif informatique se trouvant à

proximité (4). Ensuite le système envoie (5) un message d'alerte à Ada (6), l'infirmier, sur

son téléphone intelligent (7). Sachant également les horaires du docteur Pascal, de son

agenda, qu'il est dans la réunion, le système lui informe (8) par message SMS sur son

téléphone cellulaire qui clignote la lumière rouge à la réception de ce type de message

d'urgence quand il est en réunion. La camera face au jardin (9), où Michel est situé, est

activé et son image est envoyée (10) à l'ordinateur central pour l’adapter et la diffuser (11,

12, 13) à tous les terminaux concernés (14, 15, 16). Les secouristes (17) sont également

informés (18) de la situation. À la suite, Michel est amené (19, 20) au chambre de

traitement (21) par les secouristes d'urgence. Le docteur Pascal, qui a déjà été au courant

de la situation actuelle de son patient, a fait toutes les consultations nécessaires (22, 23,

24), la préparation de médicaments appropriés et il est déjà dans la salle de traitement (25).

Ada est également dans la salle de traitement (26) pour fournir l'aide nécessaire au patient.

Figure 2: Scénario use case dans l’hôpital intelligent

1.1 Background

3

Ce travail est donc motivé par deux observations principales que nous avons relevées au

sujet de l’environnement de l’informatique pervasive et le système réactif au contexte : la

nécessité d'un modèle de gestion du contexte dans un cadre générique et la nécessité d’une

plateforme pour développement des systèmes réactive au contexte dans l’informatique

pervasive.

2. Modélisation de contexte: Le modèle EHRAM

Nous considérons le contexte comme un terme opérationnel dont la définition dépend de

l'intention pour laquelle il est recueilli et de l'interprétation des opérations sur une entité

plutôt que les qualités intrinsèques de l’entité et les opérations eux mêmes. Une chose

servant de contexte pour une personne pourrait ne pas l’être pour une autre. Aussi, un objet

servant de contexte dans certaine situation pour une personne particulière ne pourrait pas

être importante pour la même personne dans une autre situation. Donc, le contexte est une

réponse à la gamme de questions comme: comment, où, quand, quoi, qui et quel sur l'entité

descripteurs et leur interaction entre eux qui affectent des actions prises ou des actions

admises par les entités.

2.1 Le modèle EHRAM

Nous présentons maintenant notre nouveau modèle de représentation de contexte

nommé EHRAM. EHRAM est un méta modèle qui utilise l’ensemble d'entités (E),

ensemble de la hiérarchie (H), l’ensemble de relations (R), l’ensemble de relations de

axiomatique (A) et l'ensemble de métadonnées (M) pour représenter des données du

contexte et son sémantique. Le nom EHRAM est composé des initiales des composantes

d’EHRAM décrites ci-dessous.

• E est l’ensemble d'entités pour lesquelles on capture le contexte.

• H est l’ensemble de relations qui forment un graphe acyclique dirigé inversement
(DAG inversé) sur les entités. Les nœuds du graphe représentent des entités et les
arcs du graphe représentent des relations hiérarchiques. L’entité racine qui se trouve
au sommet de la hiérarchie du graphe est une entité globale nommée ContextEntity.

• R signifie l'union de l'ensemble des relations Re et Ra. Re est l’ensemble des relations
ayant leur domaine et leur range de l’ensemble E. Ra est l’ensemble des relations
définies à partir des entités E aux littérales représentant les attributs de l’entité.

• A est l’ensemble des relations axiomatiques. Une relation axiomatique est une
relation sur des relations. Par exemple, si nous définissons une relation r1 comme une
relation transitive, alors r1 obéit la propriété (axiome) transitivité: (e1, r1, e2) and (e2,
r1, e3) => (e1, r1, e3).

 Introduction

4

• M est l’ensemble de métadonnées sur une instance de relation définie. Par exemple, si
nous avons une déclaration qui dit: "Bob a indiqué qu’Alice est située dans le jardin

ce matin". Les expressions qualificatives comme "Bob a indiqué" et "ce matin" sont
des métadonnées de la déclaration faite au sujet d’Alice. Elles répondent aux
questions qui et quand concernant le contexte de base.

by sameAs
axiom

by inverse
axiom

isa isa isa

by symetric
axiom

instanceOf

ContextEntity

Entity Entity Entity

Entity (sub) Entity (sub) Entity (sub) Entity (sub)

Instance

isa isa isa
Value Value

Value

(a)

(b)
Hierarchy

Relation

Entity

Literal value

Axiomatic

transitive

isa

Value

Metadata

Value

Key

Figure 3: Représentation des composants de l’EHRAM

La figure 3 est une représentation graphique de la structure de l’EHRAM qui montre les

hiérarchies, les entités, les relations d’entités, les relations d’attributs, les relations

axiomatiques, les métadonnées et les couches où couche (a) est la couche générique et

couche (b) est la couche de domaine.

hasDoctor

owns

time

hasMemory hasStartTime

engagedIn
locatedWith

locatedWith

memory

time

has
End
Time

hasBodyTemp

39.5

instanceOf

isa isa isa isa

ContextEntity

Person Activity Device

Patient Doctor Meeting Phone

SPhone0095

isa isa isa

pp

hasPrecision by symetric axiom

hasMemory

owns

Schedule
hasOwner

400

Bob

instanceOf

source
by inverse axiom

Pascal

instanceOf

hasDoctor

Figure 4: Un exemple des composants de l’EHRAM

Un exemple qui représente des composantes du modèle EHRAM en utilisant quelques

données issues de l'application dans un domaine médicale est donné dans la Figure 4.

1.1 Background

5

Certaines relations dans le diagramme sont définies à avoir les axiomes associés et

certaines ont des métadonnées. Des exemples de relations qui ont les axiomes associés sont :

(Person, locatedWith, Device) et (Pascal, owns, SPhone0095). Dans le diagramme,

« locatedWith » est défini comme une relation symétrique et obéit donc à la propriété

(axiome) symétrique. De même, puisque « owns » est défini comme étant l’inverse de

« hasOwner », il obéit à la propriété (axiome) inverse qui signifie que la relation

(SPhone0095, hasOwner, Pascal) est automatiquement vraie. La relation (Person,

engagedIn, Activité) a une métadonnée qui raconte sa précision représentée par

hasPrecision.

De plus, un axiome est une phrase, une proposition ou une règle qui est considérée

comme valide, et qui sert de point de départ nécessaire et la logique de l’expression formelle

pour déduire et inférer logiquement. La description de certains axiomes génériques :

sameAs, inverse, symétriques et transitives sont présenté comme :

∀r∈R symmetric(r) ⇔(∀e1,e2 ∈ E, r(e1,e2) ⇒ r(e2,e1))

∀r∈R transitive(r) ⇔(∀e1,e2, e3 ∈ E, r(e1,e2) ∧r(e2,e3) ⇒ r(e1,e3))

∀r1,r2∈R inverse(r1,r2) ⇔(∀e1,e2∈ E, r1(e1,e2) ⇒ r2(e2,e1))

∀r1,r2∈R sameAs(r1,r2) ⇔(∀e1,e2∈ E, r1(e1,e2) ⇒ r2(e1,e2))

De même, les relations axiomatiques basées sur le domaine d'application sont utilisées

pour indiquer des axiomes et des règles qui sont utilisés pour en déduire d'autres

connaissances utiles pour le raisonnement. Par exemple, nous pouvons créer des règles de

déduction basées sur le domaine d’application et qui servent comme axiomes de

raisonnement dans le domaine.

∀d instanceOf Doctor, p instanceOf Patient: hasDoctor(p,d) ∧ engagedInActivity(p,

takeTreatement) ⇒ engagedInActivity(d, giveTreatement)

Dans le modèle EHRAM, les métadonnées représentent une relation qui décrit l’instance

d’une autre relation. Par exemple, si on nous donne l’information contextuelle "Patient

isLocatedIn Garden", à partir de cette déclaration, nous pouvons alors faire d'autres

déclarations pour répondre à des questions comme: Qui a donné cette information? Quel

service est utilisé pour rapporter l'information? Quand s’est-il passé? L’information, est-elle

exact? Pourquoi le sujet est-il dans cet état? Que va-t-il se passer après? etc.

2.2 EHRAM et l’UML

 Introduction

6

Une trace incrémentale des concepts en EHRAM à l'UML est donnée comme suit. Un

schéma de la classe de l’UML basé sur cette trace est donné par la Figure 5.

Figure 5: Représentation d’UML du modèle EHRAM

• L’entité dans le modèle EHRAM peut être représentée par une classe de l’UML.

• Le concept de la relation hiérarchique dans le modèle EHRAM peut être représenté
par la relation de généralisation dans l’UML.

• La relation de l’entité dans le modèle EHRAM peut être représentée par la relation

d'association en UML, et la relation de l’attribut dans le modèle EHRAM peut être
représentée en utilisant les attributs de la classe de l’UML.

• La relation axiomatique dans le modèle EHRAM peut être représentée comme une
classe d’association dans l’UML. Le concept de méta-classe peut également être
utilisé pour représenter les propriétés axiomatiques.

1.1 Background

7

• La métadonnée dans le modèle EHRAM peut être représentée par une classe
d'association dans l’UML.

Certaines des limites de l'UML pour représenter le méta modèle EHRAM peuvent être

surmontées par l'utilisation des méta-classes et des classes d'association. Cependant, nous

avons encore un soutien limité pour la représentation de l'aspect sémantique des données

contextuelles. Enfin, les outils de modélisation de l’UML ne peuvent être utilisés qu’en

partie pour formaliser la représentation du modèle EHRAM. Nous allons donc continuer

d'examiner d’autres méthodes.

2.3 EHRAM et les modèles relationnels

Étant donné l’ensemble d’entités E et l’ensemble de valeurs V (tires des entités et des

valeurs littérales), la relation R est le sous-ensemble du produit cartésien de E et V.

R ⊆ {(ei,vj): ei ∈ E, vj ∈ V}

Nous sommes intéressés par tous les éléments qui ont un sens :

(ei,vj)∈ R qui peut aussi être représenté par :

{R(ei,vj): (ei,vj)∈R} ou dans une forme plus linéaire

{(ei,R,vj): (ei,vj)∈R}

Ce triplet peut être utilisé pour définir un contexte (C), comme suit:

C ≡ {(e
i,k

, r
k
, v

j,k
) : e

i,k
 ∈ E

k
, r

k
 ∈ R, v

i,k
 ∈ V

k
}

En utilisant le contexte C, des méta-données CM, des méta-relations RM et des méta-
valeurs VM :

CM ≡ {(c
i
, rm

k
, vm

j
) : c

i
 ∈ C, rm

k
 ∈ Rm, vm

j
 ∈ Vm} ou

CM ≡ {((e
i
, r

k
, v

j
), rm

l
, vm

p
): e

i
∈E,r

k
∈R,v

j
∈V,rm

l
∈RM,vm

p
∈ VM}

Exemple de contexte avec des métadonnées.

(“Pascal, isEngagedIn, Meeting005”, hasSource, Agenda)

(“Pascal, isEngagedIn, Meeting005”, hasPrecision, xx%)

Pour représenter l’aspect sémantique des données du contexte dans le modèle EHRAM,
nous allons encore continuer à examiner d’autres méthodes.

2.4 EHRAM et le modèle RDF

 Introduction

8

La caractéristique principale des données du contexte c’est qu'il possède un acteur ou

une entité nommée « subject ». La valeur de contexte définie sur le subject est exprimée en

termes de propriétés multiples. Nous allons utiliser le nome « prédicat » et « object» pour

représenter la situation de subject en ce qui concerne sa propriété spécifique. Cette

convention va de pair avec le formalisme de représentation du triplet RDF <subject,

predicate, object>.

Nous utilisons RDF et son extension appelée la réification de RDF afin de représenter la

donnée du contexte, de comparer les assertions logiques de différents témoins et de

déterminer leur crédibilité. Le message "John is six inch tall" est une affirmation de la vérité

qui commet l’expéditeur à la réalité, alors que la déclaration réifiée, "Marie reports that

John is six inches tall" attribue cet engagement à Marie.

Bob Student

Garden «22 :00»

isA

isLocatedIn

willBeClosedAt

«Sensor#5»

hasTimeStamp

isReportedBy

«11 :40»

«88%»
hasAccuracyOf

Statement XX

High-order statement about statement XX

Figure 6: La représentation de la métadonnée de contexte en utilisant réification

rdf :statement

Blank node (ns:XX)

ns:isReportedBy ns :hasTimeStamp

ns :Garden

« 11 :40» « 88%»

ns :locatedIn ns :Bob

rdf :predicate rdf :object

ns:Patient

rdf :type

« 22:00 »

ns :hasClosingTime

« Sensor#5 »

ns :hasAccuracy

rdf :subject rdf :type

Figure 7: Modèle de RDF pour les métadonnées de contexte réifiées

1.1 Background

9

De la même manière, des données réifiées de RDF contiennent chaque déclaration

originale comme une ressource et les nouvelles déclarations faites à ce subject. Les quatre

propriétés utilisées pour modéliser la déclaration originale de la ressource de RDF sont le

subject, le predicate, l'object et le type. Une nouvelle ressource ayant ces quatre propriétés

représente la déclaration originale et peut être utilisé comme subject ou object d'autres

déclarations avec ses déclarations additionnelles. La figure 6 montre une démonstration de

la représentation de métadonnées utilisant la déclaration da la réification du contexte. La

figure montre un exemple de la déclaration triple: "bob locatedIn library". Cette déclaration

peut être réifiée par méta informations supplémentaires comme "isReported by sensor # 5",

"hasAccuracy 88%", "hasTimeStamp 11:40 today", etc. La Figure 7 illustre un modèle de

données RDF équivalent aux données du contexte réifiées.

3. Gestion de Contexte: Le modèle HCoM

Dans ce chapitre, nous essayons d'étudier comment notre EHRAM, le modèle

conceptuel de la représentation du contexte, peut être mappé au modèle de données

relationnelles et au modèle de l'ontologie. Nous montrons les avantages et les inconvénients

des deux approches. Nous proposons enfin une nouvelle approche hybride pour la

modélisation de gestion du contexte (nommé: HCoM model).

Une base de données relationnelle est un modèle stable utilisée dans une large gamme

d’applications pour la gestion de base de données. Dans le modèle EHRAM, le contexte est

représenté par la combinaison des entités, des hiérarchies, des relations, des axiomes et des

métadonnées. Dans le modèle de la base de données relationnelle, un modèle de relation

d'entité (modèle ER) est utilisé pour représenter les entités, les attributs et les relations. Un

algorithme de mappage étape par étape du modèle EHRAM au modèle relationnel offre un

schéma de base de données relationnelle (RCDB) de la Figure 8.

Figure 8: Schéma généralisé de la RCDB

 Introduction

10

Une ontologie peut être utilisée pour représenter la sémantique, le concept des relations

et des axiomes dans les données du contexte.

Les outils de représentation ontologie fournissent une représentation largement accepté

et formelle de sémantique de contexte dans le but d'interpréter et de raisonner sur les

informations contextuelles. Les outils de l’ontologie, cependant, ne sont bons que pour la

représentation statique des connaissances dans un domaine. Ils ne sont pas conçus pour la

capture et le traitement des informations dans un environnement dynamique et évolutif. Par

ailleurs, les langues de l'ontologie et leurs formats de sérialisation sont textuels

(XML/RDF/RDFS/OWL) et ne sont donc pas conçus pour l'optimisation, le traitement et la

récupération efficaces des requêtes de larges données de contexte.

Les modèles relationnels, d'autre part, fournissent des interfaces standard et

l’optimisation des requêtes. Ils fournissent des outils pour la gestion de base de données du

contexte et des outils pour recevoir et envoyer des notifications sur les changements de

contexte. Le modèle relationnel, cependant, n’est pas conçu pour l'interprétation sémantique

de données.

3.1 HCoM : Un modèle hybride pour la gestion de contexte

Nos rationnelles derrière la nécessité du modèle hybride de contexte sont : distinguer la

gestion des données du contexte et la gestion de sa sémantique, les traiter séparément et

rassembler les résultats pour un meilleur raisonnement et support décisionnel dans le system

de informatique pervasive basé sur la réactivité au contexte. Nous utilisons l’approche

ontologique pour gérer la sémantique de contexte et l’approche relationnelle pour gérer les

données de contexte. Nous présentons un modèle hybride nommé le modèle HCoM

(Hybride Contexte Management model). Le modèle HCoM vise à combiner les meilleurs

des deux mondes.

Le module sélecteur/d’élagage (selector/pruning) dans HCoM fournit un moyen de

choisir et de charger qu'une partie du contexte statique des données étant donné l'ensemble

des données de contexte Tc = {c1, c2 … ct} et l’ensemble des données de contexte approprié

comme Ac=(c1,c2, … ca). Par l’élagage de l’ensemble des données de contexte inappropriée

de Tc, on obtient les données du contexte appropriée (sélectionnée) Sc= {c1, c2 … cs}. Les

deux mesures de la performance de l’algorithme d’élagage sont la qualité du raisonnement

et la rapidité (des réponses aux requêtes). Ces mesures de performance dépendent de la

différence entre les ensembles Ac et Sc.

1.1 Background

11

Étant donné que tous les autres paramètres sont constants, la performance concernant la

qualité du raisonnement d'un système qui utilise l’élagage (la sélection) des données est

inversement proportionnelle à la valeur de |P|. Egalement, la performance de la vitesse est

inversement proportionnelle à la valeur de |Q|. En supposant qu'un processus de

raisonnement exige toujours un sous-ensemble de l'ensemble de contexte des données, c.-à-

d. Ac ⊂ Tc est toujours vrai, la plus grande perte de vitesse survient lorsque Tc≡ Sc mais,

d’autre part, il garantit une qualité optimale. Un exemple d'un modèle avec une qualité

optimale en termes de chargement des données complètes dans le reasoner est notre modèle

GCoM. D’autre part, le modèle GCoM souffre d’une mauvaise qualité de la vitesse.

)(optimalisqualityPSAST cccc ∅≡⇒⊆⇒≡

Afin d'améliorer à la fois la qualité et la vitesse, l’algorithme d’élagage doit être choisi

de telle sorte que les valeurs de |P| et |Q| s’approchent de zéro. En termes réels, il désigne

que le critère de sélection/élagage est pertinent à l'intérêt de l'utilisateur.

Le chargement de données seulement pertinentes minimise la taille de l'espace de

raisonnement et réduit la surcharge inutile du moteur d’inférence pour améliorer la

performance globale du service réactivité au contexte. Cela aide à surmonter les limitations

de l'absence d'évolutivité de la plupart des systèmes de raisonnement à l'augmentation

constante du volume des ressources de raisonnement dans l’environnement pervasif.

3.2 Une architecture pour le modèle HCoM

La figure 9 montre les composants et les fonctionnalités qui représentent une

architecture en couches du modèle HCoM. Les flèches dans le diagramme représentent le

flux de l’ensemble des données différentes de ou vers chaque composante.

Context Filter : Reçoit une instance de données d’un nouveau contexte, qui peuvent être

saisies à l’aide de capteurs matériels ou de capteurs logiciels, puis valide et crée le journal

de contextes à partir duquel des copies des instances de contexte statique sont sélectionnées

et ajoutées à la RCDB pour une utilisation future. La figure 10 montre un pseudo code d'un

algorithme de filtrage du contexte. Cet algorithme est activé quand le système fonctionne

afin de filtrer et décider si le contexte est utile en fonction de son facteur de fiabilité (lignes

9-17). Il vérifie également si le contexte est de catégorie statique (lignes 19-22) qui, si c’est

le cas, doit être stocké pour une utilisation ultérieure ou utilisée une seule fois.

Context Selector: Utilise les informations historiques et actuelles de l’utilisateur, des

dispositifs disponibles, des politiques institutionnelles etc. pour choisir et charger

uniquement les données de contexte pertinentes. Cela permet de surmonter les limitations de

l'absence d'évolutivité des systèmes de raisonnement. La figure 11 montre les étapes

impliquées dans le processus de sélection.

 Introduction

12

Rules : Les règles en CoCA proviennent de trois sources différentes : des règles définies

par l'utilisateur, des règles dérivées des politiques de l’entreprise et des règles dérivées de

données de l'historique des décisions prises dans le passé.

Figure 9: Architecture pour le modèle HCoM

Contexte-Onto est créée à partir des couches de domaine génériques et du modèle

EHRAM et sert d'une ontologie référentielle.

RCDB est créé à partir du contexte statique du modèle EHRAM en utilisant le schéma

des données décrites dans la section de la modélisation du contexte relationnel. Cette

information est actualisée avec de nouvelles données du contexte statique qui sont capturées

au cours de l'exécution. RCDB peuvent être stockés en utilisant n'importe quel système de

gestion de base de données standard. Nous utilisons MySQL Comme un back-end pour

stocker notre base de données de contexte et ainsi que son schéma.

Context Manager : Intègre et envoie les ressources de raisonnement nécessaires du

modèle HCoM au moteur d'action de CoCA nommé RAID en mode-push chaque fois qu’un

nouveau contexte est acquis. Cette action est basée sur l‘information de déclenchement dans

la notification d'événement de contexte qui est créé par le module de filtre quand un

nouveau contexte est capturé.

1.1 Background

13

Collaboration Manager: Basé sur les décisions du sélecteur de contexte, s’il n’y a pas

suffisamment de données pertinentes dans l'appareil concerné, le gestionnaire de

collaboration (collaboration manager) initie l’échange du contexte entre voisins proches.

Ce module utilise le principe de la superposition d'un réseau virtuel qui utilise le protocole

pair-à-pair de Jxta [JXTA, 2007].

1. While (System_Is_Running)
2. {
3. newContext=null
4. ContextBlock=new ContextClass()//context and all related data
5. repeate until newContext!=null
6. {
7. newContext=ContextBlock.getNewContext()
8. }
9. reliabilityFactor=0
10. if (ContextBlock.hasReliableSource()
11. {
12. reliabilityFactor=1
13. }else
14. {
15. reliabilityFactor=ContextBlock.estimateSourceRe liability()
16. }
17. if (reliabilityFactor> ContextBlock.reliabilityTh ereshold())
18. {
19. if (ContextBlock.hasStaticCategory())
20. {
21. ContextBlock.addContextToRCDB()
22. }
23. ContextBlock.addContextToContextOnto()
24. ContextBlock.sendNoticeToCoCA()
25. }else
26. {
27. ContextBlock.inValidContextError()
28. }
29. }

Figure 10: Algorithme pour le filtre du contexte

 Introduction

14

1.
2.
3.
4.
5.
6.
7.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

 //Algorithm for pruning non relevant entities (selecting relevant entities)
Input: T (set of all entities in the EHRAM hierarchy graph)

Ε1 (set of entities identified at the time of initialization)
E2 (set of entities specified at the time of initialization)
getProbablity() (a function to predict the probability of occurrence based on history data)
getTH(), estimateTH() (functions that set threshold value)

Output: S (set of relevant entities selected from the set T) => (S ⊆ T)

Let τ ← 0 (threshold probability for selection of entity, value between 0 and 1 inclusive)
Let S1, S2, S3, S4, S5, S’, SS ← ∅
Let δ ← DefaultDepth // Depth of search space for searching related entities (δ>=1)
For every εi ∈ E1 do

 S1 ← S1 ∪ {εi}
End do
If (user has preferences)

For every εi ∈ E2 do
 S2 ← S2 ∪ {εi}

End do
τ=getUserTH() // user specified threshold cf. Fig. 4.12

End if
 S3 ← S1 ∪ S2

If τ=0 then τ = getApplicationTH() // default user threshold cf. Fig. 4.12
If τ=0 then τ = getDefaultTH() // default application threshold cf. Fig. 4.12
For every εi ∈ (T \S3) do

 ρ←getProbability(εi, S3) // conditional probability Fig. 4.12
If (ρ ≥ τ)

 S4 ← S4 ∪ {εi}
End if

End Do
SS ← S3 ∪ S4

S←SS
Depth←1
Repeat

For every λi ∈ SS do // SPARQL/SQL
 S’ ← S’ ∪ {θi | hasRelation (λi, θi)}
 S’ ← S’ ∪ {θj | hasRelation (θj, λi)}

End do
S ← S ∪ S’
SS ← S’
S’ ← ∅’
Depth++

Until Depth>δ
Return S

Figure 11: Algorithme pour la sélection du contexte pertinent

3.3 Résumé

Dans ce chapitre, nous avons présenté notre nouvelle approche sémantiquement riche

pour la modélisation de la gestion du contexte. Elle utilise l’hybride de l'ontologie et des

principes de base de données pour la modélisation de gestion des données du contexte et de

1.1 Background

15

la sémantique du contexte. L'ontologie représente l’aspect sémantique des données du

contexte et le schéma relationnel représente les données du contexte elles-mêmes.

Figure 12: Flux du processus HCoM

La figure 12 montre le résumé du diagramme du système HCoM allant de la

configuration initiale à l’exécution finale et la livraison des données. Les partitions

verticales montrent les quatre états : état d'installation, état de configuration, état

d'initialisation et état de temps d'exécution. Les partitions horizontales montrent les

catégories des activités.

Le modèle HCoM est hybride ce qui signifie qu'il hérite des caractéristiques importantes

de l’approche ontologique, de l’approche graphique, de l’approche du langage "markup" et

de l’approche de modélisation relationnelles. Ainsi, HCoM modèle répond le mieux aux

exigences de [Strang, 2004] : distributed composition, partial validation, richness and

quality of information, incompleteness and ambiguity, level of formality, and applicability

to existing environments.

4. Plateforme CoCA : un service collaboratif réactive au contexte

Un système conscient du contexte (ou géré par le contexte) doit recueillir des

informations auprès de l'environnement ou la situation de l'utilisateur (acquisition du

contexte), de traduire ces informations dans le format approprié, combiner l'information du

 Introduction

16

contexte afin de générer un contexte de hauteur nouveau, d’effectuer le raisonnement, de

prendre des actions fondées sur l’information de contexte, et de rendre les informations

accessibles aux autres applications et au voisinage.

4.1 Acquisition de contexte : Exemple sur le positionnement à l'intérieur

Nous avons développé un système de localisation basé sur le signal WiFi dans

l’emplacement intérieur où le titulaire d'un appareil mobile se trouve. Comme dans tout

processus de prédiction, on a deux grandes phases d’activités : l'apprentissage et la

prédiction.

Durant la phase d'apprentissage, une personne titulaire d'un PDA se déplace dans les

pièces et espaces du bâtiment afin d'obtenir le maximum de données possible sur la force du

signal WiFi. L'ensemble des n signaux de fréquences radio des points d’accès atteignables

ainsi obtenu est associé au nom de la pièce ou du lieu (tel que le numéro de la salle ou le

nom de l’endroit dans le bâtiment). Pour chaque endroit dépisté k, nous avons enregistré un

vecteur du signal avec des valeurs et une étiquette correspondant à la pièce où est situé

l’endroit dépisté.

()k
n
kkk roomapapap ,,...,, 21

Le modèle est représenté en format Prédictive Modèle Mark-up Langage (PMML).

Au cours de la phase de prédiction, le module WiFi de prédiction utilise ce modèle pour

prédire les emplacements en temps réel. Pour chacune des salles impliquées, notre module

de prédiction calcule la probabilité des valeurs observées dans la pièce, puis sélectionne la

pièce ayant la plus grande probabilité. Soit P(Rj) la probabilité des valeurs données qui sont

observées depuis la salle Rj, l’expression pour sélectionner la salle R est donnée par :

)()(:
1

j

m

j
kk RPMaxRPRR

=
==

4.2 Une architecture de la plateforme CoCA

En informatique pervasive, une plateforme de service réactive au contexte devrait avoir

comme objectif l'acquisition et l’utilisation du contexte et pour fournir des services

appropriés sans la supervision de l’utilisateur. Donc, nous proposons une plateforme de

service collaborative et réactive au contexte (nommé: la plateforme CoCA). La plateforme

CoCA est composée de cinq couches (layer) : capturing layer, pre-processing layer,

management modeling layer, context-aware core service, et application layer qui exécute

les actions. La Figure 13 montre l’architecture en couche de la plateforme CoCA.

1.1 Background

17

Figure 13 : Architecture de CoCA

Layer 1 : La couche d’acquisition du contexte qui contient les instruments de capture et/ou
les logiciels de prédiction.

Layer 2 : La couche de modélisation et de formalisation de la représentation des données de
contexte capturées. Elle sépare les données contextuelles pour regrouper les entités, les
hiérarchies, les relations, les axiomes et les métadonnées (EHRAM).

Layer 3 : La couche de modélisation de gestion du contexte. Elle traite la façon dont nous
organisons les ressources du contexte utiles pour le raisonnement. Une représentation
formelle de cette couche peut être observée sur le modèle HCoM.

Layer 4: La couche de CoCA de base. Elle est l'endroit où le raisonnement final de la
réactivité au contexte et les décisions sont exécutées. Elle est composée du moteur
RAID-Action (résonnement, agrégation, interprétation, décision et action) qui peuple
l'ontologie de données de contextuelles et applique ensuite les règles et axiomes de
raisonnement et de décision sur les actions à déclencher. Le service supplémentaire dans
cette couche est composé d’éléments externe au service de CoCA de base. Ceci inclut
des services comme la découverte de connaissances, la confidentialité, la sécurité, etc.

Layer 5 : La couche d’application. Cette couche dépend du domaine d'application où sont
déclenchées des actions de façon réactive ou proactive. Il accueille également des

 Introduction

18

processus de déclenchement de l'action en fonction de l’application spécifique du
domaine dans lequel la plateforme est utilisée.

4.3 Collaboration dans CoCA

La technologie de soutien JXTA est un ensemble de protocoles ouverts permettant à tout

périphérique connecté au réseau allant des téléphones cellulaires et assistants numériques

personnels sans fil à des ordinateurs, des serveurs et des super ordinateurs de communiquer

et de collaborer pair-à-pair.

Figure 14: Principes de la collaboration et de la découverte dans CoCA

Le rôle de la gestion de collaboration dans l’espace du voisinage de la plateforme CoCA

est de partager des ressources informatiques comme les contextes, les règles et les

ontologies. Les principales exigences de base pour le service collaboratif entre le voisinage

du CoCA sont la capacité de s'organiser en groupes de pairs, de s’entre découvrir et de

découvrir les services et les ressources de chacun. Ce principe est illustré sur la Figure 14.

Un algorithme pour les processus impliqués dans la gestion de la collaboration dans la

plateforme CoCA est indiqué sur la Figure 15. L'algorithme indique les étapes suivre pour

découvrir les pairs et établir un lien pair-à-pair entre les modules de collaboration dans les

deux pairs selon notre architecture basée sur JXTA. Le schéma a cinq partitions verticales

indiquant le type et la catégorie des pairs impliqués dans le processus de collaboration.

1.1 Background

19

Figure 15: Algorithme de collaboration dans CoCA

4.4 Un scénario du cas d'utilisation

Nous utilisons un scénario de PiCASO (Pervasive Campus-Aware Smart Onlooker).

PiCASO est basé sur le scénario d’un campus universitaire où sont impliqués des étudiants

chercheurs et des enseignants-chercheurs. Outre le calendrier des réunions régulières

prévues entre les étudiants et les professeurs, des réunions et des discussions informelles et

spontanées sont importantes pour l'avancement de leur travail. Une discussion peut avoir

lieu entre deux ou plusieurs des chercheurs selon la pertinence de leur travail.

Les questions qui peuvent être soulevées dans ce scénario sont : Quand est-ce qu’ils vont

avoir une telle réunion ? Comment informer uniquement ceux qui sont disponibles à propos

des champs d'intérêt de quelqu'un d'autre pour discuter sur des thèmes spécifique pendant la

 Introduction

20

pause café ? Quel est le type de transmission de messages approprié pour envoyer des

informations à une personne donnée située à un endroit et à un moment particulier? Si le

téléphone est utilisé pour recevoir un tel message, quel devrait être son mode d'appel ou

d’avertissement (vibration, sonnerie,)? et ainsi de suite.

La mise en œuvre du scénario de PiCASO utilise un nombre de contexte créé par la

combinaison du contexte et les relations définies dans un domaine du campus. (variant de

200 à 6000 instances). De telles instances sont stockées dans la base de données

relationnelle du contexte, RCDB. Ensuite, seules les données contextuelles pertinentes sont

chargées de la RCDB vers l’espace du reasoner pendant l'initialisation. Il utilise également

des règles (variant de 20 à 200 lignes) créées à partir des politiques de domaine et des

besoins de l’usager. En combinant tous ces facteurs avec le schéma de l’ontologie de

PiCASO, Le modèle HCoM produit jusqu'à 9000 triples de contexte dans l'ensemble de

l'espace de raisonnement.

4.5 Démonstration du raisonnement dans CoCA

Étant donné l’ontologie de PiCASO avec ses données de contexte et certaines règles de

auto-messagerie enter les usagers de PiCASO, nous allons essayer de montrer comment

l’occurrence d’un simple contexte déclenche l’envoi d’un message (i.e. une action).

Figure 16 est un segment d’ontologie de PiCASO montrant la relation advisorOf qui

existe entre les trois professeurs (Eve, Professor_11, Dave) et les cinq étudiants (Carol,

Bob, Student_23, Alice, Student_21). Certains de ces nœuds dans le graphique indiquent les

relations actuellement existantes. Par exemple, le nœud du professeur Dave montre les

relations OfferClass, AdvisorOf, engagedIn, hasOffice et ownerOf et leurs valeurs. Le terme

isa (is a) dans le graphe représente la relation rdfs:subClassOf, et également le terme io

(instance of) représente la relation rdf:type. Dans l'ontologie, les relations AdvisorOf et

studentOf sont définies comme des inverses mutuels. Cela signifie que chaque fois que la

relation advisorOf existe, il est également vrai pour studentOf dans le sens inverse.

1.1 Background

21

Figure 16 : L’ontologie du contexte du PiCASO montrant la relation advisorOf

Send trigger message
[InformRule1:
 (?S rdf:type pre:Student)
 (?P rdf:type pre:Professor)
 (?S pre:studentOf ?P)
 (?S pre:locatedWith ?P)
->(?S pre:hasMessageTogo

pre:ProfessorHere)
]
[InformRule3:
 (?S1 rdf:type pre:Student)
 (?S2 rdf:type pre:Student)
 (?P rdf:type pre:Professor)
 (?S1 pre:studentOf ?P)
 (?S2 pre:studentOf ?P)
 (?S1 pre:locatedWith ?S2)
 notEqual(?S1,?S2)
->(?S1 pre:hasMessageTogo

pre:ColleagueHere)

#Set mobile ringing tone
[MobilePhoneRule1:
 (?d pre:ownedBy ?p)
 (?d rdf:type pre:PDA)
 (?p pre:locatedIn ?l)
 (?l rdf:type pre:Library)

->(?d pre:setNotificationMode
pre:SilentMode)

]
[MobilePhoneRule2:
 (?d pre:ownedBy ?p)
 (?d rdf:type pre:PDA)
 (?p pre:locatedIn ?l)
 (?l rdf:type pre:ClassRoom)

->(?d pre:setNotificationMode
pre:VibratingMode)

]

Figure 17 : Quelques règles de PiCASO pour déclencher des messages et des sonneries

La colonne 1 de la figure 17 porte sur les règles qui régissent le message de

déclencheurs. Si on regarde la première règle, elle indique que « si l'ensemble des contextes

capturés sont agrégés pour nous donner un nouveau contexte indiquant la présence d'un

étudiant et de son professeur au même endroit, alors on transforme la valeur de

MessageToGo de l'étudiant en un message nommé ProfessorHere ». Le processus

d'agrégation du contexte, par exemple, vérifie l’emplacement du professeur et de l’étudiant

et décide s'ils sont situés au même endroit ou non. Le message ProfessorHere par lui même

 Introduction

22

est un objet dans lequel sont définis une valeur, un module d'exécution, etc.. Dans ce cas

particulier, le contenu du message est "Envoyer à: Etudiant --> Votre professeur est là!"

Nous pouvons avoir plusieurs politiques et règles comme celles-ci qui sont basées sur le

domaine d’application. Un autre ensemble de règles que nous utilisons dans cette

démonstration (colonne 2 dans la figure) est celui qui est destiné à la gestion de la sonnerie

du téléphone portable.

HCoM est alors utilisé pour créer un modèle de raisonnement basé sur la mémoire qui

peut être interrogé en utilisant le langage de requête SPARQL pour l’action finale.

La plate-forme CoCA fournit une interface pour l'exécuter et tester les décisions et les

actions de ce type. Nous avons exécuté et vérifié que toutes les mesures attendues sont

également exécutées de la même manière.

4.6 Mesure de la performance

Dans cette section, nous utilisons les résultats du scénario de PiCASO pour mesurer la

performance et l’évolutivité de la plateforme CoCA et du modèle HCoM. Notre expérience

vise à démontrer comment l'utilisation du modèle l'HCoM garantit l'évolutivité et

l’extensibilité du processus du raisonnement. Le raisonnement basé sur la machine est un

processus qui consomme beaucoup de temps et qui a une complexité temporelle

exponentielle à l'égard de la taille des données dans l’espace de raisonnement [Zuo, 2006].

Une expérience sur notre prototype est réalisée afin d'évaluer l'évolutivité de notre processus

de raisonnement concernant le nombre total de triplets dans l'espace du raisonnement.

Nous avons fait de multiples expériences avec de données de taille variée pour

l’évaluation de la performance des deux approches, GCoM et HCoM (le modèle GCoM est

le prédécesseur du modèle HCoM qui utilise l'ontologie uniquement pour la gestion de

contexte). Le résultat montre que la performance du raisonnement dépend de la taille de

raisonnement des triples et de la complexité des règles de raisonnement. L'utilisation du

modèle GCoM produit une représentation graphique du temps qui croît sans cesse avec

l'augmentation du volume et de la complexité de la ressource de raisonnement. D'autre part,

l'utilisation de HCoM donne un graphique qui tend à rester constant avec la croissance du

volume et la complexité de la ressource de contexte. La figure 18 montre le résultat de notre

expérience en utilisant à la fois les approches GCoM et HCoM. Une expérimentation

similaire faite par [Wang, 2004] sur leur contexte ontologique CONON et illustrée par la

figure 19, montre l’évolutivité du raisonnement du contexte basée sur l'ontologie qui donne

un graphique plus ou moins semblable au notre GCoM.

1.1 Background

23

Reasoning performances using ontology and hybrid approaches

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

200 800 1600 2300 3000 3800 4535 5268 6000 6733 7466 9010

Number of RDF Triples

R
un

 T
im

e
(m

s)

GCoM HCoM

Figure 18: Résultats des mesures de GCoM et HCoM (2x1.83 GHz CPU)

Ontology Reasoning

0

2

4

6

8

10

12

14

16

18

20

22

24

1000 2000 3000 4000 5000 6000 7000 8000

Number of RDF Triples

R
un

 T
im

e
(S

)

Figure 19: Performance de raisonnement pour CONON (2,4 GHz CPU)

Notre expérimentation montre que l'utilisation de HCoM donne un temps de réponse

relativement constant à l'augmentation de la taille des données. En conclusion, le modèle

HCoM et son constructeur, le modèle EHRAM, améliorent les performances du service

CoCA et en font une plateforme évolutive et extensible.

5. Conclusions et travaux futurs

Dans ce travail, nous avons présenté HCoM, notre nouveau modèle de gestion,

d’agrégation et de présentation des données du contexte en utilisant EHRAM, notre modèle

de représentation du contexte. Dans HCoM nous utilisons une approche hybride où le

schéma de l'ontologie, le contexte et les données de règles sont stockés et traités séparément

avant qu'ils soient combinés et présentés pour faire le raisonnement. Seules les données

pertinentes sont sélectionnées et chargées dans le schéma de l'ontologie du contexte à partir

de RCDB (Relational Context Database). Nous avons également présenté la plateforme

CoCA, un intergiciel collaboratif indépendant des données du contexte qui donne un

 Introduction

24

service de réactivité au contexte basé sur les modèles EHRAM et HCoM dan un

environnement pervasif.

La validation des modèles et de la plateforme est effectuée en utilisant un exemple de

démonstration sur le scénario d’un campus universitaire, PiCASO. Nous avons également

testé CoCA avec des données d'un hôpital sur le scénario de suivi du patient et des services,

et avec des données d'adaptation de logiciel d'application sur les propriétés de divers types

de dispositifs tels que la taille de l'écran, la taille de la mémoire, la capacité d'affichage, la

vitesse du processeur, et la vitesse de connexion. Les résultats de notre expérimentation

montrent que les modèles EHRAM / HCoM sont extensibles et évolutifs à la gestion de

contexte de taille variable, et que la plateforme CoCA est un intergiciel générique,

collaboratif et indépendant de données.

La gestion de l’incertitude, de la sécurité et de la confidentialité, et la tolérance aux

pannes sont parmi les travaux futurs envisagés. Le processus de raisonnement de l’être

humain est basé sur l’abondance d'incertitudes environnementales. Dans la plupart des cas,

l'erreur de capteur (granularité inhérente et/ou erreurs de lecture), les données périmées, et

les mauvaises prédictions donneront l’incertitude lors de la capture du contexte. Nous avons

besoin de certaines méthodes pour s’occuper de ce problème d’incertitude avant d'utiliser

des données de contexte. L'utilisation des métadonnées composante du modèle EHRAM

peut être un point de départ pour la réalisation d’un modèle de gestion de contexte plus

robuste et probabiliste.

Le système informatique pervasive réactive au contexte doit faire face à des défis de

sécurité liés à la confidentialité, à l'intégrité et à la confiance. Nous devons avoir des

services génériques qui gèrent ces problèmes de sécurité dans un environnement pervasif

hétérogène. L’aspect collaboratif de la plateforme CoCA expose naturellement le système à

des pairs défectueux et malveillants. Un domaine de recherche possible consisterait donc à

incorporer la tolérance de défaut et les mécanismes d’auto-guérison. Le travail peut

commencer par l'identification et le marquage des pairs malveillants afin de les prendre en

considération lors prochaine participations, la préparation d’alternatives multiples de sorte

qu’une défaillance de communication ne puisse bloquer le fonctionnement du système, etc.

Chapter 1 INTRODUCTION

1.1 Background

Today’s growth in the advancement of computing applications accompanies the

evolution of distributed middleware. In e-commerce and cooperative business, the Web and

its underlying protocols (HTTP, SOAP, FTP …) are becoming the standard execution

platform for distributed and component-based applications. The increasing number of

computers and users on the Internet has led not only to cooperation structures such as peer-

to-peer computing that has great potential for scalability but also stimulated new

developments in the area of computing clusters called grid computing. The integration of

mobile clients into a distributed environment and the ad-hoc networking of dynamic

components are becoming ever more important in all areas of application. [Mattern03]

indicated that, given the continuing technical progress in computing and communication, we

are heading towards an all-encompassing use of networks and computing power named as

ubiquitous or pervasive computing.

1.1.1 Pervasive computing

According to Dan Russell, director of the User Sciences and Experience Group at IBM's

Almaden Research Center, by 2010 computing will have become so naturalized within the

environment that people will not even realize that they are using computers. In the future,

smart devices all around us will maintain information about their locations, the contexts in

which they are being used, and relevant data about their users.

According to Matteren et al, the vision of pervasive computing is grounded in the firm

belief amongst the scientific community that Moore’s Law, the observation that “the

computer power available on a chip doubles every two years” will hold true atleast for the

foreseeable future. This means that in the next few years, microprocessors will become so

small and inexpensive that they can be embedded in almost everything – not only electrical

devices, cars, household appliances, toys, and tools, but also in ordinary things such as

pencils and clothes. These devices will be interwoven and connected together by wireless

networks.

 Introduction

26

Portable and wireless appliances are already a hot topic in today’s computing industry.

Personal data assistances (PDAs), smart phones and global positioning systems (GPSs) are

only the first precursors of new devices and services that will emerge. This leads towards

the full realization of Mark Weiser’s vision that states, “The most profound technologies are

those that disappear. They weave themselves into the fabric of everyday life until they are

indistinguishable,” [Weiser91].

Pervasive computing systems target at constantly adapting their behavior in order to

meet the needs of users within every changing physical, social, computing and

communication context. Pervasive devices make ad-hoc connection among them and may

be connected to different types of sensors to capture changes in the environment.

1.1.2 Context-Aware computing

As a result of research initiatives at IBM [IBM01] and subsequent research interests and

activities, autonomic computing is becoming one of the top challenging IT research areas.

According to [Hariri06], autonomic computing is inspired by the human autonomic nervous

system that handles complexity and uncertainties, and aims at realizing computing systems

and applications capable of managing themselves with minimum human intervention. Both

works underline that context awareness is one of the key challenging component of the

autonomic computing paradigm.

Figure 1.1 shows the flow in the evolution chain from centralized computing to

pervasive computing as presented by [Satyanarayanan01] and [Strang04]. This classification

places context awareness at the heart of pervasive computing problems. The complexity of

such problems increases in multiplicative (⊗) fashion rather than additive (⊕), with the

addition of new components into the chain.

Centralized
Computing

Distributed
Computing

Mobile
Computing

Pervasive
Computing ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕

⊗⊗⊗⊗ ⊗⊗⊗⊗ ⊗⊗⊗⊗

Remote Communication

Fault Tolerance & availability

Remote Information Access

Mobile Networks

Mobile Information Access

Adaptive Applications

Context Awareness

Ad-hoc Networks

Smart Sensors & Devices
Research Problems

Figure 1-1: Context awareness in the computing evolution chain

1.1 Background

27

The term context-aware computing was formally defined and used for the first time by

[Schilit94] to describe applications that “adapt according to their location of use, the

collection of nearby people and objects, as well as the changes to those objects over time”.

[Dey00] define context-aware computing as “a system that uses context to provide relevant

information and/or services to the user, where relevancy depends on the user’s task”.

[Burrell02] gave another definition stating “context-aware computing is the use of

environmental characteristics such as the user’s location, time, identity and activity to

inform the computing device so that it may provide information to the user that is relevant

to the current context.”

From these definitions and our observation about this new computing dimension,

context-aware computing for us is an environment in which applications can discover and

take advantage of contextual information such as location, time, people, devices, and user

activity. Context awareness in pervasive computing environment needs to take account not

only of the proactive and collaborative aspect of the services but also user inconveniences

due to services that are not adapted to user’s regular duties that may create frustrations and

resistance to subscribe to the service.

Figure 1-2: Conceptual framework of a pervasive context-aware computing

Our conceptual framework showing major components of a pervasive context-aware

system is shown in Figure 1.2. The framework has three basic components: pervasive

environment, context management modeling and context-aware service. Pervasive

environment is characterized by dynamicity, heterogeneity and ubiquity of users, devices

and other computing resources, ad-hoc connection among the devices and existence of

hardware and software sensors. Context management modeling deals with how context data

is collected, organized, represented, stored and presented to the reasoning module. Context-

aware service performs context reasoning and decisions about the actions to be triggered.

 Introduction

28

1.1.3 Elements of pervasive context-aware computing

Among the basic elements of services that context-aware systems provide to users are:

• Context triggered action: for example, if the user is in a meeting and there is a phone
call for him or her, then the call should be routed to voicemail. Triggers can also be
placed on certain events, to make the context-aware system take actions such as
notifying an administrator about an increase in temperature in a server room.

• Multi-facet command processing: commands issued by the user can produce different
results depending upon the context in which they were issued. A web browse
command issued by a user responds according to the context of the user and his
environment (for example, resources available in the device: memory, screen size and
resolution).

• Location based proximity: given information about the location of the user and the
situation of the user, objects located nearby can be given high priority. Such
prioritization would be particularly useful when using small pervasive devices which
might have limited resources. For example, a nearby printer would be proposed when
the user wishes to print something.

• Metadata tagging: context information can be attached to existing pieces of
information to give descriptive information about the subject. This context acts as
metadata about both physical and virtual objects in our system. For example, when a
user records an audio clip on a handheld device, the system can attach the current
context information (date and time, people present, current activity) to the clip for
easy retrieval and indexing.

• Collaborative computing: voluntary based mission-oriented context-aware and
dynamic communities of computing entities that perform tasks on behalf of users in
an autonomous manner. Such applications are important in almost every sphere of our
lives, such as campus management, health care, telemedicine, pervasive security,
military, and crisis management.

A context-aware system must be capable of mimicking human’s ability to recognize and

exploit implicit information in the environment. Although identifying and deducing a

human activity is a challenge, it is critical that context-aware applications should operate by

conveying the appropriate information to the right place at the right time by inferring the

user’s intention. To accomplish this objective the context-aware systems must:

• Gather the information from the environment or the user’s situation.

• Translate this information into the appropriate format.

1.2 Motivations

29

• Combine or interpret context information to generate a higher context. A higher
context is context information that is derived as a result of the merger of other context
information or it is context information that results from interpretation of a low level
context (e.g. conversion of geographic coordinates of a location received from
satellite based positioning systems into street names).

• Automatically trigger actions based on the context information and monitoring of the
actions.

• Make the information accessible to other applications and the neighborhood. The
context management model in pervasive computing environment should handle
context in a reusable manner to permit context from one source to be exploited by
many distinct applications and devices in the neighborhood space that perform a
variety of tasks.

1.2 Motivations

Dynamic adaptation of application to a changing environment leads to an enhancement

of the user satisfaction. However, how application programmers can effectively manage and

use contextual information typically in pervasive environments is still a challenge. Most of

the current context-aware systems are based on ad-hoc models of context, which causes a

lack of formality and expressiveness.

Most of the computing devices in pervasive computing environment are handheld or

wearable, tiny and resource hungry devices. This calls for collaboration among these

devices. The growth of enabling open protocols that allow connected devices on the

network to communicate gives rise to the popularity of collaborative computing. Grid

computing, for example, is one of the successful efforts to handle controlled large-scale

collaborative computing. Collaborative software agents have a potential to become

intelligent enough to observe us and learn our habits and preferences to serve us better. The

new dimension of collaboration in pervasive computing envisages the use of peer-to-peer

and ad-hoc networking of devices. On the other hand, the growth of number of computing

devices that interfere with our daily activities in our environment may be frustrating if they

are not properly adapted to our situations and if they all require our attention. These devices,

after all, are meant to simplify life and improve our working conditions.

To achieve these objectives, we need to embed some sort of intelligence (context

awareness) into these devices so that their service is adapted to our situation (context).

Below are outlines of three examples of motivating scenarios for the pervasive context-

 Introduction

30

aware applications: the smart hospital scenario, smart campus scenario, and the adaptation

of applications scenario. Detailed descriptions and a demonstration version of the

implementation of these scenarios are given in chapter 6.

Smart hospital scenario - patient monitoring and follow up: Consider a smart medical

ward in a hospital where patients, nurses and physicians, etc. are involved. Assume that the

ward is equipped with context sensor technologies (hardware and software) in its rooms,

corridors and garden at the disposal of individuals involved. Patients admitted to the

hospital may need intensive follow up which may create staff shortage and may result in

inappropriate care to the needy ones due to overloading. CoCA based context-aware

monitoring and follow up system helps to minimize the engagement of human assistants to

the less important activities. Human interventions may be needed only when alerted by the

system. Live multimedia recording and transmission of an event that the system has found

important may also be used for monitoring purposes. Adapted and personalized delivery can

be made to those who are concerned.

Figure 1-3: Smart Hospital use-case scenario

1.2 Motivations

31

A particular case of the scenario can be described as follows:

Dr. Pascal is a physician who is assigned to work in the smart medical ward. Ada is a

nurse assigned to assist Pascal. Michel is one of the inpatients of Pascal and Ada is in

charge of Michel. Instead of assigning a permanent human assistant to take care of Michel

whose medical condition is rated improving, he is equipped with wearable devices that

record his body conditions like temperature, blood pressure, heart rate, movement pattern,

etc. There is also a necessary badge in the form of, say, bracelet for communication and

position tracking. Figure 1.3 illustrates a specific use-case scenario of a patient monitoring

and follow-up service.

Here is the story about a specific scenario of a patient monitoring and follow-up service

in a smart hospital that is illustrated in the figure: One morning, Dr. Pascal and his

colleagues are in a weekly consultation meeting (1). Michel is in a garden to enjoying the

morning sun (2). He, however, suddenly feels exhausted and falls down (3). The wearable

and the badge he carries on his body immediately deliver all the necessary information to

the nearby computing device (4). The system sends (5) an alert message to Ada (6), the

nurse, on her smart phone. Another message to central PC room in the office of the medical

secretary for administrative and rediffusion purposes. Knowing also of Dr. Pascal’s

schedule, from his agenda, that he is in the meeting, the system informs (8) him through

SMS message on his cell phone that flashes red light when receiving such type of emergency

message when he is in a meeting. The camera facing the garden (9) where Michel is located

is activated and his picture is sent (10) to the central PC room for adaptation and broadcast

(11, 12, 13) to all concerned terminals (14, 15, 16). Emergency workers (17) are also

informed (18) about the situation. As a result, Michel is taken (19, 20) to the treatment room

(21) by the emergency workers. Dr. Pascal, who has already been aware of his patient’s

current situation, has made all the necessary consultation (22, 23, 24) and preparations for

appropriate medication and is already in the treatment room (25). Ada is also in the

treatment room (26) to provide all the necessary aid to the patient.

Smart campus scenario – Pervasive Campus Aware Smart Onlooker: PiCASO is based

on the scenario of a university campus where research students and professors are involved.

Besides the scheduled regular meetings among students and professors, informal and

spontaneous meetings and discussions are important for the advancement of their work.

Discussion can take place among two or more of the researchers depending on the relevance

 Introduction

32

of their work. Proactive context-aware services can be proposed to answer questions like:

When do they make such a meeting? How can only those available are informed about

someone else’s interest to discuss about a specific subject matter during his tea break? How

can a student know that his professor is available for the coming 30 minutes? How can a

student know when his professor is in the tea room and is available, in his office or in the

corridor passing by the office of the student? What type of messaging method is appropriate

to send such information to a particular person located at a particular place at a particular

time? If telephone is used to accept such a message, what should its call mode be (vibrating,

ringing)? Other similar location, activity and device aware services can also be made

available.

Adaptation of applications scenario - adaptation of applications to context: Adaptation

of software applications to context is one aspect of context-aware computing in pervasive

environment. For example, if a display unit of a device doesn’t support images, and if the

user selects to view an image on this device, the application should automatically lead the

user to the textual description of the image which means the displayImage() module in the

application must be locked by the context-aware service.

As indicated in the related work (chapter 2), existing works on context-aware computing

are limited either to the development of middleware support for context-aware system

development or on the modeling of context in an infrastructure-supported environment.

Therefore, to our knowledge, there is no comprehensive context management model and

middleware built based on collaboration of peer devices.

Hence, this work is motivated by two main observations we have made regarding

pervasive context-aware computing environment: the need for a generic context

management model and the need for a platform support for pervasive context-aware system

development. Our approaches try to solve the problem by proposing a peer-to-peer based

collaborative context-aware service platform and a hybrid context-management model that

insures scalability, formality and reusability.

1.3 Research problems

Context-aware computing in pervasive environment involves a set of functionalities that

need separate attention. We compile and discuss the major problem areas in the following

sections.

1.3 Research problems

33

1.3.1 Context acquisition and management

Below are some of the major challenges related to context acquisition and management.

Context Sensing: is a mechanism to obtain the context data from diverse context sources.

For example, the indoor location of a user can be obtained from an infrared location sensor

system, which detects the presence of a badge to conclude the location of the user wearing

the badge.

Context Modeling: Existing context models vary in the expressiveness they support and

the types of context they represent. Context modeling deals with an abstraction that acquires

context data and then annotates them with semantics that are structured around a set of

contextual entities (e.g., user, location, device) and relations that hold among them (e.g.,

user locatedIn location, device ownedBy User). It is important to have a standardized

context model in order to facilitate context interpretation, context sharing and semantic

interoperability.

Context Repository: There are two principal approaches of context storage and use;

centralized and shared (distributed). A centralized context repository can provide a

persistent storage for distributed context sources and guarantees integrity of context. It

relieves context-aware services from overheads caused by querying from distributed

sensors. In additional to the traditional problems of centralized data repositories like single

point of failure, this approach suffers from dependency on infrastructures. On the other

hand, a distributed and shared context repository approach gives autonomy and full control

of context resources by the individual partners and allows mobility. When context is

represented based on shared context model, context repositories should provide a foundation

to merge interrelated information (semantic interoperability) and enables further data

interpretation. An optimized approach for storing both data and its semantics under the

pervasive computing setup has to be worked out.

1.3.2 Context semantics and reasoning

Semantics according to [Nielson95] refers to aspects of meaning. Where meaning, in its

brief form, is the content carried by the words or signs exchanged between entities while

communicating. For our purpose, context semantics, therefore, is the aspect of meaning of

 Introduction

34

context for further reasoning and decision. Below are some of the major challenges related

to context semantics and reasoning.

Context Query: To explore general means of access to interrelated context spread across

distributed context repositories, we need a high-level mechanism for context -aware services

to issue queries. For example, a notification service for conference attendees require context

query like “Find a list of researchers in this hall whose publications are in the same session

with mine”. The low-level operations of such a complex context-retrieval task should not be

exposed to end users. Context query poses design issues such as context query language,

event notification, and query optimization.

Context Aggregation: Atomic context is simple, low-level context, directly provided by

a context source and composite context is a high-level context that aggregates multiple

atomic or composite contexts. In most cases, software services cannot directly understand

and utilize low-level information. Hence, upon detecting that certain context is atomic, a

context aggregator will retrieve meta-information from the repository about the specific

context providing a related composite context. For example, a location based service wants

to know the relative location with different levels of granularity (e.g., room-level, building-

level, campus-level) instead of sensor-driven position (the position coordinates retrieved by

the sensors). In this case, we need to derive high-level location (e.g., the building in which

the user is located) from location coordinates and other related contexts.

Context Reasoning/Inferring: The context interpretation layer leverages

reasoning/learning techniques to deduce high-level, implicit context needed by intelligent

services from related low-level, explicit context. For example, the rule-based reasoning

engine can deduce user’s current situation based on his location and environmental contexts.

The inferred context might suggest that the user might be sleeping currently, since the time

is 11 pm and he is staying at a dark and quiet bedroom. Another example of context

interpretation could be machine learning based behavior prediction. The intelligent system

could learn the pattern of user’s actions from historical sequences of context data and then

use this learned pattern to predict next event. For example, it could be predicted that once

the user finished showering (turn off the electronic water heater) after 10:30 pm, he will

check emails using the hand phone, and then go to bed after finishing reading them.

Currently, context interpretation tasks are performed through various approaches including

1.3 Research problems

35

ad-hoc interpretation, rule based reasoning, and machine learning. We need an approach that

combines context data and semantics into reasoning and inference service.

Uncertainty: In most cases, sensor error (inherent granularity and/or false readings), out

of date data and poor predictions will give rise to some uncertainty about sensed context.

We need some means of handling this uncertainty problem before using the context data.

1.3.3 Context-aware system development support

Middleware Support: The increased availability of commercial, off-the-shelf, sensing

technologies is making it more practical to sense context in a variety of environments. The

prevalence of powerful, networked computers makes it possible to use these technologies

and distribute the context to multiple applications, in a somewhat pervasive fashion. A

major problem has been a lack of uniform support for building and executing these types of

applications. Most context-aware applications have been built in an ad-hoc manner, heavily

influenced by the domain of application and the underlying technology used to acquire the

context. This results in a lack of generality, requiring each new application to be built from

scratch. To enable application developers and designers to more easily build context-aware

applications and to help them concentrate on the application aspect rather than the context

acquisition and management details, there needs to be a middleware architectural or

platform support that provides the general mechanisms required for context management

and reasoning.

1.3.4 Collaboration and security

Context Discovery/Delivery: Pervasive computing environment is full of small devices

with scarce resource that need a peer-to-peer collaboration. In order for a context-aware

service to use a certain kind of context, there is a need for context requestors to find the

sources providing it. The aim of context discovery is to locate and access context sources.

Issues of context discovery include service description, advertisement and event

subscription. Context delivery services perform the job of searching appropriate context and

delivering them to the applications. These include registration, query and notification

services. Interested peer applications query the registration service to find services of their

interests. The registration service upon finding appropriate context source, returns the

handler to the requesting clients.

 Introduction

36

Security and privacy: Due to the inherent need of collaboration in pervasive context-

aware systems, they face security challenges in the form of privacy, integrity and trust

[Hong04]. Privacy of context information focuses on protecting context resources from

unauthorized entities. For example, a user should be able to protect personal information

such as his/her health status, or medical history. Integrity of context information focuses on

guaranteeing that the provided context information has not been corrupted by a third party.

For example, temperature measurements delivered by thermometer must be reliable and not

modified by any entity. Trust issue in collaborative context-aware computing has to also

deal with a respect for common security policy and common goal.

1.4 Scopes and contributions

In this thesis, we will focus on the context-aware aspect of pervasive computing and

special emphasize will be given to context data management and their use in the

development of collaborative context-aware applications. Proper modeling, specification

and definition of context and its management are essential for efficient reasoning,

interpretation, and utilization of context data. Our scope and contributions in this work can

be presented in three categories: conceptual context representation model (EHRAM), hybrid

context management model (HCoM) and a collaborative context-aware service platform

(CoCA).

The context representation model (EHRAM) stands for entity, hierarchy, relations,

axioms and metadata. EHRAM is based on hierarchy of descriptors of context entities. It is

represented using a layered and directed graph. Hierarchies in EHRAM are important

structures to organize and classify context entities and relations. Layered organization also

helps to classify and tag context data as generic domain independent or as domain

dependent. Entities like activity, person, device, etc. in the generic layer are common to all

domains of applications. They are high level context entities from which sub context entities

can be derived. Relations like isEngagedIn(Person, Activity), owns(Person, Device) and

isLocatedWith(Person, Person) represent generic relations that can be inherited down in the

hierarchy by the sub-entities and instances in the specific domain of application. Consider a

medical application where context data comes from medical entities like patients, doctors,

nurses, activities and events in the hospital, devices, locations, etc. Entities like patient,

doctor, meeting and phone are specific to the medical domain of application. Among

relations that can be defined in the medical domain are: hasBodyTemp(Patient, tmp),

1.4 Scopes and contributions

37

hasDoctor(Patient, Doctor), hasBPlower(Patient, bpL), hasBPupper(Patient, bpH), etc.

EHRAM can be easily serialized to standard markup languages for storage, retrieval,

transmission and processing. Details about the EHRAM model are given in chapter 3.

The Hybrid Context Management model (HCoM) is a generic context management

model based on a hybrid approach. Our rational behind the need for a hybrid context model

is to distinguish the works of context data management and context semantic management,

process them separately and put the results together for better reasoning and decision

support in a context-aware environment. We use an ontology-based approach to manage

context semantics and a relational approach to manage context data. HCoM model aims to

combine the best from the two worlds. HCoM has a context selector module that provide a

means to select and load only part of the large static context data that is accumulated over a

period of time depending on who and where the user is, the intended activity to which the

user is going to be engaged, devices available for use, institutional policies, etc. It uses

matching patterns gained through experience to identify relevant context data. Loading only

relevant data for reasoning minimizes the size of the reasoning space and reduces the

unnecessary overloading of the reasoner. This improves the overall performance of the

context-aware service. It helps to overcome limitations of scalability of most of the

reasoning systems to the growing volume of reasoning resources collected and stored

overtime. Details about the HCoM model are given in chapter 4.

The collaborative Context-Aware service platform (CoCA) is a neighborhood based

middleware in pervasive computing that aims at acquiring and utilizing context information

to provide appropriate services. For example, a cell phone is always set to vibrating mode

when its holder is in the library if it has the knowledge about his current location. The

reasoning engine in the platform accepts a set of context data, domain ontology, rules and

their semantics and changes it into concrete knowledge necessary for reasoning and

decisions. Applications then perform actions accordingly. Details about CoCA platform are

given in chapter 5.

Finally, we implement a demonstration version of the proposed CoCA platform. We

then evaluate its performances using data from different scenarios.

 Introduction

38

1.5 Structure of the thesis

This thesis presents our approach to solving the problems of context modeling,

management and utilization under the pervasive computing paradigm.

In chapter 2, we present the state of the art and related works both in the areas of context

management modeling and development of pervasive context-aware systems. This chapter

also presents the state of the art on some of the baseline technologies deemed necessary for

our work. Chapter 3 is about the EHRAM model. EHRAM deals with definition of context

and its representation. Context entities, their hierarchy, their relationships, related axioms

and metadata are considered as basic building blocks for the definition and modeling of

context data.

In chapter 4, we present HCoM model. HCoM deals with the pre-processing and

management aspect of context data. We introduce a semantically rich novel approach for

context management modeling. It uses the hybrid of ontology and database principles for

modeling the management of both context data and context semantics. Chapter 5 is about

CoCA service platform. CoCA is a multi-domain context-aware middleware platform that

transforms context knowledge into appropriate action depending on the domain of

application in which it is used. It uses reasoning tools and implements collaboration

protocols for pervasive devices in order to share context related resources. Implementation

and evaluation of the proposed solution is given in chapter 6.

Summery of contributions, conclusions and highlights of future works are given in

chapter 7. Finally, we present chapters on glossary of acronyms and bibliography that is

followed by the annexes. Annexes provide excerpts of resources used for the

implementation of PiCASO in the CoCA platform.

Chapter 2 STATE OF THE ART IN CONTEXT-
AWARE COMPUTING

2.1 Introduction

Context-aware computing systems have been introduced and discussed ever since the

Olivetti Active Badge project [Want92]. It is then followed by other works like [Shilit94]

who gave the first formal definition of the term context-aware (section 1.1.2). Context-

aware computing has also been presented as a key feature in different projects over the last

decade. According to [Mattern03], many works have been done so far that demonstrate the

importance of context awareness in pervasive computing. Earlier efforts focused on the

development of application specific systems that use only few types of context information

mainly identity, time and location. Since then a number of location-aware systems have

been designed for city tours and museum guides. Among the traditional examples of such

applications is a context-aware tour-guide that provides city visitors with information

tailored to their preferences and environment.

Among such early developments are:

• ParcTab [Schilit93]: Based on the Active Badge system, the ParcTab is a mobile
computing system that provides different services (active map, location of people
within a building, schedule management) based on the user’s location and time.

• Cyberguide [Abowd97]: Provides information to a tourist based on knowledge of
position and orientation by using a position-aware handheld tour guide. The tourist
can find directions, retrieve information, and leave comments on an interactive map.
The system uses the user’s location to make suggestions on places of interest to visit.
The location information is collected by GPS outdoors, and by an infrared positioning
system indoors.

• Project CoolTown at HP Research Lab [Kindberg01]: Is a location aware system that
ties web resources to physical objects and places, and allows users to interact with
these resources using the information devices they carry.

• The cricket Compass [Priyanta01]: Reports the position and orientation indoors, for a
handheld mobile device, and informs an application running on the device about the
position and orientation in a local coordinate system established beforehand. It uses

 State of the Art in Context-Aware Computing

40

fixed active beacons and passive ultrasonic sensors. It proposes an alternative to GPS
systems for locating entities indoors.

• MyCampus [Sadeh02]: Is a semantic web environment for context-aware services.
The environment revolves around a growing collection of customizable agents
capable of discovering and accessing Intranet and Internet services as they assist their
users in carrying out different tasks within a campus. This allows the agents to
automatically access and exploits relevant user preferences and context information.

Other early works include: [Rekimoto95], [Broadbent97], [Pascoe97], [Cheverst00],

[Kindberg00], EasyLiving [Brumitt00], [Woodruff01], [Espinoza01], [Feiner02], Project

Oxygen at MIT Media Labs Dertouzos99] and [Rudolph01], Project Aura at CMU

[Garlan02] and Project BlueSpace at IBM Labs [Lai02].

These works indicate that context-aware computing can be a reality if proper context

capturing and management techniques are put in place. [Dey00] have proposed location,

time, identity, and activity as the primary elements of context. Certain aspects of context

such as time and location are easily detected, however others, such as activity are much

more difficult to capture.

In this chapter, we try to look at some of the related works in the area of context

management modeling and that of context-aware system development support and services.

We will also look at the highlights of available tools and protocols for context reasoning and

collaboration.

2.2 Related works in context management modeling

Recently, various context management and modeling approaches have been introduced

to support standardization of techniques to present context for productive reasoning in

different application area. Among the major classifications of context management

modeling approaches are Key-Value-Pair modeling, Graphical modeling, Object oriented

modeling, logic based modeling, Markup scheme modeling and Ontology modeling.

Key-Value-Pair modeling is the simplest category of the models. They are not very

efficient for sophisticated and structuring purposes but support only exact matching and no

inheritance. Graphical modeling is particularly useful for structuring, but usually not used

on instance level. Examples include UML [Eriksson04] and ORM [Halpin07]. Object

oriented modeling has a strong encapsulation and reusability feature. Examples include,

2.2 Related works in context management modeling

41

Cues (TEA project) [Gellersen00] and Active Object Model (GUIDE project) [Davis99].

Logic based modeling uses logic expressions to define conditions on which a concluding

expression or fact may be derived from a set of other expressions or facts. Context is

defined as facts, expressions and rules and has a high degree of formality. Examples include

McCarthy’s Formalizing Context [McCarthy98] and Akman&Surav’s Extended Situation

Theory [Akman96]. Markup scheme modeling uses standard markup languages or their

extensions to represent context data. Details on markup scheme are given in section 2.2.2.

Ontology based models use ontology and related tools to represent context data and its

semantics. Details discussions about this approach are given in section 2.2.3.

2.2.1 An overview of context modeling approaches

Context representation and management modeling is an important aspect of pervasive

computing. Because context-aware applications must adapt to changing situations, they

need a detailed model of users’ activities and entities in the surroundings that lets them

share users’ perceptions of the real world. These entities may have different meanings

associated with them in different environments. In order to have similar meanings of these

entities, when used at different times, in different situations, by different applications, their

semantics should be formalized. This allows us to store context data for future use and to

communicate context universally with other systems. One of the basic steps in the

development of context-aware applications is, therefore, to provide formalized

representation and standardized access mechanisms to context information.

Earlier approaches to context management modeling were based on context widgets,

networked services and blackboard models.

Context Widgets [Dey01] are derived from techniques in GUI development GUI is a

software component that provides a public interface for a hardware sensor. The main

objective of the widget is to separate the application from the context acquisition process.

Widgets hide low-level details of sensing and eases application development due to their

reusability. Widgets are usually controlled by some kind of a widget manager.

Networked services [Hong01] use the data source-discovery techniques instead of a

global widget manager to find networked services.

 State of the Art in Context-Aware Computing

42

Blackboard model [Winograd01], in contrast to the process-centric view of the widget

and the service-oriented view of networked models, represents a data-centric view. In this

asymmetric approach, processes post messages to a shared media, the so-called blackboard,

and subscribe to it to be notified when some specified events occur. Advantages of this

model are the simplicity of adding new context sources and the easy configuration.

According to [Baldauf07], the tightly coupled widget approach increases efficiency but

is not robust to component failure. Baldauf et al also indicated that the networked service

based approach is not as efficient as widget architecture due to complex network based

components but provides robustness, and the blackboard models need a centralized server to

host the blackboard that presents a single point of failure and lacks communication

efficiency as two hops per communication are needed.

2.2.2 Context models that use markup scheme approaches

Markup languages are standard encoding systems that consist of a set of symbols

inserted in a document to control its structure, formatting, or the relationship among its parts

[Britanica07]. Markup languages establish the "vocabulary," "grammar" and “syntax" of the

codes applicable to text, image, or other form of data within an electronic document. The

most widely used markup languages are SGML, HTML, and XML. SGML served as the

foundation for HTML and XML. HTML is used for rendering the document, and XML is

used for identifying the content of the document. Mark-up symbols can be interpreted by

devices or computing entities (computer, printer, browser, etc) A mark-up document thus

contains data to be processed and a mark-up language on how to process it.

Context models in this category are commonly used for profile data representation.

Some examples of such models are given in the following sections.

2.2.2.1 CCML

Centaurus Capability Markup Language (CCML) [Kagal02] is divided into system, data,

add-ons, interfaces, and info components. The system portion contains the header

information, the id, timestamp, origin, etc. There are two variables, update and command.

All information regarding the variables and their types are contained in the data section.

Using the add-ons section, one can add a related service to another service; for example, add

an Alarm Clock service to a Lamp Control service. The CCML for a client always has one

2.2 Related works in context management modeling

43

or more actions in its data section that a Service Manager can invoke on it. The interface

section contains information about the interfaces that the object (Service/Client)

implements. This section generally causes the variables in the data section to change their

values. Other details like description are contained in the info section.

2.2.2.2 CSCP

Comprehensive Structured Context Profiles (CSCP), by [Held02] and latter by

[Buchholz04], presented profiles that are based on resource description framework (RDF)

for representation and manipulation of context data. CSCP does not define any fixed

hierarchy. It rather supports the full flexibility of RDF/S to express natural structures of

profile information as required for contextual information. Attribute names are interpreted

context sensitively according to their position in the profile structure. Hence, unambiguous

attribute naming across the whole profile is not required.

2.2.2.3 CC/PP

Composite Capabilities/Preference Profile (CC/PP) [Indulska03] and [CC/PP04]

describes structures and vocabularies. A CC/PP profile is a description of device capabilities

and user preferences. This is often referred to as device's delivery context and can be used to

guide the adaptation of content to be presented to that device. The Resource Description

Framework (RDF) is used to create profiles that describe user agent capabilities and

preferences. Client capability and preference descriptions use RDF classes to distinguish

different elements of a profile, so that a schema-aware RDF processor can handle CC/PP

profiles embedded in other XML document types.

2.2.2.4 CDF

Context Description Framework (CDF) [Khriyenko05] is a Framework for the Semantic

Web. CDF extends RDF with capabilities to model highly dynamic and context-sensitive

information. It also extends RDF statements logically and defines quadruple statements

compared to RDF triples. A CDF quadruple is a Statement that inherits from the

rdf:Statement and has an additional cdfs:trueInContext property from the namespace of the

CDF-Schema Vocabulary Description Language which is an extension of RDF-Schema.

The first three components of a CDF quadruple are similar to a RDF triple of subject,

predicate and object. Subjects and objects of CDF statements are instances of rdfs:Resource

 State of the Art in Context-Aware Computing

44

and CDF predicate is an instance of cdfs:Property. The fourth component of a CDF

quadruple is the context of the statement.

2.2.3 Ontology based context models

Ontology is commonly used as explicit specification of a shared conceptualization.

Context is modeled as concepts and facts using ontology. Some examples of systems that

that use this approach are discussed in the following sections.

2.2.3.1 CONON

CONON [Wang04] present an OWL based context Ontology for reasoning and

representation of contexts in pervasive environments. CONON (stands for CONtext

Ontology) is based on the treatment of high-level implicit contexts that are derived from

low-level explicit contexts. It is designed to be used in pervasive computing environments

to enable context modeling and logic based context reasoning. It supports interoperability of

different devices. CONON defines generic concepts regarding context and provides

extensibility for adding domain specific concepts. Logic reasoning is used in order to

perform consistency checks and to calculate high-level context knowledge from explicitly

given low-level context information. The authors also present the results of a performance

study which in order to evaluate the feasibility of logic based context reasoning in pervasive

computing environments. This is especially important because in these environments

computational resources such as processing power and memory are often limited.

CONON consists of an upper ontology which is extended by several domain specific

ontologies for intelligent environments such as “home”, “office” or “vehicle”. The upper

ontology holds general concepts which are common to the sub domains and can therefore be

flexibly extended. CONON is implemented by using OWL. The authors conclude that

context reasoning in pervasive environment is time-consuming but is still feasible for non-

time-critical applications. For time-critical applications such as navigation systems or

security systems, the data size and rule complexity must be reduced.

Concerning the overall architecture, the authors recommend decoupling the context

reasoning from the context usage: a strong server performs the reasoning while small

devices such as mobile phones receive the pre-calculated high-level context from the server

for direct use. This requires infrastructure based environment.

2.2 Related works in context management modeling

45

2.2.3.2 CoBrA-ONT

CoBrA-ONT [Chen04f] is a context management model that enables distributed agents

to control the access to their personal information in a context-aware environment. CoBrA-

ONT is a collection of OWL ontologies for context-aware systems. CoBrA-ONT is

designed to be used as a common vocabulary in order to overcome the obstacle of

proprietary context models that hinder the interoperability of different devices. Furthermore,

the semantics of OWL are used for context reasoning.

CoBrA-ONT is central part of CoBrA, a “broker-centric agent architecture in smart

spaces” where it supports context reasoning and interoperability as mentioned above. The

center of this architecture is context broker agent, which is a server that runs on a resource-

rich stationary computer. It receives and manages context knowledge for a set of agents and

devices in its vicinity, which is the “smart space”. Agents and devices can contact the

context broker and exchange information by the FIPA Agent Communication Language.

The architecture of CoBrA-ONT is based on the upper ontology and the domain specific

ontology that extends the upper ontology. CoBrA-ONT is defined using the Web Ontology

Language (OWL) to model the concepts of people, agents, places and presentation events. It

also describes the properties and relationships between these concepts. CoBrA-ONT

depends on the assumption that there always exists a context-broker server that is known by

all the participants.

2.2.3.3 SOUPA

Standard Ontology for Ubiquitous and Pervasive Applications SOUPA [Chen04e] (the

same authors of CoBrA-ONT) is designed to model and support pervasive computing

applications. The SOUPA ontology is expressed using the Web Ontology Language OWL

and includes modular component vocabularies to represent intelligent agents with associated

beliefs, desires, and intentions, time, space, events, user profiles, actions, and policies for

security and privacy. SOUPA is more comprehensive than CoBrA-ONT because it deals

with more areas of pervasive computing. It also addresses CoBrA-ONT’s problems

regarding ontology reuse. The SOUPA sub-ontologies map many of its concepts using

owl:equivalentClass to concepts of existing common ontologies.

 State of the Art in Context-Aware Computing

46

2.2.3.4 GAS ontology

GAS ontology [Christopoulou04] is ontology designed for the collaboration among

ubiquitous computing devices. The basic goal of this ontology is to provide a common

language for the communication and collaboration among the heterogeneous devices that

constitute these environments. The GAS Ontology also supports the service discovery

mechanism that an ubiquitous computing environment requires.

2.2.4 Summary

According to [Strang04], ubiquitous computing systems make high demands on context

modeling approach in terms of the following requirements:

Distributed composition (dc): Any ubiquitous computing system is a derivative of a

distributed computing system which lacks of a central instance being responsible for the

creation, deployment and maintenance of data and services, in particular context

descriptions. Instead, composition and administration of a context model and its data varies

with notably high dynamics in terms of time, network topology and source.

Partial validation (pv): It is highly desirable to be able to partially validate contextual

knowledge on structure as well as on instance level against a context model in use even if

there is no single place or point in time where the contextual knowledge is available on one

node as a result of distributed composition. This is particularly important because of the

complexity of contextual interrelationships, which make any modeling intention error-

prone.

Richness and quality of information (qua): The quality of a information delivered by a

sensor varies over time, as well as the richness of information provided by different kinds of

sensors characterizing an entity in an ubiquitous computing environment may differ. Thus a

context model appropriate for usage in ubiquitous computing should inherently support

quality and richness indication.

Incompleteness and ambiguity (inc): The set of contextual information available at any

point in time characterizing relevant entities in ubiquitous computing environments is

usually incomplete and/or ambiguous, in particular if this information is gathered from

sensor networks. This should be covered by the model, for instance by interpolation of

incomplete data on the instance level.

2.2 Related works in context management modeling

47

Level of formality (for): It is always a challenge to describe contextual facts and

interrelationships in a precise and traceable manner. For instance, to perform the task “print

document on a printer near to me”, it is required to have a precise definition of terms used in

the task, for instance what “near” means to “me”. It is highly desirable, that each

participating party in a ubiquitous computing interaction shares the same interpretation of

the data exchanged and the meaning “behind” it (so called shared understanding).

Applicability to existing environments (app): From the implementation perspective it is

important that a context model must be applicable within the existing infrastructure of

ubiquitous computing environments, e.g. a service framework such as Web Services.

Table 2-1: Summary of appropriateness of modeling approaches

Approaches

Requirements Markup
Scheme

Graphical
models

OO
models

Logic
based

Ontology
based

Distributed
composition

+ - ++ ++ ++

Partial
validation

++ - + - ++

Quality of
information

- + + - +

Incompletenes
s/ambiguity

- - + - +

Level of
formality

+ + + ++ ++

Applicability ++ + + - +

(Key: ++ Comprehensive + Partial - Limite d or none)

Based on a survey made on systems from each category of context modeling approaches

using the above requirements as a reference, Strang et al summarizes the appropriateness of

these approaches for pervasive computing. The summary result given in Table 2.1, by

Strang et al shows that the most promising assets for context modeling for ubiquitous

computing environments can be found in the ontology modeling category. In this work, we

will therefore continue to investigate the use of ontology for semantic context management

modeling in a further detail.

As a conclusion, context representation and management modeling has been introduced

as a key feature in context-aware computing. Different data centric context management

approaches have been proposed and used in context representation, storage and

management. Most of them lack standardization and are developed as a proprietary model

 State of the Art in Context-Aware Computing

48

for specific domain of application. In this work, we propose a comprehensive data

independent ontology based semantically rich and hybrid context-management model that

insures scalability and reusability of context resources and reasoning axioms and rules.

2.3 Related works in context-aware computing services

2.3.1 Overview of context-aware computing services

Early context-aware systems were relatively simple and were often constructed simply

as distributed application components communicating directly with local or remote sensors.

[Henricksen05a] argue that today, additional infrastructural components are desirable in

order to reduce the complexity of context-aware applications, improve maintainability, and

promote reuse. Such components that can be found in many current context-aware systems

as shown in Figure 2.1, by Henricksen et al, are discussed below.

Figure 2-1: Components of Context-Aware Systems

• Context sensors: Numerous hardware devices would be equipped with the capability
to collect information that will form part of the context of the system. These devices
should be relatively inexpensive and readily available and, should hopefully, require a
minimum amount of configuration and management. They must also be capable of

2.3 Related works in context-aware computing services

49

transmitting information to some central location, or else communicating with nearby
devices.

• Context Processing: A model for context management and processing must be
formulated to provide a resource for applications thereby enabling them to
dynamically respond to changes in context such as network connectivity, user
location, sound and lighting conditions, etc.

• Context repositories: Context-Aware systems must have a component that provides
persistent storage of context information and efficient query facilities.

• Decision support: Decisions support tools may involve reasoning and aggregations.
This component is responsible for decisions on actions triggers and other related
services.

• Application support: Application programmers need to be aware of context
information, as the addition of this information will fundamentally change how they
work. Instead of being driven primarily by explicit user input as they have been in the
past, applications will begin to ‘act by them selves’, proactively, but must do so in a
way that attempts to adhere to the law of least surprise for the user. User interaction
with a context-aware application should also be simpler and more productive than
with a traditional application [Cheverst00].

2.3.2 Agent, blackboard and widget based context-aware sy stems

Context-aware systems in this category tend to use agents, blackboard or widgets in the

middleware to insulate applications from the hassle of context acquisition and processing. In

this section, we try to look at some of the recently developed agent, blackboard or widget

based context-aware systems or projects we have identified to have close relations with our

work.

2.3.2.1 Context Toolkit

The Context Toolkit [Dey01] aims at facilitating the development and deployment of

context aware applications. The context information reflects an application's operating

environment that can be sensed by the application. The Context Toolkit consists of context

widgets and a distributed infrastructure that hosts the widgets. Context widgets are software

components that provide applications with access to context information while hiding the

details of context sensing. In the same way GUI widgets insulate applications from some

presentation concerns, context widgets insulate applications from context-acquisition

concerns.

 State of the Art in Context-Aware Computing

50

Among the services of the Context Toolkit are:

• Encapsulation of sensors

• Access to context data through a network API

• Abstraction of context data through interpreters

• Sharing of context data through a distributed infrastructure

• Storage of context data, including history

• Basic access control for privacy protection

Context aggregators can be thought of as meta-widgets, taking on all capabilities of

widgets, providing the ability to aggregate context information of real-world entities such as

users or places. A context interpreter is used to abstract or interpret low-level context

information into higher-level information. For example, identity, location, and sound level

information could be used to interpret that a meeting is taking place. There is no elaborate

implementation of intelligence; instead, a user specifies high-level concepts that are based

on raw sensor data and environment information.

2.3.2.2 CMF

The CMF [Korpipaa03] context framework has four major components (Figure 2.2):

context manager, resource server, context recognition service, and application. When

entities communicate, the context manager functions as a central server while other entities

act as clients and use services the server provides. The context manager, any resource

servers, and applications run on the mobile device itself, and the services are either

distributed or local. At the heart of the mobile terminal is the blackboard-based context

manager.

A blackboard-based system has a central server, the blackboard, where all the

participating nodes post their information, and the blackboard then processes this

information, derives inferences and informs the participants about them. The blackboard

node stores context information from any source available to the terminal and serves it to

clients in three ways:

• Clients can directly query the manager (as a context database) to gain context data.

• Clients can subscribe to various context changes notification services.

2.3 Related works in context-aware computing services

51

• Clients can use higher-level (composite) contexts transparently, where the context
manager contacts the required recognition services.

One interesting distinction from other context aware frameworks is that CMF uses

special mechanisms, specifically fuzzy logic, to build high-level concepts from uncertain

and fuzzy sensor data. Most other context-aware frameworks assume that the context is

intelligently specified in terms of high-level concepts, but as this work points out, this is not

a simple and straightforward task. They propose using fuzzy logic to reason about high-

level concepts like location.

Figure 2-2: CMF Architecture

2.3.2.3 ACAI

ACAI [Kheder05] is an infrastructure that allows context information to be collected,

processed, inferred, and disseminated to spontaneous applications. It provides this

interaction seamlessly, without revealing the inherent complexity required to manage the

heterogeneous sources that provide the context information.

This is achieved through a layered architecture, as shown in Figure 2.3. In the first layer,

the sensing layer, context is sensed and captured through sources embedded in the

environment. In the second layer, the context service layer, the context is interpreted and

structured by the context ontology module. The context inference module deduces other

contextual information that has not been explicitly sensed by the first layer. However, ACAI

 State of the Art in Context-Aware Computing

52

provides additional functionalities such as service discovery that provides awareness about

services in the environment. An example might be a printing service to accommodate the

user’s location and printing preferences. It provides context management so that context can

be stored, queried and accessed by users and resources with limited capabilities. It also

provides a context-sensitive communication protocol for event notification, service and

information delivery, and presence projection. These value-added functionalities are passed

to mobile users and applications in the third layer. This layer functions primarily as an

interface to the lower layer, allowing context information to be negotiated with the context

providers, and for context level agreements to be made between different domains. The third

layer, the application layer, provides the interface between mobile users and applications on

the one hand, and the ACAI context service functionalities on the other.

(Context Level Agreement
Context Negotiation)
Application Layer

(Context Sensitive Communication
Context Service Discovery

Context ontology Representation
Context Management

Context Interface)
Context Service Layer

(Sensors
Internet
……..)

Sensing Layer

Figure 2-3: The ACAI layered architecture

ACAI is built on agents namely: the Context management agent (CMA), the Coordinator

agent (CA), the Ontology agent (OA), the Reasoner agent (RA), the System knowledge base

agent (SKBA), and the Context provider agent (CPA).

ACAI does not provide any mechanism for relevant context nor adaptation action

description. Adaptation is always carried out at the application level.

2.3.2.4 CAMidO

CAMidO [Behlouli06] is a Context-Aware Middleware Based on Ontology Meta-

Model. CAMidO provides ontology meta-model for context description and application

adaptation that allows context and relevant context description. All the described data are

compiled using the CAMidO compiler for generating adaptation source code and rule files

for relevant context detection. Relevant context is associated to an adaptation policy. Then

2.3 Related works in context-aware computing services

53

the container is used to apply this adaptation if a relevant context is detected. The proposed

middleware takes into account two types of adaptations, reactive and proactive adaptations.

These adaptations are carried out by the component container to which new controllers were

added.

CAMidO architecture, Figure 2.4, assumes three basic layers: context sensor layer,

middleware layer and application layer.

• The CollectionManager is in charge of collecting context information from sensors
according to designer description. For each sensor, an agent which is an entity allow-
ing interaction with a sensor type, is activated for collecting data from it. Each agent
knows how to interact with the associated sensor by using the described information
in the Sensor class. The collected data are transferred by the CollectionManager to
the ContextAnalyser and the ContextInterpreter.

• The ContextAnalyser is responsible for filtering context information and determining
relevant changes. Context filtering consists in detecting context changes by
comparing the collected context value with its old value stored in the
ContextRepository. If a relevant context occurs, the new context value is saved in the
ContextRepository by the ContextAnalyser which notifies the subscribed component
about this relevant context changes.

Agent 2

Container

Application Component

ComponentADapter

Context Analyser

ContextInterpreter

Inference Component

Collection Manager

Agent 1

Sensor1 Sensor2 Sensor3

Context
Repository

Agent 2

Middleware

Figure 2-4: CAMidO architecture

 State of the Art in Context-Aware Computing

54

Major components in CAMidO are:

• The ContextInterpreter has to deduce high-level context information by using the
HowDeduce relation provided by CAMidO meta-model.

• The ContextRepository stores context information.

• The ComponentAdapter has to adapt an application component to context changes
according to the adaptation rules defined by the application designer. It subscribes to
the ContextAnalyser for relevant context in order to be notified when it occurs for
applying adaptation policies. The ComponentAdapter belongs to the component
container, it is made of many components working together in order to adapt
application’s component to context changes.

The described components are used by the CAMidO compiler to generate source code

for application adaptation and Rule files, to be used by the ContextAnalyser and the

ContextInterpreter, for detection of relevant context changes.

 CAMidO is among the recent developments that considers an overall approach to

context data management and processing. CAMidO is a good approach for proactive actions

and adaptations. However, it is based on client-server paradigm and requires proxy service

that requires further treatment to fit the service to the pervasive computing environment.

2.3.3 Broker middleware based context-aware systems

Context-aware systems in this category tend to use broker-based middleware to insulate

applications from the hassle of context acquisition and processing. In this section, we try to

look at some of the recently developed broker based context-aware systems or projects we

have identified to have close relations with our work.

2.3.3.1 RCSM

Reconfigurable Context-Sensitive Middleware (RCSM) for context-aware applications

[Yau02] is an object-oriented middleware that facilitates the development and runtime

operation of context-sensitive software. Figure 2.5 shows RCSM’s integrated components.

The context-sensitive interface lists the contexts the applications use, a list of actions the

applications provide, and a mapping between them that clearly indicates, based on specific

context values, when an action should be completed. RCSM provides what is called the

adaptive object container (ADC) for runtime context data acquisition.

2.3 Related works in context-aware computing services

55

The RCSM’s Context-Aware Interface Description Language (CA-IDL) compiler

generates a custom-made ADC tailored code for triggering application adaptation according

to developer description that can be used to specify context requirements, including the

types of context/situation that are relevant to the application, the actions to be triggered, and

the timing of these actions.

Figure 2-5: RCSM’s integrated components.

The IDL interfaces are compiled to produce application skeletons; these interact at run-

time with the RCSM Object Request Broker (R-ORB), which manages context acquisition,

and the Situation-Awareness processor, which is responsible for managing triggers. The R-

ORB provides a context manager that uses a context discovery protocol to manage

registrations of local sensors and discover remote sensors. When a context-aware

application starts up, the discovery protocol is used to look for local or remote sensors that

satisfy the application’s context requirements.

The main strength of the approach comes from the use of an IDL to specify context

requirements. This makes it possible to incorporate new types of context and context-aware

behavior by editing and recompiling IDL interfaces, and partially addresses ease of

deployment and configuration. The different situational actions and the mapping between

the actions and the context list needs to be stated, as RCSM has no clear method for

composing context in a semantic way, nor to reason even if the context is composed. The

 State of the Art in Context-Aware Computing

56

context discovery protocol is not flexible enough to support mobility or component failure,

and it does not attempt to address scalability and privacy.

RCSM lacks the ability to separate context knowledge from context data, it does not

support context inference and composition and it is not scalable to the ever increasing size

of context resources.

2.3.3.2 Gaia

The Gaia project [Roma02] defines a meta-operating system that is used to manage

ubiquitous computing environment. Gaia is designed to facilitate the construction of

applications for smart spaces, such as smart homes and meeting rooms. It consists of a set of

core services and a framework for building distributed context-aware applications. The

system is built as a distributed object system with three major building blocks: the Gaia

Kernel, the Gaia Application Framework, and the Applications. Gaia Kernel services

support various forms of context-awareness, and include:

• Context service, which allows applications to find providers for the context
information they require

• Event manager service, which monitors the entities entering and leaving a smart
space (including people as well as hardware and software components)

• Space repository service, which maintains descriptions of hardware and software
components, and

• Context file system, which associates files with relevant context information and
dynamically constructs virtual directory hierarchies according to the current context.

The approach in Gaia is based on first-order logic. It is distributed by a client server

architecture, which has similarities to the Context Toolkit architecture. Context providers

(Widgets) collect various types of contexts and can be queried by context consumers

(Applications). A context synthesizer (Aggregator) contains logic rules that form new

contexts from existing ones. A context provider lookup service (Discoverer) is used by the

consumer for finding the context provider able to produce contexts of an appropriate type.

In the blackboard model, such a lookup service is not necessary. Context history is stored in

a database, except for context synthesizers. The blackboard model, having central data

storage, makes managing a context database more straightforward. Communication between

distributed entities is done using CORBA. Components of the system can be distributed and

discovered using the CORBA naming service and CORBA trading service.

2.3 Related works in context-aware computing services

57

The system has a smart-space infrastructure-oriented approach as opposed to mobile

device-centric. As smart spaces are typically small, constrained environments, Gaia does not

address scalability. Similarly, privacy is not addressed by any of the basic Gaia services.

Gaia does not support a peer discovery mechanism between the applications and the context

providers. Applications can only use the context providers available in the registry and this

will introduce scalability issues when the number of application instances increases. Gaia

does not support ontology-based context modeling and this limits the ability of applications

using Gaia active space to advertise the kinds of context they are interested in.

2.3.3.3 CoBrA

A Context Broker Architecture (CoBrA) [Chen03] discusses architecture for supporting

context-aware systems. CoBrA uses Semantic Web languages and tools for managing and

sharing context information. The architecture has a core server entity called Context Broker,

which has the following responsibilities: provide a centralized model of context, acquire

contextual information, reason about contextual information that cannot be directly acquired

from the sensors, detect and resolve inconsistent knowledge that is stored in the shared

model of context, and protect user privacy. The design of CoBrA is aimed to support

context-aware systems in smart spaces, and each smart space is assumed to have a

designated central context broker (see Figure 2.6).

 State of the Art in Context-Aware Computing

58

Figure 2-6: Context Broker Architecture

CoBrA is agent-based architecture for supporting context-aware computing in smart

spaces that may include physical spaces like living rooms, vehicles, classrooms and meeting

rooms that are populated with intelligent systems that provide pervasive computing services

to users. Central to CoBrA is the presence of an intelligent context broker that maintains and

manages a shared contextual model on the behalf of a community of agents. These agents

can be applications hosted by mobile devices that a user carries or wears (e.g. cell phones,

PDAs and headphones), services that are provided by devices in a room (e.g. projector

service, light controller and room temperature controller) and web services that provide a

web presence for people, places and things in the physical world (e.g. services keeping track

of people’s and objects’ whereabouts). The context broker consists of four functional main

components: the Context Knowledge Base, the Context Inference Engine, the Context

Acquisition Module and the Privacy Management Module. To avoid the bottleneck problem

CoBrA offers the possibility of creating broker federations. CoBrA provides a sample

intelligent meeting scenario represented in OWL schema.

CoBrA is infrastructure-centric and is not fit for pervasive computing whereas the

platform proposed in this work is mobile device-centric, where no additional equipment for

a mobile device itself is required for system operation.

2.3 Related works in context-aware computing services

59

2.3.4 Service oriented middleware based context-aware sys tems

Context-aware systems in this category tend to use service oriented middleware layers to

insulate applications from the hassle of context acquisition and processing. In this section,

we try to look at some of the recently developed service oriented middleware based context-

aware systems or projects we have identified to have close relations with our work.

2.3.4.1 CFNs

Context Fusion Networks (CFNs) [Chen04a] provides data fusion services (aggregation

and interpretation of sensor data) to context- aware applications. CFNs are based on an

operator graph model, in which context processing is specified by application developers in

terms of sources, sinks and channels. In this model, sensors are represented by sources, and

applications by sinks. Operators, which are responsible for data processing, act as both sources

and sinks. They have implemented the CFN model in the form of Solar, a scalable peer-to-peer

platform which instantiates the operator graphs at runtime on behalf of context-aware

applications. The Solar implementation supports application and sensor mobility by buffering

events during periods of disconnection; they also address component failures by providing

monitoring and recovery, as well as preservation of component states. However, Solar does

not yet address heterogeneity, privacy, or monitoring and control of the system by users.

2.3.4.2 ConFab

Context Fabric (Confab) proposed by [Hong04] is concerned with privacy rather than

with context sensing and processing. Confab provides architecture for privacy-sensitive systems,

as well as a set of privacy mechanisms that can be used by application developers. The

architecture structures context information into infospaces, which store tuples about a given

entity. Infospaces are populated by context sources such as sensors, and queried by context-

aware applications. They have implemented the infospace model using Web technologies, such

that infospaces are identified by URLs and tuples are exchanged in an XML format. Privacy can

be supported by adding operators to an infospace to carry out actions when tuples enter or

leave the space; for instance, operators can be used to perform access control, notify users of

information disclosure, and enforce privacy tags that describe how information can be used

after it flows from one infospace to another.

 State of the Art in Context-Aware Computing

60

As Confab focuses so heavily on privacy, it does not address traditional distributed

systems requirements such as mobility, scalability, component failures and

deployment/configuration. However, it does partially address heterogeneity, as it builds on

platform and language-independent Web standards. It also provides privacy-related

traceability and control via the operator mechanism.

2.3.4.3 SOCAM

The SOCAM architecture [Gu05], shown in Figure 2.7, aims to provide an efficient

infrastructure support for building context-aware services in pervasive computing

environments. SOCAM is a distributed middleware that converts various physical spaces

from which contexts are acquired into a semantic space where contexts can be shared and

accessed by context-aware services. It consists of the following components, which act as

independent service components:

• Context providers: they abstract useful contexts from heterogeneous sources-External
or Internal; and convert them to OWL representations so that contexts can be shared
and reused by other service components.

• Context interpreter: it provides logic-reasoning services to process context
information. RDFS and forward chaining and backward chaining rule engines.

• Context database: it stores context ontology and past contexts for a sub-domain.
There is one logic context database in each domain, i.e. home domain.

• Context aware services: they make use of different level of contexts and adapt the
way they behave according to the current context.

• Service-locating service: it provides a mechanism where context providers and the
context interpreter can advertise their presence; it also enables users or applications to
locate these services.

2.3 Related works in context-aware computing services

61

Figure 2-7: SOCAM Architecture

The SOCAM architecture aims to enable rapid prototyping of context-aware services in

pervasive computing environment. It provides ontology for context description. This

middleware takes into account context acquisition and interpretation. It offers an API for

context subscription but there is no means to describe relevant context, so each service has

to analyze and alter the acquired context to detect relevant changes. The SOCAM

middleware uses the inference engine provided by the ontology for adapting those services

to context changes.

2.3.4.4 PACE

PACE project [Heniricksen05a] and [Heniricksen05b] investigates a variety of issues

related to pervasive computing, including the design of context-aware applications and

solutions for modeling and managing context information. An early form of their

middleware as given in [Heniricksen04b] is shown in Figure 2.8. Further tools and

components have been added subsequently as additional context-aware application

requirements are uncovered.

 State of the Art in Context-Aware Computing

62

Figure 2-8: Layered context-aware infrastructure

Components and tools in the recent development of context-aware infrastructure in

PACE has been developed according to the following design principles:

• The model of context information used in a context-aware system should be explicitly
represented within the system. This representation should be separate from the
application components and the parts of the system concerned with sensing and
actuation, so that the context model can evolve independently, without requiring any
components to be re-implemented.

• The context-aware behavior of context-aware applications should be determined, at
least in part, by external specifications that can be customized by users and evolved
along with the context model (again, without forcing re-implementation of any
components).

2.3 Related works in context-aware computing services

63

• The communication between application components, and between the components
and middleware services, should not be tightly bound to the application logic, so that
a significant reimplementation effort is required when the underlying transport
protocols or service interfaces change.

PACE project showed the importance of middleware for building context-aware

systems. They also emphasized the importance of privacy, tolerance for failures and

decision support. However, issues like scalability, standardization, collaboration in mobility

and ubiquity, pervasiveness and the development of domain independent reusable platform

has to be closely investigated in order to make context-aware computing a reality.

2.3.4.5 MobiLife

MobiLife project [MobiLife07] [Mrohs06] is to bring advances in mobile applications

and services within the reach of users in their everyday life by innovating and deploying

new applications and services based on the evolving capabilities of the 3G systems and

beyond. The project addresses, with a strong user-centric view, the problematic related to

different end-user devices, available communication networks, interaction modes,

applications and services. Four major working areas of MbiLife are: User centricity,

practical applications and services, architectures and technologies, and evaluation. MobiLife

focus areas are based on three communication spheres: self-awareness, group-awareness and

world-awareness. This is shown in Figure 2.9.

Figure 2-9: MobiLife communication spheres

MobiLife solution is based on methodology of looking at the world from the user

perspective. This includes:

 State of the Art in Context-Aware Computing

64

• Try to understand the user needs.

• How these needs can be transferred to technological and non-technological
requirements.

• How the product development process can be elaborated to iteratively and
interactively take those needs and requirements into account.

Technologies for maintaining a “shared cognition” amongst groups of users, such as

modeling and reasoning for contextual awareness, technologies for facilitating and

maintaining privacy and trust, and technologies for creating and sharing various kinds of

content and media related to everyday life belonged to key areas covered in the project. The

enablers and technologies were embodied in the application prototypes thus providing the

project further opportunities to learn interactively how they could facilitate providing

sustained benefit to the end-users.

2.3.4.6 PerSE

PerSE, a pervasive service environment project, [Gripay06] and [Pigeot07], initiated in

our team represents the vision to develop a user-oriented pervasive computing environment.

PerSE allows the user to have access to resources (services, data) hosted on various

surrounding devices by simply expressing an intention.

To take part in a PerSE environment, each device has to run a meta-service, the Base,

enabling it to share its local resources. The PerSE Base is in charge of communications with

other Bases, in order to run distributed services in a smart and optimized way. The PerSE

environment consists of many independent Bases, able to discover each other, and to send

and receive messages through different communication channels (LAN, Wifi, Bluetooth)

available on the devices.

In PerSE, intension of users is expressed using PsaQL [Bihler06], a Pervasive Service

Action Query Language developed by the same group. PsaQL looks like SQL at a glance

but has enhanced features to handle queries in pervasive environment. The PsaQL language

enables the user (or an application) to express intention (called a partial action) describing

the services the user wants to use and their possible location. The PerSE Base has to then

interpret this intention into a connected graph of services meant to be executed (called a

complete action).

2.4 Review of technologies and tools

65

Figure 2-10: PerSE Architecture

The PerSE architecture (Figure 2.10) is composed of three layers, corresponding to the

three main functionalities of the Base: Communication, Environment and Action. Between

and within these layers, a security infrastructure, composed of three modules is integrated.

The idea behind the development of the PerSE middleware as part of the PerSE project

is to promote the idea of creating a standardized pervasive system development platform to

which components can be added from time to time. The work in this thesis is running in

parallel with the project PerSE. At last, we are aiming to interface with (plug into) the

PerSE platform.

2.4 Review of technologies and tools

In this section, we highlight on some baseline technologies that we found are necessary

for the implementation of our semantic based collaborative context management and

reasoning. The advancement of enabling technologies in the area is among the motivating

factors for this work.

 State of the Art in Context-Aware Computing

66

2.4.1 RDF and RDFS

Resource Description Framework (RDF) [RDF06] is a W3C-endorsed language for

describing information about resources on the WWW. The main entity in RDF is called a

resource. RDF uses the URI mechanism from XML to identify uniquely these resources,

and the RDF language consists of statements that are made about the resources. RDF is a

directed, labeled graph data format for representing information in the Web. Each RDF

statement consists of a subject, a predicate and an object. A subject is the resource about

which the statement is made. A predicate is an attribute or characteristic of the subject. An

object can be either a resource or a literal value like a string or an integer.

RDF is based on the idea of identifying things using Web identifiers (called Uniform

Resource Identifiers, or URIs), and describing resources in terms of simple properties and

property values. This enables RDF to represent simple statements about resources as a graph

of nodes and arcs representing the resources, and their properties and values. The group of

statements "there is a Person identified by http://www.w3.org/People/EM/contact#me ,

whose name is Eric Miller, whose email address is em@w3.org, and whose title is Dr."

could be represented as the RDF graph in Figure 2.11.

Figure 2-11: RDF graph example

• individuals, e.g., Eric Miller, identified by

http://www.w3.org/People/EM/contact#me

• kinds of things, e.g., Person, identified by
http://www.w3.org/2000/10/swap/pim/contact#Person

• properties of those things, e.g., mailbox, identified by
http://www.w3.org/2000/10/swap/pim/contact#mailbox

2.4 Review of technologies and tools

67

• values of those properties, e.g. mailto:em@w3.org as the value of the mailbox
property (RDF also uses character strings such as "Eric Miller", and values from other
data types such as integers and dates, as the values of properties)

RDF uses XML Schema data types to denote the type of these literal values. RDF by

itself does not define very strong semantics and therefore, in order to bring in more

structure, RDFS (RDF Schema) was developed. RDFS allows authors to create simple

hierarchies using the rdfs:Class resource and rdfs:subClassOf property. Resources can be

declared to be instances of an rdfs:Class by means of the rdfs:type property. RDFS also

allows authors to specify the domain and range of properties. Finally, properties in RDFS

can be declared to be sub properties of other properties by means of the rdfs:subPropertyOf

property.

2.4.2 Ontology and OWL

Ontology formally defined by [Gruber93], for the first time, is “an explicit specification

of a conceptualization”. The term is borrowed from philosophy, where ontology is a

systematic account of Existence. For artificial intelligence systems, what “exists” is that

which can be represented. When the knowledge of a domain is represented in a declarative

formalism, the set of objects that can be represented is called the universe of discourse. This

set of objects, and the describable relationships among them, are reflected in the

representational vocabulary with which a knowledge-based program represents knowledge.

Thus, in the context of AI, we can describe the ontology of a program by defining a set of

representational terms. In such ontology, definitions associate the names of entities in the

universe of discourse (e.g., classes, relations, functions, or other objects) with human-

readable text describing what the names mean, and formal axioms that constrain the

interpretation and well-formed use of these terms. Formally, ontology is the statement of a

logical theory”.

Ontology therefore is a description (like a formal specification of a program) of the

concepts and relationships that can exist for an agent or a community of agents. This

definition is consistent with the usage of ontology as set-of-concept-definitions, but more

general. In addition, it is certainly a different sense of the word than its use in philosophy.

Ontology allows a programmer to specify, in an open, meaningful, way the concepts and

relationships that collectively characterize some domain. Examples might be the concepts of

red and white wine, grape varieties, vintage years, wineries and so forth that characterize the

 State of the Art in Context-Aware Computing

68

domain of 'wine', and relationships such as 'wineries produce wines', 'wines have a year of

production'. This wine ontology might be developed initially for a particular application,

such as a stock-control system at a wine warehouse. As such, it may be considered similar

to a well-defined database schema. The advantage to ontology is that it is an explicit, first-

class description. So having been developed for one purpose, it can be published and reused

for other purposes. For example, a given winery may use the wine ontology to link its

production schedule to the stock system at the wine warehouse. Alternatively, a wine

recommendation program may use the wine ontology, and a description (ontology) of

different dishes to recommend wines for a given menu.

Because of the limited expressive power of RDFS, people have worked on more

powerful alternative to extensions to RDFS to represent ontology. One of the most widely

known alternatives is the Web Ontology Language, OWL [McGuinness07] [OWL07]. OWL

has evolved out of DAML and OIL and it is a W3C recommendation. It is designed for use

by applications that need to process the content of information instead of just presenting

information to humans. OWL facilitates greater machine interpretability of Web content

than that supported by XML, RDF, and RDF Schema (RDF-S) by providing additional

vocabulary along with a formal semantics. It is built on top of RDF/RDFS, which means

that OWL ontology also consists of statements that are made about resources. Like RDFS,

OWL distinguishes between classes and instances. Among the language constructs that give

OWL more expressive power than RDFS are: ontology importing, different types of

properties, cardinalities, characteristics of properties, value restrictions, equivalence

between classes and individual and set operation.

OWL has vocabularies that make it among the best candidate languages in a semantic

Web and for reasoning and inference in knowledge management. Details of these

vocabularies are given in the annex section.

2.4.3 Protégé editor and tools

Protégé [Protégé07] is an ontology editor developed at Stanford. Protégé is a free, open-

source platform that provides a growing user community with a suite of tools to construct

domain models and knowledge-based applications with ontology. It is available as a stand-

alone Java application or as a Java Applet. It allows users to create and edit ontology and

store them in RDF(S) or other formats. Protégé allows the installations of plug-ins. Plug-ins

2.4 Review of technologies and tools

69

are available for importing/exporting OWL files; provide graphical tools for authoring

ontology, etc. It has a clean graphical user interface, with separate tabs for displaying

ontology classes, properties and instances. Classes and properties are organized in tree

structures. The Protégé-OWL editor enables users to:

• Load and save OWL and RDF ontologies.

• Edit and visualize classes and properties.

• Define logical class characteristics as OWL expressions.

• Execute reasoner such as description logic classifiers.

• Edit OWL individuals for Semantic Web markup.

At its core, Protégé implements a rich set of knowledge-modeling structures and actions

that support the creation, visualization, and manipulation of ontologies in various

representation formats. Protégé can be customized to provide domain-friendly support for

creating knowledge models and entering data. Further, Protégé can be extended by way of a

plug-in architecture and a Java-based Application Programming Interface (API) for building

advanced knowledge-based tools and applications. The Protégé-OWL API is an open-source

Java library for the Web Ontology Language (OWL) and RDF(S). The API provides classes

and methods to load and save OWL files, to query and manipulate OWL data models, and to

perform reasoning based on Description Logic engines. Furthermore, the API is optimized

for the implementation of graphical user interfaces. The API is designed to be used in the

development of components that are executed inside of the Protégé-OWL editor's user

interface.

The output obtained by executing this program as stand-alone is "Class URI:

http://hello.com#World". The Protégé-OWL APIs are built from collection of Java

interfaces from the model package. These interfaces provide access to the OWL model and

its elements like classes, properties, and individuals. Application developers should not

access the implementation of these interfaces directly, but only operate on the interfaces.

Using these interfaces, you do not have to worry about the internal details of how Protégé

stores ontology.

The most important model interface is OWLModel, which provides access to the top-

level container of the resources in the ontology. You can use OWLModel to create, query,

and delete resources of various types and then use the objects returned by the OWLModel to

 State of the Art in Context-Aware Computing

70

do specific operations. For example, the following snippet creates a new OWLNamedClass

(which corresponds to owl:Class in OWL), and then gets its URI:

OWLModel owlModel = ProtegeOWL.createJenaOWLModel() ;
OWLNamedClass worldClass=owlModel.createOWLNamedCla ss("World");
System.out.println("Class URI: " + worldClass.getUR I());

Note that the class ProtegeOWL provides a couple of convenient static methods to create

OWLModels, also from existing OWL files. For example, you can load an existing ontology

from the web using:

String uri = "http://www.owl-ontologies.com/travel. owl";
OWLModel owlModel=ProtegeOWL.createJenaOWLModelFrom URI(uri);

2.4.4 Jena reasoning framework

Jena [Jena07] is a Java API based framework for building Semantic Web applications

that allows users to read, write, and manipulate RDF(S) and OWL models. The

“com.hp.hpl.jena...impl” packages contains most of the common Jena implementation

classes.

Jena can read and write files in any of the standard RDF storage formats. In addition,

Jena can store and read RDF data in a relational database (MySQL, PostgreSQL, and Oracle

are supported). Jena offers statement-centric (based on the subject-predicate-object

structure) support for manipulating RDF and OWL data (including typed literals, RDFS and

OWL specific constructs, and standard vocabularies), and comes with a built-in RDF query

language, SPARQL. Jena provides a programmatic environment for RDF, RDFS, OWL and

SPARQL and includes a rule-based inference engine. Jena has object classes to represent

graphs, resources, properties and literals. The interfaces representing resources, properties

and literals are called Resource, Property and Literal respectively. In Jena, a graph is called

a model and is represented by the Model interface. The code to create this graph, or model,

is demonstrated below. The code begins with some constant definitions and then creates an

empty Model, using the ModelFactory method called createDefaultModel() to create a

memory-based model. Jena contains other implementations of the Model interface, e.g one

which uses a relational database: these types of Model are also available from

ModelFactory. The John Smith resource is then created and a property added to it. The

property is provided by a "constant" class VCARD that holds objects representing all the

definitions in the VCARD schema.

2.4 Review of technologies and tools

71

// some definitions

static String personURI = "http://somewhere/JohnSmi th";

static String fullName = "John Smith";

// create an empty Model

Model model = ModelFactory.createDefaultModel();

// create the resource

Resource johnSmith = model.createResource(personURI);

// add the property

 johnSmith.addProperty(VCARD.FN, fullName);

Let us add some more detail to the vcard, exploring some more features of RDF and

Jena. In the first example, the property value was a literal. RDF properties can also take

other resources as their value. Extending this example, we can add new property, vcard:N,

to represent the structure of John Smith's name. The vcard:N property takes a resource as its

value. We can also represent the compound name that has no URI known as an blank Node.

The Jena code to construct this extended example is given below.

// some definitions

String personURI = "http://somewhere/JohnSmith";

String givenName = "John";

String familyName = "Smith";

String fullName = givenName + " " + familyName;

// create an empty Model

Model model = ModelFactory.createDefaultModel();

// create the resource

// and add the properties cascading style

Resource johnSmith

 = model.createResource(personURI)

 .addProperty(VCARD.FN, fullName)

 .addProperty(VCARD.N,

 model.createResource()

 .addProperty(VCARD.Given, givenNam e)

 .addProperty(VCARD.Family, familyN ame));

Each arc in an RDF Model is called a statement. Each statement asserts a fact about a

resource. A statement has three parts: the subject is the resource from which the arc leaves,

the predicate is the property that labels the arc and the object is the resource or literal

pointed to by the arc. A statement is sometimes called a triple, because of its three parts.

An RDF Model is represented as a set of statements. Each call of addProperty in the

above example added another statement to the Model. (Because a Model is set of

 State of the Art in Context-Aware Computing

72

statements, adding a duplicate of a statement has no effect.) The Jena model interface

defines a listStatements() method which returns an StmtIterator , a subtype of

Java's Iterator over all the statements in a Model. StmtIterator has a method

nextStatement() which returns the next statement from the iterator (the same one that

next() would deliver, already cast to Statement). The Statement interface provides

accessor methods to the subject, predicate and object of a statement.

Now we will use the interface to extend the above example to list all the statements

created and print them out as follows:

// list the statements in the Model

StmtIterator iter = model.listStatements();

// print out predicate, subject and object

while (iter.hasNext()) {

 Statement stmt = iter.nextStatement();

 Resource subject = stmt.getSubject();

 Property predicate = stmt.getPredicate();

 RDFNode object = stmt.getObject();

 System.out.print(subject.toString());

 System.out.print(" " + predicate.toString() + " ");

 if (object instanceof Resource) {

 System.out.print(object.toString());

 } else {

 // object is a literal

 System.out.print(" \"" + object.toString() + "\"");

 }

 System.out.println(" .");

}

Since the object of a statement can be either a resource or a literal, the getObject()

method returns an object typed as RDFNode, which is a common superclass of both

Resource and Literal . The underlying object is of the appropriate type, so the code

uses instanceof to determine which and processes it accordingly.

Jena also provides operations for manipulating Models as a whole. The common set

operations like union (Model1.union(Model2)), intersection (Model1.intersection(Model2))

and difference (Model1.difference(Model2)); can be used to manipulate data models.

2.4 Review of technologies and tools

73

An extension to RDF based Jena model for reasoning in the semantic applications is the

Jena ontology model. The Jena Ontology API is language-neutral. The Jena OntModel

extends the Jena RDF Model by adding support for the kinds of objects expected to be in

ontology: classes (in a class hierarchy), properties (in a property hierarchy) and individuals.

The properties defined in the ontology language map to accessor methods. For example, an

OntClass has a method to list its super-classes, which corresponds to the values of the

subClassOf property. When the OntClass listSuperClasses() method is called, the

information is retrieved from the underlying RDF statements. Similarly adding a subclass to

an OntClass asserts an additional RDF statement into the model.

An ontology model is an extension of the Jena RDF model that provides extra

capabilities for handling ontology data sources. Ontology models are created through the

Jena ModelFactory. The simplest way to create an ontology model is as follows:

OntModel m = ModelFactory.createOntologyModel();

To create a model with a given specification, invoke the ModelFactory as follows:

OntModel m = ModelFactory.createOntologyModel(
OntModelSpec.OWL_MEM);

To create a custom model specification, we can create a new one from scratch and call

the various methods to set the appropriate values. More often, we want only a variation on

an existing recipe. In this case, we copy an existing specification and then update the copy

as necessary:

OntModelSpec s = new OntModelSpec(OntModelSpec.OWL _MEM);
s.setDocumentManager(myDocMgr);
OntModel m = ModelFactory.createOntologyModel(s);

MySQL database engine [MySQL07] with its ODBC-JDBC [ODBC07] and database

connection to Jena framework is a key entry point to data transactions in Jena. Transaction

and query on the data axis of the context is based on the SQL [Groff02].

2.4.5 The SPARQL query language

Data retrieval on the semantic axis of context triples while reasoning is done using the

SPARQL [SPARQL07] query language. SPARQL query language is based on matching

graph patterns that contain triple patterns, conjunctions, disjunctions, and optional patterns.

Triple patterns are like RDF triples, but with the option of a query variables in place of RDF

terms in the subject, predicate or object positions. Combining triple patterns gives a basic

 State of the Art in Context-Aware Computing

74

graph pattern, where an exact match to a graph is needed. SPARQL can be used to express

queries across diverse data sources, whether the data is stored natively as RDF or viewed as

RDF via middleware. SPARQL contains capabilities for querying required and optional

graph patterns along with their conjunctions and disjunctions. SPARQL also supports

extensible value testing and constraining queries by source RDF graph. The results of

SPARQL queries can be results sets or RDF graphs.

For example, the following SPARQL query returns all mobile devices having a VGA

display and a processor speed more than 400Mhz. It also displays the name of the owner if

that information is available. The result from the query will look like the one in Table 2.2.

//SPARQL query formation

PREFIX ns: <http://www.myexample.com/coca.owl#>

SELECT ?mdv ?ps ?person

WHERE {

 ?mdevice rdfs:subClassOf ns:Device.

 ?mdevice ns:deviceType ns:Mobile.

 ?mdv rdf:type ?mdevice.

 ?mdv ns:displayType ns:VGA.

 ?mdv ns:processorSpeed ?ps.

 OPTIONAL{?mdv ns:ownedBy ?person.}

 FILTER(?ps>400)

}

Table 2-2: Sample output from a SPARQL query

mdv ps person

PDA001 480

TabletPC009 700 Bob

SmartPhone023 420

2.4.6 JXTA collaboration protocols

The potential use of peer-to-peer networking has been demonstrated by the popularity of

applications like Napster [Napster06], Gnutella [Gnutella06], FreeNet [FreeNet06]. As a

complement to this, Jxta [JXTA07] has been introduced by Sun Microsystems. JXTA

technology is a set of open, generalized peer-to-peer protocols that allows any connected

device (cell phone to PDA, PC to server) on the network to communicate and collaborate.

Project-JXTA is an open source effort that had involved the developer community from the

start. It provides a peer-to-peer infrastructure over which other peer- to-peer applications

2.4 Review of technologies and tools

75

can be built. JXTA protocols standardize the manner in which peers self-organize into peer

groups, discover each other, advertise network services, communicate with each other, and

monitor each other. Figure 2.12 shows an overlay of such virtual peer-to-peer collaboration

network.

Figure 2-12: Overlay of the virtual peer-to-peer collaboration network

A JXTA peer is any networked device (sensor, phone, PDA, PC, server, supercomputer,

etc.) that implements the core JXTA protocols. Each peer is identified by a unique ID. Peers

are autonomous and operate independently and asynchronously of all other peers. Some

peers may have dependencies upon other peers. This might be due to special requirements

such as the need for gateways, proxies or routers. Peers may publish network services and

resources (CPU, storage, databases, documents, etc.) for use by other peers. A peer may

cache advertisements for JXTA resources, but doing so is optional. Peers may have

persistent storage.

Peers are typically configured to discover spontaneously each other on the network to

form transient or persistent relationships with other peers. Peers that provide the same set of

services tend to be interchangeable. As a result, peers typically need to interact with only a

small number of other peers (network neighbors or buddy peers). Peers should not make

assumptions about the reliability of other peers. Peers may join or leave the network at any

 State of the Art in Context-Aware Computing

76

time. A peer should always anticipate that connectivity might be lost to any peer that it is

currently communicating with.

Peers may advertise multiple network interfaces. Each published interface is advertised

as a peer endpoint. A peer endpoint is a URI that uniquely identify a peer network interface

(for example, a URI might specify a TCP port and associated IP address). Peer endpoints are

used by peers to establish direct point-to-point connections between two peers.

Peers self-organize into Peer Groups. A peer group is a collection of peers that have a

common set of interests. Each peer group is uniquely identified by a PeerGroup Id. The

JXTA protocols do not dictate when, where, or why peer groups are created. The JXTA

protocols only describe how peers may publish, discover, join, and monitor peer groups.

Communicating peers are not required to have direct point-to-point network connection

between themselves. A peer may need to use one or more intermediary peers to route a

message to another peer that is separated due to physical network connections or network

configurations (e.g., NATs, firewalls, or proxies).

The JXTA protocols are a set of six protocols that have been specifically designed for ad

hoc, pervasive, and multi-hop peer-to-peer network computing. Using the JXTA protocols,

peers can cooperate to form self-organized and self-configured peer groups independent of

their positions in the network (edges, firewalls, network address translators, public vs.

private address spaces), and without the need of a centralized management infrastructure.

The JXTA protocols are designed to have very low overhead, made few assumptions

about the underlying network transport and impose few requirements on the peer

environment, and yet are able to be used to deploy a wide variety of peer-to-peer

applications and services in a highly unreliable and changing network environment.

Peers use the JXTA protocols to advertise their resources and to discover network

resources (services, pipes, etc.) available from other peers. Peers form and join peer groups

to create special relationships. Peers cooperate to route messages allowing for full peer

connectivity. The JXTA protocols allow peers to communicate without the need to

understand or manage the potentially complex and dynamic network topologies, which are

increasingly common.

2.4 Review of technologies and tools

77

The JXTA protocols allow peers to route dynamically messages across multiple network

hops to any destination in the network (potentially traversing firewalls). Each message

carries with it either a complete or a partially ordered list of gateway peers through which

the message might be routed. Intermediate peers in the route may assist the routing by using

routes they know of to shorten or optimize the route a message is set to follow.

Figure 2-13: JXTA protocols

The JXTA protocols are composed of six protocols (Figure 2.13) that work together to

allow the discovery, organization, monitoring and communication between peers:

• Peer Resolver Protocol (PRP) is the mechanism by which a peer can send a query to
one or more peers, and receive a response (or multiple responses) to the query. The
PRP implements a query/response protocol. The response message is matched to the
query via a unique id included in the message body. Queries can be directed to the
whole group or to specific peers within the group.

• Peer Discovery Protocol (PDP) is the mechanism by which a peer can advertise its
own resources, and discover the resources from other peers (peer groups, services,
pipes and additional peers). Every peer resource is described and published using an
advertisement. Advertisements are programming language-neutral metadata
structures that describe network resources. Advertisements are represented as XML
documents.

• Peer Information Protocol (PIP) is the mechanism by which a peer may obtain status
information about other peers. This can include state, uptime, traffic load,
capabilities, and other information.

 State of the Art in Context-Aware Computing

78

• Pipe Binding Protocol (PBP) is the mechanism by which a peer can establish a virtual
communication channel or pipe between one or more peers. The PBP is used by a
peer to bind two or more ends of the connection (pipe endpoints). Pipes provide the
foundation communication mechanism between peers.

• Endpoint Routing Protocol (ERP) is the mechanism by which a peer can discover a
route (sequence of hops) used to send a message to another peer. If a peer “A” wants
to send a message to peer “C”, and there is no known direct route between “A” and
“C”, then peer “A” needs to find intermediary peer(s) who will route the message to
“C”. ERP is used to determine the route information. If the network topology changes
and makes a previously used route unavailable, peers can use ERP to find an alternate
route.

• Rendezvous Protocol (RVP) is the mechanism by which peers can subscribe or be a
subscriber to a propagation service. Within a peer group, peers can be either
rendezvous peers or peers that are listening to rendezvous peers. The Rendezvous
Protocol allows a peer to send messages to all the listening instances of the service.
The RVP is used by the Peer Resolver Protocol and by the Pipe Binding Protocol in
order to propagate messages.

All of these protocols are implemented using a common messaging layer. This

messaging layer is what binds the JXTA protocols to various network transports. Each of

the JXTA protocols is independent of the others. A peer is not required to implement all of

the JXTA protocols to be a JXTA peer. A peer only implements the protocols that it needs

to use. For example:

• A device may have all the necessary advertisements it uses pre-stored in memory, and
therefore not need to implement the Peer Discovery Protocol.

• A peer may use a pre-configured set of router peers to route all its messages. Because
the peer just sends messages to the known routers to be forwarded, it does not need to
fully implement the Endpoint Routing Protocol.

• A peer may not need to obtain or wish to provide status information to other peers;
hence, the peer might not implement the Peer Information Protocol.

Each peer must implement two protocols in order to be addressable as a peer: the Peer

Resolver Protocol and the Endpoint Routing Protocol. These two protocols and the

advertisements, services and definitions they depend upon are known as the JXTA Core

Specification. The JXTA Core Specification establishes the base infrastructure used by

other services and applications.

2.4 Review of technologies and tools

79

The remaining JXTA protocols, services and advertisements are optional. JXTA

implementations are not required to provide these services, but are strongly recommended to

do so. Implementing these services provides greater interoperability with other

implementations and broader functionality. These common JXTA services are known as the

JXTA Standard Services.

A peer may decide to cache advertisements discovered via the Peer Discovery Protocol

for later usage. It is important to point out that caching is not required by the JXTA

architecture, but caching can be an important optimization. By caching advertisements, a

peer avoids the need to perform a new discovery each time it accesses a network resource.

In transient environment, performing the discovery is the only viable solution. In static

environments, caching is more efficient.

A unique characteristic of peer-to-peer networks, like JXTA, is their ability to replicate

spontaneously information toward end-users. Popular advertisements are likely to be

replicated more often, making them easier to find as more copies become available. Peers

do not have to return to the same peer to obtain the advertisements they seek. Instead of

querying the original source of an advertisement, peers may query neighboring peers that

have already cached the information. Each peer may potentially become an advertisement

provider to any other peer.

The JXTA protocols have been designed to allow JXTA to be easily implemented on

uni-directional links and asymmetric transports. In particular, many forms of wireless

networking do not provide equal capability for devices to send and receive. JXTA permits

any uni-directional link to be used when necessary, improving overall performance and

network connectivity in the system. The intent is for the JXTA protocols to be as pervasive

as possible, and easy to implement on any transport. Implementations on reliable and bi-

directional transports such as TCP/IP or HTTP should lead to efficient bi-directional

communications.

The JXTA uni-directional and asymmetric transport plays well in multi-hop network

environments where the message latency may be difficult to predict. Furthermore, peers in a

peer-to-peer network tend to have nondeterministic behaviors. They may join or leave the

network on a very frequent basis.

 State of the Art in Context-Aware Computing

80

Another important advantage of using JXTA is the development of its Micro Edition,

JXME [JXME07]], that provides a JXTA compatible platform on resource constrained

devices using the Connected Limited Device Configuration (CLDC) or the Mobile

Information Device Profile 2.0 (MIDP), or Connected Device Configuration (CDC). The

range of devices includes the smart phones to PDAs. Using JXTA Java Micro Edition

platform, any CLDC/MIDP/CDC device can participate in the JXTA network with any

other JXTA device.

2.5 Summary

Pervasive context-aware systems must address many of the requirements of traditional

distributed systems, such as heterogeneity, mobility, scalability, and tolerance for

component failures and disconnections. In addition, according to [Henricksen04b], it must

protect users’ personal information, such as location and preferences, in accordance with

their privacy preferences, and ensure that automatic actions taken by context-aware

applications on behalf of users can be adequately understood and controlled by users. The

large number of distributed components that are present in context-aware systems

introduces a requirement for deploying, configuring and managing networks of sensors,

actuators, context processing components, context repositories, and so on. Summary of

these requirements are:

Support for heterogeneity: Hardware components ranging from resource-poor sensors,

actuators and mobile client devices to high-performance servers must be supported.

Support for mobility: All components can be mobile, and the communication protocols

that underpin the system must therefore support appropriately flexible forms of routing.

Context information may need to migrate with context-aware components. Flexible

component discovery mechanisms are required.

Scalability: Context processing components and communication protocols must perform

adequately in systems ranging from few to many sensors, actuators and application

components. Similarly, they must scale to large volume of context data.

Support for privacy: Flows of context information between the distributed components

of a context-aware system must be controlled according to users’ privacy needs and

expectations.

2.5 Summary

81

Traceability and control: The state of the system components and information flows

between components should be open to inspection - and, where relevant, manipulation - in

order to provide adequate understanding and control of the system to users.

Tolerance for component failures: Sensors and other components are likely to fail in the

ordinary operation of a context-aware system. Disconnections may also occur. The system

must continue operation, without requiring excessive resources to detect and handle failures.

Ease of deployment and configuration: The distributed hardware and software

components of a context-aware system must be easily deployed and configured to meet user

and environmental requirements, potentially by non-experts.

Decision support: A decision is a choice between alternatives based on estimates of the

values of those alternatives. Context-aware systems must be able to make decisions or help

to make decisions.

Henricksen et al presented the summary of the capabilities of the common solutions

selected from each category we have discussed. The result of the survey, as is shown in

Table 2.3, indicates that comprehensive solutions do not exist yet. They have emphasized

that none of the solutions provide decision support.

Table 2-3: Comparison on middleware support for context-aware systems

Requirement ContextToolkit CFN ConFab Gaia RCSM

Heterogeneity √ X √ √ √

Mobility √ √√ X √ X

Scalability X √√ X X X

Privacy X X √√ X X

Traceability X X √ X X

Tolerance X √√ X √ X

Deployment X √ X √ √

Decision X X X X X

(Key: √√ = Comprehensive √=Partial X=None)

In a recent similar work, [Gu05] have proposed a service based framework and

middleware solution that uses context reasoning schemes as a basic source of context-aware

services. [Sharmin06] have developed MARKS that have partially addressed the problem of

mobility and lack of semantics for context reasoning. They have emphasized the

 State of the Art in Context-Aware Computing

82

importance of ad-hoc communication and knowledge usability in the development of

context-aware systems in pervasive computing environment.

Despite all these efforts, there is still a lot to do to ensure standard, scalability, quality of

service and robustness with respect to the inherent pervasive component failure that needs

self healing, varying device capacity, and frequent change of context in a pervasive

environment. The uses of semantic ontology as a source of domain knowledge and ad-hoc

sharing of this knowledge among pervasive devices with varies capacity are among the

important issues to be addressed in a pervasive context-aware computing. The

computationally intensive characteristics of context reasoning process and the lack of

semantically rich context model have been a bottleneck for the development of such

applications. Moreover, supporting technologies for pervasive computing like ontology

tools, peer-to-peer protocols, and reasoning tools are becoming more popular and more

available.

In this thesis, we propose ontology based semantically rich and hybrid context model,

and a collaborative context-aware service platform that insures scalability and reusability.

We use collaboration of pervasive peers where context data and all its semantic supporting

elements like context ontology and rules are distributed and shared among the collaborating

peers. The merits of our platform in relation to the above requirements will be discussed and

comparison with related works will be presented under the summary section of chapter 5.

Chapter 3 CONTEXT MODELING: THE
EHRAM MODEL

3.1 Introduction

Humans have always used their understanding of circumstances or context to navigate

the world around them, to organize information, and to adapt to conditions. For example,

when we are having a conversation in a market place, we talk louder so that the other person

can hear. But when we are in a meeting room, we whisper so as not to disturb other people.

This phenomenon is called context-awareness. Context-awareness has also been a major

part of computing. For example, by using the current time, computers can give us reminders

of calendar events. By using our login identity, computers can personalize the appearance of

our user interface. Similarly, computers can tag files with time giving us many ways of

organizing information.

In this chapter, we present our new approach to modeling context representation. We use

EHRAM, a conceptual context meta model that uses context entities, their hierarchies,

relationships, axioms and metadata as basic building block for context representation.

3.2 What is Context?

The most widely referenced definition of context is given by [Dey00]. Dey states that

context is “Any information that can be used to characterize the situation of an entity. An

entity is a user, a place, or a physical or computational object that is considered relevant to

the interaction between a user and an application, including the user and application

themselves.” [Winograd01], on the other hand, indicates that definitions like that of Dey are

intended to be adequately general to cover the works that have been done on context-based

interactions. He however argues that in using open-ended phrases such as “any information”

and “characterize”, it becomes so broad that context covers everything without boundary.

According to Winograd, “something is context because of the way it is used in

interpretation, not due to its inherent properties. The voltage on the power lines is a context

if there is some action by the user and/or computer whose interpretation is dependant on it,

but otherwise is just part of the environment.”

 Context Modeling: The EHRAM Model

84

From Dey’s generalized definition and Winogard’s specification on definition of

context, we consider context as an operational term whose definition depends on the

intention for which it is collected and the interpretation of the operations involved on an

entity at a particular time and space rather than the inherent characteristics of the entities

and the operations themselves. Something that is context for one person might not make

sense for the other. Even something that is context under certain condition for a particular

person might not be important to the same person under another condition. With this

background, context can be seen as a response to the how, where, when, what, who and

which type questions on entity descriptors and their interaction with one another that affect

actions taken by or actions accepted by the entities. Context can also be described in terms

of a statement that we make about the characteristics of a the entities, their relationships

and properties of the relationships.

Figure 3-1: Context Entities, hierarchies and relationships

Context data is collected for each participating entity using hardware or software tools.

Classes of generic context entities with some example of sub entities are given in Figure 3.1.

The figure also shows relations between entities including the subEntityOf relation. At the

root of the hierarchy is a global entity named ContextEntity. We can define object type

relations like locatedIn or connectedTo between entities. We can also define attribute type

relations like hasDataRate relation that take literal as its value. Entities and relations are

sources of context data.

3.2 What is Context?

85

Figure 3.1 also shows the major classes of context entity descriptors we use to represent

a pervasive computing environment. This includes: personal context, device context,

physical environment context, network context, activity context, service context, and

location context. Personal entity provides contexts like person’s identity, address, service

preference, device ownership, activity, location, etc. Device entity provides contexts like

hardware properties, software properties, display properties, device capabilities, etc.

Network entity contexts are expressed in terms of properties like delay and error

characteristics, data rate, transport protocols, etc. Physical environment entity provides

contexts like illumination, noise level, humidity, temperature, etc. Activity entity contexts

tell if an activity is scheduled or not, if it needs special location or not, type of the activity,

starting time, etc. Location entity provides contexts about its containment and situation with

respect to other entities. Service entity provides context about where the service is located,

type of the service (data service, audio service, video service, application service …),

service availability, etc.

Some examples of how we define and represent context is shown in Table 3.1. The

column on the left side shows a generic level definition of relationship between entities.

This is equivalent to defining the domain and range of a relation. The column on the right

side shows the use of the same relationship in a specific domain of application, in this case

medical application.

Table 3-1: Sample generic and domain based definition of relationships

Generic level
definition

Sample domain level
equivalent

Person isEngagedIn
Activity

Physician isEngageIn Patient-
treatment

Location isLocatedIn
Location

Library isLocatedIn Campus

Person isLocatedIn
Location

Student isLocatedIn Library

Network hasDataRate xxx ConnectionX hasDataRate low

A close look at such statements shows the need for a higher-level statement about these

statements that can be expressed in terms of meta-statement or axioms. Information like

time of occurrence, precision, source of data, etc. can be part of such meta-information. For

example, we can state “student isLocatedIn library” at a given time t. We can also state that

the precision of the statement “a network connection has low speed” is 85%. Time t that is

associated with “student isLocatedIn library,” and precision of 85% that is associated with

 Context Modeling: The EHRAM Model

86

“connection hasSpeed Low” refer not to the individual components of the statements but to

the entire statements.

Regarding the axioms, if we define a relation locatedIn is transitive then locatedIn obeys

the transitivity axiom: for example, “library isLocatedIn campus” and “student isLocatedIn

library” means that “student isLocatedIn campus”, Similarly if we define owned-by is an

inverse of owns then: “device owned-by person” means “person owns device”.

3.3 The EHRAM context representation model

The behavior of context-aware applications depends not only on their internal state and

user interactions but also on the context sensed during their execution. Some early models

of context representation already exist, however basic issues related to context data

modeling are still not fully addressed as existing context models vary in the types of context

information they can represent. While some models take the user's current situation, others

model the physical environment. The challenge is to put in place a more generic approach to

context modeling in order to capture and represent various features of context information

including a variety of types of context information, dependencies among context

information and quality of context information.

Context representation needs a model that supports easy transaction of piece wise tiny

but voluminous, and dynamic context data. Equally important is the capacity to aggregate

and interpret the context data with respect to its semantics in order to make it ready for

reasoning and decision.

3.3.1 EHRAM model presentation

We now present our novel context representation model known as EHRAM context

representation model. We define EHRAM as a layered context representation meta-model

that uses set of entities (E), set of hierarchies (H), set of relations (R), set of axiomatic

relations (A) and set of metadata (M) to represent context data and its semantics. The name

EHRAM is composed from the initials of the components of EHRAM described below:

• E is set of entities for which context is to be captured.

• H is set of binary relations that form an inversely directed acyclic graph (inverted
DAG) on entities. Nodes of the graph represent entities and arcs of the graph
represent hierarchical relations. The root entity at the top of the hierarchy graph is a
global entity known as ContextEntity.

3.3 The EHRAM context representation model

87

• R stands for the union of the sets of binary relations Re and Ra. Re is set of binary
relations having both its domain and range from the set E. Ra is set of binary relations
defined from set of entities E to set of literals representing entity attributes. Domain
of the relation Ra is the set of E while its range is set of literal values.

• A is set of axiomatic relations. Axiomatic relation is a relation about relations. For all

ri an element of set of relations R, we have zero or more aj an element of set of

axioms A that ri obeys. For example, if we define a relation r1 as a transitive relation

then r1 obeys the transitivity property (axiom): (e1, r1, e2) and (e2, r1, e3) => (e1, r1, e3).

Similarly, if we define a relation r2 as a symmetric relation then r2 obeys the

symmetric property (axiom): (e1, r2, e2) => (e2, r2, e1).

• M is set of metadata information about a defined relation instance. For example, if we
have a statement that says, “Bob reported that Alice is located in the garden this

morning”. The qualifier phrases “bob reported” and “this morning” are metadata of
the statement made about Alice. It answers the question who and when about the base
statement. Set of Metadata M together with set of Axioms A enhance EHRAM to be
a context meta-model for handling semantics of Context data.

by sameAs
axiom

by inverse
axiom

isa isa isa

by symetric
axiom

instanceOf

ContextEntity

Entity Entity Entity

Entity (sub) Entity (sub) Entity (sub) Entity (sub)

Instance

isa isa isa
Value Value

Value

(a)

(b)
Hierarchy

Relation

Entity

Literal value

Axiomatic

transitive

isa

Value

Metadata

Value

Key

Figure 3-2: Layered representation of EHRAM components

Hierarchy is an important structure to organize and classify context entities and relations

into two layers. Layered organization helps us to classify and tag context data as generic

domain independent or as domain dependent. Figure 3.2 is a graphical representation of

EHRAM structure that shows hierarchies, entities, entity relations, attribute relations,

axiomatic relations, metadata and the layers: Layer (a) is the generic layer and layer (b) is

the domain layer.

 Context Modeling: The EHRAM Model

88

3.3.2 EHRAM Model by example

Consider an application in a medical domain where context data come from medical

entities like patients, doctors, activities and events in the hospital, devices, locations, etc.

Representation of components of the EHRAM model using few example data from the

application in a medical domain is given in Figure 3.3.

hasDoctor

owns

time

hasMemory hasStartTime

engagedIn

locatedWith

locatedWith

memory

time

has
End
Time

hasBodyTemp

39.5

instanceOf

isa isa isa isa

ContextEntity

Person Activity Device

Patient Doctor Meeting Phone

SPhone0095

isa isa isa

pp

hasPrecision by symetric axiom

hasMemory

owns

Schedule
hasOwner

400

Bob

instanceOf

source
by inverse axiom

Pascal

instanceOf

hasDoctor

Figure 3-3: Example of context data using EHRAM components

A close look at the figure helps us understand how the five elements of EHRAM (entity,

hierarchy, relation, axiom, metadata) are represented in the graph.

Entity and Hierarchy: Activity, Person and Device are examples of generic entity classes

and they are presented in the generic layer. They are high-level context entities from which

specific entities can be derived and they are common to all domains of applications. All

entities in this category have hierarchical relation named isa with the root entity known as

ContextEntity. Meeting, Patient, Doctor and Phone are examples of domain entity classes in

a medical application, and are presented in the domain layer. Bob, Pascal and SPhone0095

are examples of entity instances in the medical application. Examples of hierarchical

relations from the diagram are (Device, isa, ContextEntity), (Person, isa, ContextEntity),

(Activity, isa, ContextEntity), (Doctor, isa, Person) , (Pascal, instanceOf, Doctor), etc.

3.4 More on layers, axioms and metadata

89

Relation: Relations like (Activity, hasStartTime, time), (Person, isEngagedIn, Activity),

(Person, locatedWith, Person), (Person, locatedWith, Device), (Device, hasMemory,

memory) defined in the generic layer. Such generic relations can be inherited down in the

hierarchy by the sub-entities and instances in the specific domain of application. Similarly

relations like (Meeting, hasEndTime, time) and (Patient, hasDoctor, Doctor) from the

medical application are presented in the domain layer. They restrict the domain and the

range of the relations that are inheritable down in the hierarchy by entity instances. Finally,

relations like (Bob, hasBodyTemp, 39.5), (Pascal, Owns, SPhone0095), (Bob, hasDoctor,

Pascal) and (SPhonr0095, hasMemory, 400) defined on entity instances represent our basic

context definition formalism.

Relations like hasEndTime, hasMemory, hasStartTime, and hasBodyTemp are elements

of what we have defined as attribute relation (Ra) because the range of these relations is the

set of literal values. Relations like hasDoctor, locatedWith and owns are elements of what

we have defined as entity relations (Re) because they are defined from entity to entity i.e.,

both their domain and range are drawn from set of entities.

Some relations in the diagram are defined to have associated axioms and some have

metadata. Examples of relations with associated axioms are (Person, locatedWith, Device)

and (Pascal, owns, SPhone0095). In the diagram, locatedWith is defined to be symmetric

and therefore it obeys the symmetric-axiom property, that means the relation (Device,

locatedWith, Person) automatically holds true. Similarly, because owns is defined to be an

inverse of hasOwner, it obeys the inverse-axiom property, that means the relation

(SPhone0095, hasOwner, Pascal) automatically holds true. The relation (Person,

engagedIn, Activity) has a metadata that tells about its precision represented by

hasPrecision.

3.4 More on layers, axioms and metadata

Generic layer in the EHRAM model consists of classes representing basic entities. Such

classes have generalization relation with the base classes called ContextEntity that

represents EHRAM root entity. All association relations and attributes defined on these

entities apply to all sub entities down in the hierarchy. They are defined independent of the

domain of application. For example, if we define a relation hasAddress that applies to an

entity class Person, i.e. hasAddress(Person, Address), then this relation applies to all sub

entities and instances of Person. Domain layer represents entities that define specific domain

 Context Modeling: The EHRAM Model

90

of application. In the hierarchy graph, domain layer consists of all entities that do not have a

direct generalization relation with the root entity. In addition to their defined relations, they

inherit relations from the parent entities.

An axiom is any sentence, proposition or rule that is taken for granted as valid, and

serves as a necessary starting point and formal logical expression for deducing and inferring

logically consistent statements. Axiomatic relations can be defined both at the generic layer

and at the domain layer of the EHRAM model. Description of some of the generic level

axiomatic relations, sameAs, inverse, symmetric and transitive can be given as follows:

∀r ∈R symmetric(r) ⇔(∀e
1
,e

2
 ∈ E, r(e

1
,e

2
) ⇒ r(e

2
,e

1
))

∀r ∈R transitive(r) ⇔(∀e
1
,e

2
, e

3
 ∈ E, r(e

1
,e

2
) ∧r(e

2
,e

3
) ⇒ r(e

1
,e

3
))

∀r
1
,r

2
∈R inverse(r

1
,r

2
) ⇔(∀e

1
,e

2
∈ E, r

1
(e

1
,e

2
) ⇒ r

2
(e

2
,e

1
))

∀r
1
,r

2
∈R sameAs(r

1
,r

2
) ⇔(∀e

1
,e

2
∈ E, r

1
(e

1
,e

2
) ⇒ r

2
(e

1
,e

2
))

Similarly, application domain based axiomatic relations are used to state axioms and

rules that are used to deduce further knowledge for reasoning. A statement that says “under

normal condition, a patient is always treated by the same doctor” can be considered as an

axiom (assumption) in a medical domain. Given this assumption, we can create another

domain based deduction rule as follows:

∀d instanceOf Doctor, p instanceOf Patient: hasDocto r(p,d) ∧
engagedInActivity(p, takeTreatement) ⇒ engagedInActivity(d,
giveTreatement)

We can associate some degree of accuracy to such axioms or rules as metadata.

Metadata is data about data. Metadata in context modeling is important to associate quality,

precision, source, time stamps and other information to the context data. Such information is

important to prepare the context data for reasoning and decisions. In the EHRAM model,

metadata information is a relation that describes another relation instance.

For example, if we are given context information that says “patient is located in the

garden”, we can then make other statements about this statement to answer questions like:

Who reported this information? Which service is used to report this information? When did it

happen? How accurate is the information? Why is the subject in this situation? What will

happen next? Etc.

3.5 From the EHRAM conceptual model to UML

91

3.5 From the EHRAM conceptual model to UML

Figure 3-4: UML representation of the EHRAM model

Now, we try to see how we can develop a formal model to represent EHRAM structure

as a generalized model based on its components described above. We use the Unified

Modeling Language (UML) to formalize EHRAM as a conceptual context representation

model. UML [Jacobson99] is a standardized specification language for object modeling.

UML is a general-purpose modeling language that includes a graphical notation used to

create an abstract model of a system. We will also show limitations of UML as a tool to

represent EHRAM for modeling context data and suggest the necessary adjustments for

improvement.

 Context Modeling: The EHRAM Model

92

Incremental mapping of the concepts in EHRAM to the UML is given as follows. A

UML class diagram based on this mapping is given in Figure 3.4.

• Entity in EHRAM can be represented as a UML class.

• The concept of hierarchical relation in EHRAM can be represented as generalization
relationship in the UML.

• Entity relations in EHRAM can be represented as association relationships in UML,
and attribute relations in EHRAM can be represented using attributes in the UML
class.

• Axiomatic relations in EHRAM can be represented as association classes in the
UML. The concept of metaclass can also be used to represent axiomatic properties
like symmetric property, inverse property, etc... As indicated in the diagram, an entity
relation locatedWith is marked as an instance of the symmetric property class.

• Metadata in EHRAM can be represented using association classes in the UML.

Among the limitations of using UML as modeling tool to represent the EHRAM

modeling components are: attribute relationship, context metadata and axiomatic relations

cannot be adequately represented in the UML. Representing axiomatic relations in the

EHRAM model as association classes in the UML has the limitation of repeating the same

set of axiomatic relations for every occurrence of instance of the entity. For example, the

inverse axiomatic relation, hasPatient that is defined on hasDoctor using association class

should be independent of every instance of the association but refer to the association it self.

Similarly, representing attribute relations in EHRAM as attributes in the UML class also

lacks a means to add metadata about the attribute. For example, the attribute

hasTemperature itself may need a metadata like accuracy, time, etc.

Some of the limitations of UML to represent the EHRAM meta-model can be overcome

by using extended UML features like meta-classes and association-classes (for example,

see the definition of the property-class locatedWith and the meta-property-class symmetric

defined in the generic layer of Figure 3.3). However, we still have a limited support for the

representation of the semantic aspect of context data. As a conclusion, UML modeling tools

can be used to formalize representation of the EHRAM model only partly and therefore we

continue investigating other formal methods.

3.6 EHRAM and relational models

93

3.6 EHRAM and relational models

Context and context metadata can be represented using notations and concepts in a

binary relation. Binary relation R is any subset of a Cartesian product X⊗Y where X and Y

are arbitrary sets. The sets X and Y are called the domain and range, respectively, of the

relation. The statement (x, y) ∈ R is read "x is-R-related-to y", and is denoted by xRy or

R(x,y). The order of the elements in each pair is important: if a ≠ b, then R(a, b) and R(b, a)

can be true or false, independently of each other.

Based on this definition of relations, given the sets of context entities E and set of values

V drawn from set of context entities and set of literal values, a relation R is the subset of the

Cartesian product of the sets of E and V:

R ⊆ {(e
i
,v

j
): e

i
 ∈ E, v

j
 ∈ V}

We are interested in all meaningful set of statements,

(e
i
,v

j
) ∈ R that can also be represented as:

{R(e
i
,v

j
): (e

i
,v

j
) ∈R} or in a more linear form

{(e
i
,R,v

j
): (e

i
,v

j
) ∈R}

This triple can be used to define a context (C) as follows:

 C ≡ {(e
i,k

, r
k
, v

j,k
) : e

i,k
 ∈ E

k
, r

k
 ∈ R, v

i,k
 ∈ V

k
}

This can be extended to define context and context metadata CM using basic context C,
meta-relation RM and meta-value VM as follows:

CM ≡ {(c
i
, rm

k
, vm

j
) : c

i
 ∈ C, rm

k
 ∈ Rm, vm

j
 ∈ Vm} Or

CM ≡ {((e
i
, r

k
, v

j
), rm

l
, vm

p
): e

i
∈E,r

k
∈R,v

j
∈V,rm

l
∈RM,vm

p
∈ VM}

Basic context data:

(Schedule, isA, Service),(TimeTable, instanceOf, Sc hedule),
(Meeting, isA, Activity), (Meeting005, instanceOf, Meeting),
(Meeting005, hasStartTime, #200611081400)
(Doctor, isA, Person),(Pascal, instanceOf, Doctor)
(Pascal, isEngagedIn, Meeting005)

Context with metadata:

((Pascal, isEngagedIn, Meeting005), hasSource, Agen da)
((Pascal, isEngagedIn, Meeting005), hasPrecision, x x%)

N-ary relation (relation of degree N) as a base of relational database model inherits its

properties from binary relations. A detailed discussion on mapping of the EHRAM model to

the entity relationship (ER) model of the relational database is presented in chapter 4.

 Context Modeling: The EHRAM Model

94

As a conclusion, relational models can be used to represent the entity, hierarchy,

relations and metadata components of EHRAM model. They can also be extended some

how to represent axioms in the EHRAM model using definitions like (locatedWith, is,

symmetric), (locatedWith, is, transitive), (owns, inverseOf, hasOwner), etc. This however is

not sufficient to represent fully the semantic aspect of the context data represented in

EHRAM. Therefore, we continue to investigate other formalism.

3.7 EHRAM and the RDF data model

RDF models have been in use to represent semantic metadata in different application

domains. The work by [Bouzeghoub04] uses RDF semantic description model to allow the

reuse and assembling of learning objects that represent pedagogical materials available on

the web. The core element is the representation of semantic metadata that allows description

of domain model, user model and learning object model. In this section, we will investigate

RDF and its extensions to build a generic context meta-model.

We start with setting equivalence between terminologies in EHRAM and that of the

RDF model. The primary characteristic of a context data is that it possesses an actor or a

subject (an entity). The context value defined on the subject is expressed in terms of

multiple properties. In our subsequent discussion, we use the terms predicate and object to

represent the situation of the subject with respect to a specific property. This convention

goes with the RDF-triple representation formalism, <subject, predicate, object>, which in

turn maps to all types of relations in the EHRAM model (R and H).

Additional context metadata can also be included as part of the context data. In addition

to the subject, predicate and object triples, context modeling requires context metadata to

extend the context model towards historic, probabilistic, or confidence-carrying model.

Such attributes are meaningful only when thought of as referring to a particular instance of

the triple, not to each individual element.

To describe this situation we use RDF and its extension called RDF reification [W3C07].

Reification is used to represent facts that must then be manipulated in some way; for

example, to compare logical assertions from different witnesses to determine their

credibility. The message "John is six feet tall" is an assertion of truth that commits the

sender to the fact, whereas the reified statement, "Mary reports that John is six feet tall"

defers this commitment to Mary.

3.7 EHRAM and the RDF data model

95

Bob Student

Library «11 :50»

isA

isLocatedIn

willBeClosedAt

«Sensor#5»

hasTimeStamp

isReportedBy

«11 :40»

«88%»
hasAccuracyOf

Statement XX

High-order statement about statement XX

Figure 3-5: Context metadata represented using reification

rdf :statement

Blank node (ns:XX)

ns:isReportedBy ns :hasTimeStamp

ns :Library

« 11 :40» « 88%»

ns :locatedIn ns :Bob

rdf :predicate rdf :object

ns:Student

rdf :type

« 11 :50 »

ns :hasClosingTime

« Sensor#5 »

ns :hasAccuracy

rdf :subject rdf :type

Figure 3-6: RDF data model for the reified context data

In the same way, a reified RDF data contains each original statement as a resource and

the other additional statements made about it. The four properties used to model the original

statement as the RDF resources are, subject, predicate, object and type. A new resource with

these four properties represents the original statement and can be used as the subject or

object of other statements with additional statements made about it.

Figure 3.5 shows demonstration of context metadata representation using statement

reification. The figure show an example triple statement: “Bob is located in the Library”.

This statement can be reified by additional meta-information like “is reported by sensor

#5”, “has accuracy of 88%”, “has occurred at 11:40 today”, etc. Figure 3.6 shows an

 Context Modeling: The EHRAM Model

96

equivalent graphical representation of the RDF data model for the reified context data.

Figure 3.7 shows an abridged RDF data model for this context metadata example. The RDF

reification principle, therefore, can be used to represent additional context attributes to the

basic context triples. RDF is one of the major building blocks in a formalism to represent

ontology and ontology has features for defining and representing axioms. Therefore, axioms

can be represented using RDF/OWL formalisms. Details on mapping EHRAM to ontology

will be given in chapter 4.

//Axioms, context metadata and rdf reification
<owl:Class rdf:ID="Context"/>
<owl:Class rdf:ID="Person">
 <rdfs:subClassOf rdf:resource="#Context"/>
</owl:Class>
<owl:Class rdf:ID="Location">
 <rdfs:subClassOf rdf:resource="#Context"/>
</owl:Class>
<owl:Class rdf:ID="Student">
 <rdfs:subClassOf rdf:resource="#Person"/>
</owl:Class>
<owl:Class rdf:ID="Library">
 <rdfs:subClassOf rdf:resource="#Location"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="locatedIn"> //Axiom
 <rdfs:domain rdf:resource="#Context" />
 <rdfs:range rdf:resource="#Location" />
 <rdf:type rdf:resource="&owl;TransitiveProperty " />
</owl:ObjectProperty>
<coca:Bob rdf:type coca:Student/> //original statem ent
<coca:DocINSA rdf:type coca:Library/>
<coca:Bob coca:locatedIn coca:DocINSA/> //original statement

<coca:XXrdf:type resource=rdf:Statement/> //reifica tion on XX
<coca:XX rdf:subject rdf:resource=coca:Bob/>
<coca:XX rdf:predicate rdf:resource=coca:locatedIn/ >
<coca:XX rdf:object rdf:resource=coca:DocINSA/>

<coca:XX coca:reportedBy coca:Sensor#5/> // Metadata using XX
<coca:XX coca:hasTimeStamp>
 <timeStamp rdf:datatype="&xsd;string"> 2007051140 </timeStamp>
</coca:XX>// using reified XX
<coca:XX coca:hasAccuracy coca:high”/>

Figure 3-7: RDF/OWL data model for context, axiom and metadata representation

3.8 Summary

The future of our computing environment will be highly affected by a range of large and

small computing devices that will present in our vicinity. Unless properly controlled, the

interference of such devices and services with our personal roles and institutional policies

might sometimes have a negative impact. Such a control mechanism should be automated in

such a way that users’ involvement is minimal. This can be achieved by building an

intelligent (context-aware) component that acts depending on the situation or the context of

3.8 Summary

97

the person, the devices, the environment or other related elements. Hence, a formal

definition and representation method for context data is important.

In this chapter, we have presented our context representation model named as EHRAM

model. The name EHRAM is coined from its building blocks; entities, hierarchy of entities,

relations defined on entities, axioms and context metadata. A generic EHRAM graph is used

to represent an abstract conceptual representation of the EHRAM model. We have also

shown different ways of context representation in the EHRAM model: using UML, binary

relations, RDF and its reifications. All representation methods have minor limitations when

representing metadata and axiomatic relations. A more comprehensive approach that deals

with serialization and mapping of the EHRAM model into standard data management

structures that supports the storage and processing of both the context data and the context

semantics will be presented in chapter 4.

The advantage of using EHRAM can be summarized as follows:

• Components of EHRAM model (entity, hierarchy, relations, axioms and metadata)
are derived directly from the definition of the context. This makes it simple and
natural way of abstraction and conceptualization of context data and its semantics in
the form of axioms and metadata.

• We have shown that different data representation formalism like UML, binary
relation with its extended meta-form, and RDF model can be used to convert the
EHRAM conceptual model into a concrete data representation formalism with some
limitations.

• EHRAM is scalable to context data of any type and complexity.

Chapter 4 CONTEXT MANAGEMENT: THE
HCOM MODEL

4.1 Introduction

The EHRAM conceptual context representation model needs serialization to store, use,

transmit and reuse context data. We cannot fully manage context data using standard

database management principles because in relational database, for example, the meaning of

the data is in the “head” of the user. Management of context data requires not only

processing the data itself but also processing the meaning of the data. This requires an

approach that not only deals with the content of the data (context data) but also semantics of

the data (context knowledge).

So what is context knowledge and context data? How do they differ? [Ackoff89] has

presented knowledge and data as part of classification of the content of human mind.

According to Ackoff:

“data is raw fact. Information is data that has been given meaning, useful or not, by

way of relational connection in the data. Knowledge is the appropriate collection of

information, such that its intent is to be useful. Understanding is the process by

which one can take knowledge and synthesize new knowledge from the previously

held knowledge.”

Context-aware services, aims to possess understanding in the sense that they are able to

synthesize and infer new knowledge from previously stored information and knowledge.

Extending the above definitions, context data is, therefore, a raw fact that simply exists

and does not have a meaning of it self. Context knowledge is the collection of useful context

information derived from the interpretation of context data and related concepts. The

derived context knowledge has useful meaning, but it does not provide, by itself, inference

of further knowledge. Context knowledge, therefore, is more about context semantics that

will be dealt with in the subsequent sections of the chapter. The understanding aspect that

 Context Management: The HCoM Model

100

deals with the reasoning, inference and decision support in the context-aware service will be

presented in chapter 5.

From our observation, ontology approach is becoming a common method to deal with

data semantics. Ontology however is not well suited to support efficient and optimized

query processing and transaction of voluminous data. In this chapter, we try to investigate

how our EHRAM conceptual context representation model can be mapped to the relational

data model and to the ontology data model. We show the pros and cons of both approaches.

We finally propose a novel hybrid approach for modeling context management called

HCoM model. HCoM uses both ontology and relational models to process context data and

semantics separately and then combine the results together for inference and reasoning.

4.2 Mapping from EHRAM to ER model

Relational database is a stable model that is used in a wide range of database

management applications. In the EHRAM model, context is represented by combination of

entities, hierarchy, relations, axioms and metadata. In relational database, entity relationship

(ER) model is used to represent entities, attributes and relationships. Can we therefore have

a lossless mapping from EHRAM to relational database model?.

A step-by-step mapping algorithm from EHRAM model components to relational

schema is given as follows:

Step 1. Collect all context entities in the EHRAM model and create a relational table with

the following attributes. This represents entities and their hierarchy.

o An attribute that stores name of context entities

(cEntity).

o An attribute that stores name of the entity one ste p

above in the hierarchy (isa).

o An attribute that stores whether an entity is in th e

generic or domain layer (layer).

table tblEntity (CEntity, IsA, Layer), Primary Key (CEntity)

Step 2. Collect all non hierarchical relations in the EHRAM model (relations other than isa

and isInstanceOf) and create a relational table with the following attributes.

o An attribute that stores name of relations (Relation)

4.2 Mapping from EHRAM to ER model

101

o An attribute that stores persistence of the relatio n

when applied to an entity. There are two options:

static and dynamic. Values of relations with static

persistence are stored in the persistent context

repository while values of those with dynamic

persistence are stored only temporarily for immedia te

use (Persistence)

tblRelation (Relation, Persistence), Primary Key (Relation)

Step 3. Collect all relation instances defined on entities in the EHRAM model and create a

relational table with the following attributes.

o An attribute that stores name of relations (relatio n).

o An attribute that stores name of entity on which th e

relation can be applied (CEntity).

o An attribute that stores source of value as a conte xt

entity or as a “Litral” (ValueFrom).

tblRInstance (Relation, CEntity, ValueFrom), Primary Key (CEntity,Relation),

Foreign Key (CEntity) references tblEntity (CEntity), Foreign Key (Relation)

references tblRelation (Relation)

Step 4. Collect all context instances in the EHRAM model and create the following

relational table. This represents entity instances.

o An attribute that stores name of instances (EInstance)

o An attribute that stores types of the instances

(CEntity)

tblEInstance (EInstance, CEntity) Primary Key (EInstance), Foreign Key

(CEntity) references tblEntity (CEntity)

Step 5. Collect all relations defined on instances in the EHRAM model and create a

relational table with the following attributes. Include also all metadata information

defined on each context instance. Metadata, in our case, includes timestamp when

the context instance has occurred, source of the context data and precision of the

context data. This represents context instances.

o An attribute that stores name of entity instance

(EInstance)

o An attribute that stores name of relation (Relation)

 Context Management: The HCoM Model

102

o An attribute that stores value of the relation afte r

applied to the instance (Value)

o An attribute that stores context timestamp (Timestamp)

o An attribute that stores context source (Source)

o An attribute that stores context precision (Precision)

tblCInstance (EInstance, Relation, Value, TimeStamp, ContextSource,

ContextPrecision), Primary Key (EInstance,Relation,Value,TimeStamp,

ContextSource), Foreign Key (EInstance) references tblEInstance (EInstance),

Foreign Key (Relation) references tblRelation (Relation)

Step 6. Collect all axioms in the EHRAM model and create a relational table with the

following attributes.

o An attribute that stores relation (relation)

o An attribute that stores axiom (axiom)

o An attribute that stores value of axiom on this

relation (aValue)

tblAxiom (Relation, Axiom, AValue), Primary Key Relation,Axiom,AValue),

Foreign Key (Relation) references tblRelation (Relation)

Figure 4-1: Generalized schema of the RCDB

A relational context database (RCDB) schema for the EHRAM that follows from the

above systematic mapping is given in Figure 4.1. For representation of extended form of

components of axioms in EHRAM, we may consider the object relational models in which

set of axioms and metadata can be treated as object properties. However, we are more

interested to use the lightweight relational model for its well-established data representation,

storage, querying and presentation tools.

4.2 Mapping from EHRAM to ER model

103

Figure 4-2: Sample demonstration context data for from medical application

Data from a domain of application can be entered and processed in the relational context

data schema. Figure 4.2 shows a sample context data for demonstration. This data is

extracted using the above set of algorithm from our previous medical domain example given

under the EHRAM model representation. On this data set, we can use standard SQL query

to retrieve context information and pass the result for reasoning and decision. For example,

to check if there is any dynamic context data with more than 80% accuracy that has

occurred within the last 20 minutes (given current time is 2007 07 12 10:45). The

corresponding query can be:

SELECT tblCInstance.EInstance, tblCInstance.Relation,
tblCInstance.Value

FROM tblRelation INNER JOIN ((tblEntity INNER JOIN
tblEInstance INNER JOIN tblCInstance ON
tblEInstance.EInstance = tblCInstance.EInstance) ON
tblEntity.CEntity = tblEInstance.CEntity) INNER JOI N
tblRInstance ON tblEntity.CEntity =
tblRInstance.CEntity) ON (tblRelation.Relation =
tblRInstance.Relation) AND (tblRelation.Relation =
tblCInstance.Relation)

WHERE ((tblCInstance.TimeStamp>"200707121025") AND
(tblCInstance.ContextPrecision>"80%")AND
(tblRelation.Persistance="Dynamic"));

 Context Management: The HCoM Model

104

The result of this query on our particular data set is, “Bob takeTreatement

PhysicalExam”. Collection of such type of aggregated context data can be used in the

reasoning and decision process.

As a conclusion, we can represent the basic EHRAM elements, entity, relations,

hierarchy but only part of metadata axioms.

4.3 The need for semantic context management model

Considering the situation of staff members’ (Ben, Dan and Rita) tea break scenario in

the following table, a simple query (select Subject from table.context where predicate=

“isLocatedIn” and Object= “Room-305”) selects “Ben” as an output. But in reality, if the

information in the table is given to a human assistant who knows, by common sense, that

the terms “Office” and “Room” are synonymous in the domain of interest, s/he will respond

“Ben” and “Rita” to the query. Moreover, a human assistant can also deduce that Ben and

Rita are now together. However, incorporating such semantic interpretation of data using

standard database schema is not a straightforward task.

Table 4-1: Demonstration on the need for context semantics

Subject Predicate Object Time

Ben isLocatedIn Room-305 2006022310

Dan isLocatedIn Room-301 2006022310

Rita isLocatedIn Office-305 2006022310

… … … …

This simple example demonstrates the need for a context model that describes concepts,

concept hierarchies and their relationships. We chose ontology and the OWL language for

this purpose. For the concepts, Office and Room, in Table 4.1, for example, we can use the

owl:sameAs property that defines them as the same concepts. Similarly, the property

concepts, together and coLocatedWith, can also be defined as the same concepts using OWL

as follows:

//similarity between classes and properties

<rdf:Description rdf:about= “#Office”>

 <owl:sameAs rdf: resource = “#Room”>

</rdf:Description>

<rdf:Description rdf:about= “#together”>

 <owl:sameAs rdf: resource = “#coLocatedWith”>

</rdf:Description>

4.4 EHRAM and semantic ontology for context management

105

We can also define the concept that coLocatedWith is symmetric, which means if “X

coLocatedWith Y” then we can state that “Y coLocatedWith X”. We can enhance the

potential of semantic context reasoning using additional user defined rules like, for example:

“if user
1
 is located in a room

N
 and user

2
 is also located in roomN

then conclude that they are coLocatedWith each othe r or
according to the above similarity definition they a re together”.

This rule can be represented as follows:

//User defined Rule
 [ruleR: ?user

1
 nsp:locatedIn ?room

N
)

 (?user
2

nsp:locatedIn ?room
N
)

 ->?user
1
 nsp:coLocatedWith ?user

2
)]

4.4 EHRAM and semantic ontology for context management

The expressive power, hierarchical organization, formality, standard, support for

efficient reasoning, support for programming abstraction and interoperability are among the

attractive features of ontology in context modeling. A hierarchy of ontology classes can be

used to organize context entities, concept hierarchies, relationships, axioms and context

instances.

Ontology can be used to represent semantics, concept relationships and axioms in the

context data. Context ontology is formed by the merger of the generic context ontology that

describes domain independent contexts and the domain specific context ontology. Context

instances may come from context databases or sensors. Axioms represent derivation rules

that are used by context-aware systems to derive decisions and conclusions about the actions

that follow. OWL Web Ontology Language [OWL07] is becoming a natural language in

ontology representation due to several reasons. It is designed for use by applications that

need to process the content of information instead of just presenting information to humans.

OWL is a W3C recommendation that employs web standards such as RDF and XML

schema for information representation and exchange. OWL provides the necessary semantic

interoperability tools to allow communications between context-aware systems. It also

provides language tools for high degree of inference making by providing additional built-in

vocabulary along with a formal semantics to define classes, properties, relations and axioms.

See annex for detail.

 Context Management: The HCoM Model

106

4.4.1 Representing EHRAM context ontology using directed graph

Using a generic ontology modeling approach, context management consists of the

following two basic components, the base ontology and the domain ontology. The base

ontology part is defined based on our context descriptors (from generic layer of the

EHRAM context representation model) while the domain ontology part is dependent on

domain specific sub-descriptors (from domain layer of EHRAM).

Figure 4-3: Simplified ontology graph showing base and domain ontology classes

Figure 4.3 is an example of ontology graph representation showing base and domain

ontology classes. We use a directed graph G = (V, E) that consists a finite set V = {v1,… vn}

of nodes (or vertices) that represent entities in the EHRAM model and a finite set E = {e1,

… en} of edges (or arcs). Each e ∈ E is an ordered triple (vj, r, vk) of vj∈V, r∈R, and vk∈V

where vj and vk are called the tail and the head of the edge e respectively. R represents

hierarchical relations in EHRAM. We have a restriction that a node v0 = “ContextEntity”

should exist only ones as a tail of an edge in E and it should never exist as a head.

The EHRAM context ontology Gco is then a transpose GT=(V,ET) of the graph G where

GT is the same graph G with all the arrows reversed:

),(TT
co EVGG ==

All tails of the edges in ET whose head is the term “ContextEntity” are considered sets of

basic context descriptors (B) and are represented as base classes in the generic layer of the

4.4 EHRAM and semantic ontology for context management

107

ontology. Similarly all tails of the edges in ET whose head is not the term “ContextEntity”

are considered as sets of domain context descriptors (D).

BvityContextEntrveEe T ∈⇔=∈∀)"",,(,

DvityContextEntvvrveEe cc
T ∈⇔≠∧=∈∀)""(),,(,

Figure 4-4: Ontology graph for sample base and domain specific classes and instances

Figure 4.4 is ontology graph with other types of relations from an application domain. In

addition to the inherited properties from the base class, we can also define domain specific

properties for the subclasses. Subclass hierarchy can also be extended further down to

accommodate the structure of context data in the specific domain.

4.4.2 EHRAM model and the OWL language

In addition to the standardization of the structure of the context representation, ontology

provides semantic descriptions and relationships of entities. Using ontology, we can also

perform deeper knowledge analysis by defining domain specific rules.

For example, to define the similarity axiom between the concepts ownerOf and owns, we

can use owl:sameAs property. Similarly, the symmetric axiom on the concept

coLocatedWith can be defined using owl:symmetricProperty and the inverse relationship

property between ownerOf and ownedBy can be defined using owl:inverseOf property.

 Context Management: The HCoM Model

108

<?xml version="1.0"?>
 <rdf:RDF ……………
 <owl:Class rdf:ID="#ContextEntity"/>
 <owl:Class rdf:ID="Activity"> <rdfs:subClassOf

rdf:resource="#ContextEntity"/> </owl:Class>
 <owl:Class rdf:ID="Person"> <rdfs:subClassOf

rdf:resource="#ContextEntity"/> </owl:Class>
 <owl:Class rdf:ID="Device"> <rdfs:subClassOf

rdf:resource="#ContextEntity"/> </owl:Class>
 <owl:Class rdf:ID="Patient"> <rdfs:subClassOf rdf :resource="#Person"/> </owl:Class>
 <owl:Class rdf:ID="Doctor"> <rdfs:subClassOf rdf: resource="#Person"/> </owl:Class>
 <owl:Class rdf:ID="Phone"> <rdfs:subClassOf rdf:r esource="#Device"/> </owl:Class>
 <owl:Class rdf:ID="Meeting"> <rdfs:subClassOf rdf :resource="#Activity"/> </owl:Class>
 <owl:ObjectProperty rdf:ID="isColocatedWith">
 <rdfs:range> <owl:Class> <owl:unionOf rdf:parse Type="Collection">
 <owl:Class rdf:about="#Person"/> <owl:Cla ss rdf:about="#Device"/>
 </owl:unionOf> </owl:Class> </rdfs:range>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Device"/> <owl:Cla ss rdf:about="#Person"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <owl:inverseOf rdf:resource="#isColocatedWith"/ >
 <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#SymmetricProperty"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/ 07/owl#TransitiveProperty"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="isOwnedBy">
 <rdfs:domain rdf:resource="#Device"/> <rdfs:ran ge rdf:resource="#Person"/>
 <owl:inverseOf> <owl:ObjectProperty rdf:ID="O wns"/> </owl:inverseOf>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="isEngagedIn"> … … …
 <owl:DatatypeProperty rdf:ID="hasBodyTemp"> … … …
 <owl:FunctionalProperty rdf:ID="hasStartTime"> … … …
 <owl:FunctionalProperty rdf:ID="hasMemory">… … …
 <Phone rdf:ID="Smartphone0095">
 <hasMemory rdf:datatype="http://www.w3.org/2001 /XMLSchema#long">512</hasMemory>
 </Phone>
</rdf:RDF>

Figure 4-5: An excerpt of the EHRAM based ontology for the medical application

Table 4-2: Mapping between EHRAM model and ontology

EHRAM model Ontology

(E)ntity owl:class

(H)ierarchy
Relations

rdfs:subClassOf, rdfs:superClassOf,
rdf:type

Entity owl:objectProperty (R)elation
s Attribute owl:dataTypeProperty

(A)xioms properties (owl:TransitiveProperty,
owl:inverseOf, …)

restrictions(hasValue, hasMinCardinality,
someOf, ...)

(M)etadata rdf reification

4.4 EHRAM and semantic ontology for context management

109

Table 4.2 shows concept matching that can be used to create mapping between the

EHRAM model and the owl ontology representation. Part of the ontology mapping of the

EHRAM model for context data from the medical application using the concept-mapping

schema in the table is given in Figure 4.5.

4.4.3 The GCoM model

For the interpretation, representation and management of context data, we propose an

ontology based Generic Context Management (GCoM) model. GCoM is based on the above

mapping relationship between the EHRAM model and ontology. GCoM consists of three

basic inputs: context ontology, context data and context related rules. The output from the

GCoM is aggregated context ontology ready for reasoning and decision by any context-

aware service application. The components of the layered GCoM architecture are shown in

Figure 4.6.

Defined Rules

Context Filter

Semantic

Mapping and

Delivery

Context-Aware Core Service

Acquisition

Layer

Pre-

Processing

Layer

Utilization

Layer

Learned Rules

Storage and

Modeling

Layer

Generic

Ontology
Context Capturing

Tools/Interface

Domain

Ontology

Generic

Ontology

Populating Context

Instances and

Rules into Ontology

Repository

Join into

Context-Ont

Context-Onto

Domain Ontology

Builder

Figure 4-6: Architecture of the GCoM model

Ontology represents semantics, concepts and relationships in the context data. It is

formed by the merger of ontology that describes domain independent generic contexts and

domain specific contexts. Context data represents instances of context that may exist in the

 Context Management: The HCoM Model

110

form of profiled data stored on a disk file or in the form of context instances obtained from

the sensors. Rules represent derivation axioms that are used by context-aware systems to

reason out and derive decisions about the actions that follow. These rules have two sources;

rules that are explicitly given by the users through the user interface and rules that are

implicitly learnt by the system itself. Mapping and populating service is responsible to put

the three data sources together in a semantically coherent manner. Context-onto is a

repository of aggregated context information. We also have Semantic mapping and delivery

module that is responsible for mapping and aggregation to deliver aggregated context data

that is ready for use by context-aware systems.

Ontology representation
<rdf:RDF …….
 <owl:Class rdf:ID="Student">
 <rdfs:subClassOf> <owl:Class rdf:ID="User"/> </ rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Library">
 <rdfs:subClassOf> <owl:Class rdf:about="#Location" />
</rdfs:subClassOf>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="ownedBy">
 <rdfs:range rdf:resource="#User"/>
 <rdfs:domain rdf:resource="#Device"/>
 <rdf:type
rdf:resource="http://www.w3.org/.../owl#FunctionalP roperty"/>
 <owl:inverseOf> <owl:ObjectProperty rdf:ID="own erOf"/>
</owl:inverseOf>
 </owl:ObjectProperty>
 <Student rdf:ID="Bob">
 <ownerOf>
 <PDA rdf:ID="PDA001">
 <hasScreenSize

 rdf:datatype="http://www.w3.org/2001/XMLSchema#str ing">Medium
 </hasScreenSize>
 </PDA>

 </ownerOf>
 <ownerOf rdf:resource="#Cellphone001"/>
 </Student>
…...
</rdf:RDF>

Figure 4-7: Part of the context ontology for the ringing tone scenario

Demonstration on the GCoM model components can be given using a cell phone ringing

tone management service example based on a scenario of a university regulation. To comply

with the regulation, students must have their cell phones set to non-disturbing modes during

different activities: attending lectures, consultation with their professors, in libraries, etc.

4.4 EHRAM and semantic ontology for context management

111

Students therefore need to have their phones automatically switched to silent mode or

vibrating mode while in the library, attending lectures, or discussing with their professors

and switch back to ringing mode when they are engaged in none of these activities. They

also like to use a decent ringing tone when in side the campus and a musical ringing tone

when outside the campus. Figure 4.7 is OWL representation of part of the ontology for the

phone ringing management scenario.

Context representation

Profiled context defined in the Ontology
<nameSP:Bob sys:type nameSP:Student/>
<nameSP:CellPhone001 sys:type nameSP:Phone/>
<nameSP:PDA001 sys:type nameSP:PDA/>
<nameSP:Bob nameSP:owns nameSP:PDA001/>
<nameSP:Bob nameSP:owns nameSP:CellPhone001/>
<nameSP:ClassRoom001 sys:type nameSP:ClassRoom/>
<nameSP:Semantic-Theory sys:type nameSP:Class/>

Case 1: Bob, has just entered in ClassRoom001 to at tend a lecture
<nameSP:PDA001 nameSP:locatedIn nameSP:ClassRoom001 />
<nameSP:XX rdf:type resource=rdf:statement/>

<nameSP:XX rdf:subject resource=nameSP:Bob/>
<nameSP:XX rdf:predicate resource=nameSP:isLocatedI n/>
<nameSP:XX rdf:object resource=nameSP:Library/>

<nameSP:XX nameSP:hasTime “200703251030”/>
<nameSP:Bob nameSP:hasSchedule nameSP:Semantic-Theo ry/>
<nameSP:Semantic-Theory nameSP:scheduledIn nameSP:C lassRoom001/>
<nameSP:Semantic-Theory nameSP:startTime “200703251 000”/>
<nameSP:Semantic-Theory nameSP:endTime “20070325110 0”/>

Case 2: Bob is just getting out of the campus
<nameSP:PDA001 nameSP:locatedIn nameSP:OutSideCampu s/>

Case 3: Bob has just entered in the library reading room
 <nameSP:PDA001 nameSP:locatedIn nameSP:DocINSA/ >

Figure 4-8: Context representation for the ringing tone scenario

Persistent data about static contexts (e.g. ownership relationship of persons to devices

like telephone) can be stored in any standard database format that can be selectively

populated as context instances into the ontology structure at runtime. Sensed context is to be

communicated to GCoM using RDF/XML triple representation format and is then converted

to the indicated representation (Figure 4.8) to make the data ready for reasoning. Domain

specific rules for students’ explicit wishes in the scenario and context data expressed using

Jena generic rule are given in Figure 4.9.

 Context Management: The HCoM Model

112

Rules representation

Rules derived or imported from ontology (implicit r ules defined in
the ontology)

[OntoRule1: (?a gcom:locatedIn ?b) (?b gcom:located In ?c) -> (?a
gcom:locatedIn ?c)] //transitive

[OntoRule2: (?a gcom:ownerOf ?b) -> (?b gcom:ownedB y ?a)]
//inverse

…..

Defined Rules
[locatedRule:(?device gcom:locatedIn ?location)

 (?device gcom:ownedBy ?person)
 -> (?person gcom:locatedIn ?location)

]
[libraryRule:(?student gcom:locatedIn gcom:Library)

(?student gcom:owns ?phone)
 -> (?phone “switchMode” “silent”)

]
[classRule:(?student gcom:hasSchedule ?class)

(?class gcom:isScheduledIn ?classRoom)
(?class gcom:startTime ?t1)
(?class gcom:endTime ?t2)
((?Student gcom:locatedIn ?classRoom) gcom:hasTime ?t)

(?t sys:greaterThan ?t1)(?t sys:lessThan ?t2)
(?student gcom:owns ?phone)
� (?phone “switchMode” “Vibrating”)

]
[meetingRule:(?student gcom:hasSchedule ?meeting)

(?meeting gcom:scheduledIn ?meetingRoom)
(?meeting gcom:startTime ?t1)
(?meeting gcom:endTime ?t2)
((?student gcom:locatedIn ?meetingRoom) gcom:hasTim e ?t)
(?t sys:greaterThan ?t1) (?t gcom:lessThan ?t2)
(?student gcom:owns ?phone)
�(?phone “switchMode” “Silent”)

]
[campusRule:(?student gcom:locatedIn gcom:InCampus)

(not classRule) (not meetingRule)(not libraryRule)
//because InCampus subsumes ClassRooms, MeetingRoom s and
Library
(?student gcom:ownerOf ?phone)
�(?phone “switchMode” “DecentRingingTone”)
]

[xcampusRule:(?Student gcom:locatedIn OutSideCampus)
(?student gcom:owns ?phone)
� (?phone “switchMode” “MusicRingingTone”)

]

Figure 4-9: Rule representation for the ringing tone scenario

4.5 Limitations of relational and ontology approaches

113

4.5 Limitations of relational and ontology approaches

In order to extend our EHRAM context representation model to a more generalized

context management model, efficient storage and retrieval, ease of serialization and

semantic support are the basic necessary features. In the EHRAM model, we have parts that

represent the semantics of the data (context knowledge) and parts that represent the context

instance (context data). For proper reasoning and decision in a context-aware computing

environment, both context semantics and context data should be treated equally in the

process of developing a context management model. In the relational approach, we have

mapped our EHRAM model to six relational tables representing entity definition, entity

instance, relation definition, relation instance, context instance and axiom. In the ontology

approach, we have created a direct mapping of concepts in the EHRAM model to owl

ontology representation. Both relational and ontology based approaches, when used for

context management modeling, have their own pros and cons.

Ontology representation tools provide a widely accepted and formal representation of

context semantics in order to interpret and reason about context information. Ontology

tools, however, are only good at statically representing the knowledge in a domain. They are

not designed for capturing and processing constantly changing information in dynamic

environments in a scalable manner. Moreover, existing ontology languages and serialization

formats are text-based (xml/rdf/owl) and therefore are not designed for efficient query

optimization, processing and retrieval of large context data.

Table 4-3: Comparison of relational and ontology approaches on appropriateness

Necessary Features Relational
Approach

Ontology
Approach

Semantic support × √

Ease of transaction
(large data)

√ ×

Query optimization √ ×

Reasoning support × √

Formality √ √

Scalability √ ×

(Keys: √ appropriate × less appropriate)

Relational models, on the other hand, provide standard interfaces and query optimization

tools for managing large and distributed context database or receive and send notifications

on context changes. Relational models, however, are not designed for semantic

 Context Management: The HCoM Model

114

interpretation of data. Table 4.3 summarizes the appropriateness of both approaches in

relation to the necessary features identified.

From the summary table, we can clearly see that both approaches have strong and weak

sides with respect to the necessary features for context management modeling. In

subsequent sections, we will see how we can combine the best of the two worlds into a

hybrid context management model.

4.6 HCoM: Hybrid context management model

4.6.1 HCoM model overview

Our rational behind the need for the hybrid context model, is to distinguish the works of

context data management and context knowledge management, process them separately and

put the results together for better reasoning and decision support in a pervasive context-

aware computing. We use ontology approach to manage context semantics and relational

approach to manage context data. We name this combination a Hybrid Context Management

(HCoM) model. HCoM model aims to combine the bests from the two worlds. It is an

upgrade on our earlier ontology based generic context management model, GCoM. GCoM

is based on the organization of context related data in the form of context, rules and

ontology. Each has two separate sources; context data are either from the user interface or

from sensors, rules are from the user interface or from the data-mining module. Ontology

also has two sources; generic ontology that serves multiple domain of application and

domain dependant ontology.

The selector/pruning module in HCoM provides a means to select and load only part of

the large static context data that is accumulated over a period of time depending on who and

where the user is, the intended activity to which the user is going to be engaged, devices

available for use, institutional policies etc. It uses matching patterns gained through

experience to identify relevant group of context data. Through analysis of history profiles,

the filtering module assigns a numerical score to each class of entity in relation to a

particular request instance. This score is used to determine whether the context entity class

is relevant or not.

As indicated in SCOPES, Semantic Coordinator over Parallel Exploration Space,

[Ouksel03], search space pruning facilitates an incremental construction of context

4.6 HCoM: Hybrid context management model

115

knowledge necessary to translate a query posed for a local database into equivalent remote

database query for semantic reconciliation. In HCoM, we use this principle of pruning to

limit the amount of context data in the reasoning space. The HCoM selection algorithm will

be discussed in subsequent sections and the implementation and evaluation of both HCoM

and GCoM will be given in chapter 6.

Loading only relevant data for reasoning minimizes the size of the reasoning space and

reduces the unnecessary overloading of the reasoner to improve the overall performance of

the context-aware service. It helps to overcome limitations of lack of scalability of most of

the reasoning systems to the constantly increasing volume of reasoning resources in the

pervasive environment.

4.6.2 HCoM architecture

Figure 4.10 shows components and functionalities that represent a layered architecture

of the HCoM model. The core HCoM functionality is in the three middle layers in the

architecture.

Figure 4-10: Architecture for Layered HCoM model

 Context Management: The HCoM Model

116

The arrows in the diagram represent flow of different set of data from or to each

component. (a) ontology data, (b) context data, (c) ontology data to context manager (d)

static context data, (e) relevant context data from repository and new context data from

context filter to context manager, or preference data for selection from context manager, (f)

filtered new context data, (g) query and retrieval of relevant static context data during

initialization, (h) generic and domain ontology, (i) learned rules from context-aware

modules, (j) context data model to CoCA core or preference data from CoCA core, (k) rules

to the context manager, (l) learned rules (m) transaction for collaboration with CoCA core,

(n) rule and policy data from rule capture interface.

4.6.3 HCoM components

HCoM consists of; RCDB, context-onto, context selector, context filter, collaboration

manager, context manager and event notice handler, interfaces and data repositories.

Description of these components is given as follows:

Context Filter

Context Filter receives a new context instance data that may be captured from hardware

or software sensors and then validates and creates context log from which copy of static

context instances are selected and added to the RCDB for future use. Context log is

recreated every time we initialize the system and it populates new context data, both static

and dynamic, into context-onto. In parallel, it also sends a context event notice to the CoCA

service.

Figure 4.11 shows a pseudo-code of a context filter algorithm. This algorithm is

activated any time the system is running so as to filter and decide if the context is useful

depending on its reliability factor (lines 9-17). It also checks if the context is of static

category (lines 19-22) that may need to be stored for future use or simply used for one time

use. This can be decided based on the predicate used to describe the context. For example,

context data defined using predicates like ownedBy are static and needs to be stored in the

RCDB for future reference while those defined by predicates like locatedIn are just for one

time use and may not need to be stored. Both category of context are sent to Context-Onto

(line 23) for aggregation with existing reasoning resources. This algorithm also sends (line

24) a trigger message to the underlying core context-aware service (in this case CoCA) for

further reasoning and proactive action.

4.6 HCoM: Hybrid context management model

117

1. While (System_Is_Running)
2. {
3. newContext=null
4. ContextBlock=new ContextClass()//context and all related data
5. repeate until newContext!=null
6. {
7. newContext=ContextBlock.getNewContext()
8. }
9. reliabilityFactor=0
10. if (ContextBlock.hasReliableSource()
11. {
12. reliabilityFactor=1
13. }else
14. {
15. reliabilityFactor=ContextBlock.estimateSourceRe liability()
16. }
17. if (reliabilityFactor> ContextBlock.reliabilityTh ereshold())
18. {
19. if (ContextBlock.hasStaticCategory())
20. {
21. ContextBlock.addContextToRCDB()
22. }
23. ContextBlock.addContextToContextOnto()
24. ContextBlock.sendNoticeToCoCA()
25. }else
26. {
27. ContextBlock.inValidContextError()
28. }
29. }

Figure 4-11: Context Filter Algorithm

Context Selector

Context selector uses historic and current user information, devices available,

institutional policies etc. to select and load only part of the context data from the repository

into the reasoning space. Loading only relevant data minimizes the reasoning search space

and reduces the unnecessary overloading of the reasoner to improve the overall efficiency of

the reasoning process. It helps to overcome limitations of lack of scalability of most

reasoning systems.

Rules and Policy

Rules in CoCA come from three different sources; rules defined by user, rules derived

from organizational policies and rules derived from history data of past decisions using rule-

mining module. Rule-mining module uses datamining tools [Hand01] to extracts useful rules

from history of decisions and actions. It enhances self-governing and proactivity features of

the system. For example, datamining tools can be used to learn the contexts under which a g

student switches the ringing modes of his/her telephone. This means that the rules specified

 Context Management: The HCoM Model

118

above are to be derived by the system itself. Such rules are dynamic in the sense that their

quality improves with time.

This is analogous to a “human assistant” assigned to help the student to change the

phone-ringing mode. If, for example, a human assistant is given orders like “now switch to

X mode!”, “now to Z!”, “now again to X!”, “now to Y!” etc. while moving around with the

student, the assistant can do some of these switching by himself after one week and with

more accuracy after two or three weeks. Similarly, the rule-mining module is responsible to

learn and propose users’ wishes using the historical data. Such autonomous decision and

action support helps the user not to be worried about the pervasive world routines.

Context-Onto

Context-Onto is created from the generic and domain layers of the EHRAM conceptual

model and serves as an ontology repository. It consists of three basic components: ontology

schema, static context data and dynamic context data. Ontology schema in HCoM

represents concept hierarchies, concept relations, axioms and metadata information that

represent knowledge in both generic and application domain. Static context is a context data

that is relatively permanent and used as a base of the reasoning process. Dynamic context is

the context that changes frequently and it is used as a source for both reasoning and action-

triggering in a context-aware service.

RCDB

RCDB is created from the static context data of the EHRAM conceptual model using the

mapping steps described in the relational context modeling section. This data is updated

with new static context data that is captured during the run time. RCDB can be stored using

any standard database management system. In our case, we use MySQL as a backend to

store our context database and its schema.

Context Manager and Context Event

Context manager aggregates and sends the necessary reasoning resources from the

HCoM model to the RAID-Action engine in CoCA in a push fashion each time a new

context is acquired. This is accomplished based on the trigger information in the context

event notice that is created by the context filter module when a new and valid context is

captured.

4.6 HCoM: Hybrid context management model

119

Collaboration Manager

Based on decisions from the context selector, if relevant data in the concerned device is

not sufficient, collaboration manager initiates neighborhood based context exchange

between nearby peer devices. This module uses the principle of virtual network overlay that

uses the [JXTA07] peer-to-peer protocol. Detailed specification about this module is given

under section 5.6.

Interfaces

Stand for interfaces in HCoM: interface to capturing tools and interface to CoCA

services. They are means through which resources are communicated to and from the

model.

4.6.4 HCoM and the selection of appropriate context entit ies

A reasoning space is a search space from which the right set of information is extracted

to perform reasoning and inferences. A search space on the other hand is a set of all

possible solutions to a problem [Luger05]. Uninformed search algorithms use the intuitive

method of searching through the search space, whereas informed search algorithms use

heuristic functions to apply knowledge about the structure of the search space to try to

reduce the amount of time spent on searching.

Many standard searching algorithms exist to look for the right solution in a search space

[Burke05]. Among these are: list search algorithms, tree search algorithms and graph search

algorithms. Examples of list search algorithms include: linear search, binary search and hash

table search. Examples of tree search algorithms include breadth-first search, depth-first

search, iterative-deepening search, depth-limited search, bidirectional search and uniform-

cost search. Graph search algorithms can be seen as extensions to tree search algorithms and

they exist in the form of graph traversal algorithms such as Dijkstra's algorithm, Kruskal's

algorithm, the nearest neighbour algorithm, and Prim's algorithm.

Informed search uses a heuristic that is specific to the problem as a guide. To account for

this, many applied fields of artificial intelligence like game playing (chess game tree, for

example) use search algorithms like search tree pruning, mini-max algorithm and alpha-beta

pruning.

 Context Management: The HCoM Model

120

As indicated in [Silva94] and SCOPES [Ouksel03], search space pruning facilitates an

incremental construction of context knowledge for semantic reasoning. In HCoM, we use

this principle of pruning to limit the amount of context data in the reasoning space so as to

improve the performance of the context-aware service in CoCA.

The entire set of context data in the HCoM model is virtually organized into the

EHRAM graph. The EHRAM graph consists of the hierarchical tree of context entities and

their corresponding relations, axioms and metadata. We therefore use pruning techniques on

the hierarchical tree of context entities in the EHRAM graph to minimize the size of the

CoCA reasoning space.

4.6.4.1 Heuristics selection by example

The heuristics for pruning in HCoM come from three basic sources: explicit information

given by the user during system initialization, entities sensed from the environment during

the initialization and history data. History data are used to draw new sets of relevant entities

based on entities from the other two sources.

The learning process of the prediction module is done offline by capable devices

(devices that have sufficient processing and storage capacities and may exist in the form of

PCs, Laptops, etc.) using prediction techniques like decision-tree or other datamining tools.

The input in to the prediction module is the history data collected over time on entities

participating in the process. The output from the module is a prediction model that, from an

existing real-time set of entities and actions, predicts the next action (with

probability/accuracy value specified). Such prediction model, in a PMML format for

example, is made available for loading from the capable devices. The selector module uses

the prediction model to assign a numerical score to each entity and class of entities. This

score is used to determine whether an entity or an entity class is relevant or not. The

probability threshold for selection can be set based on users’ priority (selection time or

accuracy of selection or both).

Let us use Mr. Bob’s situation below to demonstrate this principle (example taken from

the PiCASO scenario chapter 6). If an instance of an HCoM based service is initialized by a

user Bob on his hand held PDA at nine o’clock on Monday morning while walking in a

corridor of a building where Classrooms and a Library are located. Assume that, in a

context data repository we have the following two categories of information: (1)

4.6 HCoM: Hybrid context management model

121

Information about Classrooms and courses that are scheduled in them, professors lecturing

the courses, students attending the courses, etc. (2) Information about different rooms in the

Library and other library related services, devices, service personnel, etc.

We will now demonstrate how the selector/pruning module works to decide if

information about the Classrooms, the Library, both or none is to be loaded into the

reasoner space of Mr. Bob’s world. This means, given the situation in the example, what

would Bob do next? Is he going to the Library? Is he going to a Lecture_hall? Is he going to

both places one after the other? Or is he going somewhere else? The prediction module uses

the history data about Bob and his usual habit on Monday mornings after passing by the

corridor. Steps for demonstrating such predictions are given in Figure 4.12.

//P is conditional probability function.

//T is Threshold probability for sele ction that is obtained from

the default threshold of the application, from the default

threshold of the user or from the interface as a va lue

entered by the user during HCoM initialization.

Calculate P 1 = P([Bob, Classrooms, 9:00AM, Monday] | [PDA_01,

Bob, Corridor_01, 9:00AM, Monday])

Calculate P 2 = P([Bob, Library, 9:00AM, Monday] | [PDA_01, Bob,

Corridor_01, 9:00AM, Monday])

If P 1 < T prune Classrooms from the hierarchy otherwise collect

Classrooms and its sub-entities as relevant.

If P 2 < T prune Library from the hierarchy otherwise coll ect

library and its sub-entities as relevant.

Figure 4-12:Steps in prediction

Using the above steps and assuming that most of the Monday mornings (80% of the time

=> P1=0.80), Bob activates the service on his PDA while walking in a corridor before he

goes to the Classrooms. On the other hand it is very rare that Bob goes to the Library on

Monday mornings after passing by this corridor (rare means like 15% => P2=0.15).

Assuming also his default probability threshold value as 0.75, the prediction module, then,

decides to load the Classrooms node and prunes the Library node from the hierarchy. A

portion of the pruning process is shown in Figure 4.13. The figure shows the context entity

tree in the context entity graph that has person, activity, location, class, student, classroom,

 Context Management: The HCoM Model

122

and library as context entity classes. It also shows entity instances like Bob, AmphiRoom1,

etc. and some relations like attendClass, reservedFor, etc. Values of P indicated in the

graph are used to determine the pruning point indicated in the graph.

Figure 4-13: A pruning graph showing a portion of the context data space

A probability threshold value of 1 reduces the number of relevant entities. This

guarantees the fastest response time but less accurate decisions. On the other hand, a

probability threshold value of 0 loads all context entities as relevant. This guarantees the

maximum possible accuracy but the worst response time. GCoM is an example of the case

when threshold value is 0. This means applying selection/pruning on GCoM has no

significance.

4.6.4.2 Selection/pruning algorithm

We will now develop the concept of selection/pruning from the context data space into a

more generalized solution represented as a formalized algorithm. Figure 4.14 shows the

algorithm for pruning non relevant or selecting relevant context entities (leaf nodes) and

entity classes (intermediate nodes) in the hierarchy of context entities. In this algorithm,

predictions and estimations are calculated based on the history information using prediction

tools like decision-tree. The principle is similar to what we have shown in Mr. Bob’s

example above.

Lines 10-12 in the algorithm collect entities that are identified at the initialization stage

of HCoM. In Mr Bob’s example, Bob himself, his PDA and the Corridor in which he is

located are what we call identified entities. Lines 13-18 collect user initiated data from the

4.6 HCoM: Hybrid context management model

123

user interface. These are optional data where users can enter or select list of entities of their

interest depending on their intension. Lines 17 and 20 are about the threshold value that can

either be set by the user through the user interface or estimated based on the initially

identified or specified entities.

1.
2.
3.
4.
5.
6.
7.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

 //Algorithm for pruning non relevant entities (selecting relevant entities)
Input: T (set of all entities in the EHRAM hierarchy graph)

Ε1 (set of entities identified at the time of initialization)
E2 (set of entities specified at the time of initialization)
getProbablity() (a function to predict the probability of occurrence based on history data)
getTH(), estimateTH() (functions that set threshold value)

Output: S (set of relevant entities selected from the set T) => (S ⊆ T)

Let τ ← 0 (threshold probability for selection of entity, value between 0 and 1 inclusive)
Let S1, S2, S3, S4, S5, S’, SS ← ∅
Let δ ← DefaultDepth // Depth of search space for searching related entities (δ>=1)
For every εi ∈ E1 do

 S1 ← S1 ∪ {εi}
End do
If (user has preferences)

For every εi ∈ E2 do
 S2 ← S2 ∪ {εi}

End do
τ=getUserTH() // user specified threshold cf. Fig. 4.12

End if
 S3 ← S1 ∪ S2

If τ=0 then τ = getApplicationTH() // default user threshold cf. Fig. 4.12
If τ=0 then τ = getDefaultTH() // default application threshold cf. Fig. 4.12
For every εi ∈ (T \S3) do

 ρ←getProbability(εi, S3) // conditional probability Fig. 4.12
If (ρ ≥ τ)

 S4 ← S4 ∪ {εi}
End if

End Do
SS ← S3 ∪ S4

S←SS
Depth←1
Repeat

For every λi ∈ SS do // SPARQL/SQL
 S’ ← S’ ∪ {θi | hasRelation (λi, θi)}
 S’ ← S’ ∪ {θj | hasRelation (θj, λi)}

End do
S ← S ∪ S’
SS ← S’
S’ ← ∅’
Depth++

Until Depth>δ
Return S

Figure 4-14: Context selection/pruning algorithm

 Context Management: The HCoM Model

124

In Mr. Bob’s demonstration example, the value 0.75 that is compared against the

prediction probability 0.8 to select Classrooms stands for a threshold value. Lines 21-25

check, for every entity not already selected as relevant, whether it is relevant or not based on

its prediction probability and the threshold value. In Mr Bob’s example, Classrooms is an

example of the selected entity class whereas Library is an example of a pruned node. Lines

27-39 collect all entities that have relation with entities that are already identified as

relevant. The depth up to which the search for entities that have relations with entities that

themselves are selected as related entities is determined by the repeat loop that starts at line

30. This loop depends on default-depth value that needs to be specified depending on the

characteristics of the application domain. In our example, entities like professor, course and

student have direct relation with Classrooms. Offices of the professors, designers of the

courses, etc., on the other hand, are related to Classrooms only indirectly. All collected

entity instances and entity classes are put in a set S as an output parameter for further

processing and reasoning on the context data in the reasoning space.

4.6.4.3 Performance issues in the selection process

Context entities are parameters from which the contents of the reasoning space (context

data) are defined. Names like Device, Student, Bob, Library, PDA_Bob and Room_306 are

context entities from which context data like (Bob owns PDA_Bob) or (Student locatedIn

Library) are defined. With our algorithm, given the whole set of context data Tc= {c1, c2,

ct}, pruning inappropriate context data from Tc, we get the set of selected context data

Sc={c1, c2, cs}. The two measures of performance of our algorithm are the accuracy (quality)

of reasoning and the response time (speed). Given the set of ideally appropriate context data

as Ac= (c1, c2, ca), then theese performance values depend on the difference between the sets

Ac and Sc.

} optimalspeedandlowQualityP
Q ⇒

∅≠
∅≡

} lowspeedandoptimalQualityP
Q ⇒

∅≡
∅≠

} optimalqualityandspeedBothP
Q ⇒

∅≡
∅≡

} lowspeedandqualityBothP
Q ⇒

∅≠
∅≠

{ thencc

cc

SAP
ASQGiven

\
\

≡
≡

The cardinalities of the sets P and Q are indicators for the quality and speed

performances of our hybrid reasoning process. The smaller the value of |P| is the better the

quality performance of the reasoning process and vice versa. On the other hand the smaller

4.6 HCoM: Hybrid context management model

125

the value of |Q| is the better the speed performance of the reasoning process and vice versa.

Assuming that a given reasoning process always requires a proper subset of the total context

data, i.e. Ac ⊂ Tc is always true, then the worst speed loss is when Tc≡ Sc, but this, on the

other hand, guarantees optimal quality because all available information is used in the

reasoning process. An example of a model with optimal quality in terms of loading

complete data into the reasoner but the worst performance speed is our GCoM model.

In order to improve both quality and speed, the selection (pruning) algorithm must be

selected in such a way that the values of both |P| and |Q| are nearing zero. In real terms, it

means that the performed selection/pruning matches with the users’ intension. This on the

other hand depends on the prediction module and how reliable the history data - or the

experience - is. This is just like in human being where, under normal condition, experiences

improve performances both in terms of quality and speed.

Figure 4-15: HCoM process flow

A practical example of this concept of how pruning can reduce the size of context data in

the reasoning space and improve response time can be described as follows (using

demonstration data from the PiCASO scenario chapter 6). In a campus scenario, for

example, context data loaded for a particular student may contain information about

students, devices, courses, professors, libraries and class rooms. Using our pruning

)(optimalisqualityPSAST cccc ∅≡⇒⊆⇒≡

 Context Management: The HCoM Model

126

algorithm we can perform removal of less relevant data from the entire reasoning space. For

example, courses that the student is not taking and professors of those courses can be

pruned from the reasoning space. Similarly if the immediate intension of the student is to

attend a class, all branches in the hierarchy that concern the Library can be pruned. This

leads to an improved performance demonstrated in the evaluation section of chapter 6.

Figure 4.15 shows the HCoM system process flow diagram running from the initial

setup up to the final execution and data delivery. Column wise partitions show the four

states: setup, configuration, initialization and runtime. The box “Get Relevant Context

Instances” in the HCoM initialization partition is where our pruning algorithm is executed.

In this same partition, the query “Is context data sufficient?” is executed to check if there is

some incomplete or inconsistent information about entities and relations. If the answer is no,

it may need peer collaboration to get more information before proceeding to decision.

For example, if a device is located in the vicinity but its owner is not identified, this calls

the “Ask Peer” module. Row wise partitions on the other hand show category of activities;

creating ontology, creating context database and creating aggregated context model for

delivery to the core context-aware service for reasoning and decisions. The aggregation

partition is where our pruning algorithm is executed in order to load only relevant data for

delivery to the core service.

4.7 Summary

In this chapter, we have presented our semantically rich novel approach for context

management modeling. It uses the hybrid of ontology and database principles for modeling

the management of both context data and context semantics. The important aspect of this

approach is that in addition to separate processing of context data and context knowledge,

selective loading of context data into the reasoner space ensures scalability.

Table 4-4: HCoM/EHRAM and appropriateness of modeling approaches

Approaches

Requirements Markup
Scheme

Graphical
models

OO
models

Logic
based

Ontology
(GCoM..)

Hybrid
(HCoM)

Distributed
composition

+ - ++ ++ ++ ++

Partial
validation

++ - + - ++ ++

Quality of
information

- + + - + +

4.7 Summary

127

Incompletenes
s/ambiguity

- - + - + +

Level of
formality

+ + + ++ ++ ++

Applicability ++ + + - + ++

(Key: ++ Comprehensive + Partial - Limite d or none)

EHRAM is a conceptual context representation meta-model and HCoM is a hybrid

model that uses components of EHRAM in ontology and relational schema. The ontology

part represents the semantics aspect of the context data and the relational schema represents

the context data itself.

HCoM model is hybrid and this means that we have all the grounds to claim HCoM

model inherits all the important features from ontology, graphical, markup and relational

modeling approaches. Hence, HCoM model responds best to the requirements [Strang04] of

the context modeling approaches presented in section 2.2, distributed composition, partial

validation, richness and quality of information, incompleteness and ambiguity, level of

formality, and applicability to existing environments. This is presented in Table 4.4.

Chapter 5 COLLABORATIVE CONTEXT-
AWARE SERVICES: THE COCA PLATFORM

5.1 Overview on context awareness

In order to advance the operations of its functionalities, a context-aware system must be

able to mimic human ability to recognize and exploit implicit information in the

environment. Although identifying and deducing a human activity is a challenge, it is

critical that context-aware applications should operate by conveying the appropriate

information to the right place at the right time by inferring the user’s intention. To

accomplish this objective, a context-aware system must gather information from the

environment or the user’s situation, translate this information into the appropriate format,

and combine context information to generate a higher context, take action based on the

context information and make the information accessible to other applications and the

neighborhood. The management model should handle context in a reusable manner to

permit context from one source to be exploited by many distinct applications and devices in

the neighborhood space that perform a variety of tasks.

This chapter presents our neighborhood based collaborative context-aware service

platform (CoCA) that uses HCoM/EHRAM model as its basic data source. The role of

collaborative computing in the CoCA neighborhood space is to share computing resources

like context, rules, ontology, processor, memory, etc. to solve computing problems to

provide comprehensive context-aware service, which would otherwise be difficult and

sometimes impossible for a single pervasive device to solve. Among the basic requirements

for collaborative computing between CoCA peers in the neighborhood space is the ability to

self-organize into peer groups, discover each other and each other’s services and resources.

Sensors and IP-cameras, for example, track absolute and relative positions of mobile

devices and humans involved and advertise this information for the neighbors (or peers) to

use. Under some setting, mobile devices themselves may need to detect their contexts.

 Collaborative Context-Aware Services: The CoCA Platform

130

5.2 Acquisition of context data: Example on indoor positioning

Some context information can be provided to the context-aware system explicitly, such

as a user’s name or age; other context information can be obtained using sensors. Many

types of sensor are already commonly in existence and can provide primitive physical

information such as light, heat and pressure readings. Other types of context such as facial

recognition depend on simple sensors such as cameras, but require considerable processing

such as image recognition in order to make use of the information obtained. Location and

identity are the most frequently sensed pieces of context. Active Badges [Want92] by

Olivetti and AT&T emit infrared signals, which give a rough location and ID. Optical

systems for context determination are also possible and research is underway in the areas of

optical tracking and motion detection, stereo and 3D reconstruction and object recognition.

Location is an important element of context information. Many different approaches have

been taken to determining the location of agents within a context-aware system: GPS,

infrared and radio signals have all been explored. In our work, we have investigated how a

measure of signal strength from a general purpose WiFi (IEEE 802.11) [WiFi07] access

point is used to detect locations using small computing devices. A summary of this work is

shown as follows.

As part of the project PerSE (Pervasive Service Environment) [Gripay06] at LIRIS

laboratory, INSA de Lyon, we have developed WiFi based system for capturing indoor

locations. PerSE is a middleware that supports the interaction of independent and

collaborating services to perform an intended action. As indicated in our work [Scuturici06],

our indoor location tracker detects a room in a building where the holder of a mobile device

is located. Like in any prediction process, modeling localization involves two basic

activities: learning and prediction. During the learning phase, data about the real situation

are collected, classified, and interpreted into knowledge. The prediction phase then uses this

knowledge for location prediction based on the real-time data values. We plan our work in

such a way that during the learning phase, a person holding a PDA moves around the rooms

and other spaces in the building to capture the signal strength. All recorded data are

associated with literal location names like room numbers. We have developed a WiFi-

Spotter program that tracks received signal strength and then keep the record on a file for

further analysis.

5.2 Acquisition of context data: Example on indoor positioning

131

Such recorded data are further calibrated for variations that may happen due to the type

of the tracking devices or other environmental influences. We have then planned a further

step of processing for data and pattern classification using a datamining tool and a decision

tree model. The result from this process is our working model that can later be used for real-

time location detection. The model is represented in the Predictive Model Mark-up

Language (PMML) format. Our positioning module (WiFi-Spotter) uses this model to

predict locations on real-time bases. Figure 5.1 shows the architecture of our learning and

prediction process. It also indicates the link from this prediction process to a context

acquisition service.

Data
Calibration and

Treatment

Data Mining

(Decision Tree)

Signal
Tracking

Data Calibration

Prediction

Prediction Rules
(PMML Format)

Off-line
Learning Phase

Signal

Tracking

Real-time
Prediction Phase

Distributed on
Capable Peers

Context-Aware
Service

Predicted
Location

(Room number
as a

Context Data)

Calibration and
Treatment Rules

Figure 5-1: Architecture of our learning and prediction model

To provide positioning support, as shown on the architecture of the model, we have

indicated the learning phase (off-line) and the prediction phase (real-time). During the

learning phase, signal strength at selected locations of the rooms in the building including

meeting halls, offices, common rooms, printing rooms and corridors are collected and

classified for pattern identification and learning. The prediction or real-time phase uses

patterns identified in the learning phase to detect location for the real-time values of signal

strength.

5.2.1 Learning phase

The learning phase involves mobile clients that scan a list of radio frequency signal

strength values from all n known access points at each tracking location. For each tracked

point k we have a vector with the signal strength values and a label corresponding to the

room/office where the point is situated:

()k
n
kkk roomapapap ,,...,, 21

 Collaborative Context-Aware Services: The CoCA Platform

132

The signal strength values are situated between -90 and -40. The number of APs that can

be seen varies with the location. Corresponding to the data collected from the tracked points

we build an attribute-value table. The attributes of the table corresponds to the access points

(identified by the MAC address) and to the room/office label. We replace the missing values

(corresponding to an AP not seen in a location) with the value -100. An example of a

portion of the data is presented in Table 5.1.

Table 5-1: Sample measures of signal strength by room and access point

Room _5A:40:0D:C6 _5A:40:0D:D7 _5A:10:0D:C6 _5A:10: 0D:D7

501.317 -60 -60 -60 -57

501.317 -60 -60 -60 -57

501.317 -68 -63 -59 -65

501.319 -60 -62 -64 -100

501.319 -57 -57 -60 -100

501.319 -57 -66 -57 -100

We use a decision tree method for data classification and learning. Decision trees are

popular knowledge representation, classification and learning tools as they are easy to use

and interpret [9]. In decision trees, learned patterns are represented as a tree where nodes in

the tree embody decisions based on the values of attributes and the leaves of the tree provide

predictions. A new situation can be classified simply by tracing a path from the root of the

tree to a leaf, with the path taken being determined by the input attribute values. These input

values in our case are real-time array of signal strength values received from the APs.

5.2.2 Prediction phase

Among the number of algorithms and programs that implement decision tree, we used

MCubiX [MCubiX07]. We found MCubiX to be well-structured tool whose output can be

collected, viewed and stored in different forms. Demonstration of classification of a region

into sub regions (into sub spaces for more than two dimensions) by the learning algorithm

using a simple example of two APs and three rooms under a simple decision tree with depth

two is given in Figure 5.2.

Prediction phase involves detection of the room in which a mobile client is located. The

two important input parameters for the prediction module, therefore, are decision rules

obtained from the learning phase and the real-time signal strength values collected at a

specific location. The model is stored in Predictive Model Markup Language (PMML)

format and contains the probability values of each prediction. PMML [PMML05] is an

5.2 Acquisition of context data: Example on indoor positioning

133

XML-based language, which provides a way for applications to define data mining models

and to share models between PMML compliant applications.

If Value is in this region
Predict Room-501_317

with 80% Accuracy

If Value is in this region
Predict Room-501_319

with 90% Accuracy

If Value is in this region
Predict Room-501_317

with 50% Accuracy

If Value is in this region
Predict Room-501_317

with 88% Accuracy

Figure 5-2: Effects of classification of a region into sub regions

Real-time signal strength values collected by the mobile client from the APs are given in

the form of an array. For each of the m rooms involved, our prediction module calculates

the probability that these values are observed in the room and then selects the room with the

maximum probability. Given P(Rk) as the probability that the given array of values is

observed from room Rk, an expression for room R is given by:

)()(:
1

j

m

j
kk RPMaxRPRR

=
==

5.2.3 Experimental results

We have used data from selected locations in 33 rooms of different size, from two floors

of a three-storey building. We have collected some 13,500 records of arrays of signal

strength values in all the 33 rooms, corresponding to four hours learning and calibration

phase. The collected data contains information about 100 distinct access points. Only 20 of

these access points are situated in the building. The layout of the two floors constituting our

test-bed is depicted in Figure 5.3. As the rooms in our experimental test-bed are located side

by side, knowledge about their width helps us to investigate the resolution of our detection

mechanism. The average width of the small rooms is 3m for offices and 7m for

 Collaborative Context-Aware Services: The CoCA Platform

134

amphitheaters with an overall average of 5m interval between the corresponding points of

references in the neighboring rooms. In most of the cases, it involves detecting small rooms

with intervals as small as 3m. Using the collected data as a learning dataset, we have built a

data-mining model using decision trees. The result has been tested using a cross validation

technique. The results are very encouraging with the error rate is situated below 5%,

corresponding to a 95% hit rate.

Figure 5-3: Layout of the floors used as a test-bed in our experiments.

5.3 The CoCA Service platform

A context-aware service platform in pervasive computing should aim at acquiring and

utilizing context information to provide appropriate services without user supervision. For

this purpose, we propose a neighborhood based Collaborative Context-Aware service

platform (CoCA). CoCA is aimed to be domain independent middleware that enables

application developers to use context information without the overheads of caring on how to

manage it. The reasoning engine in the platform accepts a set of aggregated context data,

rules and their semantics and changes it into concrete knowledge necessary for reasoning

and decisions. Decisions in turn are used by applications to take appropriate actions.

CoCA platform is built from five layers: capturing layer, pre-processing layer,

management modeling layer, context-aware core service, and application layer that executes

the actions. Figure 5.4 shows layered CoCA architecture.

5.3 The CoCA Service platform

135

Figure 5-4: CoCA layered architecture

Layer 1, the capturing layer, deals with data acquisition tools in the form of either

hardware or software. It involves data capturing hardware like wearable badges, sensors and

cameras. Among the software tools are our indoor location tracker discussed in earlier

section. It converts a general-purpose WiFi signal normally designed for networking into a

meaningful location name. CoCA being a platform for applications in multiple domains, the

interface is built based on APIs.

Layer 2, the pre-processing layer, is used to formalize and prepare the captured data for

further processing. It deals with a conceptual modeling of the captured data according to

context representation formalism. It performs separation of context related data into entities,

hierarchies, relationships, axioms and metadata. This allows us to organize and process the

context data and the context semantics separately. Details of activities involved in this layer

are given in the chapter about our EHRAM context representation model.

 Collaborative Context-Aware Services: The CoCA Platform

136

Layer 3, the context management modeling layer, deals with how we organize context

resources useful for reasoning. Components in this layer provide the necessary data to the

core service. Formal representation of this data can be given using the HCoM model. The

context filter filters and sends the static context data to RCDB and the dynamic context data

to the context dispatcher. Context ontology consists of domain dependant and domain

independent (generic) ontology. Context-onto and its repository are used to store and

manage the ontology. Context dispatcher manages learned and captured rules. Major works

involved in this layer are discussed in the chapter about the HCoM model.

Layer 4, the CoCA core layer, is where the final context-aware reasoning and decisions

are performed. It provides the core context-awareness service after reasoning on the

components. It consists of the RAID-Action engine (Reasoning, Aggregation, Interpretation,

Decision and Action engine) that populates the ontology with the context data and then

applies rules and axioms for reasoning and decision on the actions to be triggered.

Coordinate based location values, for example, are interpreted to street names. It also

performs aggregation by combining two or more low level contexts to one meaningful high-

level context. Aggregation of body temperature, heart rate and blood pressure of a patient

can be used to tell patient’s health condition. The RAID Action Engine being at the heart of

the service platform uses combined contexts, rules and ontology as an input.

The supplementary services in this layer consist of some CoCA elements outside the

CoCA core service. This includes services like the knowledge discovery (rule-mining)

service that adds features to enhance learning capacity of the CoCA platform, privacy and

security management service, etc. Collaboration-Manager works based on peer-to-peer

negotiation and communication protocols to get context and reasoning support. If the

resources in the current device are not sufficient for the operations, the collaboration

manager is responsible to contact the neighborhood space for the necessary support. The

neighborhood space consists of computing devices with varying capacities. Each device in

the neighborhood space is assumed to have a minimum configuration of the CoCA service

platform. When requested, each peer in the CoCA neighborhood deals with the query and

sends its response back to the source. Details about this layer will be discussed in this

chapter. Security manager looks up security and privacy policy of the identified context

entity before exchanging any resource with the entity.

5.3 The CoCA Service platform

137

Layer 5, the application layer, is the application domain dependent layer where actions

are triggered reactively or proactively. It also hosts action-triggering process depending on

the specific application domain in which the platform is used.

Figure 5-5: Component view of the CoCA platform

Detailed component view of CoCA platform is given in Figure 5.5. The upper box in the

figure indicates HCoM and its components as a data source in the CoCA platform. The

lower box indicates the core components of the CoCA platform. A flow diagram showing

data exchange among CoCA components and importable APIs is given in Figure 5.6.

 Collaborative Context-Aware Services: The CoCA Platform

138

Figure 5-6: Internal data exchange among CoCA components

5.4 RAID-Action engine in CoCA

RAID-Action engine in CoCA stands for Reasoning, Aggregation, Interpretation,

Decision and Action. RAID depends on the three basic types of data from the HCoM model

(context, ontology, rules) that are aggregated using Jena reasoner and SPARQL query tool.

Data aggregation and interpretation in the CoCA platform is done at multiple places with

different abstraction levels. First aggregation and interpretation is done by the context-filter

tool where irrelevant context are discarded. Second level aggregation and interpretation is

done by the context manager and the third and last context aggregation and interpretation is

done by the RAID-Action engine before reasoning and final decisions. Interpretation and

aggregation may involve integrating numerous contexts into one to provide a higher-level

context, thus the interpreter alters context information by raising its level of abstraction.

5.4 RAID-Action engine in CoCA

139

In our indoor location detector module discussed earlier in this chapter, it aggregates and

converts array of radio signal-strength data collected from WiFi access points at a particular

point in the building to a meaningful room name or room number.

One approach to context aggregation is to use context fusion [Chen04] that converts the

lower level context into higher-level context usable by applications. Context fusion can be

used to synthesize context from the same type of sources in order to increase the validity of

the information so that erroneous sensors or reading are detected to avoid improper

decisions by the system. Context fusion is also deemed to be the aggregation of context of

varying types from a different variety of sources to produce a context that is exploitable by

the system. This minimizes the need for the context-aware application to gather the required

context from different sources that would otherwise be obligatory because of the distributed

nature of the context-aware systems in pervasive environment. Aggregators support the

delivery of particular context to an application, by accumulating related context that the

application seeks into one logical placement. An aggregator facilitates interpretation of

context hence it will aggregate diverse context information for different requesting

applications.

Table 5-2: Sample ontology based and user defined rules

Rule Category

(?a property ?b) (?b property ?c) � (?a property ?c)
E.g. locatedIn, subClassOf, contains…
(transitive property)

(?a property1 ?b) � (?b property2 ?a)
E.g. ownerOf and OwnedBy, locatedIn and contains …
(inverse property)

(?a property ?b) � (?b property ?a)
coLocatedWith, friendOf …(symetric)

Ontology

(?device locatedIn ?location)
 (?device ownedBy ?person) � (?person locatedIn
?location)
(?student locatedIn Library)
(?student owns ?phone) � (?phone “switchMode”
“Silent”)

User
defined

Rules play an important role in the process of reasoning about contexts. Reasoning is

performed based on two reasoning sources:

• Ontology reasoning that is based on rules that are integrated in the OWL semantics,
e.g. using transitive and inverse relations.

 Collaborative Context-Aware Services: The CoCA Platform

140

• User-defined reasoning which are stated outside of OWL, e.g. if person is locatedIn
bedroom and electricLight is dim conclude the person is sleeping.

 Implicit rules are derived from the ontology and explicit rules are defined by the user

based on the specific domain of application. Table 5.2 shows an abridged form of some of

these rules grouped into two categories: ontology based and user defined rules.

5.4.1 Action Trigger

Actions are major outcomes from the CoCA services. Algorithms for action triggering in

CoCA are based on multifaceted action processing approach [Rarau05]. Multifaceted action

processing is based on decisions from CoCA-RAID and some other factors such as priority

or existence of some other actions currently triggered. It is based on the idea that an

application consists of both components that are context sensitive and components that do

not depend on the context. Context sensitive component can be seen as an item with many

facets that behaves like a switch. If the condition is true then the facet is exposed otherwise

the facet is hidden.

Figure 5-7: Principles of multifaceted action processing in CoCA

5.4 RAID-Action engine in CoCA

141

The principle of multifaceted action trigger is demonstrated in Figure 5.7. The figure

shows four blocks of the process: the source block, the mapping block, the facet block, and

the action block. Under the source block, we have three elements that demonstrate on

ontology, context and rules involved. In ontology, we have the following set of semantics

that describe meta-knowledge about the environment of the person in question.

1. Badge :subClassOf Mdevice
2. Student :subClassOf Person
3. badge01 :type Badge
4. bob :type Student
5. ownedBy :inverseOf OwnerOf
6. wornBy :inverseOf wears

Lines 1 to 4 define that a Badge as a subclass of a class Mdevice (mobile device),

Student as sub class of a class Person, badge01 as an instance of the class Badge, bob as an

instance of the class student. Lines 5 and 6 define the property invrseOf between ownedBy

and ownerOf and between wornBy and wears.

This means that while in process reasoning, they obey the inversOf axiom. For instance,

in the context definition of the source block, we have context data defined using wornBy,

i.e. “badge01: wornBy bob”. However, in the definition we only have a rule defined on the

relation wears, i.e. “Person: wears Mdevice”. The reasoner uses the inverseOf axiom to

interpreter and maps the two statements.

In the context definition, we have one static context data that holds stored information

about the relation between badge01 and bob, i.e. “badge01: wornBy bob” and one timely

context that is sensed or derived currently, i.e. “badge01: locatedIn docINSA”. It is

highlighted in the figure because this is where all the action-trigger process starts.

The rules indicate that if a badge is located somewhere then we conclude that the person

wearing the badge is located there.

[Person :wears Mdevice)
 (Mdevice :locatedIn Location)

 �(Person :locatedIn Location)]

In the mapping block, we have multifaceted action mapping (switching) policy (rules).

It shows when the type of the cellphone ringing tone is changed to ringtone type1 (e.g.

vibrating), ringtone type 2 (e.g. decent ringtone), ringtone type5 (e.g. music ringtone),

ringtone type7 (silent mode), etc.

 Collaborative Context-Aware Services: The CoCA Platform

142

[(CellPhone:ringTone Type1) <-
 (Person :locatedIn docINSA)
 (Person :owns CellPhone)]
[(CellPhone:ringTone Type2) <-
 (Person :locatedIn meetingRm1)
 (Person :owns CellPhone)]
[(CellPhone:ringTone Type5) <-
 (Person :locatedIn classRm1)
 (Person :owns CellPhone)]

The facet block is a demonstration of the multi facet (multiple faces) that represents

action types (in our case different ringtone types). Some of the faces show the presence of

more than one action which is natural like setting the ringtone of a telephone both to decent

ringtone and vibrating mode at the same time.

The action block is about the visibility of the effect of the action to the user. In the

figure, all except the face for Action1 are hidden (marked as xxx).

5.5 Proactivity in CoCA

Push and pull methods are the two options through which context-aware systems extract

the necessary context information from context sources and perform relevant action. In the

push method, context information is sent to the application in the push fashion (proactive).

This means that context information is collected before it is needed, which may result in a

better performance. The shortcoming of this approach is the consumption of resources for

gathering and disseminating context that may never be exploited by the context service. The

pull (reactive) approach on the other hand gathers only context information that is required

by the service. Naturally, pervasive context-aware systems should be proactive or push type

so as to satisfy the self-triggering property. Event based proactivity or push type service

activation is used for triggering the context-aware service in CoCA. The context filter tool

sends the context event notice to the context manager, which in turn activates the CoCA

core, indicating occurrence of the new context. Then, the CoCA core reads the new context

data, performs reasoning on the context, and suggests the action to be performed by the

application. Applications are responsible to execute the actions.

5.6 Collaboration in CoCA

Storage, processing and reasoning of context data to knowledge is highly resource

intensive while on the other hand most ubiquitous devices in the pervasive world have

scarce resources. Mobility and anytime/anywhere access requirement of pervasive users

5.6 Collaboration in CoCA

143

make the problem more challenging. To overcome this problem, we propose a collaborative

approach where devices collaborate and combine their resources towards solving the

problem. In this process, capable devices, like standard PCs, play an important role of “big”

brothers to support tiny devices like PDAs and smart phones. With the current trend of PC

availability, we can assume that, in the neighborhood space, we always have capable

devices that play this role.

JXTA as a supporting technology is a set of open protocols that allow any connected

device on the network ranging from cell phones and wireless PDAs to PCs, servers and

super computers to communicate and collaborate in a peer-to-peer manner. Figure 5.8

shows JXTA based CoCA collaboration architecture. It consists of the JXTA Core layer, the

JXTA service Layer and the application layer where the CoCA collaboration service is

placed.

Figure 5-8: CoCA collaboration architecture

The JXTA Core layer is located at the bottom of the service hierarchy. In the JXTA

Core, all the basic peer-to-peer functionality that peers can implement and use is provided.

This layer involves notions of peer groups, pipes, peer monitoring, security as well as other

functionality for discovering resources, creation of advertisement documents etc. It is

important to note that since JXTA was designed in favor of peer-to-peer networks composed

not only of PCs but also of smaller devices, the core's size has to remain as compact as

possible. Indeed a peer does not need to run a complete implementation of the JXTA

platform in order to participate in the network but only those protocols necessary for its

smooth operation.

 Collaborative Context-Aware Services: The CoCA Platform

144

The JXTA Services layer is located above the core layer. This layer contains various

services, which are implemented with calls to the JXTA Core. A JXTA service can be

viewed as a library offering certain functionality that JXTA peer-to-peer applications may

use if necessary. An example of a JXTA service is the JXTA Search system, which offers

Information Retrieval functionality to a network of peers.

The CoCA Collaboration service takes the role of a JXTA Application layer. Peer-to-

peer applications make use of only some core services. CoCA platform uses data sharing,

messaging and possibly other services depending on the purpose of collaboration among

CoCA peers. In such collaborative peer-to-peer applications, we need to support different

levels of security and resource access. Security between peers in the CoCA service

environment can be achieved by the JXTA peer security functionality in which peers

operate in a role-based trust model, in which an individual peer acts under the authority

granted to it by another trusted peer to perform a particular task. There is an ongoing PhD

research work on such trust based security management for pervasive systems in our team

[Saadi07]. We are hopping to incorporate these modules at the end.

Figure 5-9: CoCA peer collaboration and discovery principles

The role of collaboration manager in the neighborhood space of the CoCA service

platform is to share computing resources like context, rules and ontology. Among the basic

requirements for collaborative computing between CoCA peers in the neighborhood space,

5.6 Collaboration in CoCA

145

therefore, is the ability to self-organize into peer groups, discover each other and each

other’s services and resources. This principle is demonstrated in Figure 5.9. It shows how

resource discovery and peer collaboration works using JXTA based peers and rendezvous

peers. Each device in the collaboration space should have a minimum configuration of the

CoCA platform installed on it in order to participate in the collaboration.

Peer discovery gets information like identity, security level, availability, willingness to

participate in the group process, time to live (TTL), etc…of the peer. We suggest that all

such information be made available to the rendezvous peer by all peers at the time it joins

the group. For example, we can set a simple requirement that “every peer must provide its

TTL in order to take part in the peer group”. The logical step that follows peer discovery is

exchanging messages and resources by first discovering who owns what.

An algorithm for the processes involved in the CoCA collaboration manager is shown in

Figure 5.10. The algorithm represented in the form of activity diagram indicates steps

involved to discover the appropriate peer and establish a peer-to-peer connection between

the collaboration modules in the two peers according to our JXTA based architecture

discussed earlier. The diagram has five vertical activity partitions indicating the type and

category of peers involved in the collaboration process. The first partition (InttialPeer)

indicates activities involved in the peer that initiates the collaboration. The second partition

(Nearby Rendezvous peer) indicates activities involved in the rendezvous peer of the group

in which the initial peer is registered. The third partition involves activities involved in peers

within the same group with the initial peer. The fourth partition (FarRendezVous peer) is for

the activities involved in the rendezvous peer accessible by the near by rendezvous peer.

Finally, partition five represents activities in peers that belong to other groups.

Figure 5.11 shows a use case of a JXTA based discovery protocol to handle messaging

and queries during CoCA collaboration. The demonstration example has six peers and three

rendezvous peers organized into three groups. For this demonstration, at a given particular

time, the first group has three peers joined to participate in the collaboration, the second

group two peers and the third group one peer. Each group has one elected rendezvous peer.

The use case assumes that the required resource is found in Peer P22. The process is

demonstrated in the steps described below:

(1) Peer P11 sends a query message (messaging) “Who knows about smart phone

SP001?” to a rendezvous peer RP10. (P11�RP10).

 Collaborative Context-Aware Services: The CoCA Platform

146

(2) RP10 checks in its repository. On unsuccessful check, re-routes the query to the

peers within the group. (RP10�P12, RP10�P13).

(3) P12 and P13 respond that they do not know SP001. (P12�RP10, P13�RP10).

(4) RP10 again re-routes the query to another rendezvous peer RP20. (RP10�RP20).

(5) RP20 checks in its repository and, on unsuccessful check, re-routes the query to

the peers in its group. (RP20�P21, RP20�P22).

(6) P21 responds that it does not know SP001. (P21� RP20).

P22 responds that it knows about SP001. (P22�P20).

(7) RP20 passes over the good news to RP10 with all the necessary information to get

connected with P22 for more information. (RP20�RP10).

(8) RP10 passes over all the information to P11. (RP10�P11).

(9) P11 connects with P22 for (data sharing) the details about SP001. (P11�P22).

 If for example P11 detects a smart phone SP001 in a meeting room and wants to

decide the person holding this phone so as to use this information to conclude the

presence of the person in the meeting, it may send the following SPARQL Query to

P22: (CoCA:SP001 CoCA:ownedBY ?Person).

(10) P22 responds what it knows about SP001 to P11. (P22�P11).

 The response by P22 to the query from P11 can be presented as (Person=Bob).

A sample of Jxta based code and data segment for context advertisement and discovery

used in CoCA/HCoM is shown in Figure 5.12. Context advertisement data comes from

different sources. Among these is our location prediction service detailed in [Scuturici06].

This code segment shows three parts: Context advertisement from lines 1 to 6, context

discovery from lines 7 to 17 and sample format of advertised data lines 18 to 23.

5.6 Collaboration in CoCA

147

Figure 5-10: CoCA collaboration algorithm

 Figure 5-11: CoCA collaboration process

 Collaborative Context-Aware Services: The CoCA Platform

148

/ / Pub l ish ing and adver t is ing context da ta
1 Locat ioAdver t i sement adv = new

Locat ionAdver t isement() ;
2 adv.set ID(myID);
3 adv.setName("PDA001") ;
4 adv.setOwner("Bob") ;
5 adv.setLocat ion("DocINSA") ;
6 discoveryServ ice .pub l ish(adv , D iscoveryServ ice.ADV,

l i feT ime, expT ime);
/ /Retr ieve by d iscover ing contex t adver t i sements
7 discoveryServ ice .ge tRemoteAdver t i sements (nu l l ,
8 DiscoveryServ ice .ADV,"Name" , "PDA001*") ;
9 Enumera t ion advs =

d iscoveryServ ice .ge tLocalAdver t isements (
10 DiscoveryServ ice .ADV, "Name" , "PDA001*") ;
11 Locat ionAdver t isement adv = nu l l ;
12 whi le (advs .hasMoreElements ()) {
13 adv = (Locat ionAdver t i sement) advs .nextE lement() ;
14 Str ing ownedBy = adv .ge tOwner() ;
15 Str ing loca ted In = adv .ge tLocat ion() ;
16 break ;
17 }

/ /Sample adver t isement f i le that conta ins context d a ta
18 <jxta :Locat ionAdver t isement

xmlns : jx ta="h t tp : / / j x ta .o rg">
19 <ID> urn : jx ta :uu id 59616261646162614A7874615… … </ I D>
20 <Name> PDA001 </Name>
21 <Owner> Bob < /Owner>
22 <Locat ion> DocINSA</Locat ion>
23 </ jx ta: Locat ionAdvert i sement>

Figure 5-12: Sample code and data for advertisement and discovery

5.7 Summary

CoCA is a collaborative middleware platform that is based on HCoM model. Evaluation

of CoCA with respect to the context-aware system requirements presented in chapter 2 of is

given as follows:

• Support for heterogeneity: CoCA supports heterogeneity. Its architecture is designed
to work with devices of any sort and application of any domain. The semantic
ontology used in the CoCA reasoning can also be extended to enhance
interoperability so as to improve heterogeneity.

• Support for mobility: The core communication principle in the CoCA platform is
based on Jxta protocol. Jxta protocols provide mobile peer-to-peer computing support
[Maibaum02] and CoCA platform is, therefore, well suited for mobility.

• Scalability: The use of hybrid approach in the HCoM model ensures scalability of the
CoCA platform by limiting the amount of context data in the reasoning space. This
principle remains the same for any change in participating number of peers. After the
partner for the data source is identified, a direct link is established between the initial

5.7 Summary

149

peer and the partner peer. As presented in chapter 6, experimental result on scalability
of the CoCA platform using PiCASO confirms to this.

• Support for privacy: There are works remaining to be done on privacy issue in CoCA
platform. For the time being, collaboration is based on voluntary and trust.

• Traceability and control: Every action in CoCA platform is stored in the event log for
any control and future reference.

Table 5-3: Comparison of performance of CoCA platform with other relatede works

Requirement by ContextToolkit CFN ConFab Gaia RCSM CoCA

Heterogeneity + - + + + +

Mobility + ++ - + - ++

Scalability - ++ - - - ++

Privacy - - ++ - - -

Traceability - - + - - ++

Tolerance - ++ - + - +

Deployment - + - + + -

Decision - - - - - ++

(Key: ++ Comprehensive + Partial - Limited or none)

• Tolerance for component failures: CoCA collaboration algorithms are dynamic in the
sense that, if a partner with which the initial peer created a link fails for some reason,
the other candidate partner returned during the initial partner search over takes the
collaboration.

• Ease of deployment and configuration: The design of CoCA platform allows an easy
deployment and configuration of the middleware to be used in any domain of
application. From the implementation point of view, there is some work remaining to
make CoCA deployable in the hand held computing devices.

• Decision support: Decision support in CoCA platform is provided in a proactive or
reactive fashion. It provides a decision support and action trigger functionality to
minimize user intervention.

Based on these requirements, Table 5.3 shows comparison of CoCA platform to other

related works. This summary shows that CoCA is a promising middleware platform for the

development of context-aware applications in pervasive environment.

Chapter 6 IMPLEMENTATION AND
DISCUSSION

6.1 Implementation plan

In this section, we present implementation plan for the demonstration version of the

CoCA platform and the HCOM model. Figure 6.1 shows flow of processes in the overall

states of the CoCA platform development starting from the initial context acquisition state

up to the final action trigger state. Column wise partitions (blocks) in the diagram show four

major stages in the CoCA platform development process: context capturing (Interface),

context representation modeling (EHRAM Model), context processing and management

modeling (HCoM Model) and context-aware core service (CoCA Core). These partitions

correspond with the first four layers (layers 1 to 4) of our layered CoCA architecture.

Figure 6-1: Generalized CoCA implementation algorithm

Interface Partition is a collection of hardware and software tools for capturing context

data and related decision support rules and pass it to the next component for proper

representation. In the diagram, this block consists of context-capture, user-interface and

rule-capture with a fork and a join data flow connections indicating states of activities.

 Implementation and Discussion

152

EHRAM Model Partition is a collection of data representation tools that exist in the form

of EHRAM model that is based on ontology structure and relational schema. In the diagram,

this block consists of Build-Generic-onto, Build-Dynamic-onto, and Store-Static-context

with a fork and a join flow connections indicating states of activities.

HCoM Model Partition is a collection of the data management tools in our hybrid

context management model (HCoM). It is based on the semantic mapping and aggregation

of context data, rules and ontology. Retrieval of only relevant context data from the

repository into the context-onto is done in this block. The block consists of Get-Relevant-

context, Populate-Context-onto, Store-Rules and Context-Manager with number of join

connections and a decision indicating states of activities.

 CoCA Core Partition is a collection of CoCA core service tools. It performs

interpretation, aggregation, reasoning, decision and then triggers action (RAID action).

CoCA core uses the HCoM context model and a neighborhood collaboration mechanism for

devices with scarce reasoning resources. The block consists of CoCA-RAID, Call-

Collaboration, Store-Knowledge, Rule-Mining and Trigger-Action with two joins, two forks

and a decision indicating states of activities.

6.2 Implementation

Implementation of the demonstration version is intended primarily as a proof of concepts

in the CoCA/HCoM architecture. We decided to use the Java language environment because

in addition to its portability to multiplatform environment, we have open source Java

development API tools (Jena and Jxta) that facilitate implementation of the reasoning and

collaboration features of the CoCA platform. The implementation consists of approximately

2,000 lines of Java code with intensive use of numerous inherited API classes from the Jena

reasoner and the Jxta protocols.

Flexibility, modularity, expandability, and efficiency are among the issues considered

during this implementation phase of the proposed platform and context model. To achieve

this goal, we structured the classes using Java's package concept. Currently, we have one

top-level package named as CoCA with classes: CoCA_Interface, CoCA_Collaboration,

CoCA_Trigger, CoCA_RAID, CoCA_HCoM, CoCA_RCDB, CoCA_ContextOnto, and

CoCA_Capture. These components are carefully abstracted to make the system independent

of the application domain.

6.2 Implementation

153

Figure 6-2: CoCA Class Diagram

Table 6-1: Mapping layers in CoCA architecture and the implementation classes

Application Layer
(Interface) � CoCA_Interface

Interface and
data/event listeners

CoCA_Collaboration
Connect, get and or
receive data

CoCA_Trigger Trigger actions

Reasoning and
Decision Layer
(CoCA core)

�

CoCA_RAID
Reasoning, decision
and action

CoCA_HCoM
Create and initialize
memory based models Context Management

Modeling Layer
(HCoM model)

�
CoCA_RCDB

Context storage and
selective retrieval

Preprocessing
Layer (EHRAM) � CoCA_ContextOnto

Context and ontology
filtering and merging

Context Capturing
Layer (capturing
tools)

� CoCA_Capture
Context capturing
interface

CoCA Layers Implementation classes

 Implementation and Discussion

154

Figure 6.2 shows class diagram of our major implementation modules. There are two

important APIs used in this implementation: APIs from the Jena framework that supports

context reasoning and APIs from Jxta protocols that are used for management of peer

collaborations. Mapping between components of the CoCA platform architecture discussed

in chapter 5 and the list of CoCA implementation classes is given in Table 6.1.

A demonstration version of the CoCA platform is implemented and is readily available

for testing. It can be used to perform reasoning on context data from different domain of

applications. All context data that is intended for use in this platform should be organized

into the EHRAM/HCoM model. Descriptions of the CoCA package and its class hierarchies

are given in Annex II.

6.3 Use case scenarios

We use Protégé ontology editor [Protégé07] to build our ontology, MySQL database

management system [MySQL07] with its ODBC-JDBC [ODBC07] as backend data storage

for static context data, and Jena framework [Jena07] reasoning and inference tools. We also

use Jxta [JXTA07] peer-to-peer protocols for collaboration management. In subsequent

sections, we try to show how different smart pervasive scenarios are implemented under the

CoCA platform. Details of these implementation tools are discussed in chapter 2 (section

2.4). We use scenarios from three different domains: smart university campus, smart

hospital, and dynamic adaptation of computer applications. We finally show a performance

evaluation of CoCA and its components.

6.3.1 Smart campus scenario: PiCASO

In this section, we discuss the internal functions of CoCA and its RAID Action engine

by experimenting on the prototype of our architecture and its context management model,

HCoM. We use a Pervasive Campus-Aware Smart Onlooker (PiCASO) example.

PiCASO is based on the scenario of a university campus where research students and

professors are involved. Besides the scheduled regular meetings among students and

professors, informal and spontaneous meetings and discussions are important for the

advancement of their work. Discussion can take place among two or more of the researchers

depending on the relevance of their work.

6.3 Use case scenarios

155

The questions that can be raised in this scenario are: When do they make such a

meeting? How only those available can be informed about someone else’s interest to discuss

about a specific subject matter during the tea break. How can a student know that his

professor is available for the coming 30 minutes? How can a student know when his

professor is in the tearoom and is available, in his office or in the corridor passing by the

office of the student? What type of messaging method is appropriate to send such

information to a particular person located at a particular place at a particular time? If

telephone is used to accept such a message, what should its call mode be (vibrating,

ringing)? And so on.

Figure 6-3: Part of context ontology graph for PiCASO scenario

 Implementation and Discussion

156

In ontology, we have semantics about all components and related concepts. It also

defines relations between the components and the concepts. For example, a person can be

defined as an ownerOf a device and then the relation ownedBy is automatically granted to

the reverse relation because both concepts are defined, in the ontology, as being the inverse

of one another. One example of such context instance data can be given as: Bob is ownerOf

PDA001. This means Bob is ownerOf a PDA device called PDA001, from which, the

ontology reasoner can easily deduce that PDA001 is ownedBy Bob. In the GCoM model,

persistent data about static contexts (e.g. ownership relationship of persons to devices like

telephone or PDA) can be stored as profiled or static context in any standard database

format, which can then be selectively populated as context instances into the ontology

structure at runtime.

1. Ontology
2. <xml version="1.0"?>
3. <rdf:RDF …….
4. <owl:Class rdf:ID="Student">
5. <rdfs:subClassOf> <owl:Class rdf:ID="Person"/> </rdfs:subClassOf>
6.
7.

 </owl:Class>
 <owl:Class rdf:ID="Library">

7. <rdfs:subClassOf> <owl:Class rdf:about="#Location" /> </rdfs:subClassOf>
8. </owl:Class>
9. <owl:ObjectProperty rdf:ID="ownedBy">

10. <rdfs:range rdf:resource="#User"/>
11. <rdfs:domain rdf:resource="#Device"/>
12. <rdf:type rdf:resource="http://www.w3.org/.../owl #FunctionalProperty"/>
13. <owl:inverseOf> <owl:ObjectProperty rdf:ID="own erOf"/> </owl:inverseOf>
14. </owl:ObjectProperty>
15. <Student rdf:ID="Bob">
16. <ownerOf>
17. <PDA rdf:ID="PDA001">
18. <hasScreenSize
19. rdf:datatype="http://www.w3.org/2001/XMLSchema#str ing">Medium
20. </hasScreenSize>
21. </PDA>
22. </ownerOf>
23. <ownerOf rdf:resource="#Cellphone001"/>
24. </Student>
25. …...
26. </rdf:RDF>

Figure 6-4: An excerpt from the PiCASO ontology

To demonstrate context data representation in PiCASO, we use the ontology based

generic context management model GCoM and its enhanced version HCoM. The three

important data sources related to the data model are context ontology, context data and

rules. Graphical representation of part of the context ontology for the PiCASO is given in

6.3 Use case scenarios

157

Figure 6.3. An equivalent OWL representation of a part of the context ontology for PiCASO

is given in Figure 6.4.

1. //Context
2. <xml version="1.0"?>
3. <rdf:RDF …..
4.
5.
6.
7.

<Professor rdf:ID="Dave">
 <locatedIn rdf:resource="#Room01"/>
 <engagedIn rdf:resource="#FormalMeeting"/>
</Professor>

8.
9.

10.

<Student rdf:ID="Carol">
 <locatedIn rdf:resource="#ReadingRoom"/>
</Student>

11. <Student rdf:ID="Alice">
12.
13.

 <locatedIn rdf:resource="#Room03"/>
</Student>

14.
15.
16.
17.

<Professor rdf:ID="Eve">
 <locatedIn rdf:resource="#Room02"/>
 <engagedIn rdf:resource="#Browsing"/>
</Professor>

18.
19.
20.
21.

<Student rdf:ID="Bob">
 <owns rdf:resource=”#PDA001”/>
 <owns rdf:resource=”#CellPhone001”/>
</PDA>

22.
23.

<PC rdf:ID="PCAlice">
</PC>

24.
25.

<Messaging rdf:ID="MessengerService">
</Messaging>

26. …….
27. </rdf:RDF>

Figure 6-5: An excerpt from PiCASO context representation

Sensed context is to be communicated using XML/RDF-triple representation format as

indicated in Figure 6.5. Sample rules for representing explicit wishes are given in Figure

6.6. Such data are stored in a disk file that can be in any suitable format: text or any Jena

compatible database format like MySQL. After semantically combining data from all the

three sources, the reasoner can draw parameters for the actions in the PiCASO.

In this example, we use SPARQL, the RDF query language supported by the Jena

framework. SPARQL is becoming more and more accepted by the user community due to

its stronger definition and better implementations. W3C is working towards standardizing

SPARQL.

Sample SPARQL query to select the phone for which the action has to be triggered and

set its ringing tone to “Silent” mode setting can be given as:

 Implementation and Discussion

158

Query
SELECT ?phone
WHERE{
 coca:Bob coca:owns ?phone.
 ?phone coca:setRingTone coca:Silent.
}

1. //Rules
2. //Ontology based derived rules
3. [Transitive_Rule: (?a coca:locatedIn ?b)
4. (?b coca:locatedIn ?c)
5. ->(?a coca:locatedIn ?c)]
6. [Inverse_Rule: (?a coca:ownerOf ?b)
7. ->(?b coca:ownedBy ?a)] //inverse
8. …..
9. // Domain based phone management rules
10.
11.
12.

[locatedRule:(?device coca:locatedIn ?location)
 (?device coca:ownedBy ?person)
 -> (?person coca:locatedIn ?location)

13.]
14.
15.
16.

[libraryRule:(?student coca:locatedIn coca:Library)
(?student coca:owns ?phone)
 -> (?phone “setRingTone” “silent”)

17.]
18.
19.
20.
21.
22.
23.
24.
25.

[classRule:(?student coca:hasSchedule ?class)
(?class coca:isScheduledIn ?classRoom)
(?class coca:startTime ?t1)
(?class coca:endTime ?t2)
((?Student coca:locatedIn ?classRoom) coca:hasTime ?t)
(?t sys:greaterThan ?t1)(?t sys:lessThan ?t2)
(?student coca:owns ?phone)
� (?phone “switchMode” “Vibrating”)

26.]
27.
28.
29.
30.
31.
32.
33.
34.

[meetingRule:(?student coca:hasSchedule ?meeting)
(?meeting coca:scheduledIn ?meetingRoom)
(?meeting coca:startTime ?t1)
(?meeting coca:endTime ?t2)
((?student coca:locatedIn ?meetingRoom) coca:hasTim e ?t)
(?t sys:greaterThan ?t1) (?t coca:lessThan ?t2)
(?student coca:owns ?phone)
�(?phone “switchMode” “Silent”)

35.]
36.
37.
38.

xcampusRule:(?Student coca:locatedIn OutSideCampus)
(?student coca:owns ?phone)
� (?phone “switchMode” “MusicRingingTone”)

39]

Figure 6-6: An excerpt from PiCASO rule representation

Table 6-2 shows a simple trace of a library rule in the above example as demonstration

of the reasoning process. It shows an output message with parameters (CellPhone001,

setRingingTone, SilentMode) that are used in a call to a customized action trigger module.

6.3 Use case scenarios

159

In this particular case, the action is to set the ringing mode of Bob’s cellPhone to silent

mode.

Table 6-2: Trace of reasoning process using the LibraryRules

(PDA001 locatedIn
ReadingRoom)

Sensed context

=>(PDA001 locatedIn
Library)

By rules in lines 3-5, Fig. 6.6.

=>(Bob locatedIn Library) By ontology in lines 9-14 , Fig. 6.4
(inverse property owns and ownedBy
defined in the ontology), context
in lines 18-21, Fig. 6.5 and rules
in lines 10-13, Fig. 66.

=>(CellPhone001
SetRingTone silentMode)

By context in lines 18-21, Fig. 6.5
and rules in lines 14-17, Fig. 6.6.

Figure 6.7 shows a java code that put together all the major components of the CoCA

service platform for reasoning, inferences and decisions. It also indicates how SPARQL

queries are used to draw parameters for action triggering. This simple example demonstrates

how CoCA platform is used in building a context-aware service.

All input components used in our platform (contexts, ontology and rules) are not hard

coded into the system and are stored separately. This indicates that the platform can be used

in multiple domains by simply changing the inputs.

PiCASO scenario implementation involved varying number of handcrafted context

instances (200 up to 6,000) created from the combination of context entities and relations

defined in the campus domain. We have used up to 100 defined relations, 80 activity

instances, 100 device instances, 100 location instances, 3 network instances, 100 instance

of persons and 30 instances of services to generate this context data set. Such data instances

are stored in the relational context database, RCDB. Only relevant context data is then

loaded from RCDB into the reasoner space during initialization. It also use varying number

of rules (20 to 200 lines) created from domain policies and user needs. We have also used

varying lines of dynamic context instances that not only guide the reasoning process but

also trigger the reasoner proactively. Combining all these with the owl ontology schema, the

PiCASO HCoM model produces up to 9,000 context triples in the entire reasoning space.

Figure 6.8 shows sample screen shots of the CoCA SMART assistant for the PiCASO

scenario. Comparison on the effect of using varying data size in HCoM and GCoM

approaches will be given in the evaluation section of this chapter (section 6.5).

 Implementation and Discussion

160

//import APIs…

.. ..
public class CoCASupport{
 public static void main(String[] args) {

 //Section for loading and configuring CoCA model

 //Load rules

GenericRuleReasoner reasoner = new GenericRuleReaso ner((List)
 Rule.rulesFromURL("file:ForumRules.rules"));
//Load context ontology with an already selected populated context

//data and create a memory-based model ready for reasoning application

 OntModel tempModel = ModelFactory.createOntologyMo del(

 OntModelSpec.OWL_MEM_MICRO_RULE_INF,
 ModelLoader.loadModel("file:ForumOntology.owl"));
 //Combine and map rules into ontology

 InfModel cocaModel=ModelFactory.createInfModel(rea soner,tempModel);

 //Example usage
 //Section for query form tion

 //Definition of the CoCA name space

 String queryString = "PREFIX coca: <http://www.owl ” +
 “-ontologies.com/unnamed.owl#> "

 "SELECT ?phone WHERE {?phone coca:setRingTone coca :Silent.}";
 Query cocaQry = QueryFactory.create(queryString) ;

 QueryExecution qexec=QueryExecutionFactory.create(cocaQry,cocaModel) ;
 ResultSet cocaResults = qexec.execSelect() ;

 //Extract query results

 for (; cocaResults.hasNext() ;)
 {

 QuerySolution res = cocaResults.nextSolution() ;
 RDFNode phone = res.get("phone") ;
 System.out.println("Setting ringing tone of "+ ph one +“ to silent”);
 fireAction(“RingingTone”, phone,”silent”); //Modu le Call

 }
 qexec.close();

 }
}.. ..

Figure 6-7: An excerpt of code for creation and initialization of the CoCA data model

6.3 Use case scenarios

161

Triples for the relation locatedIn during Reasoning
(Example using SPARQL)

SELECT DISTINCT ?Instance ?Relation ?Value
 WHERE
 {
 ?GenericClass rdfs:subClassOf cocans:Context.
 ?DomainSubClass rdfs:subClassOf ?GenericClass.
 ?Instance rdf:type ?DomainSubClass.
 ?Instance ?Relation ?Value.
 FILTER(?Relation = cocans:locatedIn).
 }

Figure 6-8: Screen shots from the PiCASO scenario in the CoCA platform

6.3.2 Smart hospital scenario: patient monitoring and fol low-up

Consider a smart medical ward in a hospital (section 1.2) where patients, nurses and

physicians, etc. are involved. The ward is equipped with context sensor technologies in its

rooms, corridors and garden at the disposal of individuals involved. Patients admitted to the

hospital may need intensive follow up which may create staff shortage and may result in

inappropriate care to the needy ones due to overloading. A context-aware monitoring and

follow up system helps to minimize the engagement of human assistants to the less

important activities.

 Implementation and Discussion

162

Human interventions may be needed only when alerted by the system. Live multimedia

recording and transmission of an event that the system has found important may also be

used for monitoring purposes. Delivery can be made to those who are concerned after

adapting such contents to their context. Figure 6.9 shows part of the context ontology for the

hospital scenario.

Figure 6-9: Part of context ontology for the hospital scenario

The implementation of this scenario is one step towards a real application because we

have used the real world clinical concepts. The ontology of the scenario is built on top of the

medical terminologies from the OpenGALEN project [OpenGalen07]. OpenGALEN is a

not-for-profit organisation that provides downloadable open source medical terminologies

and tools. An early phase of the GALEN programme was funded by the EU (the SESAME

& OAR projects) in late 1980s. The OpenGALEN project is now a Dutch Foundation that

runs jointly by the Victoria University of Manchester in the United Kingdom and the

University of Nijmegen in The Netherlands.

6.3 Use case scenarios

163

Actors in our medical ward scenario are linked to the ontology as part of the ontology

classes or class instances. For example, medicalward and garden are sub classes of the

location class where as specific garden-name or room-number in the scenarion is the

location instance. Doctor, nurse, patient and supportstaff are examples of sub classes of the

person class where as Michel, Pascal and Ada are instances of the class person. Each

instance inherits its role and property from the immediate parent class and similarly each

class inherites properties and roles from its parenet class.

Context data and rules for patient care in the scenario like below are semantically

aggregated with the ontology for appropriate actions and decisions.

<Doctor rdf:ID="Pascal">
 <locatedIn rdf:resource="#MeetingRoom_01"/>
 <engagedIn rdf:resource="#WeeklyMeeting"/>
</Doctor>
<Patient rdf:ID="Michel">
 <locatedIn rdf:resource="#BackDoorGarden"/>
</Patient>

[EmergencyRule:

(?Patient coca:locatedIn ?loc)
(?loc rdf:type coca:Garden)
(Patient coca:hasStatus ?Status)
(?Status rdf:type coca:Emergency)
(?status coca:hasMessage ?Msg)
(?Patient coca:hasDoctor ?Doc)

�(?Msg coca:sendMessage ?Doc)]

The advantage of embedding the OpenGALEN clinical concepts into the HCoM model

extends the application of the scenario to a more complex decision support tool even for the

doctors and the nurses in their regular clinical process. Knowing about the principal clinical

procedures and concepts like pathological, anatomical and pharmaceutical semantics, CoCA

can be used for reasoning and suggestion of actions towards patient care and treatment. Both

textual and graphical representations of the extract of the ontology are given in Annex VI.

6.3.3 Adaptation scenario: adaptation of applications to context

The importance of context information in the process of content adaptation has been

well studied and demonstrated by a colleague at our research team in his PhD work

[Berhe05]. Adaptation of software applications to context is another aspect of context-aware

computing in pervasive systems. Details of the work we use here as one of the application

scenarios of the CoCA platform is given in our article [Chaari07]. For example, if a display

 Implementation and Discussion

164

unit of a device doesn’t support images, and if the user selects to view an image on this

device, the application should automatically lead the user to the textual description of the

image which means the displayImage() module in the application must be locked by the

context-aware service. In our case study, to use the context ontology to represent the

concepts in the process of adapting applications to new context situations, we have added a

new domain class (sub entity) named Application under the Service base ontology class

(entity) of context-onto in HCoM.

Figure 6-10: Example of context ontology for adaptation of application

Figure 6.10 shows the relationship between the generic context ontology part and the

application domain ontology part. This relation keeps hierarchy of context entities in our

adaptation process to describe the services of the application and the different adaptation

operators that we have defined in previous sections. In addition to the components indicated

in this figure, we have also defined other subclasses under the base ontology classes and

6.4 Demonstration on reasoning in CoCA using PiCASO

165

their relationship with one another. Under Device class, for example, we have a sub class

Terminal which possesses the hasSize property.

In general, it is up to the application designer or the user to add or remove the domain

specific classes, sub classes, domain based class properties and relationships using domain

definition interface. Adaptation rules based on changing context can also be defined by

designers or users using this interface. The context manager module is then responsible to

use the knowledge in the ontology to activate adaptation.

The adaptation processes that can be applied in a specific context situation are defined

by a combination of predicates and facts on the application domain description part and its

components (application, services and their output and input parameters). To integrate the

knowledge required for adaptation within the context ontology, rules in our application are

described using the Jena generic rule. These rules are easily transported and integrated into

OWL. The Jena parser and query engine tools give an easy interpretation and access to the

content of the OWL representation of the context ontology, rules and context data.

For example, if a display unit of a device doesn’t support images, and if the user selects

to view an image on this device, the application automatically leads the user directly to the

textual description of the image. The displayImage() service of the application is locked by

using some domain based rules.

6.4 Demonstration on reasoning in CoCA using PiCASO

Given the PiCASO ontology with its context data and some inter PiCASO-community

messaging rules, we will try to show how the occurrence of a simple location based contexts

trigger a messages dispatch (action). Figure 6.11 is a segment of PiCASO context ontology

showing the advisorOf relationship that exists among the three professors (Eve,

Professor_11, Dave) and the five students (Carol, Bob, Student_23, Alice, Student_21).

Some of the nodes in the graph show slots indicating currently existing relationships. For

example, the node for Professor Dave shows the OfferClass, advisorOf, engagedIn,

hasOffice and ownerOf relationships and their values. The term isa in the graph represents

the built in rdfs:subClassOf relationship and similarly io (instance of) represents the built

in rdf:type relationship. In the ontology, the relationships advisorOf and studentOf are

defined to be the inverse of one another. This means wherever the relationship advisorOf

exists, it also holds true for studentOf in the reverse direction.

 Implementation and Discussion

166

Figure 6-11: PiCASO context ontology showing some advisorOf relationships

Send trigger message
[InformRule1:
 (?S rdf:type pre:Student)
 (?P rdf:type pre:Professor)
 (?S pre:studentOf ?P)
 (?S pre:locatedWith ?P)
->(?S pre:hasMessageTogo

pre:ProfessorHere)
]
[InformRule3:
 (?S1 rdf:type pre:Student)
 (?S2 rdf:type pre:Student)
 (?P rdf:type pre:Professor)
 (?S1 pre:studentOf ?P)
 (?S2 pre:studentOf ?P)
 (?S1 pre:locatedWith ?S2)
 notEqual(?S1,?S2)
->(?S1 pre:hasMessageTogo

pre:ColleagueHere)
[InviteRule1:
 (?S1 rdf:type pre:Student)
 (?S2 rdf:type pre:Student)
 (?P rdf:type pre:Professor)
 (?P pre:advisorOf ?S1)
 (?P pre:advisorOf ?S2)
 (?S1 pre:engagedIn ?A1)
 (?A1 rdf:type pre:TeaBreak)
 (?S2 pre:engagedIn ?A2)
 (?A2 pre:hasScheduleType ?t)
 equal(?t,pre:relaxed)
 notEqual(?S1,?S2)
->(?S2 pre:hasMessageTogo

pre:ColleagueForTea)
]

#Set mobile ringing tone
[MobilePhoneRule1:
 (?d pre:ownedBy ?p)
 (?d rdf:type pre:PDA)
 (?p pre:locatedIn ?l)
 (?l rdf:type pre:Library)

->(?d pre:setNotificationMode
pre:SilentMode)

]
[MobilePhoneRule2:
 (?d pre:ownedBy ?p)
 (?d rdf:type pre:PDA)
 (?p pre:locatedIn ?l)
 (?l rdf:type pre:ClassRoom)

->(?d pre:setNotificationMode
pre:VibratingMode)

]
 [MobilePhoneRule3:
 (?d pre:ownedBy ?p)
 (?d rdf:type pre:PDA)
 (?p pre:locatedIn ?l)
 (?l rdf:type pre:BreakRoom)

->(?d pre:setNotificationMode
pre:MusicTone)

]
 [MobilePhoneRule4:
 (?d pre:ownedBy ?p)
 (?d rdf:type pre:PDA)
 (?p pre:locatedIn ?l)
 (?l rdf:type pre:Office)

->(?d pre:setNotificationMode
pre:RingTone)

]

Figure 6-12: Some PiCASO rules for message trigger and ringing tone

6.4 Demonstration on reasoning in CoCA using PiCASO

167

Column 1 in Figure 6.12 is about the rules that govern message triggers. If we look at

the first rule in this figure, it says “if the set of captured contexts are aggregated to give us a

new context about the presence of a student and his/her professor in the same location then

set value of MessageToGo for the student to the a message named ProfessorHere.” Context

aggregation process, for example, works by checking location of the professor and location

of the student and decide if they are located in the same place or not. The message

ProfessorHere by itself is an object in which a value, an executer module, etc. are defined.

The content of the message in this particular case is “Send to: Student --> Your professor is

here!”. We can have plenty of such application based policies or rules. Another set of rules

that we use in this demonstration is about cell phone ringing tone management, column 2 in

figure.

HCoM is then used to create a memory based reasoning model that can be queried using

the SPARQL query language for final action. As a demonstration of this concept, in this

particular example (Figure 6.13), a segment of SPARQL query (lines 9 to 12) embedded

into a java code to extract the content of hasMessageToGo. Lines 2 to 7 are standard query

headers indicating URLs for RDF, OWL, RDFS, etc. Line 8 indicates URL for the CoCA

model on which the query is applied. The rest indicates part of the code that deals with

utilization of the result from the query.

Table 6-3: Examples of new context data and the resulting set of action triggers
New context Expected action to follow from the onto logy,

rules and context data given in this demo
- Carol

engagedIn
Email

- Bob engagedIn
MorningTea

- Send to: Carol --> Your colleague invites
you for tea

- Alice
locatedIn
ReadingRoom

- Student_21
locatedIn
ReadingRoom

-Send to: Student_21 --> Your Colleague is
here
-Send to: Alice --> Your Colleague is here
-Send to: PDA_21 --> No ringing tone on
arrival of call
-Send to: PDAAlice --> No ringing tone on
arrival of call

- Bob locatedIn
AmphiRoom1

- Eve locatedIn
AmphiRoom1

Send to: Eve --> Your student is here
Send to: Bob --> Your professor is here
Send to: PDAEve --> Vibrate on arrival of call
Send to: PDABob --> Vibrate on arrival of call

 Implementation and Discussion

168

1. public String[] getActionsToGo() {
2. String queryString = ""+
3. "PREFIX rdfsyntax: <http://www.w3.org/1999/02/22-rd f-syntax-ns#> "+
4. "PREFIX xmlschema: <http://www.w3.org/2001/XMLSchem a#> "+
5. "PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema #> "+
6. "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-synt ax-ns#>"+
7. "PREFIX owl: <http://www.w3.org/2002/07/owl#> "+
8. "PREFIX coca: <http://www.cocasp.fr/forumf.owl#> "+
9. "SELECT DISTINCT ?Object ?Cntnt "+
10. "WHERE "+
11. "{ "+

11.1. "{ ?Object coca:hasMessageTogo ?Msg."+
11.2. "?Msg coca:hasContent ?Cntnt.} "+
11.3. "UNION "+
11.4. "{ ?Object coca:setNotificationMode ?Msg."+
11.5. "?Msg coca:hasContent ?Cntnt.}"+

12. "}";
13. Query query = QueryFactory.create(queryString) ;
14. QueryExecution qexec=QueryExecutionFactory.create(q uery,CoCAsystem.model);
15. ResultSet results = qexec.execSelect();
16. int k=0;
17. String[] qryResult=new String[MaxSize];
18. while (results.hasNext())
19. {

19.1. QuerySolution res = results.nextSolution() ;
19.2. RDFNode P = res.get("?Object");
19.3. RDFNode C = res.get("?Cntnt");
19.4. String person=trimResult(P.toString());
19.5. String content=trimResult(C.toString());
19.6. qryResult[k]= "Send to: " + person + " --> " + cont ent+"\n\n";
19.7. k++;

20. }
21. qexec.close();
22. CoCAsystem.size=k;
23. return qryResult;
24. }

Figure 6-13: Segment of code that shows SPARQL query on HCoM model

Table 6.3 shows demonstration of sets of new context data (left) and the resulting set of

action triggers (right). In order to provide a proactive service on every occurrence of new

context, the CoCA decision engine goes through aggregation and reasoning process. The

aggregated context data is buffered along with the initial context data for the next use.

Figure 6-14: Part of the screen showing new context data and the resulting action

6.5 Measuring performance

169

The CoCA platform provides an interface for running and testing decisions and actions

of such type. We have run and verified that all the expected actions are also executed in a

similar manner in the platform. Figure 6.14 shows screenshots of a demonstration of one of

the examples.

As a conclusion, we have used a walkthrough example from PiCASO to demonstrate

how the CoCA reasoning process works. The effect of the occurrence of a new context data

on action trigger is demonstrated using examples from messaging service and mobile phone

ringing tone management service.

6.5 Measuring performance

Machine based reasoning is a time intensive process that has exponential time

complexity with respect to the size of data instances in the reasoning space [Zuo06]. To

overcome the expensive time complexity problem, HCoM uses pruning technique (section

4.6.4) for selective loading of only relevant reasoning resources or pruning of the irrelevant

branches from the hierarchy of the reasoning graph. This means, the selection module loads

only relevant context information from the HCoM context repository, RCDB, into the

reasoning space during every initialization of the CoCA system.

To evaluate HCoM and GCoM with respect to their response time and to compare their

performances against one of the similar works, CONON from Wang et al, we have

conducted the following experiment.

Our experimental data comes from the PiCASO implementation (Section 6.3.1). The

experiment is carried out both for GCoM and HCoM. Experiment for GCoM is concerned

with reasoning on an occurrence of a new context instance using the entire context data

loaded into the reasoning space (with out pruning). Triggering of a message-dispatcher

based on the presence of two students having the same professor in the same location

(demonstrated in section 6.3.4) is one example of an action resulting from reasoning. During

our experiment, such an occurrence of a new context and the response time to get the action

message is recorded repeatedly by varying the data size in the reasoning space.

 Implementation and Discussion

170

Table 6-4: Summary of response time from the experiment

Experiment Data size ranging from 200 to 9,000
GCoM Size 200 800 1600 2300 3000 3800 4535 5268 6000 6733 7466 9010

Round1 411 1032 1527 1906 2209 2427 2942 3365 3931 4576 5355 5914
Round2 434 971 1465 1888 2258 2481 2944 3373 3931 4582 5384 5911
Round3 483 1014 1520 1904 2255 2456 2960 3389 3964 4625 5350 5877
Round4 486 1001 1518 1864 2248 2463 2966 3422 3960 4614 5333 5924
Round5 436 982 1470 1888 2235 2433 2908 3426 3949 4593 5328 5879
Average 450 1000 1500 1890 2241 2452 2944 3395 3947 4598 5350 5901

T
i

m
e

(ms)
 St. Dev. 33 24 30 17 20 22 23 28 16 21 22 22

HCoM Size 200 800 1600 2300 3000 3800 4535 5268 6000 6733 7466 9010

Round1 525 788 725 799 869 992 1013 1089 1189 1249 1293 1419
Round2 514 705 748 825 931 936 1068 1083 1189 1238 1363 1374
Round3 470 742 705 858 871 986 1023 1136 1176 1284 1326 1424
Round4 478 743 711 805 897 977 1028 1121 1205 1274 1353 1373
Round5 513 722 761 843 922 959 1078 1141 1171 1245 1315 1420
Average 500 740 730 826 898 970 1042 1114 1186 1258 1330 1402

T
i

m
e

(ms)
 St. Dev. 24 31 24 25 28 23 29 27 13 20 28 26

We have repeated similar experiment for the HCoM model. In HCoM, the context data

are loaded into the reasoning space selectively by pruning the irrelevant part of the data. We

have made repeated experiments with varying data size (ranging from 200 up to 9000 RDF

triples incremented by progressive intervals – sample of context data, rules and ontology

generated for our experiment are shown in Annex III, IV and V).

The average response time collected for different context data instances is used for both

GCoM and HCoM. Table 6.4 shows a summary of data for response time (in milliseconds)

with calculated average and standard deviation for each round of the experiment. The

overall average standard deviation (24ms) is small enough to conclude that the system is

stable except due to some other jobs sharing the processor at the time of the experiment.

We have collected data from five of our experiments and twelve progressively incremented

data size both for GCoM and HCoM models.

The use of GCoM model gives a response time that grows fast with the increase of

volume and complexity of reasoning data. The use of HCoM, on the other hand gives a

response time that tends to remain nearly constant with the growth in the volume and

complexity of context data. This exiting improvement in a response time, however, is not

for free, it is at the expense of building an efficient search mechanism (heuristic based) that

estimates the appropriate user intension or, other wise, the cost will be a compromise on the

quality of the reasoning process. Details on this issue is presented in section 4.6.4. Figure

6.15 shows a graph for the result of our experiment using both the GCoM and the HCoM

modeling approaches.

6.5 Measuring performance

171

Reasoning performances using ontology and hybrid approaches

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

200 800 1600 2300 3000 3800 4535 5268 6000 6733 7466 9010

Number of RDF Triples

R
un

 T
im

e
(m

s)

GCoM HCoM

Figure 6-15: Reasoning performance for GCoM and HCoM (2x1.83 GHz CPU)

Ontology Reasoning

0

2

4

6

8

10

12

14

16

18

20

22

24

1000 2000 3000 4000 5000 6000 7000 8000

Number of RDF Triples

R
un

 T
im

e
(S

)

Figure 6-16: Reasoning performance for CONON (2.4 GHz CPU)

Similar experiment were made by Wang et al on their CONON context ontology, Figure

6.16, shows that the time complexity of context reasoning based on ontology tends to grow

fast like that of our GCoM model. Both graphs have the same trend but have different

values due to the difference of the CPU speeds used during the experiment.

As a conclusion, our experiment shows that HCoM improves the performance of CoCA

service and makes it a scalable and extensible platform. HCoM model, its basic constructor,

the EHRAM model and the CoCA platform, therefore, are promising context management

and reasoning tools in pervasive context-aware environments where most of the devices

have limited capacity.

Chapter 7 CONCLUSIONS AND FUTURE
WORKS

7.1 Summary of contributions

We have developed novel specifications for context representation, context modeling

and context management. We have also presented specification for a domain-independent

context-aware platform as a middleware that enables application developers to utilize easily

context information. Our major contributions in this work can be summarized as follows:

A semantic context representation model: We have proposed EHRAM, a conceptual

context representation metamodel based on hierarchy of descriptors of context entities. It is

represented using layered and directed graph. Hierarchies in EHRAM are important

structures to organize and classify context entities and relations. Layered organization also

helps to classify and tag context data as generic domain independent or as domain

dependent. EHRAM can be easily serialized to a standard markup languages for storage,

retrieval, transmission, processing. In our case, we use RDF triples and its derivatives to

represent basic structures in the model. Context metadata and axioms in EHRAM are

represented using ontology and RDF reification principles.

A hybrid context management model: We have proposed HCoM, a generic context

management model based on a hybrid approach. HCoM is an upgrade from our initial model

named GCoM. Our rational behind the need for a hybrid context model is to distinguish the

works of context data management and context semantic management, process them

separately and put the results together for better reasoning and decision support in a context-

aware environment. We use ontology approach to manage context semantics and relational

approach to manage context data. HCoM model aims to combine the bests from the two

worlds. HCoM provides a means to select and load only part of the large static context data

that is accumulated over a period of time depending on who and where the user is, the

intended activity to which the user is going to be engaged, devices available for use,

institutional policies etc. It uses matching patterns gained through experience to identify

relevant context data. Loading only relevant data for reasoning minimizes the size of the

 Conclusions and Future Works

174

reasoning space and reduces the unnecessary overloading of the reasoner so as to improve

the overall performance of the context-aware service. It helps to overcome limitations of

lack of scalability of most of the reasoning systems to the ever-increasing volume of

reasoning resources in the pervasive environment.

A collaborative context-aware service platform: We have developed a CoCA platform.

CoCA is a neighborhood-based system in pervasive computing that aims at acquiring and

utilizing context information to provide appropriate services. CoCA is domain independent

middleware support for application developers that enable them to use context information

without the overheads of caring on how to manage it. CoCA platform is independent of the

data elements from application domain. We have successfully implemented a demonstration

version of the CoCA platform. Demonstration of the function of CoCA platform and the

HCoM model is given using different application scenarios. Among these is a Pervasive

Campus-Aware Smart Onlooker (PiCASO) scenario in a university campus where research

students and professors are involved. We have developed a test procedure for PiCASO

using CoCA.

7.2 Conclusions

Most of the current context management systems and context-aware services are based

on ad-hoc models and domain dependent applications that may cause lack of desired

formality, genericity and expressiveness. Hence, management and use of context

information and development of context-aware services in pervasive environments is still a

challenge. Computing devices in pervasive computing environment on the other hand are

tiny and have limited hardware resources. In this work, we have shown the importance of

generic context modeling for efficient context reasoning in a context-aware computing

environment. Our approach is based on context entities, hierarchy of entities, relations

between entities, axioms and metadata. We have proposed the EHRAM conceptual context

representation model based on these components.

For a lightweight context reasoning service, we have proposed a generic context

management model named as GCoM. GCoM is ontology based context management model.

From the performance evaluation, we made, we have found that GCoM has scalability

problem for large volume of context data. This is because GCoM uses ontology data model

that is stored and processed using text based markup languages. Therefore, we have further

7.2 Conclusions

175

investigated and proposed HCoM, a hybrid model that satisfy both the need of semantic

processing and ease of dynamic context data transaction.

HCoM is our innovative context management model for aggregating and presenting

context data from the EHRAM context representation model. It is an upgrade to GCoM.

HCoM, like GCoM, is generic. HCoM is hybrid because it uses ontology for management of

context semantics and database principles for management of context data. In HCoM, we

use a hybrid approach where ontology schema, context data and rules are stored and

processed separately before they are combined and presented for reasoning purpose. Only

relevant data is selected and loaded from the RCDB repository into the context-ontology

schema. We have shown the theoretical aspect of how the selection/pruning algorithm is

important to determine the quality and response time of the reasoning process.

We have also presented CoCA, a data independent context-aware service middleware

that is based on the EHRAM and the HCoM models. CoCA is a collaborative platform that

supports multiple-domains of applications for the development of context-aware

applications in a pervasive environment. It has the module called RAID action engine that

performs reasoning, interpretation, aggregation and decisions. CoCA has interfacing feature

with neighboring peers to communicate and interchange context information on the fly. It

uses Jxta protocol based peer-to-peer collaboration to ensure neighborhood communication

between the pervasive devices of any capacity.

A demonstration version of CoCA is implemented based on the EHRAM and HCoM

models. Validation of the models and the platform is made using a demonstration example

on the smart campus scenario, PiCASO. We have also tested CoCA with data from a

hospital scenario on patient monitoring and follow up service, and data from application

adaptation on various device-properties like screen size, memory size, display capability,

processor speed, and connection speed.

Results from our experiment show that EHRAM/HCoM model are scalable and

extensible context management models, and CoCA is a generic, collaborative and data

independent middleware.

 Conclusions and Future Works

176

7.3 Future works

In recent years, there has been considerable research into the development of pervasive

context-aware applications. The trend shows that context-awareness is becoming natural

part of the future of computing. With an increasing diversity of computer systems integrated

in our surroundings and increasing mobility of both users and hardware this will be one of

the main computing challenges in the years to come. The followings are some of the

envisaged future works that can be considered as a continuation to this work.

Handling uncertainty: Human reasoning power is based on plenty of uncertainties in the

environment. In most cases, sensor error (inherent granularity and/or false readings), out of

date data and poor predictions will give rise to some uncertainty about sensed context. We

need some means of handling this uncertainty problem before using the context data. A

work on enhancing EHRAM and HCoM model and incorporate uncertainty factor to

improve the quality of reasoning and decision support is an open research area. The use of

metadata component of the EHRAM model can be a starting point towards achieving a

more robust probabilistic context management model.

Security and privacy: Relationship between context data and security is bidirectional. On

one hand, context data by itself needs security measures from capturing up to utilization. On

the other hand, context data can be used to provide secured computing environment.

According to [Hong04], due to the inherent need of collaboration, pervasive context-aware

systems face security challenges in the form of privacy, integrity and trust. Privacy of

context information focuses on protecting context resources from unauthorized entities. For

example, a user should be able to protect personal information such as his/her health status,

or medical history. Integrity of context information focuses on guaranteeing that the

provided context information has not been corrupted by a third party. Trust is a respect for

common security policy and goal.

There are very recent works that deal with limited aspects of this problem [Saad07] and

[Bouna07]. Saad et al deals with trust based authentication and access control. The principle

that, “friends of my friends are also my friends”. Input of context data and its role is very

limited. In Bouma et al, the authors have created a proprietary context model based on

limited number of tuples suited for multimedia context representation called MCC (Multi

media Context Condition). They have investigated certainty issues related to multimedia

based context data.

7.3 Future works

177

However, we need to have generic services that handle security problems in a

heterogeneous pervasive environment without a restriction of the type of data or domain of

application. Incorporating such security management component into the CoCA platform is

another open problem area considered as a continuation of this work.

Other remaining challenges include the development of more intelligent proactive

services that can be achieved by enhancing the platform through rule-mining using data

from knowledge repository of the decision engine. The rule-mining module needs to be

enhanced in line with the state of the art datamining tools in order to provide a new set of

useful rules that are then converted to knowledge for decision and action. Therefore, the

question of rule-mining in a pervasive context-aware computing environment is one of the

central challenges in order to provide autonomic, proactive and intelligent decision and

action trigger supports and services to the user.

The collaborative aspect of CoCA platform naturally exposes the system to faulty and

malicious peers. One research area is therefore to incorporate fault tolerating and self-

healing mechanisms. The work may involve identification of malicious peers and tagging

them for consideration in their future participation, preparation of multiple alternatives so

that failure of one particular communication will not block the system from functioning, etc.

GLOSSARY OF ACRONYMS
ACAI Agent-based Context-aware Infrastructure

AP WiFi Access Point (WiFi hot spot)

CAMidO Context-Aware Middleware Based on Ontology Meta-Model

CC/PP Composite Capabilities/Preference Profile

Description of device capabilities and user preferences.

CCML Centaurus Capability Markup Language

CDF Context Description Framework

CFNs Context Fusion Networks

CMF Context Mediated Framework:

Application. programming interface for managing context information.

CoBrA Context Broker Architecture

CoCA Collaborative Context-Aware service platform

Confab Context Fabric

Architecture for privacy-sensitive systems.

CONON CONtext Ontology :

OWL based context Ontology for reasoning and representation of contexts
in pervasive environments.

CSCP Comprehensive Structured Context Profiles

EHRAM Entity, Hierarchy, Relation, Axiom and Metadata based context
representation model

GAS Gadget-ware Architectural Style ontology

GCoM Ontology based Generic Context Management model

HCoM Hybrid Context Management model

HTML Hyper Text Mark-up Language

Jena Java API based framework for building Semantic Web applications

It allows users to read, write, and manipulate RDF(S) and OWL models.

JXTA Set of open, generalized peer-to-peer protocols.

It allows any connected device (cell phone to PDA, PC to server) on the
network to communicate and collaborate. JXTA protocols standardize the
manner in which peers self-organize into peer groups, discover each
other, advertise network services, communicate with each other, and
monitor each other.

 Glossary of Acronyms

180

MobiLife A Project that aims at developing and validating a new generation of
mobile applications and services for everyday users

The project emphasizes development of multi-modal interfaces, context
awareness functionalities with privacy and trust support for the emerging
3G/WLan landscape and beyond.

MySQL Multithreaded, Multi-user SQL database management system

OWL Web Ontology Language

PACE Pervasive Autonomic Context-aware Environments project

PDA Personal Data Assistant

PerSE Pervasive Service Environment

A middleware that supports the interaction of independent and
collaborating services to perform an intended action.

PiCASO Pervasive Campus-Aware Smart Onlooker

A use case scenario implemented to demonstrate the CoCA platform.

PMML Predictive Model Mark-up Language

Protégé An ontology editor that provides tools to construct domain models and
knowledge-based applications with ontology

It has a graphical user interface, with separate tabs for displaying
ontology classes, properties and instances. Classes and properties are
organized in to tree structures.

RCDB Relational Context Database

RCSM Reconfigurable Context-Sensitive Middleware

RDF Resource Description Framework

RDFS Schema for RDF

SGML Standard Generalized Markup Language

SOCAM Service-oriented Context-Aware Middleware

SOUPA Standard Ontology for Ubiquitous and Pervasive Applications

SPARQL A query language and data access protocol for the Semantic Web

It is defined in terms of the W3C's RDF data model and will work for any
data source that can be mapped into RDF.

W3C World Wide Web Consortium

Develops interoperable technologies (specifications, guidelines, software,
and tools) to lead the Web to its full potential. It is a forum for
information, commerce, communication, and collective understanding.

XML eXtensible Markup Language

BIBLIOGRAPHY
[Abowd97] Abowd G. D., Atkeson C. G., Hong J., et al. Cyberguide: a mobile context-

aware tour guide. Journal of Wireless Networks: special issue on mobile computing and
networking, 1997, Vol. 3(5), pp. 421-433.

[Ackoff89] Ackoff R. L. From Data to Wisdom. Journal of Applies Systems Analysis, 1989,
Vol. 16, pp. 3-9.

[Akman96] Akman V., Surav M. Steps toward formalizing context. AI Magazine, 1996,
Vol. 17(3), pp. 55-72.

[Amanuddin04] Amanuddin R., Ronchi D., Nguyen J., et al. Service-Oriented Architecture
in a Pervasive Environment. IBM, 22 Sep 2004.

[Andrew99] Andrew C. H., Benjamin C. L., Shankar P. et al. Pervasive Computing: What is
it good for? In: Proceedings of the Workshop on Mobile Data Management (MobiDE) in
conjunction with ACM MobiCom '99,September 1999, Seattle, USA.

[Asthana94] Asthana A., Cravatts M., Krzyzanouski P. An indoor wireless system for
personalized shopping assistance. In: Workshop on Mobile Computing Systems and
Applications, December 1994, Santa Cruz, CA, USA, IEEE Computer Society Press, pp.
69-74.

[Baldauf07] Baldauf M., Dustdar S., Rosenberg F. A survey on context-aware systems.
International Journal of Ad Hoc and Ubiquitous Computing, 2007, Vol. 2(4), pp. 263-
277.

[Bardram04] Bardram J. The Java Context-Awareness Framework (JCAF) - A service
infrastructure and programming framework for context-aware applications. In:Pervasive
2004, 2004, pp. 98-115.

[Behlouli06] Behlouli B. N., Taconet C., Bernard G. An architecture for Supporting
Development and Execution of Context-Aware Componentapplications. In: ICPS’06 :
IEEE International Conference on PervasiveServices 2006, June 2006, Lyon, France, pp.
57–66.

[Bellinger04] Bellinger G., Castro D., Mills A. Data, Information, Knowledge, and
Wisdom. Published 2004, http://www.systems-thinking.org/dikw/ (last checked in May
2007).

[Berhe05] Berhe G., Brunie L., Pierson J. Distributed Content Adaptation for Pervasive
Systems. In: Proceedings of the international Conference on information Technology:
Coding and Computing (Itcc'05), April 2005, Washington DC, pp. 234-241 (DOI=
http://dx.doi.org/10.1109/ITCC.2005.133).

[Bihler06] Bihler P., Scuturici M., Brunie L. Expressing and Interpreting User Intention in
Pervasive Service Environments. Journal of Digital Information Management, 2006, Vol.
4(2), pp.102-106.

 Bibliography

182

[Black04] Black J. P., Segmuller W., Cohen N., et al. Pervasive Computing in Health Care:
Smart Spaces and Enterprise Information Systems. In: MobiSys Workshop on Context
Awareness, June 2004, Boston Massachusetts, USA.

[Bolliger98] Bolliger J., Gross T. A Framework-Based Approach to the Development of
Network-Aware Applications. IEEE Transactions on Software Engineering, MAY 1998,
Vol. 24(5), pp. 376-390.

[Bouna07] Bouna B. A., Chbeir R., Miteran J. MCA2CM: Multimedia Context Aware
Access Control Model. In: IEEE International Conference on Intelligence and Security
Informatics (ISI'07), May 2007, New Jersey, USA, pp. 115-123.

[Bouzeghoub04] Bouzeghoub A., Defude B., Ammour S., et al. A RDF Description Model
for Manipulating Learning Objects. In: Fourth IEEE International Conference on
Advanced Learning Technologies (ICALT'04), 2004, pp. 81-85.

[Britannica07] Markup Language. Encyclopedia Britannica, Online
http://www.britannica.com/ebc/article-9371358, last checked in May 2007.

[Broadbent97] Broadbent J., Marti P. Location-Aware Mobile Interactive Guides: Usability
Issues. In: Proc. Inter. Cultural Heritage Informatics Meeting, 1997, Paris, France.

[Brumitt00] Brumitt B., Meyers B., Krumm J., et al. EasyLiving: Technologies for
Intelligent Environments, Handheld and Ubiquitous Computing, Bristol , Royaume Uni,
September 2000.

[Buchholz04] Buchholz S., Hamann T., Hubsch G. Comprehensive structured context
profiles (CSCP): design and experience. In: Proceedings of the Second IEEE Annual
Conference on Pervasive Computing and Communications Workshops, March 2004. ,
pp. 43- 47.

[Burke05] Burke E. K., Kendall G. (Eds): Search Methodologies: Introductory Tutorials in
Optimization and Decision Support Techniques. Springer, 2005, New York.

[Burkhardt02] Burkhardt J., Henn H., Hepper S. et al: Pervasive Computing: Technology
and Architecture of Mobile Internet Applications. Addison Wesley, 2002, London.

[Capra03] Capra L., Emmerich W., Mascolo, C. CARISMA: Context-Aware Reflective
Middleware System for Mobile Applications. IEEE Transactions on Software
Engineering, 2003, vol. 29(10), 17 p.

[CC/PP04] Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies.
W3C Recommendation, 15 January 2004, Online http://www.w3.org/TR/CCPP-struct-
vocab/. (last checked July 2007)

[Cerqueira01] Cerqueira R., Hess C. K., Roman M., et al. Gaia: A Development
Infrastructure for Active Spaces. In: Workshop on Application Models and Programming
Tools for Ubiquitous Computing with UBICOMP'01, Sept 2001, Atlanta Georgia, USA.

[Chaari06] Chaari T. , Ejigu D., Laforest F. et al. Modeling and Using Context in Adapting
Applications to Pervasive Environments. In: The Proceedings of the IEEE International
Conference on Pervasive Services (ICPS'06), 2006, Lyon, France, pp. 111-120.

183

[Chaari07] Chaari T., Ejigu D., Laforest F. et al. A Comprehensive Approach to Model and
Use Context for Adapting Applications in Pervasive Environments. International Journal
of Systems and Software (JSS), 2007, Vol. 80(12), pp. 1973-1992.

[Chen03a] Chen H., Finin T., Joshi A. An ontology for context-aware pervasive computing
environments. Knowledge Engineering Review, 2003 Vol. 18, Special Issue on
Ontologies for Distributed Systems, pp. 197-207.

[Chen03b] Chen H. An Intelligent Broker Architecture for Context-Aware Systems. A Ph.
D. Thesis, University of Maryland Baltimore County, January 2003.

[Chen04a] Chen G., Li M., Kotz D. Design and implementation of a large-scale context
fusion network. In: 1st Annual International Conference on Mobile and Ubiquitous
Systems (MobiQuitous), 2004, Boston, Massachussets, IEEE Computer Society, 246-
255.

[Chen04b] Chen H., Perich, F., Chakraborty, D. et al Intelligent Agents Meet Semantic Web
in a Smart Meeting Room. In: The Third International Joint Conference on Autonomous
Agents and Mutli-Agent Systems, 2004.

[Chen04c] Chen H., Finin T., Joshi A. et al. Intelligent Agents Meet the Semantic Web in
Smart Spaces. IEEE Internet Computing, November 2004, Vol. 8(6), pp. 69-79.

[Chen04d] Chen H., Finin, T., Joshi A. Semantic Web in the Context Broker Architecture.
In: Proceedings of the Second IEEE international Conference on Pervasive Computing
and Communications, PerCom'04, 2004, Washington DC, USA.

[Chen04e] Chen H., Perich F., Finin T. et al. SOUPA: Standard Ontology for Ubiquitous
and Pervasive Applications. In: International Conference on Mobile and Ubiquitous
Systems: Networking and Services, 2004, Boston, USA.

[Chen04f] Chen H., An Intelligent Broker Architecture for Pervasive Context-Aware
Systems. PhD Thesis. University of Maryland, December 2004, Baltimore County, USA.

[Cheverst00] Cheverst K., Davies N., Mitchell K. et al. Developing a Context-Aware
Electronic Tourist Guide: some issues and experiences. In: The proceedings of CHI’00,
March 2000, the Hague, The Netherlands.

[Christopoulou04] Christopoulou E., Kameas A. GAS Ontology: an ontology for
collaboration among ubiquitous computing devices. International Journal of Human-
Computer Studies, Mai 2005, Vol. 62(5), pp. 664-685.

[Daby01] Daby M. S., Guruduth B., John S. D. et al. Preparing the Edge of the Network for
Pervasive Content Delivery. In: Workshop on Middleware for Mobile Computing,
November 16, 2001.

[Davis99] Davies N., Cheverst K., Mitchell K., et al. Caches in the Air: Disseminating
Tourist Information in the Guide System. In: Second IEEE Workshop on Mobile
Computer Systems and Applications (WMCSA'99), New Orleans, LA, USA, 1999.

[Dertouzos99] Dertouzos M. The Oxygen Project. Scientific American, Aug 1999, Vol.
281(2), pp. 52-63.

 Bibliography

184

[Dey00] Dey A. K., Abowd G. D. Towards a Better Understanding of Context and Context-
Awareness. In: Proceedings of the CHI Workshop on the What, Who, Where, and How
of Context-Awareness, April 2000, The Hague, The Netherlands.

[Dey01] Dey A. K., Salber D., Abowd, G. D. A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human-Computer
Interaction, 2001, Vol 16, pp. 97-166.

[Ejigu07a] Ejigu D., Scuturici M., Brunie L. An Ontology-Based Approach to Context
Modeling and Reasoning in Pervasive Computing. In: Fifth IEEE International
Conference on Pervasive Computing and Communications, PerComW’07, 2007, New
York, USA, pp. 14-19.

[Ejigu07b] Ejigu D., Scuturici, M., Brunie L. CoCA: A Collaborative Context-Aware
Service Platform for Pervasive Computing. In: Fourth IEEE International Conference on
Information Technology - New Generations, ITNG’07, April 2007, Las Vegas, USA, pp.
297-302.

[Ejigu07c] Ejigu D., Scuturici M., Brunie L. Semantic Approach to Context Management
and Reasoning in Ubiquitous Context-Aware Systems. In: the proceedings of the Second
IEEE International Conference on Digital Information Management (ICDIM'07),
October 2007, Lyon, France, pp. 500-5005.

[Ejigu08] Ejigu D., Scuturici M., Brunie L. Hybrid Approach to Collaborative Context-
Aware Service Platform for Pervasive Computing. E Dejene, V. Scuturici, L. Brunie.
Journal of Computers (JCP) 3(1):40-50, Academy Publisher, ISSN 1796-203X. 2008.

[Eriksson04] Hans-Erik E., Magnus P., Brian L. et al. UML 2 Toolkit, Wiley publishers,
October 2004, USA.

[Espinoza01] Espinoza F., Persson P., Sandin A., et al. GeoNotes: social and navigational
aspects of location-based information systems. In: the Proceedings of International Conf.
On UbiComp, Sept 2001, Atlanta, USA, pp. 2-17.

[Feiner02] Feiner, S. Augmented Reality: A New Way of Seeing. Scientific American,
April 2002.

[FreeNet06] Project FreeNet, online http://freenet.sourceforge.net/, last checked in
December 2006.

[Garlan02] Garlan D., Siewiorek, D., Smailagic, A., et al. Project Aura: Toward Distraction-
Free Pervasive Computing. IEEE Pervasive Computing, April 2002, pp. 22-31.

[Gellersen00] Gellersen W., Schmidt H. A., Beigl M. Adding some smartness to devices
and everyday things. In: the Proceedings of the third IEEE Workshop on Mobile
Computing Systems and Applications, Monterey, California, 2000.

[Gnutella06] Project Gnutella, online http://www.gnutella2.com/, last checked in December
2006.

[GPS07] Global Positioning System, online http://www.gps.gov/, last checked in August
2007.

185

[Gripay06] Gripay, Y., Pierson J., Pigeot C.E. Une architecture pervasive sécurisée : PerSE,
Dans UbiMob'06, ACM ed., 2006, Paris. pp. 147-150.

[Groff02] Groff J.R., Weinberg P. N. SQL: The Complete Reference, McGraw-Hill, 2nd
edition, August 2002.

[Gruber93] Gruber T. R.: Toward principles for the design of ontologies used for knowledge
sharing. International Journal of Human-Computer Studies, November 1993, Vol. 43,
Issues 4-5, pp. 907-928.

[Gu05] Gu T., Pung H. K., Zhang D. Q. A service-oriented middleware for building
context-aware services. Journal of Network Computing, Jan 2005, pp. 1-18.

[Halpin07] Halpin T. Object Role Modeling (ORM), online http://www.orm.net/, last
checked in July 2007.

[Hand01] Hand D., Mannila H., Smyth P. Principles of Data Mining. MIT Press, 2001,
Cambridge, USA.

[Hariri06] Hariri S., Khargharia B., Chen H. et al. The Autonomic Computing Paradigm,
Cluster Computing, 2006, Vol. 9(1), pp. 5-17.

[Held02] Held A., Buchholz S., Schill A. Modeling of Context Information for Pervasive
Computing Applications. In: the Proceedings of the 6th World Multiconference on
Systemics, Cybernetics and Informatics (SCI), July 2002, Orlando, USA.

[Henricksen02] Henricksen K., Indulska J., Rakotonirainy A. Modeling Context
Information in Pervasive Computing Systems. In: Proceedings of Pervasive'02, 2002,
Zurich.

[Henricksen04a] Henricksen K., Indulska J. Modelling and using imperfect context
information. In: CoMoRea at 2nd IEEE Conference on Pervasive Computing and
Communications (PerCom'04), March 2004, Orlando, USA, pages 33- 37.

[Henricksen04b] Henricksen K., Indulska J. A software engineering framework for context-
aware pervasive computing. In: 2nd IEEE International Conference on Pervasive
Computing and Communications (PerCom'04), IEEE Computer Society, 2004, pp 77-86.

[Henricksen05a] Henricksen K., Indulska J. Developing context-aware pervasive computing
applications: Models and approach, Journal of Pervasive and Mobile Computing, 2005,
Elsevier.

[Henricksen05b] Henricksen K., Indulska J., McFadden T., et al. Middleware for distributed
context-aware systems. International Symposium on Distributed Objects and
Applications (DOA), Agia Napa, Cyprus, 2005.

[Hong01] Hong J.I., Landay J. A. An infrastructure approach to context-aware computing.
HumanComputer Interaction, 2001, 16(2).

[Hong04] Hong J.I., Landay J.A. An architecture for privacy-sensitive ubiquitous com
puting. In: 2nd International Conference on Mobile Systems, Applications, and Services
(MobiSys), Boston, 2004.

 Bibliography

186

[IBM01] Autonomic Computing: IBM’s Perspective on the State of Information
Technology, online http://www.research.ibm.com/autonomic/manifesto, published 2001,
last checked September 2007.

[Indulska03] Indulska J., Robinsona R., Rakotonirainy A. Experiences in using cc/pp in
context-aware systems. In: Proceedings of the 4th International Conference on Mobile
Data Management (MDM'03), Lecture Notes in Computer Science (LNCS), Springer,
January 2003, Melbourne, Australia, pp. 247–261.

[Intel07] Moore's Law, Intel® Research, online
http://www.intel.com/technology/mooreslaw/index.htm, last checked in June 2007.

[Jacobson99] Jacobson I., Booch G., Rumbaugh J. The unified software development
process, Addison-Wesley Longman Publishing Co., Inc., Boston, USA, 1999.

[Jena07] Jena from SourceForge.Net, A Semantic Web Framework for Java, online
http://jena.sourceforge.net/, last checked in February 2007.

[JXME07] JXME, JXTA Java Micro Edition Project, online https://jxta-jxme.dev.java.net/,
last checked June 2007.

[JXTA07] Project JXTA, online http://www.jxta.org/, last checked in February 2007.

[Kagal02] Kagal L. , Korolev V. , Avancha S. et al. Centaurus: an infrastructure for service
management in ubiquitous computing environments. Wireless Networks, November
2002, Vol. 8(6), p.619-635.

[Kheder05] Khedr M., Karmouch A. ACAI: agent-based context-aware infrastructure for
spontaneous applications. Journal of Network Computing Applications, 2005, Vol. 28(1),
pp. 19-44.

[Khriyenko05] Khriyenko05] Khriyenko O., Terziyan V. Context Description Framework
for the Semantic Web. In: Context Representation and Reasoning Workshop, Paris,
France, Jul 2005.

[Kindberg00] Kindberg T, Barton J, Morgan J. et al. People, Places, Things: Web Presence
for the Real World. Proc. 3rd IEEE Workshop on Mobile Computing Systems and
Applications, 2000, California, USA, pp. 19-28.

[Kindberg01] Kindberg T., Barton J. A Web-based nomadic computing system, Computer
Networks, 2001, Vol 35(4), pp. 443-456.

[Korkea00] Korkea A. M. Context-Aware Applications Survey. Department of Computer
Science, Helsinki University of Technology, 2000.

[Korpipaa03] Korpipaa P., Mantyjarvi J., Kela J., et al. Managing Context Information in
Mobile Devices. Pervasive Computing, July-Sept. 2003, Vol. 2(3), pp. 42- 51.

[Lai02] Lai J., Levas A., Chou P. et al. BlueSpace: personalizing workspace through
awareness and daptability. International Journal of Human-Computer Study, November
2002, Vol. 57(5), pp. 415-428.

[Lee03] Lee C. H., Na J. C., Khoo, C. Ontology Learning for Medical Digital Libraries. In:
the Proceedings of ICADL'03 (International Conference on Asian Digital Libraries),
December 2003, Malaysia, Kuala Lumpur, pp. 302-305, 2003.

187

[Lins04] Lins E. P., Shultz U.P. Compatibility vs. Evolution in Pervasive Computing,
OOPSLA '04 Workshop Workshop on Building Software for Pervasive Computing,
Vancouver, Canada, August 20, 2004.

[Luger05] Luger G. F. Artificial Intelligence: Structures and Strategies for Complex
Problem Solving. Fifth Edition, Addison-Wesley, Harlow, England, 2005.

[Maibaum02] Maibaum N., Mundt T. JXTA: A Technology Facilitating Mobile Peer-To-
Peer Networks. In: International Mobility and Wireless Access Workshop
(MobiWac'02), Fort Worth, TX, 2002.

[Marco06] Marco D. A Meta data repository is a key to knowledge management. The data
administration newsletter, online URL:http://www.tdan.com/view-articles/5064, last
checked July 2006.

[Mattern03] Mattern F., Sturn P. From Distributed Systems to Ubiquitous Computing - State
of the Art. Trends and Prospects of Future Networked systemspp. 3-25. Fachtagung
"Kommunikation in Verteilten Systemen" (KiVS), Leipzig, , 2003. Springer-Verlag,
Berlin, 2003.

[McCarthy98] McCarthy S. B. Formalizing context (expanded notes)on Computing Natural
Language. In: Aliseda, Atocha, Van Glabbeek, Rob J., Westerståhl, Dag, Computing
natural language. Stanford, Californie : Center for the Study of Language and
Information (CSLI Publications), , 1998, pp. 13-50. (CSLI Lecture Notes, Vol. 81)

[McFadden04] McFadden T., Henricksen K., Indulska J. Automating context-aware
application development. In: UbiComp 1st International Workshop on Advanced Context
Modelling, Reasoning and Management, 2004, Nottingham, pp. 90-95.

[McFadden05] McFadden T., Henricksen K., Indulska J. et al. Applying a disciplined
approach to the development of a context-aware communication application. In: 3rd
IEEE Int. Conference on Pervasive Computing and Communications, PerCom05,2005,
pp. 300-306.

[MCubiX07] MCubiX, online http://www.diagnos.ca/, last checked in February 2007.

[Meyer03] Meyer S., Rakotonirainy A. A Survey of Research on Context-Aware Homes. In:
Conferences in Research and Practice in Information Technology Series, 2003, Vol. 34,
Proceedings of the Australasian information security workshop conference on ACSW
frontiers 2003, Vol. 21, Adelaide, Australia, pp. 159-168.

[MobiLife07] MobiLife Project, online http://www.ist-mobilife.org/, last checked in June
2007.

[Mrohs06] Mrohs B., Steglich S., Klemettinen M. MobiLife Service Infrastructure and
SPICE Architecture Principles. In: Vehicular Technology Conference (VTC), September
2006, Montreal, Canada.

[MySQL07] Development with MySQL, online http://dev.mysql.com/, last checked in
February 2007.

[Napster06] Project Napster, online http://opennap.sourceforge.net/#status/, last checked in
December 2006.

 Bibliography

188

[Nelson99] Nelson R. A.: The Global Positioning System. Online
http://www.aticourses.com/global_positioning_system.htm, publishe November 1999,
Last checked in July 2007.

[Nielson95] Nielson H. R., Nielson F. Semantics with Applications: A Formal Introduction
(1st ed.), 1995, Chicester, England: John Wiley & Sons, ISBN 0-471-92980-8.

[ODBC07] ODBC and MySQL, online http://dev.mysql.com/downloads/connector/
odbc/3.51.html, last checked in March 2007.

[OpenGALEN07] OpenGALEN Manifesto, jointly by the Victoria University of
Manchester in the United Kingdom and the University of Nijmegen in The Netherlands,
online http://www.opengalen.org/index.html, last checked in October 2007.

[Ouksel03] Ouksel A. M. In-Context Information Filtering On the Web: An Emergent
Semantics P2P Approach. SIGMOD Record, September 2003, Vol 32(3), pp. 65-70.

[OWL07] McGuinness D. L., Van-Harmelen F. OWL Web Ontology Language Overview,
online at http://www.w3.org/TR/owl-features/, last checked in February 2007.

[Paritosh06] Paritosh, P.K. The Heuristic Reasoning Manifesto. In: the Proceedings of the
20th International Workshop on Qualitative Reasoning, Hanover, 2006.

[Pascoe97] Pascoe J. The Stick-e Note Architecture: Extending the Interface Beyond the
User. In: Proceedings of the International Conference on Intelligent User Interfaces,
Orlando Florida USA, 1997, pp. 261-264.

[Pigeot07] Pigeot C.E, Gripay Y., Scuturici M., et al. Context-Sensitive Security
Framework for Pervasive Environments, In: Fourth European Conference on Universal
Multiservice Networks (ECUMN'07), Toulouse, 2007, pp. 391-400.

[PMML05] Predictive Model Markup Language (PMML): Data Mining Group, online
http://www.dmg.org/, last checked 23/12/2005.

[Priyantha01] Priyantha N., Miu A., Balakrishnan H., Teller S. The Cricket Compass for
Context-Aware Applications, Proc. of 7th Annual ACM/IEEE International Conference
on Mobile Computing and Networking (MobiCom 2001), Rome, Italy, July 2001.

[Protégé07] Protégé from stanford.edu, Ontology editor and knowledge-base frame, online
http://protege.stanford.edu/, last checked in February 2007.

[Ranganathan04] Ranganathan A., Al-Muhtadi J., Campbell R. H. Reasoning about
Uncertain Contexts in Pervasive Computing Environments. IEEE CS and IEEE ComSoc,
2004, University of Illinois, USA.

[Rarau05] Rarau A., Pusztai K., Salomie L. MultiFacet Item Based Context-Aware
Applications, International Journal of Computing & Information Sciences, 2005, Vol.
3(2), pp.10-18.

[RDF06] RDF W3C Recommendations, online http://www.w3.org/2001/sw/RDFCore/#
documents, last checked in December 2006.

[Rekimoto95] Rekimoto J., Nagao K. The World through the Computer: Computer
Augmented Interaction with Real World Environments. In: Proceedings of the 8th ACM

189

Symposium of User Interface Software and Technology, Pittsbugh, PA, November 1995,
29-38.

[Roman02] Roman M., Hess C., Cerqueira R., et al. Gaia: A middleware infrastructure for
active spaces. In IEEE Pervasive Computing, Special Issue on Wearable
Computing,2002, 74-83.

[Roussos05] Roussos Y., Stavrakas Y., Pavlaki V. Towards a Context-Aware Relatioal
Model. In: Proceedings of the CRR'05 Workshop, 2005, Paris, France, pp. 5-8.

[Rudolph01] Rudolph L. Project Oxygen: Pervasive, Human-Centric Computing - An Initial
Experience. In: Proceedings of the 13th international Conference on Advanced
information Systems Engineering, Interlaken, Switzerland, June 4-8, 2001.

[Saadi07] Saadi R., Pierson J., Brunie L.Authentication and Access Control Using Trust
Collaboration in Pervasive Grid Environment.In: Grid and Pervasive Compuing
(GPC'07), Lecture Notes in Computer Science (LNCS), Springer Verlag, 2007, Paris,
France. pp. 348-361.

[Sadeh02] Sadeh N., Chan E., Shimazaki Y. et al. Mycampus: An agent-based environment
for context-aware mobile services. In: the proceedings of the AAMAS02 Workshop on
Ubiquitous Agents on Embedded, Wearable, and Mobile Devices, July 2002, Bologna,
Italy.

[Salber99] Salber D., Day A. K., Abowd G. D. The context toolkit: Aiding the development
of context-enabled applications. In: Proceedings of the 1999 Conference on Human
Factors in Computing Systems (CHI’99), Pittsburg, PA, May 1999, pp. 434-441.

[Satyanarayanan01] Satyanarayanan M. Pervasive Computing: Vision and Challenges.
IEEE Personal Communications, August 200, pp. 10-17.

[Schilit93] Schilit B., Adams N., Gold, R. et al. The PARCTAB mobile computing system.
In: Proceedings of the Fourth IEEE Workshop on Workstation Operating Systems
(WWOS-IV), Napa, CA, October 1993, pages 34-39.

[Schilit94] Schilit B.N., Adams N., Want R. Context-Aware Computing Applications. In:
the Proceedings of the 1st International Workshop on Mobile Computing Systems and
Applications, Santa Cruz, CA, 1994, p. 85-90.

[Scuturici06] Scuturici M., Ejigu D. Positioning Support in Pervasive Environments. In:
IEEE International Conference on Pervasive Services, ICPS'06, 2006, pp. 19-26, Lyon,
France.

[Sharmin06] Sharmin M., Ahmed S., Ahamed, S. I. MARKS (Middleware Adaptability for
Resource Discovery, Knowledge Usability and Self-healing) for Mobile Devices of
Pervasive Computing Environments. In: Proceedings of the Third international
Conference on information Technology: New Generations (ITNG'06), IEEE Computer
Society, April 2006, Washington DC, USA, pp. 306-313.

[Silva94] Silva J. P. M., Sakallah K. A. Dynamic Search-Space Pruning Techniques in Path
Sensitization. In: Proceedings Of IEEE/ACM Design Automation Conference (DAC),
June 1994, San Diego, California, pp. 705-711.

 Bibliography

190

[Singh06] Singh A., Conway M. Survey of Context aware Frameworks: Analysis and
Criticism. UNC Information Technology Services, The University Of North Carolina,
Chapel Hill, 2006.

[Skiena90] Skiena S. Implementing Discrete Mathematics: Combinatorics and Graph
Theory with Mathematica. Addison-Wesley, 1990, Reading, MA.

[SPARQL07] SPARQL Query Language for RDF, Edited by Prud'hommeaux E.and
Seaborne A., W3C Candidate Recommendation, online http://www.w3.org/TR/rdf-
sparql-query/, last checked 14 June 2007.

[Staab00] Staab S., Erdmann M., Maedche A. et al. An Extensible Approach for Modeling
Ontologies in RDF(S)”, In: the Proceedings of ECDL 2000 Workshop on the Semantic
Web, 2000, Lisbon, Portugal.

[Strang04] Strang T., Linnhoff-Popien C. A Context Modeling Survey. In: the Proceedings
of the First International Workshop on Advanced Context Modelling, Reasoning and
Management, Sixth International Conference on UbiComp'04. 2004, Nottingham,
England.

[TechTarget07] Pervasive Computing, online http://searchnetworking.techtarget.com/
sDefinition/, last checked in July 2007.

[Wang04] Wang X., Zhang D. Q., Gu T., Pung H. K.: Ontology Based Context Modeling
and Reasoning using OWL, workshop on context modeling and reasoning. In: IEEE
International Conference on Pervasive Computing and Communication , March 2004,
Orlando, Florida.

[Want92] Want R., Hopper A. Falcao The Active Badge Location System. In: ACM
Transactions on Information Systems, 1992, Vol. 10(1). pp. 91-102.

[Weiser91] Weiser M. The Computer for the Twenty-First Century, Scientific American,
Sept. 1991, Vol.265(3), pp. 94-104.

[WiFi07] WiFi, online http://compnetworking.about.com/cs/wireless80211/a/
aa80211standard.htm, last checked in July 2007.

[Winograd01] Winograd T. Architectures for Context. Human-Computer Interaction, 2001,
Vol. 16(2,3,4), pp. 401-419.

[Woodruff01] Woodruff A., Aoki P.M., Hurst A. et al. Electronic Guidebooks and Visitor
Attention. In: Proc. 6th Int. Cultural Heritage Informatics Meeting, Sep. 2001, Milan,
Italy, pp. 437-454.

[Yau02] Yau S. S., Karim F., Wang Y.: Reconfigurable Context-Sensitive Middleware for
Pervasive Computing, IEEE Pervasive Computing, July-September 2002, Vol 1(3),
pp.33-40.

[Zuo06] Zuo M., Haarslev V. High Performance Absorption Algorithms for Terminological
Reasoning. In: Proceedings of the International Workshop on Description Logics (DL),
UK, May 2006, Lake District, pp. 159-166.

ANNEXES

I. OWL vocabularies for semantic reasoning

193

I. OWL vocabularies for semantic reasoning

OWL features related to RDF schema

• Class: A class defines a group of individuals that belong together because they share
some properties. For example, Deborah and Frank are both members of the class Person.
Classes can be organized in a specialization hierarchy using subClassOf. There is a built-
in most general class named Thing that is the class of all individuals and is a super class
of all OWL classes. There is also a built-in most specific class named Nothing that is the
class that has no instances and a subclass of all OWL classes.

• rdfs:subClassOf: Class hierarchies may be created by making one or more statements
that a class is a subclass of another class. For example, the class Person could be stated
to be a subclass of the class Mammal. From this a reasoner can deduce that if an
individual is a Person, then it is also a Mammal.

• rdf:Property: Properties can be used to state relationships between individuals or from
individuals to data values. Examples of properties include hasChild, hasRelative,
hasSibling, and hasAge. The first three can be used to relate an instance of a class Person
to another instance of the class Person (and are thus occurrences of ObjectProperty), and
the last (hasAge) can be used to relate an instance of the class Person to an instance of
the datatype Integer (and is thus an occurrence of DatatypeProperty). Both
owl:ObjectProperty and owl:DatatypeProperty are subclasses of the RDF class
rdf:Property.

• rdfs:subPropertyOf: Property hierarchies may be created by making one or more
statements that a property is a subproperty of one or more other properties. For example,
hasSibling may be stated to be a subproperty of hasRelative. From this a reasoner can
deduce that if an individual is related to another by the hasSibling property, then it is
also related to the other by the hasRelative property.

• rdfs:domain: A domain of a property limits the individuals to which the property can be
applied. If a property relates an individual to another individual, and the property has a
class as one of its domains, then the individual must belong to the class. For example,
the property hasChild may be stated to have the domain of Mammal. From this a
reasoner can deduce that if Frank hasChild Anna, then Frank must be a Mammal. Note
that rdfs:domain is called a global restriction since the restriction is stated on the
property and not just on the property when it is associated with a particular class. See the
discussion below on property restrictions for more information.

• rdfs:range: The range of a property limits the individuals that the property may have as
its value. If a property relates an individual to another individual, and the property has a
class as its range, then the other individual must belong to the range class. For example,
the property hasChild may be stated to have the range of Mammal. From this a reasoner
can deduce that if Louise is related to Deborah by the hasChild property, (i.e., Deborah

Annexes

194

is the child of Louise), then Deborah is a Mammal. Range is also a global restriction as
is domain above. Again, see the discussion below on local restrictions (e.g.
AllValuesFrom) for more information.

• Individual : Individuals are instances of classes, and properties may be used to relate one
individual to another. For example, an individual named Deborah may be described as
an instance of the class Person and the property hasEmployer may be used to relate the
individual Deborah to the individual StanfordUniversity.

OWL equality and inequality

• equivalentClass : Two classes may be stated to be equivalent. Equivalent classes have
the same instances. Equality can be used to create synonymous classes. For example,
Car can be stated to be equivalentClass to Automobile. From this a reasoner can deduce
that any individual that is an instance of Car is also an instance of Automobile and vice
versa.

• equivalentProperty: Two properties may be stated to be equivalent. Equivalent
properties relate one individual to the same set of other individuals. Equality may be
used to create synonymous properties. For example, hasLeader may be stated to be the
equivalentProperty to hasHead. From this a reasoner can deduce that if X is related to Y
by the property hasLeader, X is also related to Y by the property hasHead and vice
versa. A reasoner can also deduce that hasLeader is a subproperty of hasHead and
hasHead is a subProperty of hasLeader.

• sameAs: Two individuals may be stated to be the same. Can be used to create a number
of different names that refer to the same individual. For example, the individual Deborah
may be stated to be the same individual as DeborahMcGuinness.

• differentFrom: An individual may be stated to be different from other individuals. For
example, the individual Frank may be stated to be different from the individuals
Deborah and Jim. Thus, if the individuals Frank and Deborah are both values for a
property that is stated to be functional (thus the property has at most one value), then
there is a contradiction. Explicitly stating that individuals are different can be important
in when using languages such as OWL (and RDF) that do not assume that individuals
have one and only one name. For example, with no additional information, a reasoner
will not deduce that Frank and Deborah refer to distinct individuals.

• AllDifferent: A number of individuals may be stated to be mutually distinct in one
AllDifferent statement. For example, Frank, Deborah, and Jim could be stated to be
mutually distinct using the AllDifferent construct. Unlike the differentFrom statement
above, this would also enforce that Jim and Deborah are distinct (not just that Frank is
distinct from Deborah and Frank is distinct from Jim). The AllDifferent construct is
particularly useful when there are sets of distinct objects and when modelers are
interested in enforcing the unique names assumption within those sets of objects. It is

I. OWL vocabularies for semantic reasoning

195

used in conjunction with distinctMembers to state that all members of a list are distinct
and pairwise disjoint.

OWL properties

• inverseOf: One property may be stated to be the inverse of another property. If the
property P1 is stated to be the inverse of the property P2, then if X is related to Y by the
P2 property, then Y is related to X by the P1 property. For example, if hasChild is the
inverse of hasParent and Deborah hasParent Louise, then a reasoner can deduce that
Louise hasChild Deborah.

• TransitiveProperty: If a property is transitive, then if the pair (x,y) is an instance of the
transitive property P, and the pair (y,z) is an instance of P, then the pair (x,z) is also an
instance of P. For example, if ancestor is stated to be transitive, and if Sara is an ancestor
of Louise (i.e., (Sara,Louise) is an instance of the property ancestor) and Louise is an
ancestor of Deborah (i.e., (Louise,Deborah) is an instance of the property ancestor), then
a reasoner can deduce that Sara is an ancestor of Deborah (i.e., (Sara,Deborah) is an
instance of the property ancestor).

• SymmetricProperty: Properties may be stated to be symmetric. If a property is
symmetric, then if the pair (x,y) is an instance of the symmetric property P, then the pair
(y,x) is also an instance of P. For example, friend may be stated to be a symmetric
property. Then a reasoner that is given that Frank is a friend of Deborah can deduce that
Deborah is a friend of Frank.

• FunctionalProperty : Properties may be stated to have a unique value. If a property is a
FunctionalProperty, then it has no more than one value for each individual (it may have
no values for an individual). This characteristic has been referred to as having a unique
property. FunctionalProperty is shorthand for stating that the property's minimum
cardinality is zero and its maximum cardinality is 1. For example, hasPrimaryEmployer
may be stated to be a FunctionalProperty. From this a reasoner may deduce that no
individual may have more than one primary employer. This does not imply that every
Person must have at least one primary employer however.

• InverseFunctionalProperty: Properties may be stated to be inverse functional. If a
property is inverse functional then the inverse of the property is functional. Thus the
inverse of the property has at most one value for each individual. This characteristic has
also been referred to as an unambiguous property. For example,
hasUSSocialSecurityNumber (a unique identifier for United States residents) may be
stated to be inverse functional (or unambiguous). The inverse of this property (which
may be referred to as isTheSocialSecurityNumberFor) has at most one value for any
individual in the class of social security numbers. Thus any one person's social security
number is the only value for their isTheSocialSecurityNumberFor property. From this a
reasoner can deduce that no two different individual instances of Person have the
identical US Social Security Number. Also, a reasoner can deduce that if two instances

Annexes

196

of Person have the same social security number, then those two instances refer to the
same individual.

OWL restrictions

• owl:Restriction: OWL allows restrictions to be placed on how properties can be used by
instances of a class. These type are used within the context of an owl:Restriction.

• owl:onProperty: The element indicates the restricted property. The following restrictions
limit which values can be used while the cardinality restrictions limit how many values
can be used.

• allValuesFrom: The restriction allValuesFrom is stated on a property with respect to a
class. It means that this property on this particular class has a local range restriction
associated with it. Thus if an instance of the class is related by the property to a second
individual, then the second individual can be inferred to be an instance of the local range
restriction class. For example, the class Person may have a property called hasDaughter
restricted to have allValuesFrom the class Woman. This means that if an individual
person Louise is related by the property hasDaughter to the individual Deborah, then
from this a reasoner can deduce that Deborah is an instance of the class Woman. This
restriction allows the property hasDaughter to be used with other classes, such as the
class Cat, and have an appropriate value restriction associated with the use of the
property on that class. In this case, hasDaughter would have the local range restriction of
Cat when associated with the class Cat and would have the local range restriction Person
when associated with the class Person. Note that a reasoner can not deduce from an
allValuesFrom restriction alone that there actually is at least one value for the property.

• someValuesFrom: The restriction someValuesFrom is stated on a property with respect
to a class. A particular class may have a restriction on a property that at least one value
for that property is of a certain type. For example, the class SemanticWebPaper may
have a someValuesFrom restriction on the hasKeyword property that states that some
value for the hasKeyword property should be an instance of the class
SemanticWebTopic. This allows for the option of having multiple keywords and as long
as one or more is an instance of the class SemanticWebTopic, then the paper would be
consistent with the someValuesFrom restriction. Unlike allValuesFrom,
someValuesFrom does not restrict all the values of the property to be instances of the
same class. If myPaper is an instance of the SemanticWebPaper class, then myPaper is
related by the hasKeyword property to at least one instance of the SemanticWebTopic
class. Note that a reasoner can not deduce (as it could with allValuesFrom restrictions)
that all values of hasKeyword are instances of the SemanticWebTopic class

OWL cardinalities

• minCardinality: Cardinality is stated on a property with respect to a particular class. If a
minCardinality of 1 is stated on a property with respect to a class, then any instance of
that class will be related to at least one individual by that property. This restriction is

I. OWL vocabularies for semantic reasoning

197

another way of saying that the property is required to have a value for all instances of the
class. For example, the class Person would not have any minimum cardinality
restrictions stated on a hasOffspring property since not all persons have offspring. The
class Parent however would have a minimum cardinality of 1 on the hasOffspring
property. If a reasoner knows that Louise is a Person, then nothing can be deduced about
a minimum cardinality for her hasOffspring property. Once it is discovered that Louise
is an instance of Parent, then a reasoner can deduce that Louise is related to at least one
individual by the hasOffspring property. From this information alone, a reasoner can not
deduce any maximum number of offspring for individual instances of the class parent.

• maxCardinality: Cardinality is stated on a property with respect to a particular class. If a
maxCardinality of 1 is stated on a property with respect to a class, then any instance of
that class will be related to at most one individual by that property. A maxCardinality 1
restriction is sometimes called a functional or unique property. For example, the
property hasRegisteredVotingState on the class UnitedStatesCitizens may have a
maximum cardinality of one (because people are only allowed to vote in only one state).
From this a reasoner can deduce that individual instances of the class USCitizens may
not be related to two or more distinct individuals through the hasRegisteredVotingState
property. From a maximum cardinality one restriction alone, a reasoner can not deduce a
minimum cardinality of 1. It may be useful to state that certain classes have no values
for a particular property. For example, instances of the class UnmarriedPerson should
not be related to any individuals by the property hasSpouse. This situation is represented
by a maximum cardinality of zero on the hasSpouse property on the class
UnmarriedPerson.

• cardinality: Cardinality is provided as a convenience when it is useful to state that a
property on a class has both minCardinality 0 and maxCardinality 0 or both
minCardinality 1 and maxCardinality 1. For example, the class Person has exactly one
value for the property hasBirthMother. From this a reasoner can deduce that no two
distinct individual instances of the class Mother may be values for the hasBirthMother
property of the same person.

Other OWL vocabularies

• oneOf: (enumerated classes): Classes can be described by enumeration of the individuals
that make up the class. The members of the class are exactly the set of enumerated
individuals; no more, no less. For example, the class of daysOfTheWeek can be
described by simply enumerating the individuals Sunday, Monday, Tuesday,
Wednesday, Thursday, Friday, and Saturday. From this a reasoner can deduce the
maximum cardinality (7) of any property that has daysOfTheWeek as its allValuesFrom
restriction.

• hasValue: (property values): A property can be required to have a certain individual as a
value (also sometimes referred to as property values). For example, instances of the class
of dutchCitizens can be characterized as those people that have theNetherlands as a

Annexes

198

value of their nationality. (The nationality value, theNetherlands, is an instance of the
class of Nationalities).

• disjointWith: Classes may be stated to be disjoint from each other. For example, Man
and Woman can be stated to be disjoint classes. From this disjointWith statement, a
reasoner can deduce an inconsistency when an individual is stated to be an instance of
both and similarly a reasoner can deduce that if A is an instance of Man, then A is not an
instance of Woman.

• unionOf, complementOf, intersectionOf (Boolean combinations): OWL allows arbitrary
Boolean combinations of classes and restrictions: unionOf, complementOf, and
intersectionOf. For example, using unionOf, we can state that a class contains things that
are either USCitizens or DutchCitizens. Using complementOf, we could state that
children are not SeniorCitizens. (i.e. the class Children is a subclass of the complement
of SeniorCitizens). Citizenship of the European Union could be described as the union of
the citizenship of all member states.

• minCardinality, maxCardinality, cardinality (full cardinality): OWL allows cardinality
statements for arbitrary non-negative integers. For example the class of DINKs ("Dual
Income, No Kids") would restrict the cardinality of the property hasIncome to a
minimum cardinality of two (while the property hasChild would have to be restricted to
cardinality 0).

II. Major CoCA implementation classes

Source URL: http://liris.cnrs.fr/~edejene/CoCASys/index.html

// Interface and data/event listeners
Class coca.hcom.CoCAframe
Methods

public javax.swing.Box collabBox()
public javax.swing.Box ontologyBox()
public javax.swing.Box contextBox()
public javax.swing.Box actionBox()
public javax.swing.Box consoleBox()
public java.lang.String trimResult(java.lang.String longResult)
public static void toConsole(java.lang.String stt)

//Nested classes for action listening/trigger
class CoCAframe.DataListener
class CoCAframe.ShowFilteredListener
class CoCAframe.TakeActionListener
class CoCAframe.ValidityListener
class CoCAframe.WinCleanListener
class CoCAframe.WinCleanListener2
class CoCAframe.WinCleanListener3

//Create and initialize memory based reasoning mode ls
Class coca.hcom.CoCAModelFactory
Methods
 public InfModel getInitialModel()
 public InfModel getCompleteModel()

//Query, aggregation and decision
Class coca.hcom.CoCAquery
Methods

public java.lang.String[]
public getFilteredTriples(java.lang.String subject,

java.lang.String relation,java.lang.String value)
public java.lang.String[] getAllInstances()
public java.lang.String[] getAllRelations()
public java.lang.String[] getActionsToGo()
public java.lang.String trimResult(java.lang.String longResult)

// Context and ontology merging
Class coca.hcom.CoCArcdb
Methods

public void initialContextToCDB()
public void staticContextToRDF()

// Context filtering storage
Class coca.hcom.CoCAstore
Methods

public void post(java.lang.String[] textString, int size)
public void postStaticContext(java.lang.String[]

textString,int size)

Annexes

200

//CaCA congigure and initialize
Class coca.hcom.CoCAsystem
Methods

public static void main(java.lang.String[] args)

// Context capturing, filter, …
Class coca.hcom.ContextHandler
Methods
 public static boolean validContext(java.lang.Strin g subject,
 java.lang.String relation,
 java.lang.String value)
 public void addContextToModel(java.lang.String Sub ,
 java.lang.String Rel,

 java.lang.String Val)
// Connect, get and or receive data
class cova.hcom.CoCAcollaboration
Methods

public void startJxta()
public void run()//wait for msgs
public void sendAndReceiveData(JxtaSocket socket)
public java.lang.String getContext(java.lang.String msg)
public java.lang.String getSource(java.lang.String msg)
protected static java.io.InputStream
getResourceInputStream(java.lang.String resource)
protected static boolean configured(java.io.File ho me)
protected static void createConfig(java.io.File hom e,
 java.lang.String name,
 boolean server)

III. PiCASO demonstration sample ontology

201

III. PiCASO demonstration sample ontology

Ontology Source URL: http://liris.cnrs.fr/~edejene/PiCASO/index.html

Sample protégé screenshot showing PiCASO ontology definitions

Annexes

202

An excerpt of PiCASO OWL ontology from Protégé

<?xml version="1.0"?>
<rdf:RDF
 xmlns="http://www.cocasp.fr/forumf.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syn tax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schem a#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:assert="http://www.owl-ontologies.com/ass ert.owl#"
 xml:base="http://www.cocasp.fr/forumf.owl">
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="VideoService">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Service"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Office">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Location"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Service">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Context"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Professor">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Person"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="DiaryService">
 <rdfs:subClassOf rdf:resource="#Service"/>
 </owl:Class>
 <owl:Class rdf:ID="Meeting">
 <rdfs:subClassOf rdf:resource="#Activity"/>
 </owl:Class>
 <owl:Class rdf:ID="Research">
 <rdfs:subClassOf rdf:resource="#Activity"/>
 </owl:Class>
 <owl:Class rdf:ID="VoiceService">
 <rdfs:subClassOf rdf:resource="#Service"/>
 </owl:Class>
 <owl:Class rdf:ID="Corridor">
 <rdfs:subClassOf rdf:resource="#Location"/>
 </owl:Class>
 <owl:Class rdf:about="#Device">
 <rdfs:subClassOf rdf:resource="#Context"/>
 </owl:Class>
 <owl:Class rdf:ID="PC">
 <rdfs:subClassOf rdf:resource="#Device"/>
 </owl:Class>
 <owl:Class rdf:ID="BreakRoom">
 <rdfs:subClassOf rdf:resource="#Location"/>

III. PiCASO demonstration sample ontology

203

 </owl:Class>
 <owl:Class rdf:ID="ImageService">
 <rdfs:subClassOf rdf:resource="#Service"/>
 </owl:Class>
 <owl:Class rdf:about="#NetWork">
 <rdfs:subClassOf rdf:resource="#Context"/>
 </owl:Class>
 <owl:Class rdf:ID="ClassRoom">
 <rdfs:subClassOf rdf:resource="#Location"/>
 </owl:Class>
 <owl:Class rdf:ID="LAN">
 <rdfs:subClassOf rdf:resource="#NetWork"/>
 </owl:Class>
 <owl:Class rdf:ID="OtherWorks">
 <rdfs:subClassOf rdf:resource="#Activity"/>
 </owl:Class>
 <owl:Class rdf:ID="TeaBreak">
 <rdfs:subClassOf rdf:resource="#Activity"/>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="tobeSetOn">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="setNotificationMo de"/>
 </owl:inverseOf>
 <rdfs:domain rdf:resource="#Service"/>
 <rdfs:range rdf:resource="#Device"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#setNotificationMo de">
 <owl:inverseOf rdf:resource="#tobeSetOn"/>
 <rdfs:domain rdf:resource="#Device"/>
 <rdfs:range rdf:resource="#Service"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="canBeUsedOn">
 <rdfs:domain rdf:resource="#Service"/>
 <rdfs:range rdf:resource="#Device"/>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="capableToProvide" />
 </owl:inverseOf>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="attendClass">
 <rdfs:range rdf:resource="#Class"/>
 <rdfs:domain rdf:resource="#Student"/>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="attendedBy"/>
 </owl:inverseOf>
 </owl:ObjectProperty>
 <owl:TransitiveProperty rdf:ID="partOf">
 <owl:inverseOf>
 <owl:TransitiveProperty rdf:ID="hasPart"/>
 </owl:inverseOf>
 <rdfs:range rdf:resource="#Location"/>
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#ObjectP roperty"/>
 <rdfs:domain rdf:resource="#Location"/>
 </owl:TransitiveProperty>
 <owl:TransitiveProperty rdf:about="#hasPart">
 <rdfs:domain rdf:resource="#Location"/>

Annexes

204

 <owl:inverseOf rdf:resource="#partOf"/>
 <rdfs:range rdf:resource="#Location"/>
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#ObjectP roperty"/>
 </owl:TransitiveProperty>
 <owl:TransitiveProperty rdf:ID="locatedWith">
 <rdfs:domain rdf:resource="#Person"/>
 <owl:inverseOf rdf:resource="#locatedWith"/>
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#Symmetr icProperty"/>
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#ObjectP roperty"/>
 <rdfs:range rdf:resource="#Person"/>
 </owl:TransitiveProperty>
 <owl:SymmetricProperty rdf:ID="locatedNear">
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#ObjectP roperty"/>
 <rdfs:range rdf:resource="#Person"/>
 <rdfs:domain rdf:resource="#Device"/>
 <owl:inverseOf rdf:resource="#locatedNear"/>
 </owl:SymmetricProperty>
 <owl:FunctionalProperty rdf:ID="engagedIn">
 <rdfs:range rdf:resource="#Activity"/>
 <rdfs:domain rdf:resource="#Person"/>
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#ObjectP roperty"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="scheduledIn">
 <rdfs:domain rdf:resource="#Activity"/>
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#ObjectP roperty"/>
 <rdfs:range rdf:resource="#Location"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="hasPreferenceFor" >
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#ObjectP roperty"/>
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#MessageService"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="hasScheduleType">
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#Datatyp eProperty"/>
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range>
 <owl:DataRange>
 <owl:oneOf rdf:parseType="Resource">
 <rdf:first
rdf:datatype="http://www.w3.org/2001/XMLSchema#stri ng"
 >strict</rdf:first>
 <rdf:rest rdf:parseType="Resource">
 <rdf:first
rdf:datatype="http://www.w3.org/2001/XMLSchema#stri ng"
 >relaxed</rdf:first>
 <rdf:rest rdf:resource="http://www.w3.o rg/1999/02/22-rdf-
syntax-ns#nil"/>
 </rdf:rest>

III. PiCASO demonstration sample ontology

205

 </owl:oneOf>
 </owl:DataRange>
 </rdfs:range>
 </owl:FunctionalProperty>
 <owl:InverseFunctionalProperty rdf:about="#holds" >
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#ObjectP roperty"/>
 <owl:inverseOf rdf:resource="#locatedIn"/>
 <rdfs:range rdf:resource="#Person"/>
 <rdfs:domain rdf:resource="#Location"/>
 </owl:InverseFunctionalProperty>
 <owl:InverseFunctionalProperty rdf:about="#office Of">
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#ObjectP roperty"/>
 <owl:inverseOf rdf:resource="#hasOffice"/>
 <rdfs:domain rdf:resource="#Office"/>
 <rdfs:range rdf:resource="#Person"/>
 </owl:InverseFunctionalProperty>
 <owl:InverseFunctionalProperty rdf:about="#contai ns">
 <owl:inverseOf rdf:resource="#containedIn"/>
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#ObjectP roperty"/>
 <rdfs:range rdf:resource="#Device"/>
 <rdfs:domain rdf:resource="#Location"/>
 </owl:InverseFunctionalProperty>
 <owl:InverseFunctionalProperty rdf:about="#ownerO f">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Device"/>
 <owl:inverseOf rdf:resource="#ownedBy"/>
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#ObjectP roperty"/>
 </owl:InverseFunctionalProperty>
 <owl:DataRange>
 <owl:oneOf rdf:parseType="Resource">
 <rdf:first
rdf:datatype="http://www.w3.org/2001/XMLSchema#stri ng"
 >immobile</rdf:first>
 <rdf:rest rdf:parseType="Resource">
 <rdf:rest rdf:resource="http://www.w3.org/1 999/02/22-rdf-
syntax-ns#nil"/>
 <rdf:first
rdf:datatype="http://www.w3.org/2001/XMLSchema#stri ng"
 >mobile</rdf:first>
 </rdf:rest>
 </owl:oneOf>
 </owl:DataRange>
</rdf:RDF>

<!-- Created with Protege (with OWL Plugin 3.2, Bui ld 355)
http://protege.stanford.edu -->

Annexes

206

IV. PiCASO demonstration sample context data

<?xml version="1.0"?>
<rdf:RDF
xmlns="http://www.cocasp.fr/forumf.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax- ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:assert="http://www.owl-ontologies.com/assert. owl#"
xml:base="http://www.cocasp.fr/forumf.owl">

<TeaBreak rdf:ID="AfternoonTea">
 <hasScheduleType rdf:resource="#relaxed"/>
 <scheduledIn rdf:resource="#Room306"/>
</TeaBreak>
<Student rdf:ID="Alice">
 <attendClass rdf:resource="#Class_5"/>
 <attendClass rdf:resource="#Class_ContextManag ement"/>
 <hasOffice rdf:resource="#OfficeWithAlice"/>
 <ownerOf rdf:resource="#PCAlice"/>
 <ownerOf rdf:resource="#PDAAlice"/>
 <studentOf rdf:resource="#Dave"/>
</Student>
<ClassRoom rdf:ID="AmphiRoom1">
 <reservedFor rdf:resource="#Class_ContextManag ement"/>
</ClassRoom>
<Student rdf:ID="Bob">
 <attendClass rdf:resource="#Class_ContextManag ement"/>
 <attendClass rdf:resource="#Class_SemanticWeb" />
 <hasOffice rdf:resource="#OfficeWithBob"/>
 <ownerOf rdf:resource="#PCBob"/>
 <ownerOf rdf:resource="#PDABob"/>
 <studentOf rdf:resource="#Eve"/>
 <studentOf rdf:resource="#Professor_11"/>
</Student>
<Meeting rdf:ID="BrainStorming1">
 <hasScheduleType rdf:resource="#relaxed"/>
 <scheduledIn rdf:resource="#MeetingRoom_1"/>
</Meeting>
<Research rdf:ID="Browsing">
 <hasEndTime rdf:resource="#2007-06-02T00:00:00 "/>
 <hasScheduleType rdf:resource="#relaxed"/>
</Research>
<Student rdf:ID="Carol">
 <attendClass rdf:resource="#Class_SemanticWeb" />
 <hasOffice rdf:resource="#OfficeWithCarol"/>
 <ownerOf rdf:resource="#PCCarol"/>
 <ownerOf rdf:resource="#PDACarol"/>
 <studentOf rdf:resource="#Eve"/>
</Student>
<Library rdf:ID="CatalogueRoom">
 <partOf rdf:resource="#DocINSA"/>
</Library>

IV. PiCASO demonstration sample context data

207

<ClassRoom rdf:ID="ClassRoom_1">
 <reservedFor rdf:resource="#Class_1"/>
</ClassRoom>
<ClassRoom rdf:ID="ClassRoom_2">
 <reservedFor rdf:resource="#Class_2"/>
</ClassRoom>
<Class rdf:ID="Class_ContextManagement">
 <attendedBy rdf:resource="#Alice"/>
 <attendedBy rdf:resource="#Bob"/>
 <attendedBy rdf:resource="#Student_22"/>
 <hasScheduleType rdf:resource="#strict"/>
 <offeredBy rdf:resource="#Dave"/>
 <scheduledIn rdf:resource="#AmphiRoom1"/>
</Class>
<Class rdf:ID="Class_SemanticWeb">
 <attendedBy rdf:resource="#Bob"/>
 <attendedBy rdf:resource="#Carol"/>
 <attendedBy rdf:resource="#Student_21"/>
 <hasScheduleType rdf:resource="#strict"/>
 <offeredBy rdf:resource="#Eve"/>
</Class>
<MessageService rdf:ID="ColleagueForTea">
 <canBeUsedOn rdf:resource="#PCAlice"/>
 <canBeUsedOn rdf:resource="#PCBob"/>
 <canBeUsedOn rdf:resource="#PCCarol"/>
 <canBeUsedOn rdf:resource="#PCDave"/>
 <canBeUsedOn rdf:resource="#PCEve"/>
 <canBeUsedOn rdf:resource="#PDA_42"/>
 <canBeUsedOn rdf:resource="#PDA_43"/>
 <canBeUsedOn rdf:resource="#PDA_44"/>
 <canBeUsedOn rdf:resource="#PDA_45"/>
 ……….
 <comment rdf:resource="#Your colleague invites you for tea!"/>
 <hasContent rdf:resource="#Your colleague invi tes you for
tea!"/>
</MessageService>
<MessageService rdf:ID="ColleagueHere">
 <canBeUsedOn rdf:resource="#PCAlice"/>
 <canBeUsedOn rdf:resource="#PCBob"/>
 <canBeUsedOn rdf:resource="#PCCarol"/>
 <canBeUsedOn rdf:resource="#PCDave"/>
 <canBeUsedOn rdf:resource="#PCEve"/>
 <canBeUsedOn rdf:resource="#PDAEve"/>
 <canBeUsedOn rdf:resource="#PDA_31"/>
 <canBeUsedOn rdf:resource="#PDA_32"/>
 <canBeUsedOn rdf:resource="#PDA_41"/>
 <canBeUsedOn rdf:resource="#PDA_42"/>
 <canBeUsedOn rdf:resource="#PDA_43"/>
 <canBeUsedOn rdf:resource="#PDA_44"/>
 <canBeUsedOn rdf:resource="#PDA_45"/>
 …………
 <comment rdf:resource="#Your Colleague is here !"/>
 <hasContent rdf:resource="#Your Colleague is h ere!"/>
</MessageService>
<Library rdf:ID="Corridor_Library">
 <partOf rdf:resource="#DocINSA"/>

Annexes

208

</Library>
<PC rdf:ID="PCAlice">
 <capableToProvide rdf:resource="#ColleagueForT ea"/>
 <capableToProvide rdf:resource="#ColleagueHere "/>
 <capableToProvide rdf:resource="#Dairy1"/>
 <capableToProvide rdf:resource="#ProfessorForT ea"/>
 <capableToProvide rdf:resource="#ProfessorHere "/>
 <capableToProvide rdf:resource="#RingTone"/>
 <capableToProvide rdf:resource="#SilentMode"/>
 <capableToProvide rdf:resource="#StudentForTea "/>
 <capableToProvide rdf:resource="#StudentHere"/ >
 <connectedTo rdf:resource="#PC2PC"/>
 <connectedTo rdf:resource="#PDA2PC"/>
 <connectedTo rdf:resource="#Wired"/>
 <connectedTo rdf:resource="#Wireless"/>
 <containedIn rdf:resource="#OfficeWithAlice"/>
 <hasProcessorSpeed rdf:resource="#High"/>
 <hasScreenSize rdf:resource="#Large"/>
 <hasStorageCapacity rdf:resource="#Large"/>
 <ownedBy rdf:resource="#Alice"/>
</PC>
<MessageService rdf:ID="ProfessorForTea">
 <canBeUsedOn rdf:resource="#PCAlice"/>
 <canBeUsedOn rdf:resource="#PCBob"/>
 <canBeUsedOn rdf:resource="#PCCarol"/>
 <canBeUsedOn rdf:resource="#PDA_43"/>
 <canBeUsedOn rdf:resource="#PDA_44"/>
 <canBeUsedOn rdf:resource="#PDA_45"/>
 ………..
 <comment rdf:resource="#Your professor invite s you for tea!"/>
 <hasContent rdf:resource="#Your professor inv ites you for
tea!"/>
</MessageService>
<MessageService rdf:ID="ProfessorHere">
 <canBeUsedOn rdf:resource="#PCAlice"/>
 <canBeUsedOn rdf:resource="#PCBob"/>
 <canBeUsedOn rdf:resource="#PCCarol"/>
 <canBeUsedOn rdf:resource="#PCDave"/>
 <canBeUsedOn rdf:resource="#PCEve"/>
 <canBeUsedOn rdf:resource="#PDA_44"/>
 <canBeUsedOn rdf:resource="#PDA_45"/>
 …. …….
 <comment rdf:resource="#Your professor is here !"/>
 <hasContent rdf:resource="#Your professor is h ere!"/>
</MessageService>
<Professor rdf:ID="Professor_11">
 <advisorOf rdf:resource="#Bob"/>
 <advisorOf rdf:resource="#Student_21"/>
 <advisorOf rdf:resource="#Student_23"/>
 <hasOffice rdf:resource="#Office_1"/>
 <offerClass rdf:resource="#Class_1"/>
 <ownerOf rdf:resource="#PC_11"/>
 <ownerOf rdf:resource="#PDA_31"/>
</Professor>
<Professor rdf:ID="Professor_12">
 <advisorOf rdf:resource="#Student_22"/>

IV. PiCASO demonstration sample context data

209

 <advisorOf rdf:resource="#Student_24"/>
 <hasOffice rdf:resource="#Office_2"/>
 <offerClass rdf:resource="#Class_2"/>
 <ownerOf rdf:resource="#PC_12"/>
 <ownerOf rdf:resource="#PDA_32"/>
</Professor>
<Library rdf:ID="ReadingRoom">
 <partOf rdf:resource="#DocINSA"/>
</Library>
<MessageService rdf:ID="RingTone">
 <canBeUsedOn rdf:resource="#PCAlice"/>
 <canBeUsedOn rdf:resource="#PCBob"/>
 <canBeUsedOn rdf:resource="#PCCarol"/>
 <canBeUsedOn rdf:resource="#PCDave"/>
 <canBeUsedOn rdf:resource="#PDA_44"/>
 <canBeUsedOn rdf:resource="#PDA_45"/>

……..
 <comment rdf:resource="#Ring normal tone on ar rival of call."/>
 <hasContent rdf:resource="#Ring normal tone on arrival of call
!"/>
</MessageService>
<BreakRoom rdf:ID="Room306">
 <reservedFor rdf:resource="#AfternoonTea"/>
 <reservedFor rdf:resource="#MorningTea"/>
</BreakRoom>
<MessageService rdf:ID="StudentForTea">
 <canBeUsedOn rdf:resource="#PCAlice"/>
 <canBeUsedOn rdf:resource="#PCBob"/>
 <canBeUsedOn rdf:resource="#PCCarol"/>
 … …..
 <comment rdf:resource="#Your student invites y ou for tea!"/>
 <hasContent rdf:resource="#Your student invite s you for tea!"/>
</MessageService>
<MessageService rdf:ID="StudentHere">
 <canBeUsedOn rdf:resource="#PCAlice"/>
 <canBeUsedOn rdf:resource="#PCBob"/>
 <canBeUsedOn rdf:resource="#PCCarol"/>
 … …..
 <comment rdf:resource="#Your student is here!" />
 <hasContent rdf:resource="#Your student is her e!"/>
</MessageService>
</rdf:RDF>

Annexes

210

V. PiCASO demonstration sample rules

@prefix pre: <http://www.cocasp.fr/forumf.owl#>
@prefix sc: <http://www.w3.org/2000/01/rdf-schema#>
@prefix tp: <http://www.w3.org/1999/02/22-rdf-synta x-ns#>
@prefix owl: <http://www.w3.org/2002/07/owl#>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-synt ax-ns#>

Location based rules============================= ===========
[locatedNearRule:
 (?p pre:ownerOf ?d)
 (?d rdf:type pre:PDA)
 -> (?p pre:locatedNear ?d)
]
[locatedWithrRule:
 (?p1 pre:locatedIn ?l)
 (?p2 pre:locatedIn ?l)
 -> (?p1 pre:locatedWith ?p2)
]
#MobilePhone in Library Rule======================= ===========
[MobilePhoneRule:
 (?d pre:ownedBy ?p)
 (?d rdf:type pre:PDA)
 (?p pre:locatedIn ?l)
 (?l rdf:type pre:Library)
 -> (?d pre:setNotificationMode pre:SilentMode)
]
[MobilePhoneRule:
 (?d pre:ownedBy ?p)
 (?d rdf:type pre:PDA)
 (?p pre:locatedIn ?S)
 (?s pre:componentOf ?l)
 (?l rdf:type pre:Library)
 -> (?d pre:setNotificationMode pre:SilentMode)
]
#MobilePhone Rule================================== ==========
[MobilePhoneRule:
 (?d pre:ownedBy ?p)
 (?d rdf:type pre:PDA)
 (?p pre:locatedIn ?l)
 (?l rdf:type pre:ClassRoom)
 -> (?d pre:setNotificationMode pre:VibratingMod e)
]
[MobilePhoneRule:
 (?d pre:ownedBy ?p)
 (?d rdf:type pre:PDA)
 (?p pre:locatedIn ?l)
 (?l rdf:type pre:BreakRoom)
 -> (?d pre:setNotificationMode pre:MusicTone)
]
 [MobilePhoneRule:
 (?d pre:ownedBy ?p)
 (?d rdf:type pre:PDA)
 (?p pre:locatedIn ?l)

V. PiCASO demonstration sample rules

211

 (?l rdf:type pre:Office)
 -> (?d pre:setNotificationMode pre:RingTone)
]
#hasMessage To go Rule ============================ ============
[InformRule1:
 (?S rdf:type pre:Student)
 (?P rdf:type pre:Professor)
 (?S pre:studentOf ?P)
 (?S pre:locatedWith ?P)
 -> (?S pre:hasMessageTogo pre:ProfessorHere)
]
[InformRule1:
 (?S rdf:type pre:Student)
 (?P rdf:type pre:Professor)
 (?P pre:advisorOf ?S)
 (?S pre:locatedWith ?P)
 -> (?S pre:hasMessageTogo pre:ProfessorHere)
]
[InformRule2:
 (?S rdf:type pre:Student)
 (?P rdf:type pre:Professor)
 (?S pre:studentOf ?P)
 (?S pre:locatedWith ?P)
 -> (?P pre:hasMessageTogo pre:StudentHere)
]
[InformRule2:
 (?S rdf:type pre:Student)
 (?P rdf:type pre:Professor)
 (?P pre:AdvisorOf ?S)
 (?S pre:locatedWith ?P)
 -> (?P pre:hasMessageTogo pre:StudentHere)
]
[InformRule3:
 (?S1 rdf:type pre:Student)
 (?S2 rdf:type pre:Student)
 (?P rdf:type pre:Professor)
 (?S1 pre:studentOf ?P)
 (?S2 pre:studentOf ?P)
 (?S1 pre:locatedWith ?S2)
 notEqual(?S1,?S2)
 -> (?S1 pre:hasMessageTogo pre:ColleagueHere)
]
[InformRule3:
 (?S1 rdf:type pre:Student)
 (?S2 rdf:type pre:Student)
 (?P rdf:type pre:Professor)
 (?P pre:advisorOf ?S1)
 (?P pre:advisorOf ?S2)
 (?S1 pre:locatedWith ?S2)
 notEqual(?S1,?S2)
 -> (?S1 pre:hasMessageTogo pre:ColleagueHere)
]
[InformRule4:
 (?P1 rdf:type pre:Professor)
 (?P2 rdf:type pre:Professor)
 (?S rdf:type pre:Student)

Annexes

212

 (?S pre:studentOf ?P1)
 (?S pre:studentOf ?P2)
 (?P1 pre:locatedWith ?P2)
 notEqual(?P1,?P2)
 -> (?P1 pre:hasMessageTogo pre:ColleagueHere)
]
[InformRule4:
 (?P1 rdf:type pre:Professor)
 (?P2 rdf:type pre:Professor)
 (?S rdf:type pre:Student)
 (?P1 pre:advisorOf ?S)
 (?P2 pre:advisorOf ?S)
 (?P1 pre:locatedWith ?P2)
 notEqual(?P1,?P2)
 -> (?P1 pre:hasMessageTogo pre:ColleagueHere)
]
#== =======
[InviteRule1:
 (?S1 rdf:type pre:Student)
 (?S2 rdf:type pre:Student)
 (?P rdf:type pre:Professor)
 (?S1 pre:studentOf ?P)
 (?S2 pre:studentOf ?P)
 (?S1 pre:engagedIn ?A1)
 (?A1 rdf:type pre:TeaBreak)
 (?S2 pre:engagedIn ?A2)
 (?A2 pre:hasScheduleType ?t)
 equal(?t,pre:relaxed)
 notEqual(?S1,?S2)
 -> (?S2 pre:hasMessageTogo pre:ColleagueForTea)
]
[InviteRule1:
 (?S1 rdf:type pre:Student)
 (?S2 rdf:type pre:Student)
 (?P rdf:type pre:Professor)
 (?P pre:advisorOf ?S1)
 (?P pre:advisorOf ?S2)
 (?S1 pre:engagedIn ?A1)
 (?A1 rdf:type pre:TeaBreak)
 (?S2 pre:engagedIn ?A2)
 (?A2 pre:hasScheduleType ?t)
 equal(?t,pre:relaxed)
 notEqual(?S1,?S2)
 -> (?S2 pre:hasMessageTogo pre:ColleagueForTea)
]
#== =======
[PostedForRule:
 (?p pre:hasMessageTogo ?m)
 -> (?m pre:postedFor ?p)
]
[PostedForRule:
 (?d pre:setNotificationMode ?m)
 -> (?m pre:tobeSetOn ?d)
]

VI. Sample ontology for the smart hospital scenario

213

VI. Sample ontology for the smart hospital scenario

Ontology Source URL: http://liris.cnrs.fr/~edejene/PatientCareOnto/index.html

Branched graph showing the overall structure of ontology for the hospital scenario –
Graph depth only up to 4th level

Annexes

214

Ontology graph for the hospital Scenario (part 1) – Graph depth only up to 4th level

VI. Sample ontology for the smart hospital scenario

215

Ontology graph for the hospital Scenario (part 2) - Graph depth only up to 4th level

Annexes

216

An excerpt of OWL ontologyfor the hospital scenario (Protégé)

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syn tax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns="http://www.cocasp.fr/patientcare.owl#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schem a#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xml:base="http://www.cocasp.fr/patientcare.owl">
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="Ward">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Location"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:ID="Garden"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:ID="PatientRelativeCarer">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="CareGiver"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#PatientRelative"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#ProfessionalCarer">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#CareGiver"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Class rdf:ID="EmployedPerson"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Patient">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Person"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:ID="Nurse"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Doctor"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:ID="ReferringDoctor">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Doctor"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Dietician">
 <rdfs:subClassOf rdf:resource="#ProfessionalCar er"/>
 </owl:Class>

VI. Sample ontology for the smart hospital scenario

217

 <owl:Class rdf:ID="BedRoom">
 <rdfs:subClassOf rdf:resource="#Ward"/>
 </owl:Class>
 <owl:Class rdf:about="#Child">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Youth"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Person">
 <rdfs:subClassOf rdf:resource="#Context"/>
 </owl:Class>
 <owl:Class rdf:ID="MedicationRoom">
 <rdfs:subClassOf rdf:resource="#Ward"/>
 </owl:Class>
 <owl:Class rdf:ID="MaleOrFemalePatient">
 <rdfs:subClassOf rdf:resource="#Patient"/>
 <rdfs:subClassOf rdf:resource="#MaleOrFemalePhe notypePerson"/>
 </owl:Class>
 <owl:Class rdf:ID="Meeting">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Activity"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="MetabolicDisorder">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Pathology"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#FemaleAdult">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#FemalePhenotypePerson" />
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Adult"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Treatement">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Activity"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Son">
 <rdfs:subClassOf rdf:resource="#FirstDegreeRela tive"/>
 </owl:Class>
 <owl:Class rdf:ID="RetiredPerson">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Adult"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="ChildUnderOne">
 <rdfs:subClassOf rdf:resource="#ChildUnderTwo"/ >
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Baby"/>
 </rdfs:subClassOf>
 </owl:Class>

Annexes

218

 <owl:Class rdf:ID="FemaleOverFifty">
 <rdfs:subClassOf rdf:resource="#FemaleAdult"/>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#AdultOverFifty"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Image">
 <owl:disjointWith>
 <owl:Class rdf:about="#Audio"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Text"/>
 <owl:disjointWith rdf:resource="#Video"/>
 <rdfs:subClassOf rdf:resource="#ContentService" />
 </owl:Class>
 <owl:Class rdf:ID="Daughter">
 <rdfs:subClassOf rdf:resource="#FirstDegreeRela tive"/>
 </owl:Class>
 <owl:Class rdf:ID="OrodentalSystemComponent">
 <rdfs:subClassOf rdf:resource="#Anatomical_Conc ept"/>
 </owl:Class>
 <owl:Class rdf:ID="Infant">
 <rdfs:subClassOf rdf:resource="#ChildUnderOne"/ >
 </owl:Class>
 <owl:Class rdf:ID="Physiotherapist">
 <rdfs:subClassOf rdf:resource="#ProfessionalCar er"/>
 </owl:Class>
 <owl:Class rdf:ID="VCamera">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Device"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Wife">
 <rdfs:subClassOf rdf:resource="#FemaleAdult"/>
 </owl:Class>
 <owl:Class rdf:about="#Pathology">
 <rdfs:subClassOf rdf:resource="#MedicalService" />
 </owl:Class>
 <owl:Class rdf:ID="Wearable">
 <rdfs:subClassOf rdf:resource="#Device"/>
 </owl:Class>
 <owl:Class rdf:ID="StairCase">
 <rdfs:subClassOf rdf:resource="#Ward"/>
 </owl:Class>
 <owl:Class rdf:ID="Chiropodist">
 <rdfs:subClassOf rdf:resource="#ProfessionalCar er"/>
 </owl:Class>
 <owl:Class rdf:ID="ConjoinedTwin">
 <rdfs:subClassOf rdf:resource="#Twin"/>
 </owl:Class>
 <owl:Class rdf:ID="Neonate">
 <rdfs:subClassOf rdf:resource="#ChildUnderOne"/ >
 </owl:Class>
 <owl:Class rdf:ID="NervousSystemComponent">
 <rdfs:subClassOf rdf:resource="#Anatomical_Conc ept"/>
 </owl:Class>

VI. Sample ontology for the smart hospital scenario

219

 <owl:Class rdf:ID="MalePatient">
 <rdfs:subClassOf rdf:resource="#MalePhenotypePe rson"/>
 <rdfs:subClassOf rdf:resource="#MaleOrFemalePat ient"/>
 </owl:Class>
 <owl:Class rdf:ID="LaboratoryTechnician">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#EmployedPerson"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="MaltreatmentActOffender">
 <rdfs:subClassOf rdf:resource="#Person"/>
 </owl:Class>
 <owl:Class rdf:ID="MusculoSkeletalSystemComponent ">
 <rdfs:subClassOf rdf:resource="#Anatomical_Conc ept"/>
 </owl:Class>
 <owl:Class rdf:about="#CareGiver">
 <rdfs:subClassOf rdf:resource="#Person"/>
 </owl:Class>
 <owl:Class rdf:ID="Father">
 <rdfs:subClassOf rdf:resource="#FirstDegreeRela tive"/>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="capture">
 <rdfs:range rdf:resource="#Video"/>
 <rdfs:domain rdf:resource="#Location"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="broadcastTo">
 <rdfs:domain rdf:resource="#Video"/>
 <rdfs:range rdf:resource="#Terminal"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="canProvide">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="availableOn"/>
 </owl:inverseOf>
 <rdfs:domain rdf:resource="#Device"/>
 <rdfs:range rdf:resource="#Service"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasSchedule">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Activity"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasNurse">
 <rdfs:domain rdf:resource="#Patient"/>
 <rdfs:range rdf:resource="#Nurse"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#availableOn">
 <rdfs:range rdf:resource="#Device"/>
 <rdfs:domain rdf:resource="#Service"/>
 <owl:inverseOf rdf:resource="#canProvide"/>
 </owl:ObjectProperty>
 <owl:TransitiveProperty rdf:ID="locatedIn">
 <rdf:type rdf:resource="http://www.w3.or..#Func tionalProperty"/>
 <rdf:type rdf:resource="http://www.w3.org/..owl #ObjectProperty"/>
 <rdfs:range rdf:resource="#Location"/>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">

Annexes

220

 <owl:Class rdf:about="#Device"/>
 <owl:Class rdf:about="#Person"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 </owl:TransitiveProperty>
 <owl:FunctionalProperty rdf:ID="hasBP1">
 <rdf:type rdf:resource="http://www.w3.or..owl#D atatypeProperty"/>
 <rdfs:range rdf:resource="http://www.w3.org/200 1/XMLSchema#int"/>
 <rdfs:domain rdf:resource="#Patient"/>
 </owl:FunctionalProperty>
 <owl:InverseFunctionalProperty rdf:about="#hasPat ient">
 <rdfs:domain rdf:resource="#Doctor"/>
 <owl:inverseOf rdf:resource="#hasDr"/>
 <rdfs:range rdf:resource="#Patient"/>
 <rdf:type rdf:resource="http://www.w3.org..owl# ObjectProperty"/>
 </owl:InverseFunctionalProperty>
 <StairCase rdf:ID="StairCase_Floor1"/>
 <MedicationRoom rdf:ID="ImergencyRoom01"/>
 <owl:DataRange/>
 <PC rdf:ID="PC_Garden02"/>
 <owl:DataRange/>
 <VCamera rdf:ID="VCamera_Garden_03"/>
 <Garden rdf:ID="Garden_Front"/>
 <Meeting rdf:ID="EvaluationMeeting"/>
 <Terminal rdf:ID="Terminal_Corridor_01"/>
 <BedRoom rdf:ID="BedRoom_10_02"/>
 <MeetingRoom rdf:ID="MeetingRoom_Floor2"/>
 <CellPhone rdf:ID="CellPhone_Pascal"/>
 <Patient rdf:ID="Michel"/>
 <CellPhone rdf:ID="CellPhone_Ada"/>
 <Treatement rdf:ID="EmergencyTreatement"/>
 <Terminal rdf:ID="Terminal_Corridor_02"/>
 <Context rdf:ID="Context_1"/>
 <MediaPlayer rdf:ID="iTune"/>
 <MediaPlayer rdf:ID="WindowsMplayer"/>
 <Office rdf:ID="Office_Secretary"/>
 <VCamera rdf:ID="VCamera_Garden_02"/>
 <owl:DataRange/>
 <StairCase rdf:ID="StairCase_Floor2"/>
 <Garden rdf:ID="Garden_BackDoor"/>
 <MeetingRoom rdf:ID="MeetingRoom_Floor1"/>
 <CellPhone rdf:ID="CellPhone_Michel"/>
 <Treatement rdf:ID="HeavySurgery"/>
 <Treatement rdf:ID="RegularTreatement"/>
 <BedRoom rdf:ID="BedRoom_10_01"/>
 <PC rdf:ID="PC_Central_02"/>
 <MedicalSupport rdf:ID="EmergencyGroup_01"/>
 <Doctor rdf:ID="Pascal"/>
 <Treatement rdf:ID="MiniSurgery"/>
 <PDA rdf:ID="PDA_Pascal"/>
 <Nurse rdf:ID="Ana"/>
 <PDA rdf:ID="PDA_Ada"/>

</rdf:RDF>

221

List of Publications

I. International Journals

� Ejigu D., Scuturici M., Brunie L., “Hybrid Approach to Collaborative Context-Aware

Service Platform for Pervasive Computing”, Journal of Computers (JCP), Volume 2

number 8, Academy Publishers, October 2007.

� Chaari, T., Ejigu D., Laforest F., Scuturici V.M., “A Comprehensive Approach to

Model and Use Context for Adapting Applications in Pervasive Environments”,

International Journal of Systems and Software (JSS), Volume 80/12, Elsevier Science

Publishers, Amsterdam, 2007. pp.1973-1992.

II. International Conferences

� Ejigu D., Scuturici M., Brunie L.: “Semantic Approach to Context Management and

Reasoning in Ubiquitous Context-Aware Systems”, In the proceedings of the IEEE

International Conference on Digital Information Management (ICDIM’07), Lyon,

France, October 2007. pp. 500-5005.

� Ejigu D., Scuturici M., Brunie L.: "An Ontology-Based Approach to Context Modeling

and Reasoning in Pervasive Computing," percomw, Fifth IEEE International

Conference on Pervasive Computing and Communications Workshops (PerComW'07),

2007. pp. 14-19.

� Ejigu D., Scuturici, M., Brunie L.: “CoCA: A Collaborative Context-Aware Service

Platform for Pervasive Computing”, Fourth IEEE International Conference on

Information Technology: New Generations, ITNG’07, Las Vegas, USA, April 2007.

pp. 297-302.

� Scuturici M., Ejigu, D. : “Positioning Support in Pervasive Environments”, IEEE

International Conference on Pervasive Services (ICPS'06), Lyon, France, June 2006,

pp. 19-26.

� Chaari T., Ejigu D., Laforest F., Scuturici M., “Modeling and Using Context in

Adapting Applications to Pervasive Environments”, IEEE International Conference on

Pervasive Services (ICPS'06), Lyon, France, June 2006, pp. 111-120.

223

Curriculum Vitae

Personal Information

� Name: Dejene Ejigu Dedefa

� Sex: Male

� Marital Status: Married (three children)

� Nationality: Ethiopian

� Date of birth: July13, 1965

� Place of birth: Woliso, Ethiopia

� Language: English, French
 Amharic, Oromo (Ethiopian languages)

� Current Address: INSA de Lyon, LIRIS, Bat. Blaise Pascal 501.325
 20 Avenue Albert Einstein, 69621 Villeurbanne, France

 Tel. +33 (0)4 72 43 63 48

 Fax: +33 (0)4 72 43 87 13
Education

� Ph.D. candidate at INSA Lyon, October 2004 to date.

� Professional Certificate in Computer Technology, Kyoto School of Computer Science,
Japan, 1997.

� M. Sc. Degree in Computer Science, University of Wales Swansea, UK, 1989.

(Dissertation Title “The Grid File: Implementation and Performance Analysis”)

� B. Sc. (Distinction) Degree in Statistics, Addis Ababa University, Ethiopia, 1986.

� Diploma in Auto-Mechanics & School Leaving Very High Distinction Certificate, 1982.

Work Experience

� Doctoral researcher at LIRIS laboratory, INSA Lyon, October 2004 to date.

� French language training at Alliance Françaises de Lyon and pre-doctoral research
practice at INSA de Lyon, October 2003 to July 2004.

� Lecturer, Department of Computer Science, Addis Ababa University, September 2001 to
2003.

� Assistant Faculty Dean and Lecturer, Faculty of Science, Addis Ababa University,
September 1999 to 2001.

� Lecturer, Department of Mathematics & Comp. Science, Addis Ababa University, Sep.
1997 to 1999.

� Senior Computer Expert and Software Team Leader, National Computer & Information
Center, Ethiopian Science & Technology Commission, January 1995 to September 1997.

� Computer Expert, National Computer Center, Ethiopian Science and Technology
Commission, October 1988 to January 1995.

� Junior Expert, Computer Research Unit, Ethiopian Science and Technology Commission, October 1986 to
September 1987.

225

FOLIO ADMINISTRATIF
THESE SOUTENUE DEVANT L'INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE

LYON

NOM : DEJENE EJIGU DATE de SOUTENANCE : 12 Décembre 2007
(avec précision du nom de jeune fille, le cas échéant)
Prénoms : DEDEFA
TITRE : Services Pervasifs Contextualisés : Modélisation et Mise en Œuvre
 “Context Modeling and Collaborative Context-Aware Services for Pervasive Computing”
NATURE : Doctorat Numéro d'ordre : 2007-ISAL-0108

Ecole doctorale : École doctorale Informatique et Information pour la Société

Spécialité : Informatique

Cote B.I.U. - Lyon : T 50/210/19 / et bis CLASSE :

RESUME : Résumé : Les systèmes pervasifs visent à intégrer des services fournis par des dispositifs répartis communicants.
De tels environnements ont comme objectif d'optimiser l'interaction de l'utilisateur avec les dispositifs intégrés, par exemple en
permettant à l'utilisateur d'accéder à l'ensemble des informations disponibles et en adaptant celles-ci aux conditions matérielles
effectives (qualité de service réseau, caractéristiques du matériel de connexion). Cela impose aux applications d'adapter
dynamiquement leur fonctionnement aux caractéristiques de l'environnement (notion de "contexte d'exécution").

Dans cette thèse, nous proposons un modèle sémantiquement riche pour la collaboration, la représentation et la gestion du
contexte. Nous utilisons un modèle de représentation du contexte fondé sur une approche hybride utilisant des ontologies et
des bases de données relationnelles. Cette richesse de modélisation nous permet de sélectionner de manière efficace les
informations contextuelles pertinentes et ainsi d'améliorer les performances du processus de raisonnement mis en oeuvre dans
l'analyse du contexte d'exécution.

Nous présentons la plateforme logicielle d'intégration de services pervasifs que nous avons développée. Cette plateforme
s'appuie sur la méthodologie et les modèles de représentation et de gestion du contexte proposés dans la thèse. Elle permet une
interaction "contextualisée" des services fournis par les dispositifs participants, offrant en particulier des mécanismes
d'adaptation au contexte et de déclenchement proactif ou réactif de services en réponse à une évolution du contexte. Cette
plate-forme implémente le protocole JXTA dans ses composants de collaboration et utilise la librairie JENA pour le
raisonnement (déclaration et interprétation des règles d'analyse du contexte).

Des démonstrateurs ont été développés et testés illustrant l'utilisation de la plate-forme dans trois cas d'utilisation liés à des
domaines applicatifs variés : les réseaux sociaux, l'hôpital intelligent, l'adaptation d'IHM au contexte.

Les résultats obtenus illustrent la performance, la robustesse et l'extensibilité de l'approche proposée.

MOTS-CLES : Informatique Pervasif, Réactivité au Contexte, Contexte Modélisation, Raisonnement Sémantique, Ontologie
du Contexte, Informatique Collaborative

Laboratoire (s) de recherche : LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information

Directeur de thèse: Lionel Brunie Co-directeur : Vasile-Marian Scuturici

Rapporteurs :Bruno DEFUDE, Professeur, Institut National des Telecommunications, Paris

 Manish PARASHAR, Professeur, Rutgers University, New Jersey, USA

Président de jury : Prof. Aris OUKSEL, University d’Illinois à Chicago, USA

Composition du jury :

 Prof. Bruno DEFUDE, INT Paris (Rapporteur)

 Prof. Aris OUKSEL, Université d’Illinois à Chicago, USA (Examinateur)

 Prof. Jean-Marc PETIT, INSA de Lyon (Examinateur)

 Dr. Thierry DELOT, Universteé de Valenciennes (Examinateur)

 Dr. Richard CHBEIR, Université de Bourgogne (Examinateur)

 Prof. Lionel BRUNIE, INSA de Lyon (Directeur de thèse)

 Dr. Marian SCUTURICI, INSA de Lyon (Co-directeur de thèse)

