
Ordering number 2007-ISAL-0107 Year 2007

Thesis

Grid Caching: Specification and Implementation
of Collaborative Cache Services for Grid

Computing

Submitted to the

National Institute of Applied Sciences of Lyon

In fulfillment of the requirements for a

Doctoral Degree

Affiliated Area: Computer Science

Doctoral school of Computer Science and Informatics (EDIIS-EDA 335)

Prepared by

Yonny CARDENAS BARON

Defended at 10th December 2007 in front of the Examination Committee.

Committee Members :

Pr. Norman PATON University of Manchester Reviewer

Dr. Jean-Marc NICOD Université de Franche-Comté Reviewer

Pr. Lionel BRUNIE INSA de Lyon Supervisor

Pr. Jean-Marc PIERSON Université Paul Sabatier Co-supervisor

Pr. Abdelkader HAMEURLAIN Université Paul Sabatier Examiner

Dr. Claudia RONCANCIO Université Joseph Fourier Examiner

LIRIS

Lyon Research Center for Images and Intelligent Information Systems

Numéro d’ordre : 2007-ISAL-0107 Année 2007

Thèse

Grid Caching: Spécification et Mise en Oeuvre de
Services de Caches Collaboratifs pour les Grilles

de Calcul

présentée devant

L’Institut National des Sciences Appliquées de Lyon

pour obtenir

Le grade de docteur

Spécialité : Informatique

École doctorale : Informatique et Information pour la Société (EDIIS-EDA 335)

Par

Yonny CARDENAS BARON

Soutenue le 10 Décembre 2007 devant la Commission d’examen

Jury :

Pr. Norman PATON University of Manchester Rapporteur

Dr. Jean-Marc NICOD Université de Franche-Comté Rapporteur

Pr. Lionel BRUNIE INSA de Lyon Directeur de thèse

Pr. Jean-Marc PIERSON Université Paul Sabatier Co-directeur de thèse

Pr. Abdelkader HAMEURLAIN Université Paul Sabatier Examinateur

Dr. Claudia RONCANCIO Université Joseph Fourier Examinatrice

LIRIS

Laboratoire d’Informatique en Image et Systèmes d’information

Abstract

Grids support multiple models of distributed computation and need to operate on
large data entities in a distributed way. A significant quantity of these data are used
only for a limited period of time. Furthermore, grids are characterized by a very
high dynamism both in terms of available resources and terms of effective data access
patterns. Consequently, temporary data management in grids is highly critical and
global coordination of the storage network resources is mandatory.

In this context, caching is recognized as one of the most effective techniques to
manage temporary data and a collaborative cache is traditionally proposed to scale
cache capabilities in distributed environments.

Sharing distributed storage resources is an important issue that deals with strategies
for placement of temporary data in a particular location. These decisions are essen-
tial for the function and the performance of the application and system. Finding
and selecting the storage locations to hold temporary data in a dynamic way is a
complex process that requires detailed and accurate information about temporary
data activity in the whole system.

Current data management mechanisms for grid environments only provide basic
capabilities for supporting storage, access and transfer of large amounts of data.
However, they do not provide in the context of diverse access patterns, the efficient
mechanisms to obtain and manage enough temporary storage capacity to handle
large datasets in a dynamic way from heterogeneous, distributed and autonomous
resources.

The idea that we defend in this thesis is that the interactions between caches de-
termine the capabilities that can be provided by the grid. Therefore, expanding
the scope of the cache interactions creates new possibilities for the management of
temporary data. These interactions must be flexible, organized and monitored to
take advantage of individual and collective cache capacities and can then be used to
improve grid data management functionalities and services.

The thesis proposes an approach for the design and implementation of collaborative
cache systems in grids that supports capabilities for monitoring and controlling
cache interactions. Our approach permits compostion and evaluation of high-level

i

collaborative cache functions in a flexible way.

Our proposal is based on a multilayer model that defines the main functions of a
collaborative grid cache system. These capabilities are implemented by a set of
common and standard operations that support the data access, the monitoring and
the configuration of a cache. This model and the provided specification are used to
build a flexible and generic software infrastructure for the operation and control of
collaborative caches.

The infrastructure is composed of a group of autonomous cache elements called Grid
Cache Services (GCS). The GCS is a local administrator of temporary storage and
data which is implemented as a grid service that provides the cache capabilities
defined by the model. It implements interfaces and associated cache operations. We
implemented a prototype of the GCS with Globus Toolkit 4 middleware and we have
made wide area performance measurements for our GCS prototype.

In the manuscript, we study a possible configuration for a group of GCS that consti-
tutes a basic management system of temporary data called Temporal Storage Ser-
vice (TSS). TSS uses a group of caches that collectively provide storage capabilities
to store temporary data. The results of a simulation experiment demonstrate that
group caches (GCS) operating according to their activity can provide supplementary
storage space with minimal cost.

We conclude the manuscript by summarizing the main contributions of this thesis:
1) a definition and specification of cache service as a distinct grid component; 2)
a definition of an architectural infrastructure to construct and operate caches in a
wide area Grid; and 3) a design of mechanisms for management of distributed and
temporary data based on collaborative cache techniques.

ii

Acknowledgments

First and foremost I would like to thank my supervisors Lionel Brunie and Jean-
Marc Pierson. Thanks to them, I have discovered the interesting world of research.
Through all the years their advice and expertise have been very valuable for me in
professional and personal dimensions.

I would like to thank Norman Paton and Jean-Marc Nicod who accepted the hard
task of reviewing my manuscript and being members of my examination committee.

My thanks to Abdelkader Hameurlain and Claudia Roncancio who graciously ac-
cepted to act as members of my examination committee.

I specially thanks Serge Miguet who organized and directed the Region Rhône-Alpes
biomedical grid project (Ragtime) which funded this thesis.

Thanks to Pedro Giffuni and Sophie Barre for the generous help with the grammar
of the manuscript.

Thanks to my girlfriend Annelyse, my parents, brothers and friends for their con-
stantly support and encouragement.

And finally I wish to thank my colleagues from the LIRIS laboratory with whom I
have discussed some of the interesting details and implications of my thesis: Hector
Duque, Ludwig Seitz, Rami Rifaieh, Julien Gossa, David Coquil, Girma Berhe, Ny-
Haingo Andrianarisoa, Dejene Ejigu, Omar Hasan, Marian Scuturici and Rachid
Saadi.

iv

Contents

1 Résumé Français 1

1.1 Introduction . 1

1.2 État de l’art . 3

1.2.1 Systèmes de caches . 3

1.2.2 Cache Web . 5

1.3 Gestion des données dans une grille 6

1.3.1 Organisation et standardisation 6

1.3.2 Projets actuels dans le domaine des grilles de données 6

1.3.3 Transfert des données . 7

1.3.4 Gestion du stockage de données 7

1.3.5 Accès aux bases de données 8

1.3.6 Réplication . 8

1.4 Spécifications du Cache Collaboratif pour les Grilles 9

1.4.1 Modèle en couches . 10

1.4.2 Opérations Fonctionnelles . 12

1.4.3 Informations de cache . 13

1.5 Service de Cache pour les Grilles (GCS) 14

v

1.5.1 Implémentation d’un prototype de GCS 16

1.5.2 Architecture du prototype . 16

1.5.3 Publication de données avec GCS 18

1.5.4 Performance du Grid Cache Service 18

1.6 Espace de Stockage Temporaire (TSS) 19

1.6.1 Expériences . 22

1.7 Conclusion . 23

2 Introduction 26

2.1 Motivation . 28

2.1.1 Use cases . 28

2.2 Aspects of the Management of Temporary Data on a Grid 30

2.2.1 Aspects Related with Caching 31

2.2.2 Aspects Related with Cooperative Caching 32

2.2.3 Aspects Related with Collective Operation 33

2.3 Requirements . 36

2.3.1 Local Operation Requirements 36

2.3.2 Collective Operation Requirements 37

2.4 Constraints . 40

2.5 Challenge and Positioning . 42

3 Related Work 44

3.1 Cache Systems . 44

3.1.1 Overview . 44

vi

3.1.2 Applications of the cache mechanism 45

3.1.3 Cache advantages and disadvantages 46

3.1.4 Performance Measure Metrics 48

3.1.5 Web caching . 49

3.2 Grid Data Management . 50

3.2.1 Organization and standardization 52

3.2.2 Data Grid Projects . 53

3.3 Remote Data Transfer . 54

3.3.1 GridFTP . 54

3.4 Storage Management . 56

3.4.1 SRM . 56

3.4.2 SRB . 57

3.5 Databases Access . 58

3.5.1 OGSA-DAI . 59

3.6 Replication . 60

3.6.1 RLS . 61

3.6.2 GDMP . 62

3.6.3 DTM . 63

3.6.4 Discussion . 63

3.7 Caching . 64

3.8 Discussion . 65

4 Specification of Collaborative Caches for Grids 66

4.1 Overview . 66

vii

4.2 Cache Model Layer . 68

4.2.1 Storage Layer . 68

4.2.2 Control Layer . 69

4.2.3 Collaboration Layer . 70

4.2.4 Coordination Layer . 70

4.3 Cache Operations . 71

4.3.1 Access operations . 72

4.3.2 Monitoring Operations . 73

4.3.3 Configuration operations . 75

4.4 Cache Operation Definitions . 76

4.4.1 Request and Response Elements 76

4.4.2 Access Operations . 78

4.4.3 Monitoring Operations . 79

4.4.4 Configuration Operations . 81

4.5 Cache Information . 82

4.6 Cache Information Definitions . 83

4.6.1 Entity Information Elements 84

4.7 Discussion . 89

5 Grid Cache Service (GCS) 93

5.1 Overview . 93

5.2 Design Principles . 95

5.2.1 Cache Virtualization . 95

5.2.2 Autonomy . 96

viii

5.2.3 Accessibility . 96

5.2.4 Uniformity . 97

5.2.5 Extensibility . 98

5.3 Cache Model and GCS . 99

5.3.1 Storage layer . 99

5.3.2 Control layer . 99

5.3.3 Collaboration layer . 100

5.3.4 Coordination layer . 101

5.4 GCS Prototype Implementation . 101

5.4.1 Grid Platform . 101

5.4.2 Prototype Architecture . 102

5.4.3 GCS API . 104

5.4.4 Replacement Method Implementation 106

5.4.5 Cache Activity Registry . 106

5.5 Using GCS Operations . 106

5.5.1 Publishing Data with GCS . 107

5.6 Grid Cache Service Performance . 110

5.7 Discussion . 113

6 Temporal Storage Space (TSS) 116

6.1 Overview . 116

6.1.1 Local Cache Service (LCS) . 118

6.1.2 Collective Cache Service (CCS) 119

6.2 TSS capabilities . 120

ix

6.2.1 TSS Data Dissemination . 120

6.2.2 TSS Data Collector . 123

6.2.3 TSS Copy Proliferation Control 125

6.2.4 TSS Monitoring . 127

6.2.5 TSS Configuration . 129

6.3 Experiments . 131

6.3.1 Grid Simulation . 131

6.3.2 Methodology of the Experiment 132

6.3.3 Simulation execution . 133

6.3.4 Performance Evaluation . 134

6.3.5 Grid Simulation Scenarios . 135

6.3.6 Experimental results . 136

6.3.7 Summary . 139

6.3.8 Conclusion . 140

6.4 Discussion . 140

7 Conclusions and Future Work 144

7.1 Contributions . 144

7.2 Future Work . 148

A Cache Replacement Methods 150

A.1 Replacement methods . 150

A.1.1 Classical algorithms . 150

A.1.2 Recency-Based Strategies . 151

x

A.1.3 Frequency-Based Strategies 152

A.1.4 Recency/Frequency-Based Strategies 152

A.1.5 Function-Based Strategies . 153

A.1.6 Randomized Strategies . 153

B Cooperative Web Caching 155

B.1 Cooperative Cache Architectures . 155

B.1.1 Hierarchical Cache . 155

B.1.2 Multicast Approach . 156

B.1.3 Distributed Cache . 159

B.1.4 Peer to Peer Cache . 163

B.2 Cache Communication Protocols . 164

B.2.1 Internet Cache Protocol (ICP) 165

B.2.2 Cache Digests . 165

B.2.3 CARP . 166

B.2.4 Web Cache Coordination Protocol (WCCP) 167

C Activity Information Elements 169

C.1 Activity Information Elements . 169

C.1.1 Storage Usage . 169

C.1.2 Data Action . 170

C.1.3 Data Transfer . 170

C.1.4 Request . 170

D Cache Operations Definitions 172

xi

D.1 Access Operations . 172

D.1.1 SetData() . 172

D.1.2 GetData() . 173

D.1.3 RemoveData() . 173

D.1.4 GetDataContent() . 174

D.1.5 SetMetatada() . 175

D.1.6 GetMetatada() . 176

D.2 Monitor Operations . 177

D.2.1 GetCache() . 177

D.2.2 GetReplacementMethod() . 177

D.2.3 GetStorage() . 179

D.2.4 GetCacheGroup() . 179

D.2.5 GetRequestProcessed() . 180

D.2.6 GetTransfers() . 181

D.2.7 GetDataActions() . 181

D.2.8 GetDataReplacements() . 182

D.2.9 GetStorageCapacity() . 184

D.3 Configuration Operations . 184

D.3.1 SetCache() . 185

D.3.2 SetReplacementMethod() . 185

D.3.3 SetCacheGroup() . 186

D.3.4 SetStorage() . 187

D.3.5 SetDefaultTimeToLive() . 187

xii

D.3.6 SetCacheCoordinator() . 189

D.3.7 SetCacheCollectiveWork() . 189

xiii

List of Figures

1.1 Modèle de référence des caches collaboratifs 11

1.2 Utilisation du Service de Cache . 15

1.3 Architecture du prototype du GCS 17

1.4 Un exemple d’en-tête de requête de l’opération SetData 18

1.5 Espace de Stockage Temporaire (TSS) 21

4.1 Cache Layer Model . 69

4.2 Request header element . 77

4.3 Response header element . 78

4.4 GetData() operation . 79

4.5 GetRequestProcessed() operation . 80

4.6 SetReplacementMethod() operation 81

4.7 Storage entity information . 85

4.8 Data entity information . 86

4.9 Metadata entity information . 87

4.10 Cache entity information . 88

4.11 Cache group entity information . 88

5.1 GCS cache extensibility . 94

xiv

5.2 Cache accessibility . 97

5.3 GCS Prototype Architecture . 102

5.4 UML diagram of GCS prototype classes 105

5.5 An example of the request header of SetData operation 107

5.6 An example of a data entity element for SetData operation 108

5.7 An example of a metadata element included in SetData operation . . 109

5.8 An example of the Java client side code to invoke a GCS operation . 110

5.9 An example of a SetDataResponse of SetData operation 111

6.1 Temporal Storage Space (TSS) . 118

6.2 TSS Data Dissemination . 121

6.3 TSS Data Collector . 124

6.4 TSS Copy Proliferation Control . 126

6.5 An example of gathering information for requests processed in TSS . 128

6.6 An example of modifying the replacement method in TSS 130

B.1 An example of multicast caching . 157

B.2 An example of distributed cache . 161

C.1 Storage usage activity information . 169

C.2 Data action activity information . 170

C.3 Data Transfer activity information 171

C.4 Request activity information . 171

D.1 SetData() operation . 173

D.2 GetData() operation . 174

xv

D.3 RemoveData() operation . 175

D.4 GetDataContent() operation . 175

D.5 SetMetatada() operation . 176

D.6 GetMetatada() operation . 177

D.7 GetCache() operation . 178

D.8 GetReplacementMethod() operation 178

D.9 GetStorage() operation . 179

D.10 GetCacheGroup() operation . 180

D.11 GetRequestProcessed() operation . 181

D.12 GetTransfers() operation . 182

D.13 GetDataActions() operation . 183

D.14 GetDataActions() operation . 183

D.15 GetStorageCapacity() operation . 184

D.16 SetCache() operation . 185

D.17 SetReplacementMethod() operation 186

D.18 SetCacheGroup() operation . 187

D.19 SetStorage() operation . 188

D.20 SetDefaultTimeToLive() operation 188

D.21 SetCacheCoordinator() operation . 189

D.22 SetCacheCollectiveWork() operation 190

xvi

List of Tables

5.1 Performance for GCS access operations 112

5.2 Performance for GCS monitor and management operations 113

6.1 Simulation scaling . 133

6.2 Simulation parameters . 134

6.3 Experimental results by cache in base scenario 137

6.4 Preemption of storage space . 139

xviii

Chapter 1

Résumé Français

Ce résumé est destiné aux lecteurs francophones. Il a pour but de leur donner une
idée précise du contenu de cette thèse. Néanmoins, faute d’espace, les détails et
explications relatifs à de nombreux points ne peuvent être abordés dans ce résumé.
Nous prions le lecteur intéressé de consulter la partie anglaise de ce document.

1.1 Introduction

Le partage de ressources est une problématique importante depuis le début de
l’informatique. Les systèmes de temps partagé ont été aussi développés pour gérer
les machines de telle sorte que les utilisateurs partagent un ordinateur avec l’illusion
de l’avoir pour eux tout seuls. Depuis lors l’évolution technologique a rendu pos-
sible la création d’Internet. Les ressources partagées les plus importantes sont les
données. Les données représentent l’information utile pour les utilisateurs et les ap-
plications. Internet a été créé pour permettre le partage de toutes sortes de données.
Le succès principal d’Internet réside dans sa capacité à rendre possible le partage des
données sur un plan mondial. La conséquence en est la demande toujours croissante
des capacités de stockage et d’échange des données.

Les technologies de grille permetent l’intégration et le partage des ressources hétérogènes
et distribuées entre différents domaines administratifs, avec pour objectif de fournir
un accès dynamique à ces équipements chaque fois que nécessaire. Cette tech-
nologie permet la définition “d’organisations virtuelles” plaquées sur un ensemble
d’institutions désirant partager l’ensemble de leurs infrastructures de calcul. Les
utilisateurs associés au sein de ces organisations virtuelles et leurs applications dis-
posent de la puissance de cette informatique répartie, et de ses espaces de stockage
de données disponibles à la demande.

Les applications de grille essayent de résoudre des problèmes complexes. L’objectif

1

principal de ces applications est souvent relié avec l’analyse et le traitement intensifs
de grandes quantités de données. Il s’agit d’une tâche très difficile pour deux raisons.
Les volumes de données se développent rapidement et constamment, exigeant de
grandes capacités de stockage. En second lieu, ces ensembles de données sont pro-
duits, stockés, et employés d’une manière distribuée, devant ainsi être nécessairement
déplacés.

Ce transfert de données consomme énormément de bande passante et d’espace de
stockage, sans coordination globale les ressources sont employées de manière ineffi-
cace et non rentable. Une quantité significative de données est employée pendant
une période limitée, par example lors de phases d’analyse de données, autrement dit
une proportion importante de données disséminées dans un système réparti, comme
une grille, est constituée de données temporaires. Un système de gestion optimisé est
donc nécessaire pour gérer la diffusion de ces données temporaires dans les systèmes
répartis.

L’intérêt pour des données temporaires est plus économique que technologique :
la gestion de l’infrastructure de stockage permet d’atteindre une rentabilité plus
grande pour des données temporaires que pour des données persistantes. Il y a deux
raisons à cela. En premier lieu, l’infrastructure nécessaire aux données temporaires
crôıt moins rapidement. Ensuite, l’infrastructure est réutilisée constamment. Le
point crucial ici est la manière dont ces ressources sont gérées pour améliorer la
disponibilité, les temps de réponse, les débits et la facilité d’utilisation.

L’utilisation de caches est reconnue comme une des manières les plus efficaces de
gérer des données temporaires. Un système de cache gère et héberge des données
pour une période limitée dans un espace de stockage dont il dispose. Ces données
peuvent être réutilisées et partagées entre différents clients, permettant ainsi une
meilleure utilisation des ressources de stockage.

Des systèmes de caches coopératifs ont été imaginés pour permettre aux systèmes
distribués de s’adapter à des besoins de stockage croissants. Ces systèmes apparais-
sent comme une solution naturelle au stockage de données temporaires dans le cadre
dans le cadre des grilles de calcul. Il est nécessaire d’établir les spécifications de
ce “cache de grille” et d’approfondir les différents aspects reliés à son déploiement
structuré.

Cette thèse fournit les spécifications des composants de base nécessaires à la con-
struction du cache de grille, infrastructure assurant le fonctionnement du système
de données temporaires distribuées. Ce travail de recherche est structuré par le
développement d’un système de collaboration de cache pour des grilles et les con-
ditions spécifiques des applications de grille. Dans ce contexte, où les utilisa-
teurs s’attendent à l’accès infini aux ressources et où les ressources sont limitées
et partagées, la gestion des ressources de données surgit comme question centrale.

2

1.2 État de l’art

1.2.1 Systèmes de caches

Ces systèmes permettent la réutilisation et le partage de données temporaires hébergées
dans des espaces de stockage qu’on appelle caches. Ces systèmes présentent de
grands avantages en termes de temps d’accès, d’utilisation des réseaux et des ressources
de stockage. La localisation et durée de vie des données sont enregistrées par le
système et permettent la gestion des espaces octroyés. En cas de besoin le système
a les informations nécessaires pour retrouver les données ou libérer de l’espace pour
de nouveaux besoins. Le système régule l’utilisation de l’espace de stockage en
fonction de la demande et de l’activité des données présentes optimisant ainsi les
transferts entre les différents éléments de stockage et tirant partie de la variété de
leurs performances. Le système de cache est un mécanisme intermédiaire entre four-
nisseur et consommateur de données, de multiples consommateurs se partageant le
service offert.

Applications du mécanisme de cache

Architecture d’ordinateur au cœur même des ordinateurs entre processeur et mémoire
principale, le cache, espace de stockage rapide et réduit, réduit les temps
d’exécution en anticipant le recours prévisible des applications à certaines
données et certaines instructions.

Architectures multiprocesseurs ici le problème est beaucoup plus complexe, la
cohérence globale doit être mâıtrisée. Des techniques récentes traitent l’intégralité
de la mémoire principale comme un cache.

Systèmes de fichiers répartis souvent côté client, les caches stockent les fichiers les
plus récemment utilisés pour éviter le recours aux serveurs distants, permettant
la montée en charge et augmentant l’insensibilité aux problèmes logistiques (eg.
AFS).

Bases de données stockage de données fréquemment consultées, ainsi que des objets
spécifiques: déclencheurs, procédures stockées, vues partielles fréquemment
sélectionnées.

Applications Web et client-serveur peuvent impliquer d’importants mouvements de
données ou des accès fréquents à des données distantes. C’est le cas de certaines
applications de streaming multimédia. Les caches peuvent être implémentés
côté serveur pour l’accélérer, en cache local côté client, ou à un niveau in-
termédiaire.

Applications réparties dans les intergiciels, tels que Globe, basés sur les modèles
objet pour les applications réparties, le système de caches utilise la réplication

3

des objets. A l’inverse CORBA laisse entièrement la lourde tâche de gestion
du cache à la charge du développeur.

Avantages et inconvénients des caches

Au nombre des avantages on peut citer:

• Réduction des volumes transférés et donc de la sollicitation des réseaux

• Réduction des temps de latence

• Réduction et répartition de la charge des serveurs

• Robustesse augmentée par la réduction de l’accès à des serveurs potentielle-
ment défaillants

Fourniture d’informations d’activité des données permettant la description de modèles
de traitements en relation avec les activités d’accès aux données, très utile pour anal-
yser l’utilisation des caches partagés par un grand nombre d’utilisateurs.

Et pour les inconvénients, d’abord la difficulté à garantir la cohérence des données
entre les différents caches et le lieu d’origine, suite, par exemple à une mise à jour
locale sur l’un des caches. Ce problème a fait l’objet de nombreux travaux. La
latence crôıt en cas d’absence dans le cache local des données désirées.

L’efficacité du système dépend de nombreux paramètres qui peuvent se contrarier
mutuellement et dont l’ajustement réclame du savoir faire. De même il faut choisir
entre rechercher les données à la demande ou de manière prévisionnelle, sachant que
l’apport de ces techniques sophistiquées reste marginal. De nombreuses stratégies
ont été proposées. Pour de meilleurs résultats, un panachage adapté de plusieurs
d’entre elles doit être mis en œuvre.

Dans un environnement de grille de calcul, il est intéressant de savoir si la stratégie
doit être choisie dynamiquement en fonction de la charge de travail. De plus les
décisions de remplacement affectent l’état d’un cache particulier. Dans un cache
collaboratif de meilleures performances pourraient être atteintes grâce à une coor-
dination des décisions au niveau global. Une telle infrastructure est nécessaire.

Métrique des performances

Pour juger des performances des systèmes de cache, on mesure principalement :

4

• La fréquence du nombre de fois où les données ont été retrouvées en cache par
rapport au nombre total de recherches (Hit Ratio)

• Le gain en volume ainsi obtenu (Byte Hit Ratio)

• Le gain en terme de latence ainsi obtenu (Delay Saving Ratio)

Notez, par exemple, que les deux premiers évoluent différemment quand on joue sur
la taille des objets. S’il est préférable de favoriser les objets les plus demandés, il
y aura un compromis à trouver pour les objets les plus volumineux. On dispose
d’autres observables que sont l’utilisation de CPU ou de disque et le taux d’entrées-
sorties.

1.2.2 Cache Web

Dans sa forme la plus simple, le système de caches Web est similaire à un cache
traditionnel : les données sont stockées et gérées pour favoriser le partage et la
réutilisation, les documents stockés en cache sont restitués à la demande minimisant
ainsi les sollicitations des serveurs, le trafic réseau et les temps de réponse.

Cache intermédiaire (Proxy Cache) : cache interposé entre client et serveur, il in-
tercepte les requêtes HTTP et fournit aux clients les données demandées après les
avoir, le cas échéant, obtenues des serveurs.

Cache coopératif : un groupe de caches élémentaires se servent les uns les autres,
et coopérent pour former un système global puissant. Leur organisation générale
est importante. La littérature en distingue quatre types : hiérarchique, réparti,
multidiffusion (multicast) et pair à pair. Aucun, spécifique par son architecture
et ses protocoles de communication, ne satisfait la totalité des besoins d’une grille
de calcul qui varient très rapidement et où la question d’une architecture évoluant
dynamiquement entre les différents modèles de base est une question qui se révèle
pertinente.

Discussion

Le cache collaboratif présente cependant des complications : complexité accrue des
processus de gestion, le dynamisme recherché implique un choix intelligent et donc
une connaissance fine du fonctionnement instantané de chaque cache ou bloc de
donnée élémentaires. Cette thèse propose la spécification d’une infrastructure de
base de cache collaboratif à même de faire face à ces défis. D’autres travaux de
recherche pourraient ensuite être entrepris qui devraient se concentrer sur la con-
ception et l’évaluation des procédures intelligentes de gestion et la vérification de
l’applicabilité de ces procédures aux grilles en environnement réel.

5

1.3 Gestion des données dans une grille

Une grille fournit une infrastructure et des services aux applications nécessitant de
très grandes quantités de données réparties dans de multiples lieux de stockage.
Ses fonctions essentiellessont le transfert fiable et la gestion de réplicas, au-delà,
la grille fournit des services de gestion de cohérence des réplicas, catalogues de
métadonnées. Ces opérations sont contrôlées par des mécanismes d’autorisation et
d’authentification. Les données sont partagées et distribuées entre plusieurs do-
maines administratifs, indépendamment du support de stockage en s’appuyant sur
des informations relatives aux données, à leur activité, aux droits d’accès, versions
et métadonnées.

Les grilles dites “de données” manipulent des volumes de données jusqu’au pétaoctet,
sont munies d’un système de dénomination uniforme faisant correspondre un nom
de fichier logique à des données largement réparties et supportent différents niveaux
de confidentialité.

1.3.1 Organisation et standardisation

Les ressources accessibles à travers une grille sont partagées dans le cadre d’organisations
virtuelles (VO) [53]. La VO représente différents agrégats organisationnels de ressources
et d’utilisateurs qui collaborent, elle fixe les règles d’accès, souvent via des autorités
de certifications. Des protocoles standards encadrent les échanges d’informations
nécessaires à ces collaborations. Les interfaces des services sont indépendants des
implémentations particulières et satisfont à des standards promus par des organ-
ismes tels que l’OGF (Open Grid Forum) [62] qui a adopté l’OGSA (Open Grid
Services Architecture) [55] basé sur les services Web.

La bôıte à outils Globus [63] permet la construction de services de grille au stan-
dard OGSA. Une grille est alors composée d’un ensemble de services que l’utilisateur
peut intégrer pour gérer ses données distribuées (stockage, transfert, localisation des
réplicas et bases de données). D’autres services peuvent compléter ces services de
bas: catalogue des métadonnées, services de gestion des autorisations et authentifi-
cation. Les utilisateurs devant implémenter leur propre mécanisme de maintient de
cohérence.

1.3.2 Projets actuels dans le domaine des grilles de données

Dans le domaine des hautes énergies, les grilles de calcul sont mises en œuvre pour
permettre l’analyse des énormes masses des données qui seront collectées CERN par
le LHC (Large Hadron Collider), voir par exemple le projet EGEE [47]; en bioinfor-

6

matique : modélisation et simulation de processus biologiques, projet eDiaMoND[120];
l’astronomie avec dont le IVOA (International Virtual Observatory) [74] coordonne
les projets; les sciences de la terre avec par exemple le projet NESgrid [92] pour la
sismique.

1.3.3 Transfert des données

Problématique essentielle, le transfert des données concerne la gestion du transfert,
le transport effectif des données d’un point à un autre et le contrôle d’accès. Il y a
deux types de mécanismes de transports de données : le transport proprement dit
des données sur le réseau, le protocole le plus utilisé étant sans doute GridFTP [4];
ensuite les fonctions d’entrées-sorties qui cachent aux applications les complexités
des protocoles réseaux et leur permettent d’accéder aux fichiers distants comme s’ils
étaient locaux.

1.3.4 Gestion du stockage de données

SRM (Storage Resource Manager) du Lawrence Berkeley Laboratory est une spécification
l’interface de pilotage définie comme des services Web [108] [114]. SRM offre un
moyen unique de dialoguer avec tout type de ressource de stockage. Divers systèmes
de stockage vont finalement offrir une interface SRM qui va cacher la complexité des
mécanismes de base. SRM ne sauvegarde pas lui-même les données mais intervient
comme une interface à des systèmes de stockage de masse.

SRB (Storage Resource Broker) [12] [103] est un intergiciel qui offre un accès uni-
forme a un ensemble hétérogène de ressources de stockage : systèmes de fichiers,
systèmes d’archivage, base de données. SRB fournit une vue unifiée des données
stockées sur cet ensemble disparate en les organisant en collections virtuelles indépendantes
de leur localisation ou organisation réelle. SRB permet la création de collections
partagées.

Discussion

SRM et SRB sont des mécanismes pour gérer la charge des équipements élémentaires
de stockage, ils emploient des techniques de cache pour réduire les temps de latence,
ils ne fournissent pas d’espace distribué à la demande, ils ne fédèrent pas non plus
des données collectives temporaires. Notre position est que la fédération d’espaces
de stockages distribués et hétérogènes pour les données temporaires peut être utilisée
pour implémenter des mécanismes qui fournissent de l’espace de stockage à la de-
mande.

SRM et SRB offrent une vue logique des ressources physiques de stockage permettant

7

la construction de systèmes de stockage virtuels. Ceci peut permettre de supporter
la collaboration de caches individuels. Dans le cadre d’une grille, il faut ajouter
des possibilités de surveillance et de configuration pour supporter la fédération de
caches.

1.3.5 Accès aux bases de données

Le problème se complexifie avec le besoin d’intégrer d’autres types de stockage de
masse comme les bases de données nécessitées par la biologie ou l’astrophysique.

OGSA-DAI (Open Grid Services Architecture Data Access and Integration) est un
intergiciel qui permet l’accès aux bases de données en tant que services Web [7]
[38]. Dans le respect d’OGSA, OGSA-DAI permet l’accès aux ressources externes
de données comme les fichiers, les bases de données relationnelles ou XML.

Dans le cas d’une base de données distribuée, la problématique de cache est très
différente. Le support du cache doit être assez flexible et générique pour s’adapter
à d’autres possibilités comme l’éclatement ou la fusion de requêtes pour profiter de
la disponibilité en cache d’une certaine partie des données [3].

1.3.6 Réplication

Dans les environnements de grilles de données à forte activité, la duplication ou la
réplication sont un moyen d’améliorer les performances et de minimiser la pression
sur les réseaux en offrant aux ressources de calcul un accès local aux données en
cache. La fiabilité du système ainsi que sa faculté de répondre aux montées en
charge en dépend.

RLS (Replica Location Service) est un cadre architectural qui permet de répertorier
et rechercher les réplicas [29] [39]. Partie de Globus, RLS dispose d’une table
de correspondance entre les informations logiques et physiques de localisation des
ressources, la redondance et l’équilibrage de charge passe par de multiples copies
disséminées de cette table.

GDMP (Grid Data Mirroring Package) est un gestionnaire de réplication qui offre
des services sûrs et rapides de transfert [113] [48]. Il supporte la réplication point à
point.

Les mécanismes de réplication ne disposent pas d’outils spécifiques pour gérer les
données temporaires distribuées. Une forte limitation des possibilités de réplication
dans un environnement dynamique est le manque de mécanisme d’accès à du stock-
age à la demande entre des localisations différentes de la grille. Le mécanisme de

8

réplication ne fournit pas des informations sur l’état des services de stockage ou
de l’activité des données utilisées pour supporter une gestion de haut niveau. Des
mécanismes flexibles et sophistiqués sont nécessaires pour supporter dynamiquement
différents modèles de calculs avec différents types d’accès aux données.

1.4 Spécifications du Cache Collaboratif pour les

Grilles

Dans cette section, nous décrivons les principaux aspects du cache collaboratif de
grille. Le but principal est l’automatisation de l’exploitation de grands volumes
de données temporaires dans un contexte de grille alors même que, contrairement
au web, il n’existe pas pour les grilles d’infrastructure de caches étendus. Nous
définissons cette infrastructure de base [22] [24].

Nous fournissons les spécifications des composants de base sur lesquels construire un
tel système, générique et ouvert. Notre approche s’appuie sur les interactions essen-
tielles entre caches élémentaires. Nous développons le précepte que n’importe quel
cache doit être accessible et contrôlable par n’importe quel utilisateur, application
ou service dans la grille.

Ces spécifications comportent les trois éléments principaux suivants :

• Modèle multicouches : stockage (storage), commande (control), collaboration
et coordination.

• Opérations de cache : ensemble d’opérations standards véhiculant des infor-
mations normalisées.

• Services de Cache (GCS) : sont les unités fonctionnelles implémentant le modèle
et les opérations.

Ces éléments permettent de construire et d’évaluer des fonctions de collaboration de
haut niveau de manière flexible. Les GCS, agrégeant leurs fonctionnalités, peuvent
être combinés de différentes façons.

La dynamique des ressources de grille et des données temporaires impose un contrôle
et un pilotage continus. L’infrastructure est basée sur l’enregistrement, l’accessibilité
et l’analyse d’informations sur l’activité des différentes entités de données et de cache.

L’approche, principalement :

• Fournit une infrastructure agissant sur de grandes quantités de données tem-
poraires

9

• Définit et sépare des principales fonctions du cache collaboratif

• Appuie le pilotage sur l’enregistrement, l’échange et l’analyse de l’activité des
données et du cache

• Fournit un support étendu des interactions de caches élémentaires

• Offre le nécessaire pour surveiller et configurer le fonctionnement et interac-
tions des caches

• Ainsi que pour combiner et configurer les diverses formes d’organisations de
collaborations

• Fournit les interfaces standards aux fonctions de cache en environnement de
grille

• Permet l’accès aux opérations de cache à une grande variété d’applications.

1.4.1 Modèle en couches

Nous présentons un modèle de référence pour la composition et le pilotage des caches
collaboratifs de grilles. Les différents niveaux séparent les fonctions conceptuelles
du système. Ce modèle de cache est employé comme référence conceptuelle pour
implémenter les éléments d’un système générique de cache collaboratif.

Le modèle comporte quatre couches :

• Couche de stockage (storage layer)

• Couche de contrôle (control layer)

• Couche de collaboration (collaboration layer)

• Couche de coordination (coordination layer)

La figure 1.1 représente le modèle proposé.

Couche de stockage

La couche de stockage représente les différentes ressources de stockage utilisées pour
réaliser le système de cache. Le modèle définit un cache comme un mécanisme qui
gère des données temporaires contenues dans une ressource de stockage. Ainsi le but
central de la couche de stockage est de fournir les possibilités de stockage et d’accès
aux éléments de données dans une ressource de stockage spécifique.

10

Coordination

Collaboration

Contrôle

Stockage

O
pé

ra
tio

ns
Figure 1.1: Modèle de référence des caches collaboratifs

Couche de contrôle

La couche de contrôle ou pilotage régule et enregistre les actions dans la couche de
stockage. Elle vérifie l’activité d’accès aux données dans les ressources de stockage.
Son but principal est de fournir les capacités de configurer et surveiller les actions
des éléments de cache. Ceci permet d’intervenir sur le fonctionnement du cache
pour adapter son comportement selon les buts recherchés. Par exemple, différentes
méthodes de remplacement des données en cache (cf. annexe A) peuvent être sup-
portées avec des paramètres de pilotage représentés de manière standard.

Couche de collaboration

La couche de collaboration définit les interactions entre caches élémentaires. Elle
expose et étend les possibilités des caches pour qu’ils puissent travailler conjointe-
ment. Notre idée est que ces interactions déterminent les possibilités qui peuvent
être fournies par la grille. Par conséquent, l’extension de la portée des interactions
de cache crée de nouvelles possibilités pour la gestion des données temporaires.

Couche de Coordination

La couche de coordination organise les interactions entre caches selon différents
types de collaborations. La coordination concerne surtout le processus de décision
qui implique des opérations collectives entre caches pour supporter les fonctions de
haut niveau de gestion des données.

11

1.4.2 Opérations Fonctionnelles

Les spécifications définissent les opérations fonctionnelles essentielles d’un cache
collaboratif pour permettre l’implémentation du modèle présenté dans la section
précédente. L’approche proposée dans cette thèse nécessite la définition des inter-
faces standards d’opération pour l’interaction des différents composants dans un
environnement de grille.

Nous proposons que ces opérations soient disponibles pour l’interaction entre caches
telle que définie par la couche de collaboration. Un cache élémentaire peut faire appel
à des opérations sur d’autres caches élémentaires disséminés dans la grille. Pour
construire le cache collaboratif, les caches élémentaires sont implémentés comme des
services Web. Ceux-ci offrent un moyen standard d’interopération entre différentes
applications fonctionnant sur des plateformes variées. Ils sont utilisés pour construire
une infrastructure de cache orientée service. L’infrastructure est construite via la
combinaison de composants de cache définis par des interfaces de service désignées
dans ce travail sous le nom d’opérations de cache. À cet égard chaque cache expose
ses opérations au système réparti comme service grille de cache. Nous classifions les
opérations de cache dans trois types principaux :

• Opérations d’accès

• Opérations de surveillance

• Opérations de configuration

Opérations d’accès

Les opérations d’accès définissent les interfaces d’accès aux données stockées dans
les ressources de stockage de cache. Elles permettent le pilotage et l’enregistrement
des actions liées aux manipulations des données gérées par les caches élémentaires.
Les opérations d’accès sont exposées au niveau de la couche de collaboration. On
peut ainsi les invoquer pour les caches élémentaires distants. Les clients peuvent
ainsi rechercher des données dans n’importe quel cache élémentaire dans le système.
Réciproquement, un cache peut être sollicité pour stocker un objet de données au
profit de n’importe quel autre cache, service ou application. Pour plus de détails
concernant la définition des opérations d’accès nous renvoyons le lecteur à la section
4.4.2.

Opérations de surveillance

Les opérations de contrôle sont des interfaces d’échange d’informations sur les caches
élémentaires et leur activité. L’information obtenue permet la gestion de la collab-

12

oration des caches (aide aux décisions) et l’évaluation des performances.

Nous proposons d’imposer aux mécanismes de cache dans la grille la fourniture des
informations de leur activité en temps réel qui sont nécessaires à la gestion collective.
Le but des opérations de surveillance est de fournir les informations appropriées
pour des décisions appropriées. Pour plus de détails concernant la définition des
opérations de surveillance nous renvoyons le lecteur à la section 4.4.3 .

Opérations de configuration

Les opérations de configuration définissent les interfaces de base pour paramétrer
les caches. Ces opérations établissent les conventions standards qui permettent
l’identification des caches élémentaires et définissent les fonctions et les interactions
de base de ces éléments. Les opérations de configuration fournissent la possibilité de
changer les paramètres fonctionnels d’un cache élémentaire pour un but particulier.
Il peut s’agir des opérations d’initialisation, de maintenance, d’ajout et de modifi-
cation des rapports entre composants et des caractéristiques de fonctionnement des
composants eux-mêmes en période d’activité.

Les opérations de configuration fournissent le support de base permettant la réalisation
de fonctions de coopération de cache de niveau élevé. L’arrangement des possi-
bilités fonctionnelles est destiné à fournir le support des différentes combinaisons
et stratégies qui constituent le système de cache collaboratif. Pour plus de détails
concernant la définition des opérations de configuration nous renvoyons le lecteur à
la section 4.4.4.

1.4.3 Informations de cache

L’information relative à l’état et au comportement du système est la ressource fonda-
mentale du pilotage et de la gestion des données temporaires du cache collaboratif de
grille. Le système peut grâce à elle offrir le support au pilotage et à la configuration
du travail de collaboration entre composants.

Nous avons établi une structure d’information qui comprend l’information statique
de base relative aux entités de données et de caches et l’information sur l’activité
qui inclut des informations sur l’état et le comportement des entités de données et
de cache. D’autre part, l’information statistique constituée des mesures de perfor-
mances, est calculée en utilisant l’information d’activité et n’est pas définie dans la
structure d’information de cache. L’information de cache peut être gérée par des
systèmes conçus pour gérer des données structurées telles que les bases de données
relationnelles.

L’information de cache est typiquement produite par le cache élémentaire impliqué.

13

Ainsi, un cache élémentaire maintient sa propre information de configuration. L’information
de cache est rassemblée et stockée par le cache élémentaire qui exécute les actions
sur les données. Cette information est exposée directement aux caches élémentaires
qui utilisent les interfaces standards d’opération de cache. L’information statistique
peut être calculée en interne. Elle peut également être calculée par un système ex-
terne qui recueille l’information d’activité nécessaire en appelant les opérations des
caches élémentaires distants.

L’information de cache est structurée dans un schéma XML extensible où les différents
éléments contiennent les valeurs qui décrivent les dispositifs, paramètres ou attributs
des principaux composants de cache. Pour plus de détails concernant la définition
des éléments contiennent des informations de cache nous renvoyons le lecteur à la
section 4.6.

1.5 Service de Cache pour les Grilles (GCS)

Dans cette section nous décrivons les concepts et l’implémentation du composant de
base pour les grilles de caches collaboratifs: le service de cache pour la grille Grid
Cache Service (GCS). Ce service suit le modèle et les spécifications proposés dans
le précédent chapitre.

Notre principal objectif est de travailler sur des données temporaries dans des en-
vironnements de grille et de manière dynamique. Aussi avons-nous décidé d’utiliser
des groupes de caches distribués dans la grille et qui fournissent de manière collec-
tive des capacités de stockage de données temporaires [20] [24]. La figure 1.2 illustre
un scénario d’utilisation de groupe de GCS pour une manipulation dynamique de
données temporaires dans des environnements de grille. Un client invoque un GCS
pour stocker des données temporaires; si le GCS ne dispose pas de ressource de
stockage suffisante, il peut invoquer les opérations d’accès des caches distants pour
stocker les données en des sites de grille multiples.

Dans ce scenario, chaque cache est un GCS qui gère de manière individuelle les
ressources locales de stockage afin de fournir les capacités de stockage temporaire
du système. Dans ce chapitre nous décrivons le composant propre au système: le
service de cache pour la grille (GCS).

Le service de cache pour la grille est l’élément actif qui soutient l’infrastructure.
Il implémente les couches de stockage, de contrôle et de collaboration du modèle
de référence. Nous avons développé un prototype du GCS qui est utilisé comme
démonstrateur de l’approche de cache pour la grille. Ce prototype fournit un support
pour les opérations spécifiées et pour les informations de cache.

Le concept de service de cache pour la grille

14

Data

Data

Data

Data

stocker données
temporaires

Stocker donnée (part 3)
dans cache externe (C)

Stocker donnée (part 1)
dans cache externe (A)

Stocker donnée (part 2)
dans cache externe (B)

Service

de Cache

Service

de Cache

Service

de Cache

Service

de Cache

Client

Données et stockage

Domaine Administrative

Données et stockage

Données et stockage

Domaine Administrative

Données et stockage

Domaine Administrative

Domaine Administrative

Figure 1.2: Utilisation du Service de Cache

Le GCS est un administrateur local du stockage et des données temporaries. Il est
implémenté comme un service de grille qui fournit des capacités de cache de base
suivant le modèle de référence. Ainsi le GCS présente des interfaces et des méthodes
associées aux opérations de cache : accès, surveillance et configuration pour les
opérations de données temporaires.

Les fonctions du GCS

La principale function du GCS est d’assurer qu’une entité spécifiée de donnée existe
dans la resource de stockage pour une période limitée de temps et d’enregistrer les
informations détaillées sur les données et les actions du cache.

Dans ce context, le GCS offre ces principales fonctions :

• Gestion des ressources de stockage sous-jacentes pour les données temporaires
basées sur des techniques de cache;

• Fourniture d’espace de stockage temporaire à la demande pour stocker des
entités de données (fichiers) via des opérations définies d’accès;

• Fourniture d’informations détaillées et à jour sur l’activité en données et du
cache par une représentation définie des informations et par des opérations;

15

• Fourniture de capacités de cache de base pour des actions de surveillance des
entités de données stockées dans les ressources de stockage;

• Support des opérations de caches collaboratifs pour une grande palette de
clients (dont d’autres caches).

1.5.1 Implémentation d’un prototype de GCS

Nous avons développé le prototype pour la plate-forme Globus Toolkit 4. Globus
Toolkit est une suite d’outils pour développer et déployer des systèmes et des appli-
cations de grille. Il respecte le standard OGSA (Open Grid Services Architecture)
pour la conception de systèmes de grille. OGSA définit un standard d’architecture
ouverte pour les applications basées sur la grille. Il permet de gérer des calculs dis-
tribués orientés service avec des services web. Le Web Services Resource Framework
(WSRF) est une spécification destinée au développement d’applications orientées
service à partir de services web. Le couple OGSA/WSRF a été standardisé par le
consortium international Open Grid Forum (OGF).

L’utilisation de services de grille repose, d’une part, sur le Web Service Description
Language (WSDL),c’est un langage XML qui permet la description des interfaces de
services web de manière standardisée; et, d’autre part, sur un protocole d’échanges
de requêtes et de réponses entre services web. Le protocole le plus utilisé pour la com-
munication entre services web est SOAP; c’est un protocole qui permet d’échanger
au format XML des messages encodés en utilisant le protocole de communication
http. Le prototype a été développé dans le langage de programmation Java afin de
pouvoir être exécuté dans un conteneur de web services au sein de Globus.

1.5.2 Architecture du prototype

L’implémentation du prototype du GCS est divisée en cinq principaux modules. La
figure 1.3 présente l’architecture générale du prototype. Le client invoque l’opération
de cache de l’interface du service en envoyant l’élément XML OperationRequest
comme paramètre. La requête est encapsulée dans un message SOAP. L’interface
de service reçoit les invocations d’opérations de cache. Ce module est implémenté
comme un service de grille qui utilise les outils et les bibliothèques fournis par le
Globus Toolkit. Un fichier WSDF décrit les opérations de cache comme des port-
Types en utilisant l’opération comme paramètres.

L’interface de service est déployée dans le conteneur Globus WS Java Core. Le con-
teneur se charge de la gestion de la logistique sous-jacente liée à la communication,
aux messages, aux sessions et à la sécurité. Le module gestionnaire de cache (Cache
Manager) effectue les opérations de cache en se basant sur les éléments d’information
de cache comme structures de données. Ce module est principalement supporté

16

invoque cache
opération

cache
information

executer
opération
collective

invoque
cache
externe

invoque cache
opération

Client

Client

(inter−cache)

GESTIONNAIRE

DE CACHE

Enregistrement

de Activité

Collaboration

Extension de

Interface de Service

Interface de Resource

Externe

Service

de Cache

Catalogue

de Stockage
Ressource

requête résponse

Figure 1.3: Architecture du prototype du GCS

par la classe appelée CacheImpl. Cette classe implémente les mécanismes de rem-
placement de cache et une méthode pour chaque opération de cache. Un exemple
d’exécution de l’opération SetData est présenté plus loin dans la section 5.5.1.

Le module gestionnaire de cache implémente trois méthodes de remplacement de
base : LRU, LFU et SIZE. Il utilise les informations d’activité enregistrées dans les
éléments d’information de l’activité et des entités pour supporter les fonctions de
remplacement. Il repose sur le module d’enregistrement de l’activité en données et
en cache pour récupérer et mettre à jour les informations de cache sur les actions
opérées.

Le module d’enregistrement de l’activité en données et en cache gère le catalogue
d’activité en données et en cache. Il utilise les éléments d’information d’activité
pour administrer les informations d’activité. L’extension de collaboration représente
des modules d’extension qui exécute des procédures de collaboration (implémentées
par des opérations et spécifiques aux besoins en collaboration). Actuellement le
prototype implémente des extensions simples pour les opérations GetData et SetData
qui transfèrent l’opération de requête originale aux caches distants.

Une interface de programmation (API) Java est fournie pour utiliser l’implémentation
du prototype du GCS. Elle est divisée de deux groupes ou paquetages de classes :
le paquetage d’information de cache, qui est composé de classes pour les définitions

17

des éléments d’informations de cache et d’opérations de cache, et le paquetage de
l’implémentation de la logique métier du cache.

1.5.3 Publication de données avec GCS

Les clients GCS créent une requête explicite pour stocker des entités de données.
Cette requête est exécutée par le GCS comme une demande pour disposer d’un
espace de stockage temporaire. Nous désignons cette capacité par le terme de pub-
lication car elle permet d’exposer et de partager des données pour une durée limitée
entre des clients qui utilisent le GCS. Cette capacité est principalement supportée
par l’opération d’accès SetData().

La figure 1.4 montre un exemple d’en-tête de requête pour l’opération SetData.
Les champs contiennent les informations utiles pour l’API cliente à l’invocation
de l’opération du GCS. Le numéro de requête permet d’identifier chaque requête
d’opération de manière individuelle. La destination de cache contient la référence
à l’instance de service de cache pour la grille. Le champ de version est utilisé
pour distinguer les futures versions du service. L’élément de requête contient aussi
l’élément d’entité de donnée à publier et un élément optionnel de métadonnée qui
est discutée plus loin.

<SET_DATA_REQUEST>

<REQUEST_HEADER>

<OPERATION> set_data </OPERATION>

<TYPE_REQUEST> client </TYPE_REQUEST>

<REQUEST_NUMBER> 454799 </REQUEST_NUMBER>

<CACHE_ID_SOURCE></CACHE_ID_SOURCE>

<CACHE_ID_DESTINATION>

http://liris-7080.insa-lyon.fr:8080/wsrf/services/gridcaching/LCS

</CACHE_ID_DESTINATION>

<DATETIME_REQUEST>

2007-07-26T16:00:00

</DATETIME_REQUEST>

<VERSION>0.1</VERSION>

</REQUEST_HEADER>

</SET_DATA_REQUEST>

Figure 1.4: Un exemple d’en-tête de requête de l’opération SetData

1.5.4 Performance du Grid Cache Service

Nous présentons des mesures de performance pour notre prototype de service de
cache de grille (GCS). Les tests incluent les trois sites qui participent au projet

18

GGM. Le site local, lequel invoque les opérations de cache, se trouve à Lyon. Les
sites distants hébergent un conteneur GT4 and déploient un GCS aussi bien qu’un
serveur GridFTP; ils sont situés dans les villes de Toulouse et Lille, en France. Nous
avons réalisé 1000 opérations initiées depuis le site local. Pour chaque opération, un
simple client GCS est créé; il invoque une requête d’opération de cache et obtient la
réponse par le service de cache distant. Pour chaque opération d’accès (publication
ou récupération d’entité de donnée), une connexion à GridFTP est établie. Puis le
transfert de donnée est démarré entre les sites. Nous avons effectué des opérations
significatives de surveillance et de gestion : les opérations de récupération de con-
tenu de cache, de ressources de stockage utilisées et une méthode de remplacement.
De plus, nous avons vérifié les opérations de configuration de la méthode de rem-
placement et de configuration totale du cache. Les résultats démontrent aussi que
le temps nécessaire pour la gestion du cache est marginal par rapport aux trans-
ferts de données. Ces tests fournissent une vision des performances des opérations
typiques et individuelles du GCS. Pour plus de détails concernant des mesures de
performance de GCS nous renvoyons le lecteur à la section 5.6.

1.6 Espace de Stockage Temporaire (TSS)

Nous présentons le concept général de l’Espace de Stockage Temporaire (TSS pour
Temporal Storage Space). C’est un système de gestion des données qui manipule
des données temporaires de manière automatique. Le concept de TSS vise à fournir
un aperçu des mécanismes de la couche de coordination. De façon similaire, il aspire
à donner une notion des capacités de caches collaboratifs à exploiter avec GCS.

L’objectif de ce chapitre n’est pas d’implémenter un système TSS opérationnel mais
de vérifier que le service GCS est fonctionnel, que toutes les opérations (API) sont
fonctionnelles et que les procédures de coordination peuvent être implémentées de
telle sorte qu’elles ouvrent d’intéressantes perspectives. En d’autres termes, ce
chapitre propose une validation fonctionnelle du service et une preuve du concept
de la couche de coordination. Cela explique que des paramètres soient fixés et que
des choix ne soient pas discutés.

La fonction de TSS est de stocker un ensemble déterminé de données temporaires
(fichiers) sur des sites distribués où des GCS sont déployés. TSS relève un espace de
stockage temporaire sur chaque site pour gérer des données de grande taille. Puis
chaque GCS libère automatiquement l’espace inutilisé selon les techniques de cache.

Les fonctions de TSS incluent : la découverte de l’espace, identification d’un espace
de stockage disponible pour stocker les données spécifiées sur la grille; le transfert
de données, déplacement efficace de données entre des ressources de stockage dis-
tantes; l’enregistrement et la mise à jour des informations de description du contenu
et l’échange d’informations sur l’état d’activité des données, de manière à ce que

19

d’autres sites puissent découvrir des contenus de données disponibles et obtenir des
informations sur l’activité d’accès à ces données. Par les opérations de cache, le
service expose des informations sur l’état de chaque de la entité de donnée (fichier),
dont les actions d’accès au fichier qui ont été réalisées.

Les aspects qui ont guidé les décisions fondamentales prises pour la conception de
TSS sont les suivants :

• Conception d’un système à base de composants reposant sur des services GCS

• Opération basée sur des services de grille de bas niveau et réutilisables

• Utilisation des opérations de cache et des informations d’activité sur les données
et le cache pour agir avec le système

• Utilisation d’un module souple de coordination pour organiser des interactions
spécifiques entre les caches

• Utilisation de l’architecture OGSA et des ressources sous forme de services
web

• Framework WSRF pour l’interopérabilité

• Utilisation du Globus Toolkit 4.1 comme plate-forme intergicielle

Suivant les spécifications OGSA/WSRF, la structure générale de TSS consiste en
un groupe d’instances GCS qui sont chacune exposées comme un service de grille
déployé dans un conteneur Globus. Le conteneur prend en charge plusieurs aspects
de logistique sous-jacents liés à la communication, aux messages, aux sessions et à
la sécurité. Les capacités de services de cache sont exposées à travers l’interface de
service pour les utilisateurs et les applications de la grille.

Dans TSS, un module de coordination organise les interactions entre les services
GCS pour traiter les requêtes adressées à un ensemble ou un sous-ensemble des
caches. Il contrôle l’état et le comportement du groupe de caches. Dans le cadre
de TSS, nous nommons Local Cache Service (LCS) une instance de service de cache
individuelle. Chaque LCS expose des informations de cache qui sont accessibles à
travers des interfaces standard de grille pour les opérations.

Pour utiliser les capacités de TSS, les clients invoquent les opérations de cache pour
accéder au contenu des données de cache, obtenir des informations de surveillance sur
l’activité des données et des caches et ajuster les valeurs et paramètres qui servent à
la configuration de la fonction de base de l’installation du cache. Pour effectuer les
opérations d’accès au cache, TSS repose sur GridFTP,qui n’est pas un service web,
et sur deux autres services WSRF : RFT et Delegation.

20

TSS

Data

Data

Data

Data

stocker données
temporaires

Service

de Cache

Service

de Cache

Service

de Cache

Service

de Cache

Stocker donnée (part 2)
dans cache externe (B)

Stocker donnée (part 1)
dans cache externe (A)

Stocker donnée (part 3)
dans cache externe (C)

Client

Données et stockage

Domaine Administrative

Données et stockage

Données et stockage

Domaine Administrative

Données et stockage

Domaine Administrative

Domaine Administrative

Figure 1.5: Espace de Stockage Temporaire (TSS)

TSS est composé d’un groupe de services de caches locaux (LCS), lesquels sont
déployés dans de multiples domaines d’organisation, et d’un service de cache collectif
(CCS pour Collective Cache Service). Les LCS travaillent ensemble pour fournir un
support de base à TSS. La figure 1.5 illustre les composants TSS déployés dans une
grille.

Le Service de Cache Local (LCS pour Local Cache Service)

Le service de cache local (LCS) est une instance de service de cache pour la grille
qui est déployée sur chaque site de l’organisation virtuelle. Le LCS fournit des
fonctions de cache pour des applications internes et pour les utilisateurs clients de
l’organisation. Lorsqu’il passe en mode de travail collectif, il étend les capacités de
cache avec le support des services de cache des autres grilles qui composent le TSS.

D’un point de vue interne, le LCS, à l’instar d’une passerelle, prend en charge les
opérations soumises par les clients de l’organisation. D’un point de vue externe, il
assure les opérations sollicitées par d’autres LCS. Les LCS traduisent les opérations
d’accès aux données internes en opérations inter-caches en invoquant des opérations
semblables depuis le LCS déployé dans d’autres organisations de la communauté
virtuelle.

Le Service de Cache Collectif (CCS pour Collective Cache Service)

21

Le service de cache collectif (CCS) est un service qui permet aux LCS de coordonner
leurs interactions. Le CSS accepte les mêmes interfaces d’opérations de un GCS
mais le traitement est différent. Les invocations reçues aux interfaces du CCS sont
traduites en interactions de pair à pair en incluant deux LCS ou davantage. Le
CCS est un service spécial pour un groupe de GCS. Il accepte les opérations d’accès
de la part du LCS et des opérations de surveillance et de configuration de la part
d’utilisateurs ou d’administrateurs de ressources de grille.

Le CCS exécute un module spécialisé appelé coordinateur; ce dernier implémente les
procédures spécifiques aux décisions collectives. Le coordinateur invoque des classes
implémentées par des utilisateurs et qui sont spécifiques aux besoins des applications.
Il transforme sa tâche en invocation d’opérations de cache auprès de plusieurs LCS
pour organiser les interactions. Il implémente la logique qui incorpore les règles de
réalisation des actions de caches collectifs basées sur l’utilisation des opérations de
cache.

Les LCS et CSS apportent les capacités principales de l’espace de stockage tem-
poraire (TSS). Ces capacités sont : la dissémination des données, la collecte des
données, la prolifération des copies, la surveillance et la configuration.

1.6.1 Expériences

Nous présentons une expérience qu’illustre la capacité d’extensibilité offerte par le
GCS. Notre but dans cette expérience est d’utiliser le système TSS comme une
preuve de concept de la faisabilité et de l’efficacité de l’intégration d’instances GCS
génériques dans un réseau collaboratif de caches. Pour cela, cette expérience a été
conçue pour montrer, sur un exemple simple, que les GCS peuvent être organisés en
un système collaboratif TSS, que les outils de surveillance founis peuvent être utilisés
pour analyser le comportement de ce système, comportement individuel d’une in-
stance de cache spécifique et comportement global du système comme un tout, et
que les décisions de re-configuration peuvent être prises pendant la phase d’exécution
pour optimiser les performances du système.

Nous simulons un environnement de grille constitué par un groupe de dix GCS. Cette
expérience illustre la capacité d’extensibilité offerte par le GCS. Une série de simu-
lations montre comment on peut implémenter une gestion collaborative d’un groupe
d’instances de GCS qui forme un système TSS. Elle vise à illustrer plus précisément
comment on peut surveiller l’activité des instances de cache, implémenter les décisions
de reconfiguration et changer dynamiquement les paramètres opérationnels de cache.
Nous avons implémenté et évalué trois scénarios de base liés à la capacité de GCS à
stocker des données distantes, également appelées espace de stockage partagé.

Pour plus de détails concernant la simulation de TSS nous renvoyons le lecteur à la
section 6.3.

22

En somme, ces simulations montrent que :

• Un ensemble d’instances de GCS peut être organisé pour bâtir un système TSS
opérationnel

• Le coordinateur TSS a la capacité de surveiller de manière constante les in-
stances de GCS en utilisant des méthodes de surveillance fournies

• Le coordinateur a la capacité de modifier les paramètres opérationnels des
instances de GCS

• De manière spécifique, le coordinateur peut anticiper (pré-emption) l’espace
de stockage affecté aux services GCS les moins actifs pour le stockage distant

• Sous des motifs classiques d’accès aux données, le coût de cette pré-emption
pour les GCS est en moyenne inférieur à 1%

La série de simulations présentées dans cette section illustre comment un système
collaboratif composé d’un ensemble de GCS peut fournir un stockage temporel de
données à la demande.

Elle permet de valider les caractères opérationnel et effectif des API de surveil-
lance fournies par le GCS. Elle montre aussi comment des opérations collaboratives
peuvent être implémentées en invoquant des opérations qui simplifient la reconfigu-
ration.

En particulier, ces simulations montrent comment on peut anticiper l’espace de
stockage sur les GCS les moins actifs. Cet “espace de stockage pré-empté” peut être
utilisé pour optimiser et équilibrer le comportement global du système en stockant
les données de manière distante, en dupliquant les données les plus sollicitées ou en
migrant les données vers des instances de cache moins actives.

Cette optimisation devrait être basée sur la surveillance des motifs d’accès aux
données et des conditions opérationnelles de la grille. Des expériences sont en cours
pour évaluer le bénéfice, en termes de taux de succès, de différentes heuristiques
d’optimisation sous des conditions variées de motifs d’accès, de trafic du réseau ou
d’utilisation du processeur.

1.7 Conclusion

Au cours de la thèse, nous avons examiné l’utilisation des caches collaboratifs dans
les grilles de calcul. Les grilles permettent l’exécution de multiples modèles de
calcul distribué qui manipulent grandes entités de données d’une façon distribuée.

23

Une quantité significative de ces données est utilisée seulement pour une période
limitée. Par conséquent, l’administration de données temporaires dans les grilles
est critique et rendent la coordination globale des ressources de stockage nécessaire.
Dans ce contexte, les systèmes de caches sont reconnus comme les techniques les
plus efficaces pour la gestion des données temporaires et le cache collaboratif est
traditionnellement proposé pour ajuster les capacités de cache aux besoins croissants
dans les environnements distribués.

Cette thèse propose une approche de la conception et de l’implémentation de tels
systèmes de cache collaboratif dans les grilles de données, systèmes offrant les fonc-
tionnalités de contrôle et de gestion des interactions entre éléments de la collab-
oration. Notre approche permet la composition et l’évaluation des fonctions dun
système de cache collaboratif de haut niveau de façon flexible. Notre proposition est
basée sur un modèle multicouche qui définit les fonctions principales d’un système
de cache collaboratif pour les grilles. Ces capacités sont exécutées par un ensem-
ble d’opérations communes et standardisées qui permettent l’access aux données,
le contrôle et la configuration d’un cache. Ce modèle et la spécification fournie
sont utilisés pour construire une infrastructure logicielle flexible et générique pour
l’opération et le contrôle du cache collaboratif.

Dans notre première contribution, la spécification du Cache Collaboratif pour les
Grilles, nous décrivons les principaux aspects du cache collaboratif de grille. Nous
fournissons les spécifications des composants de base sur lesquels construire un tel
infrastructure, générique et ouverte. Ces spécifications comportent les trois éléments
principaux suivants : Modèle multicouches composé par les couches de stockage
(storage), contrôle (control), collaboration et coordination. Opérations de cache :
ensemble d’opérations standards véhiculant des informations normalisées.

Notre deuxième contribution, le Service de Cache pour les Grilles (GCS), est l’élément
actif qui soutient l’infrastructure. Il implémente les couches de stockage, de contrôle
et de collaboration du modèle de référence. Nous avons développé un prototype du
GCS qui est utilisé comme démonstrateur de l’approche de cache pour la grille. Ce
prototype fournit un support pour les opérations spécifiées et pour les informations
de cache. Nous avons présenté des mesures de performance pour notre prototype de
service de cache de grille au sein du projet GGM. Les résultats démontrent que le
temps nécessaire pour la gestion du cache est marginal par rapport aux transferts
de données.

Notre troisième contribution,l’Espace de Stockage Temporaire (TSS), c’est un système
de gestion des données qui manipule des données temporaires de manière automa-
tique. Le concept de TSS vise à fournir un aperçu des mécanismes de la couche
de coordination. Il présente une validation fonctionnelle du GCS en utilisant les
opérations (API) et les procédures de coordination qui peuvent être implémentées.
Nous avons présenté une expérience qui illustre la capacité d’extensibilité offerte par
le GCS. Elle vise à illustrer plus précisément comment on peut surveiller l’activité
des instances de cache, implémenter les décisions de reconfiguration et changer

24

dynamiquement les paramètres opérationnels de cache. La série de simulations
présentées illustre comment un système collaboratif composé d’un ensemble de GCS
peut fournir un stockage temporel de données à la demande.

Les perspectives de ce travail sont en direction de la gestion de la coordination, de
l’extensibilité, de la tolérance aux pannes des GCS et de la construction d’organisations
de caches collaboratifs. Nous prévoyons de poursuivre le développement de l’intergiciel
TSS.

25

Chapter 2

Introduction

Resource sharing has been a major topic from the beginning of the computer era. At
first, system users would book time on the central machine and have the computer
for themselves while they were using it. With batch systems, users would submit
their tasks to the system which executes them one at time. Timesharing systems
have been developed to manage the machines so the users could share a computer
with the illusion that they had it to themselves. This was the first system to manage
resource sharing; since then the technological evolution has made it possible to create
the Internet.

The most important shared resources are data. Data represent useful information
for users and applications. Data are used to share knowledge. The Internet was
created to share all kinds of data. The main success of the Internet is to make
possible the sharing for data in world-wide form. As a consequence, the requirement
for data storage and movement constantly grows.

Although the main goal of the Internet is to share data, Internet technologies can be
used to share other resources like computing processing, storage space, and devices
for signal detection or measurement. The main problem for sharing resources on the
Internet is that systems and mechanisms that control these resources are different,
so they are not able to cooperate. A considerable effort is required to make these
systems and resources interoperate in coordinated way.

Grid technology enables the integration and sharing of heterogeneous and distributed
resources between different administrative domains; its objective is to provide dy-
namic access to these facilities when needed. Grid technology is a result of the
evolution of distributed system and the Internet. It makes it possible for several in-
stitutions to establish “virtual organisations” supported by their computing infras-
tructure. It provides access to distributed computing power and data repositories
on demand, and allows partners to share computing resources between users and
applications.

26

Grid development has been motivated by the need to gather and coordinate enough
computer resources to solve challenging problems such as: physical and chemical
processes, weather and climate models, biological and human genome structures,
geological and seismic activity.

Grid applications attempt to solve these complex problems. The main objective of
these applications is often related with intensive analysis and processing of large
amounts of data. There are two reasons that make this task substantially critical.
The first one is that data grow quickly and constantly; this requires more and
more storage capacity. Second, these datasets are produced, stored, and used in a
distributed way, so they necessarily have to be moved.

Data movement requires consumption of important network bandwidth and storage
capacity; without global coordination the resources are used in an inefficient and non
cost-effective way. A significant quantity of these data are used only for a limited
period of time, especially when a portion of data is analysed or processed, thus an
important proportion of data disseminated in a distributed system, like a grid, is
temporary. In this respect, an advanced system is necessary to manage temporary
data dissemination in distributed systems.

Sharing of grid resource capacities creates enormous expectations for collaboration:
Users dream of having infinite computing power for applications and unlimited stor-
age space to put their data whenever they need it. As timesharing designers, grid
architects have to provide this perception with limited and shared resources.

Data movement across distributed systems represents active data; therefore data
processing and movement gives additional value to data. Interesting data have a lot
of activity: This increases the probability for their sharing and reuse.

Grid power is based on the capacity to gather resources from different origins which
are geographically distributed; data is naturally moved between different places.
Therefore, considerable capabilities of grid are invested to deal with data movement
that is temporary. Managing data movement in a grid has become a main preoccu-
pation as a consequence of data growth in relation with bandwidth and storage. In
this respect, there are propositions to change the paradigm of distributed systems.
For example a Datacentric grid [109] proposal suggests to make data immovable
but make the code mobile in grids, with considerable technological and economic
implications that make it too hard to achieve in the near or not so distant future.

Interest in temporary data is more economically than technologically biased: the
storage management infrastructure for temporary data is more cost-effective than the
infrastructure for persistent data. There are two reasons to explain this difference.
The first is that the storage infrastructure for temporary data needs to be increased
less quickly. Second, the infrastructure is reused constantly. The point here is the
way that these resources are managed to help increase levels of availability, response
time, throughput and utilisation. Management permits the greatest possible benefit

27

to be obtained from these shared and distributed resources.

Caching is recognised as one of the most effective techniques to manage temporary
data. A cache is a system that automatically controls data objects contained for
a limited period of time in a storage resource. A cache allows reuse and sharing
of data between different clients, helping data resources to be used more efficiently.
Collaborative cache systems, like web caching, have been proposed for distributed
systems to scale cache capabilities. Collaborative cache systems, in this sense, appear
as a natural solution to manage temporary data in a grid.

The specification of grid caching is necessary to develop the different aspects related
with the deployment of collaborative cache systems into a structural model: such
specification must describe the essential characteristics to be satisfied by the grid
cache. It must also permit to exploit the grid and caching capabilities conjointly.
The grid community has not really elaborated this specification yet.

This thesis provides a specification for the base components to build caching in grids.
These components permit to compose an infrastructure to operate distributed tem-
porary data. The structure for this research is provided by the development of a
collaborative cache system for grids and the specific requirements of grid applica-
tions. In this context, where users expect infinite access to resources and where
resources are limited and shared, the management of data resources arises as a cen-
tral question.

2.1 Motivation

In this section, we examine the grid caching scenario presented in the introduction
in relation to automatic operation of large volumes of temporary data. We present
two use-cases within this scenario and utilise them to derive constraints and re-
quirements for a generic and flexible approach to collaborative caching in a grid
environment. The first use-case presents the same fundamental requirement from
different perspectives.

2.1.1 Use cases

Gathering storage capacity from different locations

Perspective 1: Data Dissemination

A genome research centre develops several projects. These projects address large
problems related with the analysis of genetic information of complex protein se-

28

quences. The processing data are stored in a single repository; they were produced
from previous experiments and collected for posterior usage. Project researchers
want to use the grid infrastructure to realise new experiments that need intensive
data processing.

In order to save time, researchers want to execute multiple tasks at the same time;
they want, similarly, to take advantage of non-local information using available
computing resources in the grid when local computing resources are scarce. To do
so, researchers use a grid interface to find and reserve available computing resources
to perform the necessary operations. These processing resources will be available
for a specific period of time.

Applications that compute large datasets cannot assume or control the data place-
ment and must take of the account resources required to move data among locations,
so data must be placed near the processing units. Likewise, users and applications
want to transparently access local and remote data using the same tools and in-
terfaces. When the computing resources are available, users need to find enough
temporary storage in each location to hold large datasets that are fetched temporar-
ily. Researchers want this procedure to be done with faster response times. The
experiments execute diverse tasks in several locations using partner resources.

Perspective 2: Temporary Storage Space

An astrophysics research project studies the evolution of stars and galaxies. A par-
ticular astronomical phenomenon is rarely and sporadically produced. Astronomers
decide to capture detailed information about this phenomenon during its occurrence.
Different telescopes are used to capture the electromagnetic radiation produced dur-
ing the same night. A huge amount of data is produced in a short time period and
the project has a limit on the amount of storage.

Astronomers want to use the grid because the data produced cannot be collected
in a single location and then processed using sequential process. Users want to
delegate the task of gathering storage capacity from distributed locations. Similarly,
they want to be able to use specialised storage mechanisms that are managed by
heterogeneous systems.

Additionally, researchers want these data to be available a wide kind of users, ap-
plications, mechanisms and systems that need to access and reuse them for other
purposes. Users require that the collection of distributed resources and data appear
as a single and coherent system. This system permits to make operations on tempo-
rary data with a high degree of transparency in relation with location or individual
resource technology. Users want to use the grid as a hypothetical infinite storage
repository that provides huge capabilities with fast response times.

29

Grid Administration

This use-case is motivated by the use-case presented before. In each perspective, a
resource administrator maintains the proper operation of resources and services on
the grid. The administrator also supports the deployment of new applications and
services on the grid required by new projects.

The resource administrator wants to observe and analyse the status and behaviour
of the diverse resources used to operate temporary data: he gets a periodic report
about actions in progress. During the processing of an experience a particular storage
system goes down; at this point a report is generated to the resource administrator.
Then a new request for getting more space capacity is launched to replace the missing
capacity.

At the same time, the resource administrator focuses on response time in order to
assess performance levels. He makes sure that the response time is increasing. He
decides to gather information about the level of resource utilisation. To do so, the
resource administrator uses a grid tool to collect detailed status and configuration
information. After analysing the information, he determines locations with an ex-
cessive level of utilisation of the storage resource and also locations with low levels.

At this point, he decides to modify operation and control parameters of the group
of components that operates temporary data. He adds the operation rate as a new
criterion for the selection of location where future datasets are placed. With this
corrective action in mind, he can change the distribution of work load through grid
locations. He then supervises the operation of resources and data to evaluate the
effect on performance.

2.2 Aspects of the Management of Temporary Data

on a Grid

There are a lot of issues related with the management of temporary data with
cooperative cache on Grids. We divide these aspects into three thematic groups:
Caching, cooperative caching and management of collective operation. Several of
the issues refered here are not dealt directly in this thesis. Our intention is to give
first the largest overview of the problem so that the reader can see the complexity
of it. In the Section 2.5 we present the particular topics that are addressed in this
work.

30

2.2.1 Aspects Related with Caching

• Placement of cache on grid

Placement deals with where to place a cache in order to achieve optimal func-
tionality and performance. Cache placement includes localisation in relation
with access interactions between applications and data sources. The place-
ment of cache elements is a fundamental design decision: it is determined by
application requirements and system objectives. Cache placement plays an
essential role in interaction capabilities.

The selection of the location where such temporary data can be accessed is
capital for the cache system design; the main objective is to select an accessible
and convenient location to store large datasets that are needed by applications.
Cached data must then be easily and quickly available for shared use in all
applications.

• Integration of heterogeneous resources

This aspect deals with the incorporation of storage resources to keep tempo-
rary data; these resources are mutually provided by several partners. These
resources belong to diverse technologies and they are controlled by distinct
software systems. Usually, each storage mechanism has proprietary access in-
terfaces available for specialised purposes or functions. The grid deals with
access to these resources with the same interfaces, and specialised storage re-
sources are designed to store temporary data. These resources have particular
properties or technology to provide high throughput on data access.

• Data selection

Data selection deals with the decision about which data entities are held by
the system. The use of these data for current processing is a main interest
for the system. Similarly, this includes the time period during which data is
functional and potentially reusable.

The decision process includes that data is held during a specific period of time
over which it can be reused. A lot of strategies have been proposed in the
literature for determining which data should be kept in temporary storage.

• Regulation of performed actions

The regulation of actions deals with the usage regulation of the resource itself in
a mutual environment. This includes access to content in the storage resource,
who can use the temporary data, and what kinds of operations are allowed.

31

The nature of data is different and applications use these data in different
ways. This aspect concerns operations that are allowed and users who are
authorised to make these operations. In this context, control also includes the
capacity of regulating storage resource usage.

• Data coherency

Interaction with data between users often requires a strategy for representing
a shared state. There are different ways of keeping a data state consistent in
order to allow manipulations in that state. This aspect includes how to keep
temporary data in coordination with changes to the data in the original data
source; if the original data or a temporary copy changes, the copies must be
updated to reflect those changes. The importance of keeping temporary data
updated varies between applications.

Data consistency is a specialised topic widely developed in general distributed
data systems, it is not an issue for which the grid creates particular new
challenges. In this work, we assume that data is accessed in read-only manner;
therefore data coherency is given only limited consideration.

• Effectiveness

Effectiveness deals with the degree to which the system responds to the re-
quested operations and the level of resources used to provide these operations.
The principal means of judging if the system meets the requirements is that
specified levels are maintained to the satisfaction of application processing.
Effectiveness indicators thus have the highest interest. Effectiveness includes
issues like availability, response time, and success rate of access operations.

2.2.2 Aspects Related with Cooperative Caching

• Interaction

Interaction deals with actions that can be done together by different system
elements (what kinds of actions it is possible to make in conjunction, the
coordination applied to these actions to operate and control temporary data
between grid members). Temporary data management needs the execution of
sophisticated operations between several components.

• Organisation

Organisation refers to necessary arrangements of system elements to operate
and control in a common way temporary data. The organisation is strongly
related with expected interactions, functions and performance to be supported

32

by the system. There are diverse alternatives to organise the distributed sys-
tem components; they depend on requirements and application objectives.
The organisation is often represented as architectures and schemes conformed
to by specialised components.

• Distributed data placement

The possibility of sharing available storage resources that are distributed is
an important issue to deal with when putting temporary data in a particular
location. This decision is essential for the function and the performance of the
system. Choosing the location for holding temporary data in a dynamic way
is a complex process that requires detailed and accurate information about
temporary data access and movement in the whole system.

• Data localisation

In contrast with data placement, data localisation deals with the process to
establish which location contains a requested piece of data. The process is com-
plex because the resources are distributed and they are continuously chang-
ing. Data localisation includes the search process in function of data content
or description. In practice, users want to get a specific dataset that contains
particular information; strategies for temporary data content description are
needed to provide this capacity.

• Load balancing

Another important issue is the distribution of work load through grid locations.
If a single location is bottlenecked, it causes a performance degradation of
a portion of grid or even slow operation of the entire system. Allocating
strategies are indispensable for sharing different task responsibilities. At the
same time, this distribution must be in accordance with requirements and
properties of grid applications.

• Interoperability

Interoperability makes it possible to executed defined interactions between grid
components that operate temporary data. This includes necessary information
to be exchanged for effective and coordinated common operation. Similarly,
the interoperability includes the definition and implementation of common
interfaces that will be used by components.

2.2.3 Aspects Related with Collective Operation

• Interactions

33

Temporary data management can be achieved as a result of the realisation of
the sequence of local actions and interactions between locations that must have
an intended effect. Operation is an essential issue because we need to ensure
that the series of events are done with particular conditions. The capacity for
planning and following these actions, executed in an indirect way by different
components, is a fundamental condition for system objectives.

• Control and Registry

Control deals with the capacity to direct and regulate actions and interactions
in order to operate temporary data. Control determines the behaviour of the
entire system over time in a dynamic way. This issue is particularly impor-
tant when components are heterogeneous and are administrated by different
domains. Different levels of control must be established to respond to diverse
requirements. Control enables the capacity to make adjustments to improve
the performance.

• Components Configuration

Configuration deals with the possibility of changing the operation and con-
trol parameters for a particular purpose. Configuration is an arrangement of
functional units according to their nature and key characteristics. Configu-
ration is concerned with maintaining, adding, and updating the relationships
among components and the status of components themselves during operation.
Configuration often permits to choose the schemes and strategies that affect
the system function. Different states or configurations deal with particular or
specific requirements.

• Activity Monitoring

Monitoring deals with the capacity of supervising, observing, and testing activ-
ities and appropriately reporting these measurements to evaluate the effect in
the functional system. Monitoring makes the periodic or continuous measure-
ment of data actions and resource usage; this provides an ongoing verification
of progress toward the achievement of goals. Monitoring includes several as-
pects such are the definition of monitored information and how to get this
information from the specific resource in a distributed system like the grid,
this includes how to obtain this information from a group of resources. In ad-
dition, monitoring includes how that information is used for system operation
and control.

• Resource Use Accounting

Accounting is the act of collecting information about resource usage for the
purpose of capacity analysis, cost allocation and charging. Accounting pro-
cesses require that resource consumption be measured, rated, assigned, and

34

registered between participants. Resource use tracing permits to establish ac-
cess abuses or burdening infrastructure at the expense of other applications or
users. Similarly, an inefficient use reports information that enables decisions
to be made.

In a temporary data context, accounting is also the process of keeping track
of data activity while accessing storage resources; including the amount of
time spent in the network, the services accessed, and the amount of data
transferred during the session. Accounting data activity information is used
for trend analysis, capacity planning, billing, auditing and for cost allocation
of data and storage resources.

• Fault Tolerance

Temporary data management between distributed locations requires maintain
the operation of the system as a whole. Considering the several resources
working in parallel and the long execution time, in the case of the failure of
one or more of the elements, the others can continue to operate with minimal
impact. When a fault occurs it is important to determinate, as fast as possible,
exactly where the fault is and to reconfigure or modify the components in such
a way to minimise the impact of the operation. Fault tolerance is not an issue
studied in this thesis. We assume that the proposed infrastructure allows
develop many fault tolerance mechanisms in the future.

• Security

Security is concerned with protecting access and controlling facilities. Applica-
tions and users can only perform actions that have been allowed. This involves
specifying and implementing a security policy. The actions in question can be
reduced to operations of access, modification and deletion. Passwords and
other authorisation or access control mechanisms must be maintained. Secu-
rity in the temporary data context is also concerned with the confidentiality
and the integrity of data on medium storage. Confidentiality refers to the
protection against accidental or malicious disclosure to third parties. As for
integrity, it refers to the protection of data against unauthorised modification.

Security is not an issue studied in this thesis. We assume that the users are
authorised and authenticated by a service or system defined by the community
that deploys the grid. Other thesis in our research team propose solutions for
the protection of confidential data on Grids [105] [107] [106].

• Performance and Effectiveness

Performance deals with the timelines with which the system responds to the
requested operations and the level of resources used to perform these opera-
tions. Performance includes effectiveness of operations and efficiency aspects

35

such as the success rate of access data operations and the resource usage ca-
pacity percentage.

To deal with these concerns, components must be monitored to assess perfor-
mance levels. This includes associating appropriate metrics and values with
relevant indicators of different levels of performance. Performance needs to
monitor many actions and interactions to provide information in determining
operating level. By collecting this information, analysing it, and by using the
resultant analysis as feedback to the old configuration and parameters, grid
administrators can become more adept at recognising situations and improving
performance.

2.3 Requirements

This section presents the general requirements for grid caching. They are motivated
by the use-cases presented before. We divide these requirements into two groups:
Local and Collective Operation requiremts. Several of the requirements refered here
are not dealt directly in this thesis. In the Section 2.5 we mention the particular
requirements that are addressed in this work.

2.3.1 Local Operation Requirements

The requirements for local operation of temporary data in grid enviroments are:

• Delegation of temporary data operation

From users and applications’ points of view, it should be possible to delegate
the responsibility of the operation of temporary data to a specialised entity
that applies sophisticated strategies for determining which data should be kept
in the storage resource. At the same time, it must be possible to regulate the
access to data and storage as shared resources. In the first use-case, appli-
cations and users delegate the complex task of operating temporary data to
specialised grid components. These grid components control individual storage
resources on behalf of users and applications. Furthermore, these components
implement the mechanisms of interaction in order to work together.

• Accessibility by different types of clients

Entities and capabilities related with temporary data access must be available
for the grid environment. These capabilities must be available for different

36

kinds of users, applications and services. In the first use-case, different tasks
are realised by diverse applications in multiple locations. In each location,
applications require to execute access operations to manipulate the tempo-
rary data. The differences related with each particular technology must be
transparent for clients.

• The uniformity of operations and interfaces

The operations and interfaces necessary to handle temporary data must be
uniform. The components that operate temporary data must support a stan-
dard set of operations and interfaces. In the first use-case, the same action
to find enough storage space is launched on several locations. In each loca-
tion, the request must be interpreted in the same form. In the second use-case
the resource administrator gathers information about the level of capacity of
resource utilisation. Here, monitoring information must be represented in a
common form.

• The capacity to gather resources on demand

Storage space for temporary data must be provided incrementally following the
availability of shared resources. This need is also caused by the non-predictive
character of temporary data. Supplying the requirements on demand gets
more importance in grid environments because of the dynamic character of
the resources. In the first use-case, users try to gather storage capacity from
different and distributed sources and locations. Additionally, each location
tries to get the maximum storage capacity. In this case different strategies can
be applied to obtain the capacity desired from the shared asset.

• Optimization for efficient use of resources

Users expect to get unlimited storage resources for storing their data. Re-
sources however are finite and their capacity limited. Sharing strategies should
provide enough resources for the enormous storage space requested. Within
this context, it is necessary to use resources with maximal efficiency. In our
second use-case, the resource administrator needs to optimise the utilisation
of the group of available resources. The administrator needs to collect infor-
mation that will help him to recognise situations where the resources are not
used in the best way so the appropriate corrective actions can be taken.

2.3.2 Collective Operation Requirements

This section presents the requirements for a proposed system in relation with some
general aspects of collective temporary data operation. These requirements are
motivated by use-cases presented in Section 2.1.1.

37

• Accounting data activity

It is necessary to collect information about resource usage and data actions
performed by the system. Accounting processes require that the resource con-
sumption be measured, rated, assigned, and registered between participants.
Tracing permits to establish the degree of efficiency of resource use. Further-
more, it permits to establish the behaviour, state, and activity for individual
components and evaluate the effect on the collective system.

In the second use-case, it is necessary to establish the level of capacity through-
out the progress of resource utilisation through a specific time period. In the
same way, that information can be compared with other traced items of sim-
ilar components. This permits to establish if there is a trend of unbalanced
resource utilisation between locations. Data activity accounting is highly im-
portant to make a general analysis and evaluation of the system function.
Finally, it is also necessary to establish use trends and access patterns.

• Flexibility to choose schemes and strategies

Many questions must be raised in every situation related with the management
of distributed temporary data. Each situation has particular characteristics
and needs that make it difficult to propose a universal solution. A tempo-
rary data management system must be able to deal with a large number of
strategies, parameters and options. Depending upon the choices made in each
situation, a variety of schemes and strategies are available for the effective and
efficient control and operation of temporary data.

In the second use-case, in case of a modification of the relationships among
components and locations in the distribution of workload, the administrator
must change the operation of the system to get the expected effect. This
capacity configuration permits a choice to be among the schemes and strategies
that affect the system function.

• Performance Monitoring

An absolute prerequisite for the management of temporary data is the ability
to measure the performance of data operations, we cannot hope to manage
and control a system or an activity unless we can monitor its performance.
One of the difficulties for performance monitoring is to obtain and use the
appropriate information that describes performance. This information must
be fully specified.

In the second use-case, the resource administrator requests appropriated infor-
mation in order to determine if the main cause of a long response time is the

38

excessive level of utilisation of some resources in comparison to others. De-
tailed information permits to take the decision for the appropriate correction.
In this way, performance monitoring must provide information about

– availability, percentage of time that components are available

– response time, time to execute an action

– effectiveness, percentage of success operations

– throughput, rate of operations processed

– utilisation, percentage of capacity used

• Enabling the control of storage resource

The infrastructure to operate on temporary data in the grid is gathered from
diverse resources provided from multiple locations. Each location must permit
the use of its resources for partners (in an automatic way to store data). This
capacity must be available for the grid and is operated by the management
system of temporary data. In the second use-case, the resource administrator
modifies some operations and control parameters of the components of the
system. This includes remote components that provide functions to command
their individual operations. This functions must be available for the collective
system.

• Coordination for effective operation

The use of distributed resources and components requires a proper interaction
relation to act together effectively. This requires that components support
operations to make possible common organisational actions addressed to get
a global effect on the functional system. In the second use-case, changing the
distribution of work load through grid locations requires that coherent actions
regulate work distribution between components.

• Detection and faults

The coordination of temporary data between different locations requires main-
tain once of the proper operation of the system as a whole. Typically, several
resources and components work in parallel; if a fault occurs it is important to
determine, as rapidly as possible, where the fault is exactly; and to reconfigure
or modify the components in such a way as to minimise the impact on opera-
tion. In the second use-case, the resource administrator needs to get opportune
and detailed information about the failure. This information must help him
determine the problem. With this information, the resource administrator
must be able to recover the system to a functioning state.

39

2.4 Constraints

This section presents the general constraints for grid caching. Should be noted that
they are general contrains of grid environments. They also are motivated by the
use-cases presented before. Several of the constraints refered here are not dealt
directly in this thesis. In the Section 2.5 we mention the particular constraints that
are addressed in this work.

• Autonomy of resource control

The systems that hold temporary data are managed by local software which
applies particular strategies to control and operate resources and data. Each
installation has particular characteristics, functions and capabilities that are
operated locally. Originally, these installations were built to operate in an
individual and autonomous form. Sharing mechanisms must deal with these
self-control capacities. This constraint includes the configuration options that
are dependent on particular solutions.

In our second use-case, local installations operate in an autonomous way. They
must support configurable parameters that permit to give coherency to col-
lective interactions. In this context, they need a structure that permits an
interaction level to be built from their autonomous capabilities.

• Dynamicness of distributed environments

In grid environments, resources are provided in a dynamic way following their
availability. Additionally, resource utilisation and grid activity change con-
stantly; so grid activity can present fluctuations that affect specific operations
such as data actions. The management of temporary data must adapt to the
dynamic changes of application actions and grid environments. The adapt-
ability involves several aspects: interactions between application requirements
and components capabilities, and interactions between components in reaction
to these requirements.

In our first use-case, the research experience requires the provision of storage
capabilities in a short time period; the system can then react following the
available resources. Such ability must be supported by each component that
responds applying strategies that modify its activity at that moment. The
ability to deal with the dynamic character of grid environment is essential to
achieve the expected performance.

• Heterogeneity integration

40

Grids aim at making resources and capabilities that are supported by different
operating systems and software solutions work together with diverse configu-
rations. Storage resources span a range of architectures and technologies that
make the interaction between components complex. These components must
be available throughout the grid in a transparent form; hiding the particu-
larities of the underlying system. Therefore, the management of temporary
data should reduce to a minimum the dependency of specific mechanisms and
solutions, and should provide a maximum of accessibility. In our first use-
case, research projects should be able to use different and specialised storage
solutions even though they are managed by systems that are not compatible
together at first sight.

• Distribution transparency

Since data and resources are distributed through several locations in the grid,
the access operations to temporary data should not depend on location. Per-
ception from users and applications about available capabilities must be similar
throughout the grid. The management system of temporary data must provide
interactions in a unique and coherent way.

In our first use-case, data is distributed through different locations; user appli-
cations require that the data stored in the grid appears as a single and coherent
repository. This must permit access operations to be executed without having
to manage the details of data distribution.

• Coordination scalability

Grid potential is based on the capacity to provide a huge amount of resources
for a large group of users. Solutions that work well in a small scale may not
have success when they are deployed in a larger scale. Therefore, the tempo-
rary data management system must support intensive usage situations that
involve large amounts of resources and users.

Usually, grid solutions should not be based on centralised systems. In our first
use-case, the system gathers storage capacity from distributed locations. This
must permit the system to be expanded by adding distributed and autonomous
components. In the first use-case, it is clear that the level of required scalability
must be established in a dynamic way following temporal grid conditions.

• Multiple administrative domains

Typically, the majority of system administrators would not consent to fur-
nish storage resources on a grid that would imply to give up complete control
over these devices and mechanisms. The temporary data management system
must therefore permit organisations to delegate administrative powers over the

41

storage resource so that it can be automatically and collectively managed by
a specialised system.

The first use-case illustrates this need: the temporary data management sys-
tem permits used local resources under conditions clearly defined in relation
with duration and authorised operations. The management system acts on
behalf of the organisation and the system administrator.

2.5 Challenge and Positioning

Grids create enormous expectations based on sharing resources and collaboration.
Users thus dream of having infinite computing power for applications and unlimited
storage space to put their data whenever they need it. Users expect to use a grid as
a hypothetical infinite storage system that allows to store large data entities. Grid
architects have the challenge to provide this perception with limited and shared
resources.

A Grid is a dynamic environment that manages different models of computation with
various data access patterns. For this reason, grid environments need high flexibility
to dynamically control the configuration and behaviour of individual components.
Similarly, the relationships between components determine the capabilities that can
be provided by the grid. Increasing the scope of the cache interactions creates new
possibilities for the management of temporary data.

The main objective of grid is to make possible the sharing of resources in a wide scale.
Sharing computing, communications and data resources originates new possibilities
for sophisticated forms of cooperation based on grid technologies. These cooperation
modes can be used to improve grid functions and services.

Increasing the possibilities of interactions between components, however, is not suf-
ficient to support collaborative systems like cooperative caching. Interactions must
be coordinated so as to take advantage of collective work capacities. The coordi-
nation consist of the ability to operate and control the main aspects related with
the configuration and behaviour of collective interactions. In this way, a group of
distributed and autonomous cache components can work as a whole.

The main challenge of grid caching is the dynamical management of collaboration
between caches. It consists in a high-level procedures to operate and control the
coordination of collaborative cache interactions. Grid caching management also
includes the strategies to optimise and improve different cooperation mechanisms
and schemes.

A flexible and generic infrastructure to develop grid caching is necessary. It must

42

describe the essential characteristics to be satisfied by grid caching. In this thesis,
the main interest is centred on the specification of this infrastructure into a structural
model for the management of collaborative caches in grids. We believe that this is
the fundamental condition that permits to integrate most of the different aspects
related with operation of temporary data in grid.

We propose a specification to build a grid caching infrastructure that defines the
base components and their interactions, which are used to compose high-level col-
laborative cache functions in a flexible way.

The specification defines the grid caching capabilities within a multilayer model that
defines and separates their main functions. The capabilities are implemented by a
set of operations that support defined cache functions. The autonomous cache ele-
ments called Grid Cache Services are the functional units of the infrastructure that
implements the model and operations. These concepts are developed in Chapters 4
and 5.

The majority of constrains mentioned in Section 2.4 are general grid topics addressed
directly by grid technologies which our infrastructure is developed. However, infras-
tructure focus is put on the autonomy of resource control.

The infrastructure proposed focuses on the following elements in relation with re-
quirements mentioned in Section 2.3: delegation of temporary data operation, acces-
sibility by different types of clients, accounting and performance monitoring, flex-
ibility to choose schemes and strategies and coordination for effective operation.
In Chapter 6 we explore forms to deal the following requirements: the capacity to
gather resources on demand, optimization for efficient use of resources. We do not
deal the fault tolerance which is large topic that we propose as future research.

43

Chapter 3

Related Work

3.1 Cache Systems

3.1.1 Overview

In the context of this work, a cache is a mechanism that manages temporary data
contained in a storage resource. Caches manage data that are expected to be reused
and shared for a limited period of time. Caches provide significative benefit: when
accessing data stored in the cache it is faster and less expensive to access as from
the original source. The performance benefit is usually in terms of access time, the
other benefit derives from less expensive network and storage resources usage.

As a mechanism that manages data, caches control the store where the data is
available during the time that they can be used and reused. Thus the data access
operations are realized by way of a cache. Every time a particular dataset is put
in temporary storage the cache mechanism conserves that data copy for later use.
Caches operate and register the access to all datasets. When temporary space be
comes insufficient to accommodate new datasets, the cache mechanism selects which
datasets are erased and which datasets are held in the temporary store in order to
get necessary capacity to store the new data.

The cache mechanism regulates the use of storage resources based on data access
demand. Caches select the dataset that are held in the temporary store in a dynamic
way based on data activity. In this way caching is used to optimize data transfers
between system components with different performance capabilities. Caching is an
intermediary mechanism between data consumer and data provider; this position
permits sharing of data and storage resources between several consumers.

44

3.1.2 Applications of the cache mechanism

Computer architecture

The cache mechanisms were first introduced in computer architectures by Wilkes
[130]. The cache mechanism is implemented by a type of specialized high speed
memory. This memory is often smaller and faster than the main storage. It is
typically used to optimize the data transfers between a processor and main memory.
The cache is used to hold a copy of instructions and data obtained from main storage
and probably to be needed next by the processor [115]. Cache utilization is based
on general tendency of the applications to access often the same set of instructions
and data. This permits reductions in execution time and data access time to the
main memory [110].

Multiprocessor architectures

Multiprocessor architectures use cache mechanisms to reduce bus traffic and increase
the number of processors [82]. Multiprocessor cache design is much more complex
than uniprocessor design primarily because of the consistency problem. In machines
such as KSR-1 [100] and more recently SDAARC [46] main memory is composed of
caches. In the architecture called COMA (Cache Only Memory Access) the data
in memory does not have fixed locations so data is migrated around the system on
demand. Using the main memory as a big cache increases significantly the hit rate,
hence the performance.

Distributed file systems

Most distributed file systems support client side caching. The clients hold in local
caches the recently used files to reduce expensive access to remote file servers. The
design of distributed file system places caches in an intermediate position between
clients and file servers [14]. Distributed file systems like AFS [104] and its descendant
CODA [78] exploit caching on client’s local disks to achieve scalability and high
degree of fault tolerance, and makes the client less dependent on the availability of
the server. Initial versions of the Network File System NFS [60] protocol included
cache specifications, but since version 3 this is outside of the protocol; this approach
permits the implementation of different caches policies [116].

Databases

Frequently accessed database objects can be stored in a special client area to reduce
the time required to read and write data [64]. Database caching stores relevant
database objects such as triggers, constraints and stored procedures [87]. In query
result caching, the content is checked with back-end database queries and the cache
stores only partial back-end table data. Frequently, query result caches use materi-
alized view technology to store and match the cache content [6].

45

Web and client-server applications

Caches are used in client server environments that require frequent remote data
access or data movement. This includes streaming multimedia applications which
present dynamic access patterns [134]. In Web environments and more generally
in the client-server applications, caching can be deployed on the server side, like in
server accelerators, in the client side, like local caches, or in an intermediate level
like proxy caches.

Distributed applications

In middleware based on object models for distributed applications like Globe [11] the
cache facilities can be created using object replication capabilities. In Globe each
object implements its own replication strategy, in this sense the interfaces associated
to objects are standardized, this permits implementing different and various cache
or replication strategies with objects [116]. Thus in Globe middleware a high degree
the flexibility is obtained. In contrast, CORBA [90], an object model and specifi-
cation for distributed applications, does not have special provisions for caching; the
implementation of a cache subsystem is left completely to the application developer,
this approach may involve a considerable effort.

3.1.3 Cache advantages and disadvantages

There are several advantages to using caching:

Reduction of amount of data transfers: Successful data retrieval from a cache elim-
inates the need to contact the original data source. Thus, caching represents an
effective means for reducing data transfer demands and therefore network commu-
nication.

Data access latency reduction: Caching permits retrieval datasets from a position
located near by, instead of remote locations that often need more time for data
transmission. As a consequence of reduction of data transfers, the data movement
without cache intervention can be done relatively faster due to less congestion and
more available resources for transmission.

Reduction of the workload of the data sources: Caching reduces the data access
operations that must be dealt with by a particular data source. In this way data
access processing is distributed among several locations and components. A cache
acts as a load balancer.

Enhanced robustness: If the remote data source is not available due to remote
system failure or network breakdown, the consumer can obtain a data copy from the
cache. Therefore, the robustness of the system is enhanced.

46

Provides information about data activity: A side effect of a cache is the possibility
of providing information about data usage; this permits establishment of treatment
patterns in connection with data access. It represents a very useful description of
data activity that permits to analyze the behavior of data access. This concerns the
cache utilization in distributed systems environments where cache content is shared
by a wide user community.

It is important, however, to note that there are several disadvantages of using cache
mechanisms.

The main disadvantage is the difficulty of guaranteing that the data copy in cache
is always consistent with the original source. Data is often distributed over different
caches to improve performance. With several copies distributed between caches,
problems arise over time if copies of data become inconsistent, causing the local
copy of the data to be out of synchronization with the contents of the original
data source, or with the other cached copies. These inconsistencies may result from
local updates on the cached data or due to an outdated version of the cached data
compared to what is stored on other caches.

The consistency problem is the most complex aspect of cache design. Using several
caches implies the existence of multiple copies of the same data and the requirement
is to keep all the copies consistent. To overcome this problem, caches implement
consistency models. A lot of work has been done in the field of cache consistency
[59], [44], [80], [65], [124].

There is a possibility that the access latency may increase in the case of a cache
miss; this is due to the additional time that is spent for extra cache processing.
When an access retrieval is not successful from cache, extra work is necessary to
fetch requested data from original source. To deal with this inconvenience, cache
access delay should be minimized; this may be achieved in the contexts where time
access are significative.

The effectiveness of a cache depends on a variety of (often conflicting) parameters
that need to be skillfully balanced for a given requirement [110]. The first design
consideration is the fetch or admission policy. Most system use fetch on demand
because of its simplicity, but some use prefetching which can improve the miss-
ratio. Several prefetching techniques can be used but Przybylski [98] notes that
complicated fetch strategies perform only marginally better than simple fetch on
demand due to limited memory resources and strong temporal succession of cache
misses.

A cache mechanism has a fixed amount of storage for holding data objects. When
this storage space fills up the cache must choose one or more objects to drop in
order to make room for newly referenced objects. The cache’s replacement method
determines which objects should be removed from the cache. The goal of the re-
placement policy is to make the best use of available resources, including storage

47

space and network bandwidth. The choice of cache replacement policies can have a
significant impact in the hit rate of the cache, as well as local resource utilization.

There exist a multitude of replacement strategies proposed in the literature: a unique
strategy is not possible for all different workload situations. Although most of the
works provide evidence that the proposed strategies are the best, it is often possible
to find some strategies that give good results in different evaluations. An overview
of main cache replacement methods is presented in Annexe A.

Depending on the workload, different replacement strategies can be useful. As work-
loads on the grid can change it is a valuable question how a cache can use different
replacement strategies in a dynamic manner. Furthermore, replacement decisions
affect the state of a cache instance. In collaborative caching, a coordination of re-
placement decisions at different caches could give superior performance; coordinated
placement of data entities could improve the performance further. An infrastructure
that permits coordinated and flexible replacement strategies in a collaborative cache
is necessary.

3.1.4 Performance Measure Metrics

There are mainly three performance measures in web caching: Hit Ratio, Byte Hit
Ratio and Delay Saving Ratio. They are defined as follows:

Hit rate (HR) Represents the number of hit references over total number of refer-
ences. It is the most popular measurement of cache efficiency. A hit rate of 70%
indicates that 7 of every 10 requests to the cache find the object being requested.

Byte Hit Ratio (BHR) This is the number of bytes returned directly from the cache
as a fraction of the total bytes accessed. This measure is not often used in cache
studies for computer system architectures because the objects (cache lines) are of
constant size. Web objects, of course, vary greatly in size from a few to millions of
bytes. Byte hit rate is of particular interest for network resources control. A byte
hit rate of 30% indicates that 3 of 10 bytes requested by clients were returned from
the cache; conversely 70% of all bytes returned to users were retrieved across the
network.

Delay Saving Ratio (DSR) It is a measure that takes into account the latency of
fetching a data object. It represents the reduced latency due to a cache hit over
total latency when it is not present in the cache.

Note that object hit rate and byte hit rate trade off against each other. In order
to maximize object hit rate it is better to keep many small but popular objects,
however, to optimize the byte hit rate it is better to keep large popular objects.
It is clearly preferable to keep objects that will be popular in the future and drop

48

unpopular ones, the trade-off is whether to have a prejudice against large objects or
not.

Other measures of cache efficiency include the cache server utilization of CPU or
disk storage system, which are driven by the particular cache server implementation.
Throughput, cache responses per time unit, is a common metric in many kinds of
benchmarks. Throughput is frequently an input parameter for benchmarks.

The response time measures how quickly a cache responds to requests. For a single
request, it is the amount of time elapsed between sending the request and receiving at
the end the response. Since the individual time response varies greatly, it is useful to
establish average, median and other statistical measurements. The average response
time or latency of object retrieval is a measure of interest for cache administrators
end users.

3.1.5 Web caching

In its simple form, web caching is similar to memory caching: a web cache mechanism
stores and manages web data to reuse and share. A web cache stores copies of the
documents requested by Internet users, so that subsequent requests may be satisfied
by the cache mechanism. Thus, a web cache holds data in anticipation of future
requests. In the context of the client/server interaction on the Internet, a cache
aims to eliminate the need to contact the original server. In this way, web caching
reduces network data transfers, server workload and client data access latency.

Proxy Caching A Proxy cache is a mechanism designed to offer faster access to
cached content on the Internet; a proxy cache acts as a gateway between web clients
and web servers. A proxy cache intercepts the HTTP requests from clients and, if it
finds the requested data object in its cache, it returns the data object to the user. If
the object is not found, the cache goes to the original object server to get the data
on behalf of the user, possibly deposits it in its cache, and finally returns the object
to the user.

Cooperative Web Caching

A group of caches cooperating with each other in terms of serving each others re-
quests and making storage decisions results in a powerful model to improve cache
effectiveness. An important aspect of cooperative caching design is how the caches
are organized at different locations of the distributed system. This aspect is essen-
tial to establish the possibilities of interactions and the relationships between the
group of caches. A review of the literature suggests four main types of schemes or
architectures: hierarchical, distributed, organization based on multicast and peer to
peer approach.

49

There are a lot of collaborative cache architectures and cache communications pro-
tocols: a definite architecture and protocol that satisfies all different grid caching
requirements is not possible. Different schemes and protocols can give good results
under different collective workload and access patterns. A concise overview of co-
operative cache architectures and cache communication protocols is presented in
Appendix B.

As data movement application requirements on the grid can change frequently, it
is a relevant question to consider how a collaborative cache can be organized un-
der different architectures (hierarchical, multicast, distributed, peer to peer) in a
dynamic manner. A coordination of cache interactions could give support for new
data management functions. Coordinated movement of data entities could improve
the performance further. We consider it necessary to have an infrastructure that
permits dynamic and flexible deployment of different cache architectures in a grid
environment.

Discussion

Although the support for flexible and dynamic features constitutes an interesting as-
pect for collaborative caches, we can not ignore possible complications: introducing
flexibility and dynamicity adds additional complexity to the management process.
Also the more flexible and dynamic procedures should be intelligent enough to ex-
ploit potential capabilities.

The selection between different parameters should be supported by accurate infor-
mation in order to take correct decisions. This implies that this kind of flexibility
adds another form of complexity to the management process: the collaborative cache
system has to obtain and manage information about activity for all cache and data
instances.

In this thesis we propose a specification to build a basic collaborative cache in-
frastructure that supports these features. Future research should therefore concen-
trate on the following two topics: design and evaluation of intelligent management
procedures and verification of the applicability of these procedures to grid in real
environments.

3.2 Grid Data Management

This section describes the main aspects, characteristics and works related with data
management in grids. An overview of representative projects and developed solu-
tions is presented.

50

A data grid [30] is a grid system that provides the infrastructure and services for
data-intensive applications that need to access and transfer large amount of data
stored in distributed storage resources. Venugopal proposes a taxonomy of data
grids and makes a revision of the related concepts and technologies [123]. Data grid
systems provide the following main capabilities:

• Search and discover the required data entity through all available and dis-
tributed datasets.

• Transfer large datasets between storage resources with a short time delay.

• Control and operate multiple data copies.

• Select computational resources and process data on them.

• Control and operate data access permissions.

Essentially a Data Grid supports two basic functionalities: a reliable data transfer
mechanism and a replica discovery and management mechanism. Additionally, other
services can be provided depending on the application requirements. These include
mechanisms for replica consistency and metadata catalogs. All data operations are
controlled by authentication and authorization mechanisms that ensure data access
and manipulation.

In the same way, data grid infrastructure maintains shared datasets distributed
across administrative domains. These data are preserved independent of the under-
lying storage systems. This makes it necessary to keep information associated with
data and data activity like access control, versions and metadata.

The grid resources are heterogeneous and are under the control of their own local
administrative domain. Thus, a grid deals in general with aspects such as sharing of
resources, authentication and authorization of entities, management and scheduling
of available resources. The data grids share this general aspects and have particular
characteristics:

Large amounts of data: Data-intensive applications manipulate large datasets
in the range of hundreds of Megabytes (MB) to Petabytes (PB) and beyond.
Resource management in data grids, thus, tries to minimize latencies of bulk
data transfers.

Share data and storage: Resource sharing is extended to share distributed data
collections and repositories to store new datasets.

Uniform namespace: Datasets share the same logical namespace where every
data element has a unique logical filename. This logical filename is mapped to
one or more physical references on several storage resources across the grid.

51

Access control: Different levels of access, distribution and confidentiality can be
necessary for data.

3.2.1 Organization and standardization

Grid computing is a technology that provides access to different types of resources.
The resource sharing among different entities is based on the concept of Virtual
Organizations (VO) [53]. A VO is formed when different organizations aggregate
resources and collaborate in order to achieve a common goal. A VO establishes the
resources available for the participants and the rules and conditions under which the
resources are used. The VO also provides protocols and mechanisms for applications
to determine the accessibility of these resources. Often, a VO uses mechanisms such
as the certificate authorities (CA) and trust chains for security.

The VO seeks interoperability between the resources and the components that are
provided by different organizations. This requires standard protocols and service
interfaces for information exchange among VO participants. Service interfaces must
be separated from a particular implementation and must be described in a language
and platform with independent format.

The Grid computing research community proposes standards that deal with these
requirements, for example through forums such as the Open Grid Forum (OGF) [62].
The OGF community adopted the Open Grid Services Architecture (OGSA) [55],
which is based on the Web services. Web services are self-contained, stateless soft-
ware components which are capable of being accessed via standard network protocols
(for example SOAP over HTTP). Web services are described in XML (eXtensible
Markup Language) [18] and use standard messages mechanisms for the exchange of
data.

Grid services are standardized web service that support grid capabilities in a secure,
reliable, and stateful manner. Grid services may also provide lifetime management
and state notification. OGSA uses standard web service mechanisms for discovering
and invoking Grid services.

An OGSA Data Service [56] implements interface and associated behavior for the
manipulation of data visualizations for accessing and managing data resources in
Grid environments. Data service interfaces describe the data and provide operations
to manipulate it. A particular data entity can be represented in many ways by
different data services that support different sets of operations and data attributes:
The abstraction provided by a data service is called data virtualization. The Data
Access and Integration Services Working Group (DAIS-WG) at GGF, have produced
a set of standards to represent data through grid data services [8].

These standards provide the support for complex access data hiding grid mecha-

52

nisms. This infrastructure is necessary for transferring and managing the data using
underlying or core mechanisms such as data storage, data transport, and resource
management.

The Globus Toolkit [63] is a software platform under an open-source license to build
and deploy grid services. The Globus Toolkit supports grid services that follow
OGSA architectural principles and it also offers a development environment for
producing grid services that follow OGSA principles.

In this platform, a grid is composed by a collection of differentiated services. Users
can integrate services to manage distributed data. These services mainly include:
a storage service, a data transfer mechanisms, services to access databases and a
replica location service. Other globus components also can complement the above
services: a metadata catalog service, and a community authentication and autho-
rization service, for example. Users would need to implement their own consistency
mechanisms for managing state information about files registered into the grid. This
platform assumes a single name space for users, data and resources.

3.2.2 Data Grid Projects

In this section, some representative Data Grid projects, developed for different ap-
plication domains, are presented.

High Energy Physics (HEP) Often cited examples for Data Grids are those being
developed for analyzing the huge amounts of data that will be generated by the
Large Hadron Collider (LHC) at CERN. There are various Grid projects around the
world that are setting up the infrastructure for physicists to process data from HEP
experiments. Some of these are the DataGrid [49] and EGEE projects [47] funded
by European Union, the LHC Computing Grid (LCG) [27] directed by CERN, the
Particle Physics Data Grid (PPDG) [97] and Grid Physics Network (GriPhyN) [69]
in the United States, GridPP in the UK. These projects have common features such
as a hierarchical or tiered model for distributing data, shared facilities for computing
and storage, and human resources dedicated to manage the infrastructure. Some of
them are entering production stage.

BioInformatics The modeling and simulation of biological processes, coupled with
the need for accessing existing databases, has led to the adoption of Data Grid
solutions by bioinformatics researchers worldwide. These projects include federating
existing databases and defining common data formats for information exchange.
Some examples are the Japanese project BioGrid for brain activity analysis and
protein folding simulation, the eDiaMoND project [120] in the UK for breast cancer
treatment, and the BioInformatics Research Network (BIRN) [13] for imaging of
neurological disorders using data from diverse databases.

53

Astronomy The astrophysicists community around the world are linking observa-
tories and infrastructure for accessing the data archives that have been gathered
by telescopes and instruments around the earth. These include the National Vir-
tual Observatory (NVO) in the US, Astrophysical Virtual Observatory in Europe,
and AstroGrid in the UK. The International Virtual Observatory Alliance (IVOA)
[74] is coordinating these efforts around the world to ensure interoperability. These
projects provide uniform access to data repositories, along with access to software li-
braries and tools that might be required to analyze the data. Other services that are
provided include access to high-performance computing facilities and visualization
tools for users. Other astronomy grid projects include those under construction for
the LIGO (Laser Interferometer Gravitational-wave Observatory) and SDSS (Sloan
Digital Sky Survey) projects.

Earth Sciences The disciplines such as geology for earthquake and climate use grid
infrastructures for modeling and simulation in scale. An example is the NESgrid
project [92] which link earthquake researchers that use high performance computing
and sensor equipment. They collaborate together designing and performing experi-
ments. Earth disciplines aim to integrate high-performance computational and data
resources to analyze large datasets produced by climate modeling and simulation.

3.3 Remote Data Transfer

The mechanism of data transport is an essential element in the grids that support
data-intensive applications. In addition to transmission of bits between resources,
the data transport includes other aspects such as access control and data transfer
management.

There are two main types of data transport mechanisms in grids. The former is the
transfer protocol that specifies the process to initiate and control data transfers. It
controls bit movements between two network entities. The most widely-used trans-
port protocol in grids is GridFTP [4]. The second type of transport mechanism
provides application-specific operations such as I/O facilities. The I/O facilities
allow an application to access remote files as if they were locally stored. This mech-
anism presents a transparent interface through an API that hides the complexity of
the network protocols.

3.3.1 GridFTP

GridFTP is an extensible data transfer protocol which extends the standard FTP
protocol to include features required by grid environments. GridFTP benefits from
FTP architecture which is the protocol most commonly used for data transfer in
wide area networks and is widely implemented.

54

The following features of GridFTP are extensions to FTP [4] :

Security Infrastructure GridFTP extends the FTP protocol by supporting GSI
(Grid Security Infrastructure)[63] and Kerberos-based authentication.

Third-party control Allows a user or application at one location to initiate, mon-
itor and control a data transfer operation between two other locations.

Parallel data transfer An extension to the FTP PASV command where in the
server presents a list of ports to connect to, rather than just a single port.
This allows for multiple connections to download the same file or for receiving
multiple files in parallel.

Striped data transfer Striped data transfers are realized through a new transfer
mode called the extended block mode. The sender notifies the receiver of the
number of data streams by using the End of Data (eod) and End of Data
Count (eodc) codes. The (eodc) code represents how many (eod) codes should
be received to consider a transfer finished. The sender provide additional
information to ensure that the receiver obtains the data correctly.

Partial file transfer The extended retrieve (eret) command supports partial file
transfer. Thus GridFTP enables transfers of arbitrary subsets or portions of
a file.

Automatic negotiation buffer sizes The set buffer (sbuf) and auto-negotiate
buffer (abuf) extensions allow the resizing of TCP buffers. This extension
permits negotiation the sizes of the TCP buffers and congestion windows to
improve the transfer performance.

Restartable data transfer GridFTP also supports restart for stream mode trans-
fers which is not provided in the format of the FTP protocol. GridFTP sends
restart markers indicating a byte range that has been successfully written. In
case of a failure, transmission is resumed from the point indicated by the last
restart marker received by the sender.

The Globus Toolkit [54] provides a public implementation for the GridFTP server;
this implementation supports most of features except the striped data transfer and
automatic buffer size negotiation. It provides libraries and an API for clients to
connect to GridFTP server. A client command-line tool implemented with these
libraries is also supplied with globus distribution. The Reliable Transfer Service
(RFT) [61] is grid service interface distributed with Globus Toolkit that manages
file transfers and using GridFTP.

Data movement requires consumption of important network and storage capabil-
ities. GridFTP and I/O mechanisms provide essential functions for remote data
access, however specific system is necessary to coordinate collective data movement
using resources in an efficient and cost-effective way. Collaborative caching requires

55

global supervision of grid data movement to support high-level data management
services. Supervising of GridFTP and I/O mechanisms must permit to establish
data movement activity in the grid.

3.4 Storage Management

3.4.1 SRM

The Storage Resource Manager (SRM) from Lawrence Berkeley Laboratory is a con-
trol interface specification defined as web services [108] [114]. SRM aims to provide
a common way to interact with all storage resources. The SRM has been designed to
be the universal interface (through a standard protocol) for the management of stor-
age devices such as disks and tape storage systems. Diverse kinds of storage device
will eventually offer an SRM interface that will hide the complexity of the mech-
anisms behind it. SRM does not store data itself but acts as interface to massive
storage systems.

SRM implements storage resource virtualization for data management in grids. SRM
assigns default space quotas, allocates space for files, invokes the external file transfer
services to move files into the storage space, marks the files for a certain lifetime, and
uses file replacement policies to optimize the use of the shared space. SRM performs
automatic garbage collection of unused files by removing selected files whose lifetime
has expired when the space is needed. SRM could be managing a disk cache (Disk
Resource Manager - DRM), or managing a tape archiving system (Tape Resource
Manager - TRM), or a combination of both called a Hierarchical Resource Manager
(HRM).

The Disk Resource Manager (DRM) manages dynamically a single shared disk cache
(total disk space that is managed with cache policies). This disk cache can be a
single disk or a collection of disks. The disk cache is available to the client through
the operating system that provides the usual file system capabilities to create and
remove directories and files, and to open, read, write, and close files. However, the
space is not pre-allocated to clients. In contrast, the amount of space allocated
to each client is managed dynamically by the DRM. The function of a DRM is to
manage the disk cache using some client resource management policy that can be
set by the administrator of the disk cache. The policy may restrict the number of
simultaneous requests by each client.

A Tape Resource Manager (TRM) is a middleware component that interfaces to
systems that manage robotic tapes. Such systems usually have a disk cache that is
used to stage files temporarily before transferring them to clients. The function of
TRM is to process requests for file transfers, queue such requests in case the system
is busy. A Hierarchical Storage Manager (HRM) is a combination of a DRM and a

56

TRM. Because a robotic tape systems are mechanical in nature, they have a latency
of mounting a tape and seeking to the location of a file. Pre-staging can help mask
this latency. It can use the disk cache for pre-staging files for clients, and for sharing
those files between clients.

SRM is a storage management protocol which does not implement file access or file
transfer capabilities. For these operations the applications must access or transfer
directly the file using other facilities or services.

Some laboratories have implemented the SRM specifications as components that
facilitate grid access to different mass storage systems (MSS). The Fermi National
Accelerator Laboratory (Fermilab) developed an implementation of SRM as part of
the Enstore MSS [52]. The Lawrence Berkeley National Laboratory (LBNL), built
an SRM as an independent component in front of HPSS [70]. The CERN developed
a prototype of SRM for the CASTOR system [26].

3.4.2 SRB

The Storage Resource Broker (SRB) [12] [103] is a middleware that provides a uni-
form access to heterogeneous storage resources including filesystems, archival storage
systems and database systems. SRB aims to provide a unified view of the data stored
in disparate storage devices by providing the capability to organize them into virtual
collections independent of their physical location and organization. SRB enables the
creation of shared collections through management of consistent state information,
latency and load management, logical resource usage, and multiple access interfaces.

Filesystems and databases are managed as physical storage resources (PSR) which
are then organized as logical storage resources (LSR). Data entities are organized
within a hierarchy of collections and sub-collections. Data entities within collections
have associated metadata which describe system attributes such as access infor-
mation and size, and descriptive attributes which register information considered
important by the users. The metadata is stored within a catalog (MCAT) which
also includes attributes of the collections and the PSR. Attribute-based access to
the data items is available by searching catalog.

The SRB middleware consists of the SRB Master daemon and the SRB Agent pro-
cesses associated with each Master. The SRB Agent uses the metadata catalog
service to obtain the essential system metadata required for processing client stor-
age request. A federation of SRB servers can be created interconnecting the masters.
In that configuration, a server acts as a client to another server. A client request is
handed over to the appropriate server depending on the location determined by the
MCAT service.

SRB supports transparency for data access and transfer describing the data inde-

57

pendently of the underlying storage system. The collection takes care of updating
and managing consistency of the data along with other state information such as
timestamps and audit trails. Consistency is managed with synchronization mecha-
nisms that lock data against access and propagate updates throughout the system
until global consistency is achieved.

SRB implements a UNIX-like file I/O interface that supports get and put operations
on storage objects. SRB middleware provides a mapping from defined storage inter-
faces to the native interfaces supported by each underlying storage resource. SRB
implements specific-resource drivers by each interface for each resource. SRB I/O
can stage files from a tape or archival storage to disk storage for faster access.

The container concept was designed by SRB to aggregate many small files in the
cache mechanism before storage in the archival storage system. The SRB includes
a caching system designed to handle container I/O. All container writes are done to
the cache copy first. Reading is done only on the cache copy. SRB is one of the most
widely used data management products in various application domains including the
UK eScience (eDiaMoND) [120], BaBar [112], BIRN [13], IVOA [74].

Discussion

SRM and SRB are mechanisms to manage the load on an individual resource stor-
age. They employ cache techniques as an intermediary mechanism for reducing
the access latency to massive storage systems. SRM and SRB do not implement
collective capabilities to provide distributed storage space on-demand; they do not
support collective temporary data federation. Our position is that the federation of
distributed and heterogeneous storage resources for temporary data can be used to
implement mechanisms that provide on-demand storage space.

The SRM principle, a control interface specification to interact with all storage re-
sources, can be used to control and operate a generic cache mechanism for grids.
However, that specification also must support capabilities for federation and coor-
dination of collaborative caching.

SRM and SRB transform physical storage resources into logical storage resources
to build virtual storage systems. This principle can be used to support collabora-
tive caching from individual storage resources. In grid caching this virtualization
must provide monitoring and configuration capabilities to support collective cache
federation.

58

3.5 Databases Access

Initially, grid applications requirements focused on storage, replication and move-
ment of file-based data. These requirements have become more complex in biolog-
ical and astronomical communities which manipulate large amount of data using
databases for storage and retrieval. In the same way, other domains such as medical
research, health-care and engineering also aim to use a grid to access and integrate
multiple and distributed collections of structured data. Similarly, these data need
to be made available and accessible to distributed groups of users and their applica-
tions, which makes these communities good candidates to adopt grid infrastructures.
Few grid infrastructures have been developed in this area, in the next section we
present only the most representative middleware OGSA-DAI.

3.5.1 OGSA-DAI

OGSA-DAI (Open Grid Services Architecture Data Access and Integration) [7] [38]
is a middleware platform that enables databases to be accessed as web services. The
OGSA-DAI implementation has been designed with the aim of allowing external data
resources, such as files, relational databases and XML databases to be incorporated
within the OGSA framework through a standard interface based on grid services
specification. The OGSA-DAI project has as its main goal to provide a uniform
access to data resources, and integrating existing DBMS with OGSA grids.

OGSA-DAI has designed and developed a group of services for integrating database
access and description with the core capabilities of OGSA. This middleware includes
a collection of components for querying, transforming and delivering data in different
ways, and a simple toolkit for developing client applications.

The Grid Data Services (GDS) are OGSA-DAI components that access databases
using drivers and use additional components for data formatting, data delivery and
request handling. Applications can use the core GDS components directly to access
individual data stores or can use a distributed query processor, OGSA-DQP, to
coordinate access to multiple database services.

Standard specifications define the functionalities with independence of the database
paradigm or specific data system being accessed. In contrast with specific connectiv-
ity technologies like JDBC, these standardized interfaces permit database connec-
tivity without consideration of the underlying technology. In this way, it supports
access to multiple relational database systems, XML storage managers and filesys-
tems.

OGSA-DAI services provide metadata about the DBMS. Metadata are used to ex-
pose DBMS capabilities to the grid through the service interfaces. The connection

59

mechanisms employed to connect to the databases are also exposed for clients capa-
ble of interpreting such information. For relational databases, the database schema
may be retrieved from the service; this information is useful for high level services
such as distributed query processing.

The infrastructure design supports a document-oriented interface for database re-
quests, in which a single document may specify a collection of related activities. The
activities are operations that a data service resource can perform, including data re-
source manipulation, data transformation and third party data delivery operations.
In this way it is possible to compose data requests in one message round trip and
compose activities so that redundant data movement is avoided.

The distribution of queries over multiple databases, executed at multiples locations
can concern huge temporary data movement. This implies high access time for
remote queries. Caching can permit the total or partial reutilization of previous
query results.

Cache operation of a distributed database is considerably different from conventional
caching schemes: the support of database caching in grids should be flexible and
generic so it may deal with different capabilities like splitting and merging of client
queries into sub-queries for available datasets in cache, in order to reduce remote
data transfers.

In the case of complex queries, it can be useful to find partial results from the
cache content and the remaining portion of the dataset may be fetched from remote
locations [3]. After the complete execution of all the sub-queries, the requested data
can be obtained by the union of the above multiple datasets.

3.6 Replication

Grids with high data-intensive requirements need to support geographically-distributed
collaboration in which all participants require an access to the datasets produced
within their VO. Duplication or replication can be used as means for improving
performance allowing computing resources to have access to locally cached data.
The duplication of the datasets is therefore a strategy to support the scalability and
reliability of data access and to reduce the network traffic.

Caching and replication are closely related mechanisms: They share some basic
objectives and may differ only in their policies. This makes it hard to establish clear
differences between both mechanisms. However, the main difference is based on the
kind of process that involves creation and maintenance of copies. Thus, caching is
often initiated on consumers demand and it has more autonomy to determine how
long to keep in cache depot. In contrast, replication is often initiated by providers

60

in pre-established form and the copies have a more persistent character.

The Info Dissemination Working Group of OGF [62] proposes the following defini-
tions [91]:

Caching : is where portions of frequently accessed data are copied on demand and
may be kept synchronized with a master. Rules such LRU are often adopted
in caching systems to determine how to keep a piece of data cached.

Replication : is where portions of a body of data (and optionally its metadata)
are copied (and optionally transformed), often in a pre-planned way, and some-
times synchronized with one or more masters over a long period.

Replication is limited by the size of storage available at different sites within the
grid and the bandwidth between these sites. A replica management system therefore
ensures the access to the required data while managing the underlying storage.

Typically, a replica management system consists of the storage resources which are
linked to each other via high-performance data transport mechanisms. The replica
manager directs the creation and control of replicas according to the established
policies and the availability of storage resources. A catalog or a directory keeps the
record of the replicas and their locations. The catalog is queried by applications
and other services to discover available replicas of a particular data entity. Some
implementations merge the manager and the catalog into one service.

Replica management systems generally provide client libraries that allow querying
of the catalog to discover datasets and to request replication of a particular dataset.
Data replication has been studied extensively in the literature of distributed sys-
tems such as distributed filesystems and distributed databases [68] [93] [129]. Most
research has focused on data consistency and fault tolerance.

3.6.1 RLS

The Replica Location Service (RLS) [29] [39] is an architectural framework that al-
lows registration and discovery of replicas. It is provided with the Globus Toolkit
middleware [63]. RLS maps the logical identifier of a data entity to the physical
locations of replicas for the data entity. The RLS consists of two main components:
the Local Replica Catalog (LRC) and the Replica Location Index (RLI). The LRC
maintains consistent information about logical to physical mappings on site or stor-
age resource. The RLI indexes the catalog itself. RLS reliability and load balancing
are obtained by deploying multiple, and sometimes redundant, LRCs in a distributed
index.

61

In RLS, a data entity is represented by a logical file name (LFN) and keeps some
information such as its size, its creation date, and any other metadata that might
help users to identify the data entities that they seek. The physical location is
represented by a unique physical file name (PFN) which is a URL (Uniform Resource
Locator) to the data file on storage. Thus, the LRC provides the PFN corresponding
to a LFN.

A data entity may be replicated across several geographical and administrative do-
mains, and the information about its replicas may be present in different replica
catalogs. A RLI creates an index of the replica catalogs as a group of logical file
names and a reference to replica catalog entries. In this way, it is possible to estab-
lish diverse configurations of replica indexes, for example, a hierarchical, centralized,
or partitioned index configuration.

The RLI information is periodically updated using soft-state messages that sum-
marize the state of items in the LRC. RLS is suitable for replicating data that
are write-once read-many. Data gathered from different sources that needs to be
distributed geographically correspond with this category. Data are accessed in a
read-only manner and, therefore, they do not require strict consistency. RLS is
also an independent replication service that does not manage data transfer or data
replication itself. It provides only an index for the replicated data.

Data Replication Service (DRS) [31] [39] is a grid service based on RLS provided
with the Globus Toolkit. The primary functionality of the component is to ensure
that a specified set of files exist on a storage site. It makes local replicas of data by
transferring files from one or more source locations, and registering the new replicas
in a RLS catalog.

3.6.2 GDMP

The Grid Data Mirroring Package (GDMP) [113] [48] is a replication manager that
provides secure and high-speed data transfer services for replicating large data files
and object databases. GDMP supports point-to-point replication capabilities. It
uses the capabilities of other grid components, such as replica catalogs and GridFTP.

The design of GDMP is based on the publish-subscribe model. In this system, the
server publishes the group of new files that are added to the replica catalog and
the client can request a copy of these after establishing a secure connection to the
server. GDMP uses the GSI authorization mechanism. Initially, the clients register
with the server receiving notifications about new data that is available which is then
requested for replication. Clients have the responsibility for handling failures during
replication. For example, the client should reconnect with the server and request a
re-transfer if the connection fails while replicating a data entity. GMP uses GridFTP
for data transfers.

62

GDMP manages object databases created by HEP experiments. For data replication
it is favorable to handle objects rather than files because a file can contain up to a
billion objects. GDMP was originally designed for the CMS experiment at the LHC
in which the data is generated at one point and has to be replicated geographically
in the world. For this experiment consistency requirements are not strong. The data
is organized as files containing objects where each object corresponds to a collision.

In this context, objects requested by a site are copied to a new file at the source.
This file is then transferred to the receiver, and the database at the remote end is
updated to add the new objects. The file is then removed at the origin. GDMP
supports static replication in which the client site determines the duration and the
volume of replication.

3.6.3 DTM

Data Tree Manager (DTM) [41] is a service for managing data replication in network-
enabled server (NES) environments. DTM seeks to minimize computation times by
decreasing data transfers between the clients and the platform. To avoid multiple
transmissions of the same data from a client to a server, DTM allows to leave data
inside the platform after computation; data will be further used by the client as
reference. A client can choose whether a data will be persistent inside the platform
or not. This property is called the data persistence mode; it permits clients to
establish several modes of persistence for temporary data to be kept in the system.
This enables it to be established if the temporary data can be stored or moved
between locations.

In order to avoid interlacing between data messages and computation messages,
DTM separates data from computation management: it implements a Replica Man-
ager component which sends replication orders to data transfer mechanism. It allows
the choice of the best replica to be transferred when a replication operation occurs.
This choice is based on network forecast information provided by the NWS (Network
Weather Service) [131].

DTM is implemented in the DIET platform a NES multi-agent platform using the
GridRPC paradigm [25] [85]. DTM designers propose to integrate data manage-
ment at the application level to coordinate data transfers between Grid locations or
applications. A data management API for GridRPC platforms is proposed by the
OGF community.

63

3.6.4 Discussion

Collective replication tasks in grids require user intervention for different opera-
tions. Replication mechanisms do not implement specific mechanisms to manage
distributed and temporary data. A strong limitation for exploiting replication capa-
bilities in dynamic environments is the fact that there are no mechanisms providing
on-demand storage space across different grid locations.

Replication mechanisms do not incorporate information about storage services state
or data activity used to support high-level data management. Sophisticated and
flexible mechanisms are required to dynamically support different models of compu-
tation with different data access patterns.

3.7 Caching

Caching in grid environments has been a slightly studied subject. Few works have
been proposed that analyse caching issues in grids. We present some publications
in this area:

Semantic Caching [42] [43] propose a distributed semantic caching system de-
signed to improve query data evaluation in grids. This system seeks to reduce
data transfer and query processing time, by using a semantic caching approach.
Two locality-based cache resolution techniques are mixed: geographic locality-
based resolution for object caches and semantic locality-based resolution for
query caches. These semantic locality assumptions are based on the notion
of community which is used to group users having the same interests in grid
virtual organisations. Like in web caching, this approach is mainly centered
in collaborative cache data resolution.

Cache Data Resolution [76] studies a cache data resolution algorithm based on
the routing paths of the requested URLs. The suggested algorithm categorises
these paths to into a few groups based on the traversing path. It counts the
number of requests per group to discover the groups that are heavily referred
and implement load balancing protocols.

Caching for Grid Based Data Warehouses [40] proposes a cooperative caching
strategy to speed up OLAP queries across an enterprise grid. Authors sug-
gest combining and aggregating cached data for future related OLAP queries.
They propose a cache admittance scheme which uses a decrease and refresh
mechanism for controlling admission to and eviction from the cache, and a
fast, aggregate-aware benefit metric for incoming OLAP view fragments.

Replacement Policies for SRM [45] deals with the problem of cache replace-
ment policies for Storage Resource Managers (SRMs). A SRM manages a disk

64

storage of limited capacity that retains data objects. A replacement policy is
applied to determine which object in the cache needs to be evicted when space
is needed. It uses a utility function based on the solution of the fractional
knapsack problem under the assumption that the cache capacity is sufficiently
large and holds a significantly large number of files. It describes an algorithm
for evaluating this function during cache replacements. It also defines mea-
sure for cache replacement policies that take into account the latency delays
in retrieving, transferring and processing of the files on SRM systems called
“average cost per reference” which is used to establish the minimum utility
function.

These approaches deal with conventional and specific aspects of cache systems such
as replacement policies, data resolution, cache communication, or query caching.
Often these aspects are dealt in an isolated way. They also make a strong assumption
that traditional cache techniques (such as those implemented in web cache systems)
are directly applicable to grids.

3.8 Discussion

In this chapter we discussed representative technologies related with grid caching:
web caching and grid data management mechanisms. Our focus of interest is grids
composed by a collection of different services using the Globus middleware platform.

The management of data in grid environments needs particular capabilities which are
due to the special characteristics of grid applications: they are fundamentally related
with the support sharing access to massive data in distributed storage resources.
Current data management systems provide basic facilities to store and transfer large
datasets. In addition, data management seeks to support capabilities to discover,
publish and control, multiple data copies through of the grid.

The utilization of the Internet as the base infrastructure has influenced the adoption
of web technologies, like web services, for exposing data management capabilities.
The grid community proposes the Open Grid Services Architecture (OGSA) and a
set of specifications to build grid systems based on web services technology.

Data management in grids is possible by composition of differentiated services for
accessing and manipulating data in a distributed environment. Users would integrate
storage services, data transfer mechanisms, services to access databases, a replica
location service, and other mechanisms like metadata catalog service, and the GSI
authentication service or delegation service to manage distributed data. Users also
must implement their own data consistency mechanisms.

Automatic management capabilities, however, are limited and therefore user in-

65

tervention is required for different operations: implementation of temporary data
mechanisms based on dynamic mechanisms that adapt to changes of grid conditions
is not supported. Finally, in these solutions, the consistency mechanisms must be
implemented by end users.

There are several data management mechanisms available for grid environments:
they mostly provide basic capabilities for supporting data intensive applications
that require to store, access, and transfer large amounts of data. More integration
and automatization is necessary, however, to support high levels of collaboration as
required on a grid scale.

The study of the representative technologies related with web caching and grid
data management mechanisms have permitted identification of the operations and
information to be supported by a collaborative cache in grids.

66

Chapter 4

Specification of Collaborative
Caches for Grids

4.1 Overview

In this chapter we describe the main aspects of the specification for Collaborative
Cache Services in grid environments. Our main goal is to support the automatic
operation of large volumes of temporary data in grids based on collaborative caching.
However, grids do not currently provide wide area cache infrastructures comparable
to that of cooperative web caching as described in the Section 3.1.5 and Appendix
B.

We have decided to define a basic infrastructure of collaborative cache for grid en-
vironments [22] [24]. This infrastructure provides the necesary functions to manage
temporary data in grids that are not supported by current data management solu-
tions as was discussed in Section 3.8. We have opted for an approach that specifies
the base components required to build a generic and open collaborative cache system
in grids.

Our approach proposes a form of generic caching that exploits the grid features:
it seeks to enhance the essential interactions between the caches to expand the
capabilities of intercache collaboration. We develop the precept that any cache
must be accessible and monitorable by any user, application or service in the grid.
Therefore, three main elements are specified:

Reference Multilayer Model A collaborative cache system is built from the composi-
tion of four functional layers: storage, control, collaboration and coordination. The
model is described later in Section 4.2.

Cache Operations The collaborative cache capabilities are supported by a set of

67

common or standard operations that implement the proposed model. The opera-
tions are defined in Section 4.3 and Appendix D. The information exchanged by
these operations is denominated cache information. Cache information elements are
defined in Section 4.5 and Appendix C.1.

Grid Cache Service The infrastructure is composed of a group of autonomous cache
elements called Grid Cache Services. A Grid Cache Service is the functional unit of
the system; it implements the model and operations to support collaborative cache
capabilities. The design and implementation of the Grid Cache Service is discussed
in Chapter 5.

The specifications define a generic infrastructure for building collaborative cache
systems in grid environments. These elements permit composition and evaluation
of high level collaborative cache functions in a flexible way. Different forms of or-
ganisation of the groups of Grid Cache Services permit aggregation of capabilities
to operate and monitor temporary and distributed data in grids.

The objective is not implementation of a traditional cache system. The approach
proposes a new service to users and applications to store temporarydata. This
system is transparent. However, clients make explicit requests to this cache service
to store or retrieve data.

This service offers functionalities which are not addressed by existing middlewares,
for example on demand temporary storage. Our goal is to design a generic and
flexible solution, these functionalities are designed as a new service. Existing mid-
dleware components are not affected by this service. However, existing applications
must be slightly modified. In this perspective, this service is part of the programming
environment.

The dynamic character of the grid resources and temporary data impose a require-
ment for continuous monitoring and control of the different actions related with data
access in the distributed system. Thus, the infrastructure is based on the registry,
accessibility and analysis of the information related with activity of the different data
and cache entities: it provides and extends the support of the cache interactions.
The principal aspects of the approach are:

• Provide an infrastructure for the operation of large amounts of temporary data

• Definition and separation of the principal collaborative cache functions

• Operation and control based on a registry, exchange and analysis of data and
cache activity

• Provide and extend the support of diverse cache interactions

• Provide capabilities for monitoring and configuration of cache actions and
interactions

68

• Support the composition and configuration of diverse forms of organisation for
collaboration

• Provide standard interfaces to provide and request cache functions in grid
environments

• Extend the access to cache operations to a wide variety of applications

4.2 Cache Model Layer

In the Section 2.3 we have established the main requirements for grid caching. Cur-
rent cache systems and grid data management solutions do not permit simultane-
ously to satisfy that requirements. We have decided to develop an approch that
specify, define and formalize the functions using a model that representa concep-
tualviewofthesystem, issuesraisedbythese4layersmustbeaddressed indesignandimple-
mentation process.

We present a reference model for the composition and operation of collaborative
caches in grids. This cache model defines and organises the main functions needed
to operate and control a collaborative cache system. Different levels separate the
conceptual functions of the system. This cache model is used as a conceptual ref-
erence to implement the components of a generic collaborative cache system. The
cache model has a vertical definition (see Figure 4.1) through four layers:

• Storage Layer

• Control Layer

• Collaboration Layer

• Coordination Layer

An implementation of this model is discussed in Section 5.3.

4.2.1 Storage Layer

The storage layer represents different storage resources that can be used to imple-
ment a cache system. The model defines a cache as a mechanism that manages
temporary data contained in a storage resource. Thus, the central purpose of the
storage layer is to provide capabilities to store and access the data entities in a
specific storage resource.

69

Coordination

O
pe

ra
tio

ns

Storage

Control

Collaboration

Figure 4.1: Cache Layer Model

In contrast to collaborative cache systems discussed in Section 3.1.5 and Appendix B
the model proposes to build the infrastructure of collaborative caches from available
storage resources. This is essential to provide storage space on-demand.

This layer includes diverse mechanisms used to keep large amounts of temporary
data, such as file systems, disks, archival storage systems, tape storage systems and
other massive storage systems. The storage resource also can include high level
resource data managers like as SRM (Section 3.4.1) or SRB (Section 3.4.2): They
are the underlying resources used by the cache mechanims.

The storage layer consists of the necessary interfaces to data manipulation of large
volumes of temporary data in grid repositories. The I/O facilities of the underlying
storage resources can be invoked to access data content. It uses the interfaces of the
underlying system and exposes them to other layers of the system. This support
is also applied to sophisticated temporary storage mechanisms such as DPSS [118]
making possible a high-level interaction with conventional storage mechanisms like
file systems. This characteristic seeks to make possible the inter-operation of those
isolated mechanisms.

4.2.2 Control Layer

The control layer regulates and registers the actions in the storage layer. It verifies
the activity related with data access in to storage resources. Its principal purpose
is to provide the capacities to configure and monitor the actions of the cache enti-
ties. This makes it possible to modify and regulate the cache functions for adapting
its behaviour for specific purposes. For example, different cache replacement meth-
ods (see Appendix A) can be supported with control information represented in a
standard way.

70

Control layer registries contain information about the control and operation of the
cache entities. This information includes the individual data access actions that
permits to establish dynamic and historic use and evolution of temporary data; we
call this information data activity. Data activity gives a notion of individual data
item importance, and permits an estimation to be made of its use probability for
caching management purposes.

In contrast to collaborative cache approaches discussed in Section 3.1.5 and Ap-
pendix B, the model defines that the information used to control the cache mecha-
nism must be available for collective cache management process. This information
is provided in real-time with system operation.

4.2.3 Collaboration Layer

The collaboration layer defines and supports the interactions between caches. Its
goal is to expose and extend the capabilities of caches for working jointly. Our idea is
that the interactions between caches determine the capabilities that can be provided
by the grid. Therefore, expanding the scope of the cache interactions creates new
possibilities for the management of temporary data.

In contrast with wide area caching discussed in Section 3.1.5 and Appendix B, the
collaboration is often limited to data resolution between caches. In this layer, the
model establishes that any cache is accessible for any user, application or service
in the grid. Therefore, the collaboration layer defines the capacity to provide and
request cache functions.

The collaboration layer extends cache interactions to aspects related to full data
access, monitoring, operation and coordination of caches. This layer exposes cache
capabilities as service oriented operations. Collective cache capabilities are composed
from individual cache operations.

A cache instance translates the access operations requests to invocations of underly-
ing resources. Each grid operation is regulated and registered by the implementation
of the control layer. Similarly, the registered information is exposed through cache
operations to support monitoring of service operation.

4.2.4 Coordination Layer

The coordination layer supports the organisation of interactions between caches. Its
objective is to implement different schemes of cache collaboration. The coordination
is mainly related to the decision process that implies collective operations between
caches to support high-level data management functions.

71

The challenge is to support different schemes or architectures of collaborative caches,
as described in Appendix B.1. This is possible if that cache implements the first three
layers and the system makes decisions based on information about cache activity.
An implementation of cache instance is described later in Section 5.4 and an example
of coordination using that cache instances is presented in Section 6.1.

The model suggests that any collaborative cache system can be built from resources
provided by the storage layer, the activity information provided by the control layer,
and operations defined by collaboration layer. In this thesis we specify and imple-
ment these first layers. These form the basic bricks on which the coordination layer
can be built. The specification and implementation of the coordination layer is
proposed as future work.

4.3 Cache Operations

Cache layer model layersrepresenta conceptualviewofthesystem, issuesraisedbythese-
fourlayersmustbeaddressed whendesigningandimplementingsuchasystem. Cache Op-
erationsarethefunctions offeredbythesystemtouse,monitor,parameterizeit. Mostofthem-
traverseallthelayerslike application messages in network layers. The Chapter 5 pro-
poses an implementationthatfollowsthereferencemodel, it also addresses the ques-
tions of operational usage and implementation. The Chapter 6 illustratestheuseof-
somemonitoringandconfigurationoperations.

The specification defines the essential functional operations supported by collabo-
rative caching. These functional capabilities consider standard actions that a cache
grid component must support. Cache operations define the functions necessary to
support the capabilities proposed by the model presented in the previous section.
The approach proposed in this thesis requires the definition of standard operation
interfaces for the interaction of the different components in the grid environment.

We propose that these operations be available for interaction between caches as
defined by the collaboration layer. A cache instance can invoke operations on other
caches disseminated in the grid for collaboration. Cache instances are implemented
as Web services for building the collaborative cache system. Web services provide a
standard means of interoperating between different applications running on a variety
of platforms. They are used to build a cache service-oriented infrastructure [133].
This infrastructure is constructed via the composition of cache components defined
by service interfaces referred to in this work as Cache Operations. In this respect
each cache exposes its operations to the distributed system as a cache grid service
[21]. An implementation of caches instances is described later in Chapter 5.

Some operations register and exchange information about data and cache activity,
others change the operation or configuration of the cache entities. We classify cache

72

operations into three main types:

• Access operations

• Monitoring operations

• Configuration operations

The next sections make referencestoappendixes C and D whereoperationsaredescribed-
inmoredetails. Some specific cordination items of the operations are not specified
here because is the responsability of the designer of the coordination layer to specify
them. They will be described in more detail in the context of the chapters 5 and 6.

4.3.1 Access operations

Access operations define the Cache Service interfaces to access data in the cache
storage resources. These operations represent storage resource I/O access facilities.
The access operations permit to control and register the actions related with the
manipulation of data managed by the cache instance.

The implementation of access operations following the model described in Section
4.2 aims to achieve that any cache instance is visible and accessible from any user,
application or service in the grid. This approach differs from architectures described
in Appendix B.1 where caches and their resources are used exclusively for one kind
of application.

Cache operations provide uniformity to request these cache access functions. Typi-
cally, access operations translate grid data access requests into I/O facilities of the
underlying storage or transfer mechanisms (see Section 3.4).

Interfaces specify the different parameters for each type of access operation. The
value of these parameters is registered in each operation invocation for monitoring
data and cache activity. That information is registered and available for exchange
using a standard XML Schema described in Section 4.5.

Expanding access for facilitating the collaboration

Access operations are exposed at the level of the collaboration layer. This makes
it possible to invoke access operations of remote cache instances. Thus, clients can
retrieve an object data from any cache in the system. Conversely, a cache can be
asked to store a data object from any other cache, service or application.

Composable capabilities

73

Access operations provide basic capabilities which are available to compose and
support elaborate functions: for example, the mechanisms for data discovery within
the group of caches are composed using access and configuration operations (see
Section 4.4.4). Access operations do not impose any method for the data resolution
which can be implemented by diverse techniques (see Section B.2). In contrast,
these access operations define interfaces to query the cache content catalogue. This
information may be exchanged or used by any means between caches such as P2P,
global catalogue, summary caches, CARP, polling, etc.

Sections 6.2.1 and 6.2.2 describe the utilisation of access operations to compose a
system that operates temporary data in grids.

The access operations definitions are introduced in the Section 4.4.2, they are:

• Get or retrieve data entity (Section 4.4.2)

• Set or publish data entity (Appendix D.1.1)

• Get or request cache content (Appendix D.1.4)

• Set data description or metadata (Appendix D.1.5)

• Get data description or metadata (Appendix D.1.6)

4.3.2 Monitoring Operations

Monitoring operations are interfaces to exchange information about the cache el-
ements and their activity. These permit activity information to be obtainedfrom
distributed cache entities. Information provided by monitoring operations is used
for collaborative cache management (support for decisions) and performance evalu-
ation.

Traditional collaborative cache architectures (Appendix B.1) do not support facilities
for real-time monitoring. Performance evaluation often is done with historical traces
[35]: this is not adequate for dynamic grid environments which are characterised by
a very high dynamism both in terms of available resources and in terms of effective
data access patterns.

We propose that cache mechanisms in the grid must provide information about
its activity in real-time to support collective management processes. The goal of
the monitoring operations is to provide the suitable information for appropriate
decisions. Suitable information implies the pertinent and detailed information con-
cerning cache operation requirements. Appropriate condition implies the availability
with the dynamic and synchronous cache operation.

74

Monitoring operations are defined in Appendix D.2. Monitoring operations provide
information about cache entities and their activity using a standard XML Schema.
The definition of elements that present this information is described in Appendix
4.6.

Further Sections 6.2.1 and 6.2.2 present a scenario of the utilisation of monitoring
operations for implementing of collaborative cache system.

Monitoring operations are constituted by an ensemble of capabilities that capture,
register, and expose information about the state and behaviour of the collaborative
cache system. In the same way as access operations, monitoring operations seek to
establish a minimal uniformity and standardisation for exchange, and to facilitate
the common exploitation of this information.

Requesting cache instances for monitoring information provides measurements to
evaluate the effect of a cooperative cache system. Examples of cache monitoring
information include the state of an individual cache, the verification of tasks and
transfers in progress, the number of requested and performed requests, the number
of accesses to a data entity, the cache hit and miss ratio, disk free space, etc.

Monitoring operations makes possible the periodic or continuous measuring of differ-
ent data and cache actions and resource usage. This provides an ongoing verification
of progress toward the achievement of cooperative cache system goals.

Information provided by monitoring operations can be gathered, grouped and pro-
cessed depending on the granularity needed: For instance, the information can be
given for a group of individual caches, for one specific cache, for a given time interval,
etc.

The monitoring operations definitions are introduced in the section 4.4.3, they are:

• Get processed requests (Section 4.4.3)

• Get cache entity description (Appendix D.2.1)

• Get replacement method (Appendix D.2.2)

• Get storage description (Appendix D.2.3)

• Get cache group (Appendix D.2.4)

• Get transfers (Appendix D.2.6)

• Get data actions (Appendix D.2.7)

• Get data replacements (Appendix D.2.8)

• Get storage capacity (Appendix D.2.9)

75

4.3.3 Configuration operations

Configuration operations define the basic interfaces to set attributes and values for
cache entities. These operations establish the standard conventions that permit to
arrange the cache components and define the basic functions and interactions of
these components. Configuration operations provide the possibility of changing the
functional parameters of a cache instance for a particular purpose. These aspects are
concerned with initialisations, maintaining, adding, and updating the relationships
among components and the status of components themselves during time operation.

The goal of the configuration operations is to provide the basic support to compose
high-level cooperative cache functions. The arrangement of the functional capa-
bilities is addressed to support different schemes and strategies that constitute a
collaborative cache system (see Appendix B.1).

The feature of on-demand configuration of remote caches instances is a difference
with current wide area collaborative cache systems.

Facilities for adaptation

Configuration operations provide the capability to change the state and relationship
of cache components as the user or grid requirements change. They allow to specify
initial or default values for attributes so that cache entities initiate operation in the
desired states, setup the proper parameters values, and form the desired relationships
with other cache entities. Grid administrators can use these operations to define
and modify default attributes and load the predefined set of attributes into cache
components.

While the cooperative cache is in operation, the reconfiguration of a cooperative
cache system is desired for performance evaluation, support of resource upgrade, or
fault recovery. This evaluation can be established using the information provided
by the monitoring operations described in the previous section.

Modify parameter values

The configuration operations include capabilities to operate the specific cache ar-
rangement and allows for the dynamic behaviour of the caches. The configuration
operations set attributes to individual cache entities supported by its implementa-
tion such as replacement method, default time to live, group subscription, etc.

Define and modify relationships

Configuration operations permit to define and modify the relationships between
cache entities. A relationship describes an association, interaction, or condition
that exists between cache instances. They permit the organization and control of

76

interactions between caches: creation and modification of cache groups and schemes,
creation and modification of hierarchies, dissemination of cache contents, methods
of data resolution, etc.

The configuration operations definitions are introduced in Section 4.4.4, they are:

• Set replacement method (section 4.4.4)

• Set cache description (Appendix D.3.1)

• Set cache group (Appendix D.3.3)

• Set storage (Appendix D.3.4)

• Set default time to live (Appendix D.3.5)

• Set cache coordinator (Appendix D.3.6)

• Set collective work mode (Appendix D.3.7)

4.4 Cache Operation Definitions

In this section we present the interface definitions for the cache operations discussed
in Section 4.3. These operations are supported by each cache instance to provide
the functional capabilities for temporary data management based on collaborative
caching.

In the remainder of this chapter we discuss various XML Schema elements for the
defined operation interfaces. To facilitate comprehension, some non relevant details
of element definition have been omitted.

4.4.1 Request and Response Elements

Each operation interface is composed of two elements: the request element and
the response element. In turn, the request element always contains a requestHeader
element that includes the necessary information to register and process the requested
operation. Similarly, the response element always contains a responseHeader element
that includes the information generated by the cache service in response to the
requested operation.

The name notation of request and response elements is composed by the name of
the operation and the word request or response: for example, for the SetData()
operation these elements are SetDataRequest and SetDataResponse respectively.

77

The requestHeader and responseHeader elements are common to all operations: they
are used by the requester entity to supply the information necessary to invoke the
operation. In the service side, the headers are used to register information about
received requests.

The utilisation of a header element like in the conventional communications protocols
permits to support a wide range of the implementations based on different message
passing technologies.

Request Header

The requestHeader element contains the information necessary to register and pro-
cess each operation in the cache system, the parameters include: the operation name,
the type request (client or intecache), and the request number that is a consecutive
number that identifies the request. It is generated by a local software instance; the
cache instance source and destination of the operation; the date time of the invoca-
tion the operation, and the version number to distinguish between versions of the
specification or its software implementation. Figure 4.2 shows the XML Schema
definition of the requestHeader element.

<xsd:element name="requestHeader">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="operation" type="operationsType"/>

<xsd:element name="type_request" type="requestType"/>

<xsd:element name="request_number" type="xsd:integer"/>

<xsd:element name="cache_id_source" type="xsd:string"/>

<xsd:element name="cache_id_destination" type="xsd:string"/>

<xsd:element name="dateTime_request" type="xsd:dateTime"/>

<xsd:element name="version" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure 4.2: XML Schema element definition of requestHeader

Response Header

The response header element contains the necessary information to register and pro-
vide a response to each operation received by the cache system. The parameters in-
clude: the operation name, the type of response (successful, failed or not supported),
the request number that is consecutive number that identify the original request, the
instance source and destination of the operation, the date time of the creation of
the operation response, the number of version to distinguish between versions of the

78

specification or its software implementation and optionally an extended description
of the response in textual form. Figure 4.3 shows the XML Schema definition of the
response header element.

<xsd:element name="responseHeader">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="operation" type="operationsType"/>

<xsd:element name="type_response" type="responseType"/>

<xsd:element name="request_number" type="xsd:integer"/>

<xsd:element name="cache_id_source" type="xsd:string"/>

<xsd:element name="cache_id_destination" type="xsd:string"/>

<xsd:element name="dateTime_response" type="xsd:dateTime"/>

<xsd:element name="version" type="xsd:string"/>

<xsd:element name="description" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure 4.3: XML Schema element definition of responseHeader

4.4.2 Access Operations

GetData() Operation

In this section we show an example of a definition of a cache operation element. For
a complete description of all the elements see the Appendix D.1.

Definition of GetData() Operation

GetData() is used to retrieve from a cache service a Data Entity element (defined
in Section 4.6.1) that corresponds to data object storage in the cache instance. The
GetDataRequest needs as parameter a data name supplied as a unique identifier
(example Logical File Name) with the SetData() operation (see Section D.1.1) or
the id generated internally by the cache service.

In intercache working, the cache service starts the data transfer between cache ser-
vices using a mechanism of data transport (see Section 3.3). The cache service can
execute a mechanism for the collaborative resolution between several caches; this
will be possible if the collaborative mechanism is implemented and configured by
the cache group.

The GetDataResponse returns the data entity element if the data object is present
in the cache system. If it is not present, the type response of the response header is

79

set to failed. Figure 4.4 shows the XML Schema element definition of the GetData()
operation.

<xsd:element name="GetDataRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element name="data_id" type="xsd:string"/>

<xsd:element name="data_name" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="GetDataResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

<xsd:element ref="data" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure 4.4: XML elements definition of the GetData() operation

The rest of the access operations defined in the appendix D.1 are:

• Set or publish data entity (Appendix D.1.1)

• Get or request cache content (Appendix D.1.4)

• Set data description or metadata (Appendix D.1.5)

• Get data description or metadata (Appendix D.1.6)

4.4.3 Monitoring Operations

GetRequestProcessed()

GetRequestProcessed() returns a subset of the total request elements (section C.1.4)
registered by the cache instance. The getRequestProcessedRequest takes as parame-
ters the initial and final date of the time period required.

This operation permits to obtain the detailed information about the request pro-
cessed by the cache service at specific time period. An extension of the operation
can include other parameters such as the type request, the type response, the status,

80

the source or thedestination. The operation implementation can be supported by
queries to a database management system that registers the requests processed by
the system.

The operation returns a getRequestProcessedResponse element with a list of the
request elements. Figure 4.5 shows the XML Schema element definition of the Ge-
tRequestProcessed() operation.

<xsd:element name="getRequestProcessedRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element name="start_date_time" type="xsd:dateTime"/>

<xsd:element name="finish_date_time" type="xsd:dateTime"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getRequestProcessedResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

<xsd:element ref="request" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure 4.5: XML Schema element definition of the GetRequestProcessed() operation

The rest of the monitoring operations defined in Appendix D.2 are:

• Get cache entity description (Appendix D.2.1)

• Get replacement method (Appendix D.2.2)

• Get storage description (Appendix D.2.3)

• Get cache group (Appendix D.2.4)

• Get transfers (Appendix D.2.6)

• Get data actions (Appendix D.2.7)

• Get data replacements (Appendix D.2.8)

• Get storage capacity (Appendix D.2.9)

81

4.4.4 Configuration Operations

SetReplacementMethod()

SetReplacementMethod() actives the replacement method in the cache instance. It
also updates the value in the replacement method element of cache entity information
(Section 4.6.1). The setReplacementMethodRequest element takes as parameters the
name of the new replacement method.

This operation configures dynamically the replacement method applied by a cache
service. It is used to modify the operation and possibly the performance of the
cache service. In the cache implementation different replacement methods can be
supported. The specified method is applied immediately the operation is processed.
Cache instance implements the necessary procedures to update the parameters re-
quired by each configuration.

The operation returns a setReplacementMethodResponse element with response header.
Thus the type response element can have successful values if the method was changed,
or not supported if the cache mechanism does not implement the method required.
Figure 4.6 shows the XML Schema definition element of the SetReplacementMethod()
operation.

<xsd:element name="setReplacementMethodRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element name="replacement_method" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="setReplacementMethodResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure 4.6: XML Schema element definition of the SetReplacementMethod() oper-
ation

The rest of the configuration operations defined in Appendix D.3 are:

• Set cache description (Appendix D.3.1)

82

• Set cache group (Appendix D.3.3)

• Set storage (Appendix D.3.4)

• Set default time to live (Appendix D.3.5)

• Set cache coordinator (Appendix D.3.6)

• Set collective work mode (Appendix D.3.7)

4.5 Cache Information

Fundamental to the operation and control of temporary data in grids with collabo-
rative caching is the ability to gather information about the status and behaviour of
the collective cache system, which is the function of monitoring operations. Thus,
the cache system supports the capability to control and configure collaborative work
between the components.

Cache information update only Such modification does not affect the behaviour
of the cache entity. Example: Updating some cache instance description like
the organisation name that deploys the cache service. The cache entity updates
the appropriate value then returns an acknowledgement.

Cache information update plus resource modification In addition to updat-
ing values of the cache information this modification can affect the state of the
underlying resource. For example, updating the storage capacity parameter
modifies the available cache capacity to be shared in the system.

Cache information update plus action The modification of some parameters
cause the cache instance to initiate certain action. For example, changing
the replacement cache method or time to live, requires to execute a different
algorithm to select the data to be evicted.

We establish three types of information necessary to constitute the infrastructure
for operation and control of temporary data with the collaborative cache system:

Entity information This is the static information that describes the current con-
figuration of the components that constitute the system. For example, the
description of the cache service instance or of the storage resource. This infor-
mation will not change frequently.

Activity information This dynamic information is related with actions or events
in the cache system, such as data access requests, data transfer between caches
or internal cache replacements. This information is called data and cache
activity.

83

Statistics This is information that may be derived from activity information, such
as the average number of access request processed per time unit by a specific
cache instance.

We established a cache information structure for the operation and control of a
collaborative cache system. This structure is constituted by entity information with
static and basic information about data and cache entities and activity information
that comprises information about the state and behaviour of data and cache entities.
On the other hand, the statistical information that is constituted of performance
measures, is calculated using the activity information and is not defined in the cache
information structure. The cache information can be management by systems for
managing structured data such as relational databases.

Cache information is typically generated by the cache instance involved. Thus,
a cache instance maintains its own configuration information. Cache information
is collected and stored by the cache instance that executes the underlying data
actions. This information is exposed directly to cache instance using the standard
caches operation interfaces. Statistical information can be calculated internally for
the cache service instance. It can also be calculated by an external system that
gathers the necessary activity information invoking the operations of the remote
cache instances.

The entity configuration information describes the features and status of the entities
that compose the collaborative cache management. The configuration information
includes a specification of the storage resources under management of cache system.

Cache information is structured in an extensible XML schema where the individual
elements contain values that reflect features, parameters or attributes of the main
cache components (storage resources, data, cache and cache groups). The Section
4.6 describes the definition of cache information elements.

4.6 Cache Information Definitions

The management infrastructure of the temporary data grid based caching defines
in a logical view the different elements that compose a typical collaborative cache
system. These definitions permit the representation of essential element features.
This definitions are established as common or standard representations for all system
components.

This set of definitions have the character of intercache specification for exchange
information related with the description of system elements and entities and their
behaviour.

84

In the remainder of this section we discuss the purpose and definition of the relevant
elements and entities used to build a logical view of the system.

The entity information elements defined are:

• Storage

• Data

• Metadata

• Cache

• Cache Group

The activity information elements defined are:

• Storage Usage

• Data Action

• Data Permission

• Data Transfer

• Request

4.6.1 Entity Information Elements

Storage

A storage entity contains the information related to individual storage resources: it
includes essential features of the underlying mechanisms that supports the resource.
A typical example is a filesystem supported by a set of disks: it contains the total
available storage capacity assigned to be managed by the cache, this permits the
system to establish the potential capacity of the system gathering the information
from all available resources. Additional information is included that permits the
establishment of operational characteristics for operation like the type of technology
and operating system software. Figure 4.7 shows the XML Schema element definition
of the storage entity.

85

<xsd:element name="storage">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="type" type="xsd:string"/>

<xsd:element name="operating_system" type="xsd:string"/>

<xsd:element name="filesystem" type="xsd:string"/>

<xsd:element name="capacity" type="xsd:integer"/>

<xsd:element name="capacity_unit" type="storageUnitsType"/>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:integer"/>

</xsd:complexType>

</xsd:element>

Figure 4.7: XML Schema element definition of storage entity information

Data

Data entity information describes and identifies each individual data object handled
by the cache mechanism. The data entity information is used by the cache instal-
lation to manage individual data objects in the system. It describes the essential
features of the data content. This information is created when data is registered in
the system.

Data entity information includes a name used for identification; the Logical File
Name (LFN) can be used as a unique identifier for each data entity registered in
the cache system. Typically, the virtual organisation or user community defines and
manages the logical name space and assures a unique immutable LFN for each data
entity within that organisation. Internally, the cache instance makes a mapping
between LFN and the internal location represented by a Physical File Names (PFN)
which is the location of data entity on cache storage resource. Cache entities use
the LFN as unique identifier for all operations.

The data id parent registers the other identifier’s data in a hierarchical relation. The
data id group element registers the identifier of the collection structure where data
is included. A data element always includes a reference to metadata elements that
describe its content Section 4.6.1.

The cache system does not deal with the data object structure, it assumes that the
data is materialised as a file and its logical structure is handled by the application.
The elements of data entity are used to register a basic description. Figure 4.8 shows
the XML Schema of the data entity declaration.

86

<xsd:element name="data">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="type" type="xsd:string" minOccurs="0"/>

<xsd:element name="size" type="storageUnitsType" use="required"/>

<xsd:element name="internal_path_location" type="xsd:string" />

<xsd:element name="data_id_parent" type="xsd:integer" minOccurs="0"/>

<xsd:element name="data_id_group" type="xsd:integer" minOccurs="0"/>

<xsd:element name="owner_user" type="xsd:string" minOccurs="0"/>

<xsd:element name="owner_organization" type="xsd:string" minOccurs="0"/>

<xsd:element name="creation_date" type="xsd:dateTime" minOccurs="0"/>

<xsd:element ref="data_metadata" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:integer" />

</xsd:complexType>

</xsd:element>

Figure 4.8: XML Schema element definition of the data entity information

Metadata

The metadata entity is an optional description of the data object content. In the
cache system the metadata is the minimal information about the semantic content
of data entities. This information includes references to external specific, and de-
tailed, metadata or metadata services. A cache instance registers essential metadata
pieces such as key words for general semantic classification purpose. Metadata may
register descriptions about target applications, data provenance, software version,
algorithms, parameters and short annotations. The metadata is exposed by cache
entities as additional support for retrieval operations. Metadata is supplied by the
data provider who publishes or registers the data entity in the cache. In the life
time of a data entity, metadata can be updated following the evolution of the data
entity used. Figure 4.9 shows the XML Schema of the metadata entity declaration.

The element software provenance describes the application that produce the data
content. The software target element indicates the application that can consume the
data content. The description element records a textual description for data content
addressed to users. The annotation element records commentaries added by users.

Cache

The cache entity information is a basic description of the cache instance. This
includes essential configuration values and operational parameters: it represents the
features of each cache instance in the system and is used to identify and build a

87

<xsd:element name="data_metadata">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="key_word_list" type="xsd:string" maxOccurs="unbounded"/>

<xsd:element name="software_provenance" type="xsd:string"/>

<xsd:element name="software_target" type="xsd:string" />

<xsd:element name="external_metadata_id" type="xsd:string" />

<xsd:element name="external_metadata_service" type="xsd:string"/>

<xsd:element name="description" type="xsd:string"/>

<xsd:element name="annotation" type="xsd:string"/>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:integer" />

</xsd:complexType>

</xsd:element>

Figure 4.9: XML Schema element definition of the metadata entity information

logical view of components that compose the collaborative cache system.

Cache entity information comprises the name service that is the reference of the
service instance which is used to invoke the grid cache service. Similarly, it includes
the description information about the organisation and geographical location where
the service is deployed.

Configuration values such as replacement method (LRU, LFU, SIZE , etc); time
to live, the minimal time that a data object must be kept in cache before it can be
evicted; and storage resource to be handled by the cache instance, are also included.
Similarly, it comprises operation parameters such as Cache group, (see Section 4.6.1)
that indicates the group or groups which the cache is member. The identification of
an optional cache coordinator is included to support hierarchical structures. Figure
4.10 shows the XML Schema element definition of the cache entity element.

The organisation element records the name of the corporation or administrative
entity that deploys the cache instance. The organisation unit element registers a
group or department inside a main organisation.

Cache Group

A cache group is entity information that describes a set of caches considered together
as an organisation. This information permits to represent groups of caches working
together or sharing a common feature (cache protocol, membership, administrative
organisation). This entity information is used to describe possible relationships
between cache components: it allows to assign an arbitrary name and type to a group
for description purposes. Figure 4.11 shows the XML Schema element definition of
the cache group entity element.

88

<xsd:element name="cache">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="name_service" type="xsd:string" />

<xsd:element name="organization" type="xsd:string"/>

<xsd:element name="organization_unit" type="xsd:string" minOccurs="0"/>

<xsd:element name="location_city" type="xsd:string" />

<xsd:element name="location_country" type="xsd:string" minOccurs="0"/>

<xsd:element name="replacement_method" type="replacementMethodType" />

<xsd:element name="default_ttl" type="timeUnitsType"/>

<xsd:element name="cache_id_coordinator" type="xsd:string" minOccurs="0"/>

<xsd:element ref="cache_group">

<xsd:element name="work_on_collective_mode" type="xsd:boolean" default="false" />

<xsd:element ref="storage_resource" type= type="storageUnitsType" use="required">

</xsd:sequence>

<xsd:attribute name="id" type="xsd:integer" />

</xsd:complexType>

</xsd:element>

Figure 4.10: XML Schema element definition of cache entity information

<xsd:element name="cache_group">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="members" type="xsd:string" maxOccurs="unbounded"/>

<xsd:element name="type" type="xsd:string" minOccurs="0"/>

<xsd:element name="name" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:integer"/>

</xsd:complexType>

</xsd:element>

Figure 4.11: XML Schema element definition of cache group entity information

The activity information elements are defined in Appendix C.1 are:

• Storage Usage (Appendix C.1.1)

• Data Action (Appendix C.1.2)

• Data Transfer (Appendix C.1.3)

• Request (Appendix C.1.4)

89

4.7 Discussion

This work proposes a collaborative cache system for operation and control of large
volumes of temporary data in grid environments.

While other approaches exist, inspired by distributed filesystems or replication, that
can provide the functionalities required to administrate this task, the design and
implementation of a system based on collaborative caches represents an alternative
to deal with the dynamic character of temporary data in distributed environments
like a grid. The main feature is the automatic and autonomous character of a
cache for data management. Additionally, grid environments are based on sharing
and collaboration of resources; this is the same principle of the collaborative cache
systems.

Extensibility and Scalability

The extensibility and scalability of the infrastructure is based on the ability to add
distributed capabilities by using the individual service-oriented cache operations.
This infrastructure allows a collective cache system to be built that distributes the
work between many autonomous cache services.

This ability is focused on the collaboration for exchanging information about the
data utilisation and information about cache operation. Thus the proposed approach
is composed by a reference model, a common information structure, and a set of
standard operations to implement the infrastructure.

Functional aggregation

The system is composed of four levels to allow a progressive integration of the ele-
ments and aspects of the system. It starts by establishing the state and configuration
of the available storage resources, a control level supervises and registers the actions
realised with data objects in the local installation; the next level implements or-
ganisation mechanisms for working together effectively (collaboration layer); and
the final level builds a logical view of the data and system operation for an efficient
global management.

Service oriented infrastructure

We propose a service-oriented infrastructure to support temporary data requests
from a distributed community. The infrastructure confronts the related aspects of
orchestrating and managing large temporary data with numerous distributed storage
resources. The service-oriented properties that characterises the infrastructure are:

• The cache information is an abstraction that provides a logical view of the
system’s components and behaviour, defined in terms of operations providing

90

cache capabilities.

• Cache operations are defined in terms of the messages exchanged between
cache capability providers and requester components. The internal structure
of components including features such as its implementation technology, pro-
cess structure and database structure are deliberately abstracted away. This
permits incorporation of existing temporary storage mechanisms (legacy sys-
tems).

• The cache service is described by machine-processable metadata; the descrip-
tion exposes the details necessary for use the service (description orientation).
The cache service tends to use a small number of operations with relatively
complex messages. The messages and descriptions are defined in a platform-
neutral and standardised format (XML).

Delegate operation of temporary data

The model defines an infrastructure responsible for the operation of temporary data
based on specialised cache entities that individually applies sophisticated strategies
for determining which data should be kept in a storage resource. At the same time,
these entities supervise and register the access to data and storage resources. They
control individual storage resources on behalf of users and applications; further-
more, those components implement the mechanisms of interaction in order to work
together.

Wide accessibility

Cache reference model and cache operations seek to provide temporary storage ca-
pabilities to a wide range of grid applications, services and users. In each location of
the distributed system, the applications require to execute access operations to ma-
nipulate the temporary data. The differences related with each particular technology
are transparent for clients.

Security

The distribution of data over a grid makes data protection much more difficult than
on closed systems. Data on grids may be stored in different locations but all storage
sites are not accredited to receive data. Achieving a high security level can be
mandatory for particular applications or virtual communities but security is always
a trade off between inconvenience for the users and the desired level of protection.

In order to permit users to use specific security mechanisms, clients must integrate
invocations to protection function and caches access operations. In the grid enviro-
ment many security functions need to be provided such as:

• Reliable authentication of users.

91

• Secure transfer of data from one grid element to another.

• Secure storage of data on a storage resource.

• Access control for resources such as data, storage space or computing power.

• Anonymization of sensible data entities.

• Tamper-proof logging of operations performed on data entities.

• Traceability

The features that should protect data [106] while it is being stored on a grid cache,
are access control and anonymization. Users need to trust the servers on which their
data are going to be processed. Our research team proposes an access control mech-
anism that provides a decentralized permission storage and management system.
It also include an encrypted storage mechanism. All permissions are encoded in
certificates, which are stored by their owners and used when required. Permissions
can be created on demand, by the owners of the resources or by administrators to
whom this responsibility has been delegated, without the need to contact a central
permission storage system [105] [107].

Uniform operations and interfaces

The operations and interfaces necessary to handle temporary data are uniform. The
components that operate temporary data support a standard set of operations and
predefined interfaces. Thus, in each location the requests are interpreted in the same
manner; similarly the information for describing the state and behaviour of the data
and system components is represented in a common form.

Enabling the control of resources

The infrastructure uses resources gathered from multiple locations. Following the
model proposed, each location permits the use of its resources for partners in an
automatic way. The infrastructure permits sharing these capabilities in the grid
environment and permits to operate of the collaborative system for temporary data
management.

Coordination for effective operation

The use of distributed resources and components is organised for efficient global
utilisation. This requires that components implement mechanisms that organise
collaborative actions to get a global effect on the system function. In this way
coherent actions regulate the work distribution between components.

Performance Monitoring

92

The proposed infrastructure provides the ability to measure the performance of data
operations and cache efficacy. In this context, it defines and provides the appropriate
information to describe performance. This information is detailed and provided in
an opportune way so it permits to take the decisions for operating the system in the
most effictive way.

93

Chapter 5

Grid Cache Service (GCS)

In this chapter we describe the design and implementation of the base component
for collaborative grid caches, the Grid Cache Service (GCS) that implements the
model and specifications proposed in the last chapter.

We first present an overview of the GCS. Section 5.2 presents the design principles
of the GCS, then the relation of the GCS design following the reference model
described in Section 4.2, Section 5.4 describes the implementation of a prototype of
the GCS, then section 5.5 presents the use of the GCS capabilities, then we present
some performance tests on the GCS prototype. The chapter finishes with a general
discussion.

5.1 Overview

As our main goal is to operate temporary data in grid environments in a dynamic
way, we decided to use a group of caches distributed in the grid that collectively
provide storage capabilities for temporary data [24]. Figure 5.1 illustrates a scenario
for the utilisation of a group of GCSs to operate temporary data in grid environments
in a dynamic way. A client invokes a GCS to store temporary data, if the GCS does
not have available storage resources it can invoke the access operations of remote
caches to store the data across multiple grid locations.

In this scenario each cache is a Grid Cache Service (GCS) which individually man-
ages the local storage resources to provide the temporary storage capabilities of the
system. In this chapter we describe the individual component of the system: the
Grid Cache Service. The collective operation of the group is analysed in Chapter 6.

The Grid Cache Service is the active element that supports the infrastructure. It
implements the storage, control and collaboration layers of the reference model (Sec-

94

Data

Data

Data

Data

Cache

Service

Data and storage

Administrative domain

Cache

Service

Data and storage

Administrative domain

Cache

Service

Data and storage

Administrative domain

Cache

Service

Data and storage

Administrative domain

Store temporary
data set in grid

Store data (part 1)
on remote cache (A) Store data (part 2)

on remote cache (B)

Store data (part 3)
on remote cache (C)

User

Figure 5.1: GCS cache extensibility

tion 4.2). The design of the system implementing the coordination layer is presented
in Chapter 6.

We have implemented a prototype of the Grid Cache Service (GCS) which is used as
a demonstration of the grid caching approach developed in Chapter 4. The prototype
provides support for the specified operations and cache information.

The Grid Cache Service Concept

The Grid Cache Service (GCS) is a local administrator of temporary storage and
data which is implemented as a grid service that provides basic cache capabilities
following the reference model described in Section 4.2. Therefore, GCS implements
interfaces and associated behaviour of the cache operations: access, monitoring and
configuration (see Section 4.3) for the operation of temporary data.

The GCS Functions

The main function of the GCS is to ensure that a specified data entity exists in a
storage resource for a limited period of time and to register detailed information
about the data and cache actions.

In this context, the GCS offers these main functions:

95

• management of underlying storage resources for temporary data based on cache
techniques.

• provides temporary storage space on demand to store data entities (files)
through defined access operations.

• provides detailed and real-time information about data and cache activity
through defined information representation and operations.

• provides basic cache capabilities to monitoring actions of the data entities
stored in the storage resource.

• supports collaborative cache operations to a wide range of clients (including
other caches).

5.2 Design Principles

In order to satisfy the requirements for operation of temporary data in grids we use
the infrastructure proposed in Chapter 4. In this framework we have elaborated
a set the design principles to implement the Grid Cache Service; these principles
establish the main features of the implementation.

The design principles define a GCS as the basic unit of the system. These principles
guide the development of our grid caching approach. They support the logical sepa-
ration of the functions proposed by the reference model and implement the defined
operations and information structures. Our purpose is to allow the composition of
GCSs that working together to access and manger temporary data in grid environ-
ments.

5.2.1 Cache Virtualization

The virtualization is an abstract view of the behaviour of the data in a cache mech-
anism. This abstraction is supplied by cache operations plus cache information
implemented by a cache service. The information and operations permit to get a
description of the data and cache state and activity.

The cache virtualization consists of providing essential cache capabilities to other
entities and caches. Clients delegate the operation of temporary data storing to
GCS: to support this function, GCS also provides a detailed description of the data
and cache activity.

The goal of the virtualization is to allow the integration of the resources and mech-
anisms that are not originally used for caching; this characteristic is essential to

96

aggregate resources dynamically. Virtualization seeks common functionality to ac-
cess and share storage cache resources.

5.2.2 Autonomy

Autonomy establishes that a cache is a distinct and independent component in
a distributed system. This principle changes the traditional notion of cache as an
hidden mechanism: a cache is traditionally integrated into an application or solution
as a internal component, for instance a cache in a database systems.

Since the cache is independent, external in fact, of the applications or particular
solutions, it is distinguishable from other components of the system; this implies
that the function of the cache mechanism is separated and recognised as specific in
relationship with the rest of the components. Caches are also autonomous because
they control their behaviour and resources (data and storage).

A cache service instance shares its resources via defined cache operations. The
virtual organisation that deploys a Grid Cache Service establishes the shared degree
of the cache resources and deploys the mechanisms to support them.

Finally, an individual cache instance does not depend on the cache group for its
operation, and similarly operation of the cache group must not be compromised by
the behaviour of an individual cache. An implication of this principle is that the
basic cache functions of each individual cache instance are not affected when the
cache works isolated or in a collective way.

5.2.3 Accessibility

The principle of accessibility establishes that the cache data content, resources and
information are accessible and shareable for a wide variety of client applications,
rather than a particular application or solution. Accessibility implies the visibility
and awareness of the specific function of the cache mechanism which can be used
for multiple applications or system components. This principle seeks to increase the
re-utilisation level of the data and resources managed by the cache system.

Figure 5.2 illustrates the accessibility principle. The cache content and information
description that describes its activity are available for a wide range of clients in order
to increase the level of re-utilisation.

This principle implies the exposition and availability of the information that de-
scribes the configuration and activity of the data and the cache. The access to this
information in a standardized way permits to build a detailed view of the behaviour

97

Aplication A

Retrieve data for analysis

Aplication B

Store partial processing data

Sensor

Expose captured data

User

Cache

Service

Share data with multiple clients

Storage resources

Figure 5.2: Cache accessibility

of the system. This same information permits to implement higher-level temporary
data management mechanisms.

The principle of accessibility establishes that the cache operations are exposed by
standard interfaces to a wide range of clients (applications, human users, devices,
other grid services, and so forth). Similarly, the same interfaces are used for interac-
tion with other caches. This last notion seeks to facilitate the collaboration between
caches.

5.2.4 Uniformity

The principle of uniformity establishes that the cache capabilities are provided in a
similar way in all the distributed systems. This implies a minimum standardisation
of the cache operations and information supported by each GCS.

The principle of uniformity seeks to enable multiple caches to work together using the
individual cache capabilities. The goal is to permit the interaction between caches
invoking reciprocal and similar operations through groups of caches. Uniformity
permits the aggregation of the cache capabilities provided by the virtualization of
distributed and diverse resources.

While virtualization in principle provides abstraction of the individual operations

98

and control of a cache service instance, the principle of uniformity makes possible
the collective operation of multiple GCSs that provides the same abstraction of data
and storage resources.

Uniformity includes support for standard information about underlying resources;
this information is exchangeable by any elements of the collaborative cache system.

With the notion of uniformity, diverse clients have a single perception of the cache.
This seeks to provide ubiquitous accessibility and interaction to a wide range of grid
applications, services and users.

5.2.5 Extensibility

This principle establishes that collaboration between caches is extensible to all pos-
sible cache operations. This includes the access, monitoring and configuration oper-
ations. Extended cache operations support the composition of complex capabilities
from basic cache operations. This seeks new possibilities for exploiting the real
potential of collaborative caching.

In contrast to collaborative web cache systems, the interactions between GCS must
include all types of operations between caches. Extensibility thus permits a cache
to invoke any operation of another cache service. For example, a cache can put
or get data any other cache. In contrast, in other wide area distributed systems
like the web, the interaction between caches of different domains is limited to data
resolution.

This principle seeks to agree with the grid requirements for allowing a wide variety
of higher-level programming abstractions and models more than enforcing a partic-
ular approach. So, for example, a grid application can use a group of cache services
as a data disseminator while other can use the same infrastructure to implement a
particular form of replication. The extensibility principle seeks to expand the inter-
operation possibilities using the grid environment capabilities and opportunities.

The extensibility circumscribes monitoring and configuration operations. In this
way, interaction processes can establish the state of the available resources to im-
plement composed operations: For example, the interaction between several caches
requires first to establish the state of available resources on remote cache services.
Thus, before invoking a put operation of the remote service, the monitoring opera-
tions of remote caches can be invoked to know the resource capacity and availability.

99

5.3 Cache Model and GCS

In order to accomplish the goal of providing dynamically temporary storage, we pro-
pose to administrate the storage resources as cache mechanisms. As administrator
of local data and storage resource the CGS is designed following the reference cache
model described in Section 4.2. In this section we present how the GCS manages
the temporary data based on the reference model.

5.3.1 Storage layer

The GCS is deployed for the management of the content of a local storage resource.
The storage resource denotes component(s) like disk file systems or archival storage
systems that store the data entities.

The I/O facilities of the underlying storage resources are used by the GCS to support
the access operations. The GCS uses the interfaces of the underlying system and
exposes them as access operations defined in Section 4.4.2. The implementation of
the GCS translates the SetData() and GetData() operations to access API of the
particular storage resource.

Our GCS prototype uses the Unix file system partition as a storage resource, and
translates the access operations requests to local I/O system calls of the operating
system. The GCS maintains information about configuration and characteristics
of specific resources: It exposes the resource description using the cache entities
information (see Appendix 4.6.1).

5.3.2 Control layer

The key function of the GCS is to register the access actions realised with data
entities held in the underlying storage resources. The main functions realized by the
control layer are:

• execute the cache replacement policies applied to data entities held in the
storage resources

• register information about data entity actions

• check the time to live established for data entities

• register data access requests and data access transfers using the defined cache
information

100

• manage and expose the cache information

The GCS registers individual cache and data activity using data actions elements
(see Appendix C.1.2). This information is managed with a database system using
MySQL DBMS. A mapping of the XMLSchema of the data information model (see
Appendix 4.6.1) is, in fact, stored in the DBMS.

Monitoring operations are internally translated to queries to the database that regis-
ters data activity information of the GCS. This makes it possible to establish during
cache service working the data and cache activity information in an on-line way.

5.3.3 Collaboration layer

To support the collaboration capabilities in a system composed by a group of caches,
the GCS is implemented as a grid service that provides cache capabilities to a wide
range of clients including mainly other GCSs. These capabilities are supported by
cache operations defined in Section 4.3.

WSDL [32] is used to describe and expose the cache operations in the grid. The
cache service is built and deployed using software components and predefined services
provided for the Globus Toolkit middleware version 4.1 [54]: it uses Delegation [63]
for authorisation and GridFTP [4] to transfer data between cache locations.

The operations are implemented following a protocol based on exchange of XML
request-response messages. Each operation is invoked using a request element that
contains the parameters of the invocation and a response is given using a response
element as defined in Appendix D.

The GCS implementation translates the access operation requests to invocations to
the underlying resources. Each grid operation is regulated and registered by the
implementation of the control layer. Similarly, registered informations are exposed
through cache operations to support monitoring processes of the service operation.

For example, the operation SetData() processes request messages to store a data
entity in the GCS; the request contains a description of the data entity defined by
the cache information schema described in Appendix 4.6. The operation provides a
response message approving or disapproving the request. If the request is approved
the data transfer is started using GridFTP.

101

5.3.4 Coordination layer

The GCS prototype does not implement the coordination layer but it provides the
essential information and capabilities to its implementation. The coordination layer
can be implemented by an external and specialised module or service, e.g. Chapter
6 describes a system that organizes the collective work of the group of GCSs.

The high level coordination layer is implemented thanks to cache operations sup-
ported by each GCS. Organisation and coordination consists in the composition of
collective capabilities arranged from basic operations provided by each GCS. Mon-
itoring operations permit to observe and evaluate the individual operation of each
cache and configuration operations allow changing the operational parameters.

5.4 GCS Prototype Implementation

In this section we describe some details of the GCS prototype implementation. It is
used as a demonstration or “proof of concept” of the approach developed in Chapter
4. The main function of the GCS prototype is to process cache operations in the
storage resource location. For example, the GCS prototype mainly supports process
cache information about the data and cache instance activity.

This thesis aims to specify, design and implement a software component, the GCS.
GCS is the basic collaborative brick that one can use to build temporary data man-
agement systems. The goal of prototype is not actually to implement an effective
operational GCS system but to check that it is functional, that operations are func-
tional.

Similarly, in this prototype we do not pretend to implement an optimal caching
system. Therefore, as proof of concept, no extensive study of the GCS configuration
and operational parameters is done and are very basic. These interesting issues are
pointed as future work.

5.4.1 Grid Platform

We developed the prototype for the Globus Toolkit 4 [63] platform. Globus Toolkit
is a suite of tools to develop and deploy grid systems and applications.

The Globus Toolkit supports the standard Open Grid Services Architecture (OGSA)
[55] to build grid systems. OGSA defines a standard open architecture for grid-
based applications. OGSA supports service oriented distributed computing with
web services. The Web Services Resource Framework (WSRF) [5] is a specification

102

cache
information
elements

invoke
remote
cache

collective
process
operation

invoke cache
operation

invoke cache
operation

MANAGER

CACHE

Client

Service Interface

Cache
Remote

Service

Resource Interface

Storage
Resource

operation operation
request response

Catalog

Data & Cache

Register
Activity

Collaboration

Client

(inter−cache)

Extension

Figure 5.3: GCS Prototype Architecture

to develop service-oriented applications with Web Services. OGSA/WSRF have
been standardized by the Open Grid Forum OGF [62].

The use of grid services requires Web Service Description Language (WSDL) [32]
which is an XML based language used to describe the interfaces of Web services in
a standardised way, and a protocol to exchange Web service requests and responses.
The most frequently used protocol for Web service communication is SOAP [132],
which is a protocol that enables to exchange XML has been encoded messages using
the HTTP communication protocol. The prototype was developed in Java program-
ming language to be executed as Globus WS java container.

5.4.2 Prototype Architecture

The GCS prototype implementation is composed by five main modules. Figure 5.3
shows the general architecture of the prototype.

The Client invokes the cache operation of the Service Interface sending the XML
OperationRequest element as parameter, an example using the SetDataRequest ele-

103

ments is presented later in Section 5.5.1. The request is enclosed in a SOAP message.

The Service Interface receives the cache operations invocations. This module is
implemented as a grid service using the tools and libraries provided by Globus
Toolkit. A file WSDL describes as portTypes the cache operations introduced in
Section 4.3, using as parameters the operation definitions of Appendix D.

The Service Interface is deployed into the Globus WS Java Core container. The
container takes responsibility for many of the underlying logistic issues related to
communication, messaging, logging, and security [63].

The Cache Manager module processes the cache operations using cache information
elements as data structures. This module is mainly supported by the class called
CacheImpl. This class implements the cache replacement mechanisms and a method
for each cache operation. An example of the execution of SetData operation is
presented later in Section 5.5.1.

The Cache Manager implements three basic replacement methods LRU, LFU and
SIZE. It uses activity information registered in activity information elements (see
Appendix C.1) and entity information elements (see Appendix 4.6.1) to support
the replacement method functions. Section 5.4.4 describes the replacement method
implementation. The Cache Manager invokes the Java I/O system as resource in-
terface to handle files in the local filesystem. The Cache Manager invokes the data
and cache activity register module to query and update cache information about the
executed actions.

The Data and Cache Activity Register module manages the data and cache activity
catalogue; it uses activity information elements (see Section C.1) to administes ac-
tivity information. These elements are mapped to tables handled by the database
system.

The Collaboration Extension represents extension modules that execute collabora-
tion procedures (implemented by operations and specific to collaboration require-
ments). Currently, the prototype implements simple extensions for the GetData and
SetData operations that transfer the original request operation to remote caches.

These extensions select the remote GCS in a round robin way; at is, a remote GCS
are selected in the order that found in the element “members” of the Cache Group
entity information element defined in Appendix 4.6.1. GCS holds an instance of this
element for this purpose which is configurable with the SetCacheGroup() operation
(see Appendix D.3.3). Later, in Section 6.2, an application scenario is described
where the GCS uses a specific extension module: It invokes a special service for
coordinating of collective operations between caches.

The Collaboration Extension modules uses an instance of the GCS client imple-
mented with GCS API (described below) to invoke cache operations from other

104

GCSs.

Instance Configuration

To permit a flexible deployment in the globus container, the GCS is configured
through the SetCache() configuration operation (see Appendix D.3.1) using a Cache
entity information element as defined in Appendix 4.6.1. This operation sets the key
operational parameters like the replacement method, the default time-to-live and
complementary information like the owner organisation and geographical location.

5.4.3 GCS API

A Java API is provided to use the GCS prototype implementation. The API is
composed of two groups or packages of classes:

Cache Information package Called package gridcaching.generated.ci, this pack-
age is composed of classes for Cache Information Element definitions (Section
4.5 and Appendix 4.6) and Cache Operations element definitions (Section 4.3
and Appendix D).

This package consists of the classes that handle the element definitions as
Java objects. A Java-to-XML binding is used to convert from Java objects to
XML documents; it enables the programmer to deal with the data defined in
the cache XML elements through an object model which represents that data.
The XML Schema that defines the operations and information cache is used to
generate automatically the equivalent Java classes; the Castor library is used
for this purpose [50].

Cache Implementation package Called gridcaching.services.lcs.impl, this pack-
ageis composed of classes that implement the cache “business logic” mainly
handling by the information represented in classes of the Cache Information
package. The Cache implementation package is composed of the classes that
implement the operational modules of the prototype architecture described
above (see Section 5.4.2).

Section 5.5.1 presents an example of utilisation of the GCS API for an appli-
cation client. Figure 5.4 shows the UML class diagram of the GCS prototype
generated from the source code.

105

Figure 5.4: UML diagram of GCS prototype classes

106

5.4.4 Replacement Method Implementation

In this section we present the implementation of the replacement methods available
in the GCS. The prototype uses the data activity information registered by the
GCS. The GCS prototype implements three basic replacement methods: LRU, LFU
and Size. The replacement methods (see Appendix A.1) are algorithms that select
the data to be removed from the cache; the replacement method usually requires
particular input information, which is related with the activity of the data. This
information is fundamental for methods and policies based on recency and frequency
strategies.

Cache operation demands, for example, the request operation for adding a new
data entity into cache, activate the execution of the replacement methods. The
GCS implementation queries the internal database that registers the DataAction
elements with individual information about the access events related with the data
entities stored in the cache.

To apply the LRU replacement method, the GCS submits a query that selects the
data entity with the DataAction entry with the eldest DateTime field. For the LFU
method implementation, the GCS submits a query that selects the data entity with
the least number of DataActions registered. The Size method is supported by a
query to data entities entries that selects the data entity with the largest size value.

5.4.5 Cache Activity Registry

The GCS continuously registers the events related with access to cache content.
These events can be originated by requested operations or internal cache manage-
ment. This information constitutes the data and cache activity and is handled with
a database management system. GCS implementation uses the DataActions, Re-
quest and Transfer Data elements, defined in (section C.1), to register data and
cache activity information. The API supports the data binding between Java ob-
jects, XML documents and relational tables for cache information persistence; the
Castor library is used for this purpose. The cache elements are mapped to a mySQL
database instance deployed in the same GCS installation.

5.5 Using GCS Operations

In this section we describe the utilisation of a representative cache operation. We
present this operation as a typical example; the utilisation of other operations im-
plemented by the GCS is similar. Therefore, our example shows the utilisation of
the SetData() access operation that clients use to publish or put data into the GCS.

107

The invocation of this operation causes the execution of the replacement method
and the registering of cache information which is described here.

5.5.1 Publishing Data with GCS

GCS clients create an explicit request to store data entities. This request is processed
by the GCS as a petition for obtaining available temporary storage space. We call
this capability publishing as it permits to expose and share data for a limited period
of time between clients that use the GCS. This capability is mainly supported by
the SetData() (see Section D.1.1) access operation.

To use the publishing capacity the clients create a SetDataRequest element that
contains all the parameters of the SetData operation to be invoked. The requested
element can be created by the client directly in XML or using the API provided to
manipulate it as a Java object.

Figure 5.5 shows an example of the request header of the SetData operation; the
fields contain information to be used by the client API to invoke the GCS opera-
tion, the request number permits to identify each individual operation request. The
cache destination contains the reference of the Grid Cache Service instance. The
version field is used to distinguish between future versions of the service. The re-
quest element also contains the data entity element to be published and an optional
metadata element discussed below.

<SET_DATA_REQUEST>

<REQUEST_HEADER>

<OPERATION> set_data </OPERATION>

<TYPE_REQUEST> client </TYPE_REQUEST>

<REQUEST_NUMBER> 454799 </REQUEST_NUMBER>

<CACHE_ID_SOURCE></CACHE_ID_SOURCE>

<CACHE_ID_DESTINATION>

http://liris-7080.insa-lyon.fr:8080/wsrf/services/gridcaching/LCS

</CACHE_ID_DESTINATION>

<DATETIME_REQUEST>

2007-07-26T16:00:00

</DATETIME_REQUEST>

<VERSION>0.1</VERSION>

</REQUEST_HEADER>

</SET_DATA_REQUEST>

Figure 5.5: An example of the request header of SetData operation

Figure 5.6 shows an example of a data entity to register with the SetData operation
in which the fields contain information that describe the data entity: the id permits
to identify individual data; the name field contains a Logical File Name (LFN) used

108

as unique identifier of the data entity, the LFN is defined by the virtual community
that deploys the GCS ; and the parent id permits to register it as derived from other
and the group id permits to register it as part of the group. These elements are used
to register hierarchical and collection relations. The share type element indicates if
the data entity can be accessed by other GCSs.

<DATA ID="78784">

<NAME>

research_experiment_2359674_file

</NAME>

<TYPE> FILE </TYPE>

<SIZE UNITS="MEGABYTES"> 256 </SIZE>

<INTERNAL_PATH_LOCATION>

/disk7/experiencies/data

</INTERNAL_PATH_LOCATION>

<DATA_ID_PARENT> 1258 </DATA_ID_PARENT>

<DATA_ID_GROUP> 789 </DATA_ID_GROUP>

<OWNER_USER>

Peter Morgan

</OWNER_USER>

<OWNER_ORGANIZATION> Liris </OWNER_ORGANIZATION>

<SHARE_TYPE> permited </SHARE_TYPE>

<CREATION_DATE>

2007-02-26T16:00:00

</CREATION_DATE>

</DATA>

Figure 5.6: An example of a data entity element for SetData operation

An example of the optional metadata is shown in Figure 5.7 in which the fields
contain descriptive information about the data entity: the id permits to identify
each individual metadata element; the key word list contains items that describe
the data entity content; the software provenance contains the software product that
produces the data entity; the target software field contains the application that
is expected to process or use the data entity; the field external metadata service
contains the reference to service that manages metadata; and the field identifier
for metadata external permits register an external identifier to this metadata. The
description field used is textual and complementary information about other aspects
of the data content. The annotation fields permit to add descriptions related with
the utilisation of the data entity.

Figure 5.8 shows a simple example of the invocation of the SetData operation using
the provided API. Each entity and activity information elements (see Appendix 4.6)
is represented by a class that permits manipulating the element attributes. In the
example, the SetDataRequest class is mapped into an XML element (marshalling)
before operation invocation.

XML is used extensively with Web services as a standard, flexible, and extensible

109

<DATA_METADATA ID="79896">

<KEY_WORD_LIST>

astrophysics star2569 optical gama phenomenon

</KEY_WORD_LIST>

<SOFTWARE_PROVENANCE>

optical telescope version 4.2.5

</SOFTWARE_PROVENANCE>

<SOFTWARE_TARGET>

optical analyser 2.6

</SOFTWARE_TARGET>

<EXTERNAL_METADATA_ID> 785269 </EXTERNAL_METADATA_ID>

<EXTERNAL_METADATA_SERVICE>

metacatalog service

</EXTERNAL_METADATA_SERVICE>

<DESCRIPTION>

raw data captured by telescope 125 on 2007-02-26t15:00:00

</DESCRIPTION>

<ANNOTATION>

complet phenomenon exposition

</ANNOTATION>

</DATA_METADATA>

Figure 5.7: An example of a metadata element included in SetData operation

data format.

Service Provider Side

The GCS receives the request as a XML element. The GCS maps the XML element
into an instance of SetDataRequest class (unmarshalling) for manipulating the op-
eration parameters. This includes the recursive mapping of the Data and Metadata
elements into the respective objects. The GCS then accomplishes its functions ma-
nipulating objects which represent the different cache elements defined.

The GCS checks the size of the data entity that the client requests to store in the
cache. It establishes if there is sufficient space in the resource storage to place the
new data, if not it executes the replacement mechanism to obtain available space.
In this form it definitively establishes if it can store the data request by the client.
It registers the operation request, the replacements and data actions that were done
using the respective cache information elements defined for this purpose (section
4.6). Finally, the GCS builds a response to the client using the SetDataResponse
element that is returned to client.

Figure 5.9 presents an example of the response element returned by the invocation
of the SetData operation of the GCS. In the Java code example (Figure 5.8) the

110

CacheClient cacheClient = new CacheClient();

Request_header request_header = new Request_header();

String lcs="http://liris-7080.insa-lyon.fr:8080/wsrf/services/gridcaching/LCS";

request_header.setCache_id_destination(lcs);

//...

Data data = new Data();

data.setName("research_experiment_2359674_file");

// ...

// Create the operation request

Set_data_request set_data_request = new Set_data_request();

set_data_request.setRequest_header(request_header);

set_data_request.setData(data);

// Marshall request operation to XML element

set_data_request.marshal(stringRequest);

// Invoke Grid Cache Service operation

stringResponse = cacheClient.Set_data(stringRequest);

// Unmarshal operation reponse from received XML element

Set_data_response set_data_response = new Set_data_response();

set_data_response = Set_data_response.unmarshal(new StringReader(stringResponse));

// Check the response

if(set_data_response.getResponse_header().getType_response()==ResponseType.SUCCESSFUL)

System.out.println("Data entity registered in Grid Cache Service");

Figure 5.8: An example of the Java client side code to invoke a GCS operation

SetDataResponse class is used by the client to get a response from the GCS. The
field type response contains the answer of the GCS to the requested operation:
it examines the field type response to determine if the operation was processed
with success. In some situations, the complementary actions related with operation
processing are done, in this case the transfer using GridFTP. If the GCS can not
process the requested operation, the type response field contains the value failed and
additional textual information can be included in the field description.

5.6 Grid Cache Service Performance

We present some wide area performance measurements for our Grid Cache Service
prototype (GCS). This experiment does not pretend to evaluate an optimal caching
system; it just presents a wide area experiment that seeks to prove that the GCS is
functional and that seeks to establish the system management overhead. Nothing
more. Therefore, as proof of concept, no extensive study of the configuration and
operational parameters (e.g. number of sites, bandwidth, etc.) is done. These

111

<SET_DATA_RESPONSE>

<RESPONSE_HEADER>

<OPERATION> set_data </OPERATION>

<TYPE_RESPONSE> successful </TYPE_RESPONSE>

<REQUEST_NUMBER> 454799 </REQUEST_NUMBER>

<CACHE_ID_SOURCE>

http://liris-7080.insa-lyon.fr:8080/wsrf/services/gridcaching/LCS

</CACHE_ID_SOURCE>

<CACHE_ID_DESTINATION> </CACHE_ID_DESTINATION>

<DATETIME_RESPONSE>

2007-07-27T16:08:58.541+02:00

</DATETIME_RESPONSE>

<VERSION > 0.1 </VERSION>

<DESCRIPTION></DESCRIPTION>

</RESPONSE_HEADER>

</SET_DATA_RESPONSE>

Figure 5.9: An example of a SetDataResponse of SetData operation

interesting issues are pointed as future work.

The tests include three the sites that compose the GGM project [94] [86]. The local
site, which invokes cache operations, is located in Lyon. Remote sites run a GT4
container and deploy the Grid Cache Service as well as a GridFTP server; they
are located at the Toulouse and Lille French cities. We performed 1000 operations
initiated from the local site. For each operation, a simple GCS client is created
which invokes the cache operation request and gets the response from the remote
cache service. The GCS processes individually each requested operation. For each
access operation (publish or retrieve data entity) a GridFTP connection is created,
then the data transfer is initiated between the sites.

For all operations, we report the average time taken for each cache operation which
is composed of request and response phases. This is called the Request response
operation component. The Request response is the time elapsed between sending an
operation request and receiving the response from the GCS. For access operations,
we report two additional measurements separately. The Create GridFTP time is the
time required to create the GridFTP connection associated with the operation, and
the Transfer time is the actual time taken by GridFTP to transfer the data entity
required by the operation.

We ran these access operations 1000 times using files of 10 Megabytes and obtained
the average time performance shown in Table 5.1. One can see from this table that
the internal time spent by the cache procedure is very small, and corresponds roughly
to 1% of the total elapsed time. We exhibit also the time to inititate the GridFTP
transfer, which counts for 4% of the time. Altogether, the corresponding data rate
during the transfer portion of the request is approximately 4.72 Megabits/sec.

112

Publish data operation
Component Operation Time(ms) Standard Deviation
Request response 171.9 178.6
Create GridFTP 740.0 317.3
Transfer 16927.1 583.1

Retrieve data operation
Component Operation Time(ms) Standard Deviation
Request response 203.2 285.8
Create GridFTP 714.2 268.0
Transfer 16952.1 549.7

Table 5.1: Performance for GCS access operations
Grid cache service performance for access operations of 1000 files of size 10 MB

There is a difference between the average times of publishing and retrieval operations.
As expected, the time to request the data is higher than the time to publish the
data: Indeed the GCS prototype makes a sequential search of data entries on the
cache internal catalogue as part of retrieve data operation. The table also shows the
standard deviation for each measured value. The variances in operations are due to
variations in the wide area traffic between the three cities.

Next, we performed some representative monitoring and management operations:
the operations for getting cache content, used storage resource, and replacement
cache method. Additionally, we also checked the operations for setting the replace-
ment cache method and for a complete configuration of the cache.

The operation requests cache content gets the entire cache content description i.e.
the data entity information defined by our XML Schema for each data in cache. In
this case it provides a list of data entities pre-stablished to 100 entries with a size of
53015 bytes. The operation get storage resource calculates the total storage usage
by each time checking the size of data entities registered in grid cache service. The
operation get cache replacement operation retrieves this cache information element
from the current cache service configuration.

The set replacement operation changes only one cache configuration element. The
set cache configuration operation changes several elements together such as default
time to live, the replacement method, the group subscription, the description of the
organisation that deploys the service, etc. We ran these monitoring and management
operations 1000 times and obtained the average times shown in Table 5.2.

We first note that the request cache content operation (that retrieves 100 data entity
items) is relatively efficient in comparison with request-response operation of the
retrieve data operation, showed in Table 5.1. The reason is that the cache service
prototype keeps the catalogue image in memory for improving cache processing.

113

Operation Time(ms) Standard Deviation
Request cache content 355.5 142.9
Get storage resource used 127.7 110.7
Get replacement method 84.7 9.0
Set replacement method 112.2 55.1
Set cache configuration 223.0 397.9

Table 5.2: Performance for GCS monitor and management operations
GCS performance for some monitor and management operations

The results also show that the time required for cache management is marginal in
comparison to data transfers. These tests provide insights into the performance of
typical and individual GCS operations. They are the fundamental support for the
temporary data in operation grids with a group of GCS working together.

5.7 Discussion

Since our main goal is the operation of temporary data in grid, our solution is based
on the utilisation of a group the caches which collectively provide the temporary
storage capacities required by the grid environments. However, this functionally is
built from individual capacities supported by each cache that composes the system.

The design of the GCS responds to characteristics of the grid environments where
the resources are shared and distributed. Our solution, thus, proposes to gather
temporary storage from capabilities within a group of GCSs that administrate indi-
vidual storage resources. This approach requires considerable effort to operate and
organise the GCS working together.

The design principles adapt the different requirements and constraints related with
the operation of the temporary data in grids. The most important implication is
related with the notion of the cache as a distinct and independent component in a
distributed system.

The GCS proposes the notion of the cache as a shared and accessible component.
This changes the traditional perception of the cache as a hidden mechanism fre-
quently integrated into application implementation or as an internal component of
specific solutions (cache in database systems for example). The clients in different
levels must be aware of the cache function and must frequently request to interact
with it in an explicit way.

The decision to use WSRF specification and Globus middleware was done to obtain
interoperability with a wide range of grid services and applications. However, we

114

do not use the WSRF Resource Properties to expose the cache information. Since
the WSRF Resource Properties permit to clients to get multiple resource properties,
query resource properties, and subscribe to resource properties.

However, the large amount of cache information is constantly produced. It mainly
corresponds to data activity information that includes detailed actions registry of
each data entity in the GCS. This characteristic is not suitable to use WSRF Re-
source Properties to expose the cache information.

The GCS makes a high level abstraction of the access operations. The GCS registers
individual actions to the data entity (file) as a whole, however, the cache access
operations do not correspond to typical read and write OS filesystem operations.
The granularity of these access actions depend on the client implementation which
can retrieve a data entity (file) and make many read and write actions to the same
data entity. The GCS abstraction registers the “macro” operation similar to the put
and get operations to the complete data entity. In this sense, the GCS requires an
explicit requirement to put or get a data entity to or from the data storage resource
administered by the GCS.

The placement of GCS on grid

The GCS design principles admit a flexible placement of the service in the grid. In
general terms, it is possible to deploy a GCS with each storage resource installation
to be shared in the grid. However, the proximity to data consumer is frequently
the most important criteria used. The proximity to data consumer permits to save
network resources and transmission time. The temporary storage resources in the
specific location can be administrated by the GCS instance.

A common choice is to use the GCS as a proxy cache for an organisational site, its
function is similar to early Internet gateways, where clients inside of the organisation
site invoke the local instance of the GCS, and the GCS invokes the services of remote
GCS deployed in the virtual organisation by grid partners.

The integration of heterogeneous storage resources

The virtualization of the cache mechanism permits the GCS to incorporate hetero-
geneous storage resources. This implies that the implementation must invoke the
proprietary interfaces of the distinct storage solutions. The GCS prototype imple-
mentation wraps underlying filesystem I/O functions but other implementations are
possible. In this sense, different systems can be operated by several GCS instances
that hide proprietary technologies.

Cache content replacement

The GCS prototype supports three basic replacement methods. The data activity
information available in each GCS instance provides information to support other

115

methods or alternative policies based on data and cache activity. The design the
GCS allows the composition of these capabilities in external modules or classes to be
loaded by the GCS instance, this is possible because all cache information is exposed
in a standard way and the cache operations allows to manipulate the internal data
entities.

GCS locally executes different tasks related with the management of the local re-
sources. These tasks constitute essential functions that support the operation of the
storage resources for temporary data in grids.

Monitoring

The fundamental feature of the GCS is the capacity of monitoring its operation in
realtime. Since this feature is related with the capacity of supervising and observing
the detailed data and cache activity, monitoring makes possible measurements to
evaluate the operation the system. Monitoring is based on the similar conception
for gathering information of each individual instances to build a global view the
system.

Configuration

The GCS supports the configuration of its essential parameters to make possible the
modification of the operation. The standard configuration support allows to estab-
lish common parameters for a minimal of operational coherency between different
GCS instances working together. The configuration support is orientated to deal
with particular or specific requirements based on relationships among GCS and the
status of its instances themselves during operation.

116

Chapter 6

Temporal Storage Space (TSS)

6.1 Overview

We present the general design of the Temporal Storage Space (TSS) [23], a data
management system that operates on temporary data in automatic form. TSSs
design seeks to provide insight into the mechanisms of the coordination layer intro-
duced in section 4.2.4. Similarly, it aspires to give a notion of the collaborative cache
capabilities to be exploited with GCS.

We first present an overview of the TSS components. Section 6.2 presents examples
of composition capabilities for disseminating, collecting, copy proliferation and con-
trol of temporary data using GCSs in grids. Similarly, the conception of prospec-
tive capabilities for monitoring and configuring the system are explored. Section
6.3 describes an experiment which simulates the TSS capability to provide storage
space on-demand. TSS tries to give clients the perception that they have an unlim-
ited capacity for storing temporary data. The clients delegate the temporary data
distribution and operation to the TSS. The experiment is motivated by the Data
Dissemination use case introduced in Section 2.1.1.

The goal of this chapter is not actually to implement an effective operational TSS
system but to check that the GCS service is functional, that all operations (API) are
functional and that coordination procedures can be implemented that offer interest-
ing opportunities, in other words, this chapter proposes only a functional validation
of the service and a “proof of concept” of the coordination layer. That is the reason
why many parameters are fixed and some choices are not discussed.

This thesis aims to specify, design and implement a software component, the GCS.
GCS is the basic collaborative brick that can be used to build temporary data man-
agement systems. There is no optimal management system. For instance, depending
on the grid infrastructure, depending on the target applications, it can be beneficial

117

to collaborate in a peer to peer way or using a centralized coordinator mechanism
or using multiple coordinator mechanisms. The appendix B present a description
of caching archirectures. However it is not the topic of the thesis to study in depth
these issues. As it is stated in the Chapter 4, this thesis does not address the
cooperative layer.

The function of the TSS is to store a specified set of temporary data (files) at
distributed locations where GCSs are deployed. It finds enough temporary storage
in each location to hold large data-sets and then each GCS automatically frees
unused storage following the cache techniques.

The functions of the TSS include: space discovery, identifying where there is avail-
able storage to place the specified data on the grid; transfer data, move data between
remote storage resource efficiently; register and update content description informa-
tion; and exchange information about the data activity state so that other sites
may discover available data content and get information about the access activity
associated with this data. Throughout cache operations, the service exposes state
information about each data entity (file), including which access actions on the file
have been realised.

Aspects that guided the fundamental TSS design decisions included:

• Design of a composable system based on Grid Cache Services (GCS);

• Operation based on reusable lower-level grid services;

• Use of cache operations, data and cache activity information to operate the
system.

• Use of a flexible coordinator module to organise specific interaction between
caches.

• Utilisation of the OGSA architecture and the [53] Web Services Resource
Framework WSRF [55] for interoperability.

• Use of the Globus Toolkit 4.1 as middleware platform.

Following the OGSA/WSRF specifications, the general structure of the TSS consists
of a group of GCS instances each one exposed as a grid service deployed in a Globus
container. The container takes responsibility for many of the underlying logistic
issues related to communication, messaging, logging and security. The cache services
capabilities are exposed with the service interface for grid users and applications [55].

In the TSS, a coordinator module organises the interactions between GCSs to process
the requests addressed to a set or subset of caches. It monitors the state and
behaviour of the cache group. In the context of the TSS we call the individual cache

118

Data

TSS
Data

Data

Data

Cache

Service

Data and storage

Administrative domain

Cache

Service

Data and storage

Administrative domain

Store temporary
data set in grid

Store data (part 3)
on remote cache (C)

Cache

Service

Data and storage

Administrative domain

Cache

Service

Data and storage

Administrative domain

Store data (part 2)
on remote cache (B)

Store data (part 1)
on remote cache (A)

User

Figure 6.1: Temporal Storage Space (TSS)

service instance a Local Cache Service (LCS). Each LCS exposes cache information
defined in Section 4.5. This information is accessible through standard grid interfaces
to operations defined in Section 4.3.

To use TSS capabilities, clients invoke cache operations to access cache data con-
tent, get monitoring information about data and cache activity, and set values and
parameters that configure the basic function of the cache installation. To perform
access cache operations, the TSS depends on GridFTP (a non-web service) and two
other WSRF services: RFT and Delegation [63].

The TSS is composed of a group of Local Cache Services (LCS) (described in Section
6.1.1) which are deployed at multiple organisation domains, and one Collective Cache
Service (CCS) (described in Section 6.1.2). The LCSs work together to provide the
base support of the TSS. Figure 6.1 illustrates the TSS components deployed in a
grid.

6.1.1 Local Cache Service (LCS)

A Local Cache Service (LCS) is a Grid Cache Service instance deployed inside each
location of the virtual organisation. A LCS provides cache functions to internal ap-

119

plication and user clients of the organisation. Working in collective mode it extends
the cache capabilities with the support of the other grid cache services that compose
the TSS.

Internally the LCS, like a gateway, serves operations submitted by organisational
clients and externally serves operations required by other LCSs. LCSs translate
internal data access operations into intercache operations invoking similar operations
from the LCS deployed on other organisations of the virtual community.

Clients use these capabilities to share and reuse the data and storage resources
inside the organisation. Simultaneously, the LCS offers cache functions to the LCSs
deployed in organisations of the same virtual community.

In the collective mode, an LCS interacts with the CCS to process TSS operations
in coordination with other LCS. These interactions support the TSS capabilities
described later in Section 6.2.

6.1.2 Collective Cache Service (CCS)

The Collective Cache Service (CCS) is a service that allows LCSs to coordinate
their interactions. The CCS accepts the same cache operations interfaces defined
in Section 4.3 but the treatment is different. The invocations CCS interfaces are
translated into one-to-one interactions including two or more LCS. A CCS is a special
service for a group of GCS. It accepts access operations from LCS and monitoring
and configuration operations from users or grid resources administrators.

The CCS executes a specialised module called the coordinator which implements the
specific procedures related with collective decisions; the coordinator invokes classes
implemented by users that are specific to application requirements. The coordinator
makes its work invoking cache operations from multiple LCSs to arrange interactions.
The coordinator implements the logic that embodies rules to achieve the collective
cache actions based on the cache operations utilisation.

Typically, a coordinator invokes the cache operations of the LCSs to evaluate their
state and arranges intercache data access operations. The coordinator also can
implement the procedure for establishing the available storage resource in the system.
It invokes the monitoring operations of the LCSs to gather information about the
current state and availability of the caches and resources.

The coordinator uses specific algorithms to evaluate the cache information gathered
from the TSS. For example, a global data placement algorithm may apply multiple
criteria or metrics or combining of them. The input values of these algorithms are
obtained with monitoring operations retrieving cache information from LCSs.

120

6.2 TSS capabilities

This section describes how the LCS and CCS support the main capabilities sup-
ported by the Temporal Storage Space (TSS). These capabilities are:

• Data Dissemination (Section 6.2.1)

• Data Collector (Section 6.2.2)

• Copy Proliferation Control (Section 6.2.3)

• Monitoring (Section 6.2.4)

• Configuration (Section 6.2.5).

The capabilities described in this section make reference to the grid implementation
using GT4 middleware [63].

TSS does not pretend to implement an optimal caching system; it just presents a
example that proves that the GCS is functional, nothing more. Therefore, as proof of
concept, no extensive study of the configuration and operational parameters such as
number of caches, coordinators, bandwidth, etc. is done and collaboration schemes
are very basic. These very interesting issues are pointed as future work in the
Chapter 7.

In the particular scenario proposed by TSS, the coordinator is typically a high level
cache instance in a collaborative hierarchical organisation (see Section B.1.1). The
role of this coordinator is the responsability of the designer of the coordination layer
to specify it. This chapter details examples of coordinator for each TSS capability
proposed; however, coordinators can be used for many other tasks like as access
patterns analysis, data replication, data migration, data indexing, etc.

6.2.1 TSS Data Dissemination

TSS data dissemination capability permits clients to store data in several grid lo-
cations. It places the data entities in automatic and dynamic form. It provides
the notion of a virtual storage space available for the grid virtual community. TSS
processes clients requests to store data in remote grid locations.

Figure 6.2 illustrates a TSS deployment with LCS. A local site disseminates data
to several remote sites. The GT4 Delegation [63] service is used by TSS with the
services or libraries that need the delegated credentials, for example GridFTP [4].

121

LCS

storage
data &

LCS

LCS

storage
data &

storage
data &

Delegation
Service

GridFTP

RFT

GridFTP

RFT

Delegation
Service

Delegation
Service

GridFTP

RFT

CCS

2

3
5

5

6

8

1

4

12
11

10

11

9

7

Coordinator

Local Site

Remote Sites

Client

Figure 6.2: TSS Data Dissemination

The design tries to provide a flexible infrastructure to deploy different coordinator
modules.

A coordinator invokes LCS cache operations to evaluate their state and arranges
intercache data access operations. The TSS deploys a coordinator for data dissemi-
nation between LCSs. The coordinator disseminator implements the procedure for
establishing the available storage resources in the system 1. It invokes the moni-
toring operations of the LCSs to gather information about the current state and
availability of the caches and resources. Then, it executes an algorithm that dis-
tributes the data (files) between LCS. Finally, it invokes the access operations of
selected LCSs to execute the data transfers between locations.

The coordinator disseminator uses algorithm not discussed in this thesis, to evaluate
which location will be selected to place a specific data entity; it can, for example,
select locations according to available space, requests processed (workload), done
replacements, etc. The placement algorithms can apply multiple criteria or metrics
or combine them. Some of the input values of these algorithms are obtained with
monitoring operations by retrieving cache information from LCS.

Placement algorithms permit to adjust the performance of the TSS following, for

1We assume that LCS regularly executes the replacement method mechanism to free unused
storage space

122

example, the efficient use of resources or workload. A discussion about sophisticated
placement algorithms is beyond the scope of this thesis. We use a simple mechanism
for placement determination which selects the location with more space available.
Cache storage capacity refers to the level of availability of the individual LCS storage
resources: it is obtained invoking the GetStorageCapacity() operation (see Appendix
D.2.9) from each LCS.

Data Dissemination Execution

Preliminarily the client prepares the SetDataRequest (see Appendix D.1.1) (1), con-
taining an explicit description of the requested operation in terms of the data entities
(files) to store, identified by their logical file names, the optional metadata to reg-
ister in the LCS: it uses entity information elements (see Appendix 4.6) to describe
the data entity and optional metadata.

The client invokes the SetData() operation interface of the LCS (2) and passes the
SetDataRequest to place the specified data entities into collaborative cache storage
space managed by the TSS.

The LCS executes its placement policy to establish if it can store data locally or if
it must use any external storage (3). If the data must be stored externally, the LCS
sends a intercache SetDataRequest to CCS asking for collective placement operation
(4). The CCS gathers cache information about the current storage capacity from the
group of LCSs. Then, it invokes the GetStorageCapacity() operation from each LCS
in the TSS (5). CCS establishes the current storage capacity of each one LCS in the
TSS. It executes the selector class (implemented by user and specific to applications
requirements) to select the LCS where to put the data. The selector class also
assigns subsets of data entities between the selected LCS. The list of selected LCS
is returned to original LCS inside of the SetDataResponse element of the SetData()
operation.

For this purpose, the CCS creates a SetDataRequest for each LCS where subsets of
data entities will be placed. Then CCS invokes the SetData() operation interface of
each LCS selected and passes the SetDataRequest asking to store a subset of data
entities (6) 2.

The transfer process is started between LCS locations by using the RFT service
based on the third-party GridFTP control (see Section 3.3.1). An RFT resource is
created (7) to operate the transfer: the RFT resource retrieves the credential for
the cache service (8). The RFT starts the transfer, which invokes GridFTP servers
to perform the data transfer at a low level (9). The LCS source checks periodically
the status of each data transfer request to ensure that each file was transferred

2We assume that GCS implementation supports third-party caches operations e.i. the CCS
could initiate operations between two caches

123

successfully (10).

Once the transfer process is finished, each LCS updates its internal catalogue with
the cache information related with the operation to make the information visible
throughout the Grid (11). Finally, the LCS delivers SetDataResponse to client (12).

6.2.2 TSS Data Collector

TSS data collector capability permits clients to seek and acquire data dispersed in
the grid. TSS provides the notion of an uniform virtual storage space constituted
with distributed LCSs.

The TSS processes clients requests to collect data from multiple sources. This capa-
bility gathers data content stored in distributed resources that are managed locally
by LCSs; they provide detailed information about data description and data activity.
This information is analysed to select the desired data sources.

The CCS uses a collective catalogue with information about the content of the LCS
group; this catalogue is used to resolve collection data. The coordinator executes
queries to the catalogue to find the LCS that contains the requested data. Cata-
logue entries correspond to a data entity identifier and where the LCS is held. The
coordinator maintains a weak consistency catalogue with cache information reports
from LCSs.

Figure 6.3 illustrates a scheme of deployment of the Data Collector capacity with
LCSs and CCS. The LCS at a local site collects data from one or more remote sites.
Similarly to the disseminator function, the TSS uses the GT4 Delegation service with
the services that need the delegated credentials and RFT is used for data transfers.

This capability requires that CCS holds a collective catalogue with description of
data content of LCSs in the system. The collective catalogue is maintained using
regular LCS content reports. LCS must periodically send to CCS information about
its cache data content.

Data Collector Execution

We describe the case where the data requested by a client is not stored in the LCS
that receives the request. A collaborative resolution process, therefore, is executed
with the CCS support.

Preliminarily, the client prepares the GetDataRequest (see Appendix 4.4.2) (1) con-
taining a description of the operation request in terms of the data entities (files) to

124

LCS

LCS

LCS

storage
data &

storage
data &

Delegation
Service

GridFTP

RFT

GridFTP

RFT

Delegation
Service

Delegation
Service

GridFTP

RFT

CCS

1

2

3

4

storage
data &

Catalog

5

6

9

11

7

10

12

13

14
14

8

Client

Coordinator

Local Site

Remote Sites

Figure 6.3: TSS Data Collector

retrieve, each identified by their logical file names that corresponds to an specific
data entity (see Appendix 4.6.1).

The client invokes the GetData() operation interface of the LCS (2) and passes the
GetDataRequest to retrieve the specified data entities from the virtual storage space
managed by the TSS.

The LCS queries its local internal catalogue to establish if the data entity request
is held locally (3) 3 and, if the data is not local, the LCS sends an intercache
GetDataRequest to CCS asking for collective resolution operation (4).

The CCS executes the coordinator that queries its collective catalogue to establish
the data location (5) 4. If the data is held, multiple remote LCSs execute the selector
class (implemented by the user and specific to application requirements) to select
where the LCS gets the data (6).

The CCS creates a GetDataRequest for each LCS where data entities will be re-
trieved. The CCS then invokes the GetData() operation interface of each LCS

3if the data is located in LCS the operation is finished and the LCS delivers data to the client
(14).

4Before the execution of this capability we assume that the CCS previously has built the col-
lective catalogue with LCS content reports.

125

selected and passes the GetDataRequest asking to retrieve specific data entities (7).

The transfer process is started between LCS locations by using the RFT service:
A RFT resource is created (8) to operate the transfer. The RFT resource retrieves
the credential for the cache service (9). The RFT starts the transfer which invokes
GridFTP servers perform the data transfer in low level (10). The LCS source checks
periodically the status of each data transfer request to ensure that each file was
transferred successfully (11).

Once the transfer process is finished, each LCS updates its internal catalogue with
the cache information related with the operation to make the information accessible
to the grid (12). Finally, the LCS delivers data to the client (13).

LCS content updates The collective catalogue is maintained using regular LCS data
contents reports. Each LCS periodically builds a data content report then it sends
to CCS (14). Information in CCS catalogue must be periodically refreshed by sub-
sequent reports. This catalogue also is used to support Copy Profileration Control
capability in next section.

6.2.3 TSS Copy Proliferation Control

TSS data proliferation control capability enables the number of data copies that exist
in the system to be established. The capacity exploits the data and cache activity
information exposed by each LCS. The goal is to gather to be know information
that permits the state and activity of all the different locations and for each one the
state of the individual data entities managed by the cache system.

This operational information supports strategies and mechanisms for controlling
storage resource utilisation. In this case the reduction of redundant copies based on
the individual utilisation analysis. This procedure tries to make effective use of the
available storage resources.

TSS implements a special coordinator for copy proliferation. This coordinator is
deployed by grid resource administrator for simple and automatic control of copies
in the system. The coordinator is regularly executed for this task.

The CCS maintains a collective catalogue with data content description of a subset of
the LCSs like was described in Section 6.2.2. The coordinator queries the collective
catalogue 5 to discover that data entities have several copies. It builds a list of
the data entities duplicated in the LCS where they are stored. It then collects
data activity information (see Section 4.5) for each copy detected. CCS applies an
algorithm (implemented by the user) that classifies the copies in relationship with

5previously built and updated with LCS content reports as described for the Data Collector
capability in section 6.2.2.

126

LCS

LCS

storage
data &

storage
data &

Delegation
Service

GridFTP

RFT

GridFTP

RFT

Delegation
Service

Delegation
Service

GridFTP

RFT

CCS

storage
data &

Catalog

1

LCS

3 3

2

4

3

5

Coordinator

Remote Sites

Local Site

Figure 6.4: TSS Copy Proliferation Control

the individual activity of the data entity and the activity of the LCS. Finally, it
selects the copies with smaller activity in the LCS to be eliminated from the system.

Figure 6.4 illustrates the implementation of the copy proliferation control capability
using the globus environment. The CCS gathers data activity information from a
subset of LCSs to analyse redundant copies. The CCS uses monitoring and config-
uration operations to support this function.

Copy Proliferation Execution

The CCS queries its collective catalogue to establish the data entities with multiple
copies (1). The CCS builds a list of the data entities duplicated and where they are
stored in the LCS and prepares a GetDataActionsRequest (see Appendix D.2.5) for
each copy selected (2). Then, the CCS invokes the GetDataActions() monitoring
operation of each LCS selected and passes the GetDataActionsRequest asking for
actions realised by the the cache service and filtering the specified data entity (3).
Next, the CCS executes the classification class (implemented for this function) to
classify the copies in relationship with the individual activity of the data entity and
the activity of the LCS(4). The CCS creates a RemoveDataRequest for each LCS
where data entities will be removed. Then CCS invokes the RemoveData() operation

127

interface of each selected LCS and passes the RemoveDataRequest asking to remove
the specified data entities (5).

6.2.4 TSS Monitoring

TSS monitoring capability permits the operational state of the group of caches of the
TSS system to be established. This capacity exploits the cache activity information
exposed by each LCS. The goal is to gather information that permits to know the
state and behaviour of the different LCS instances deployed in the TSS system to
be known.

This capability is used for basic performance and accounting monitoring of the TSS
system. It provides information about the cache access operations supervised. This
includes information related with the performance measurements of the system.
One of the difficulties in this aspect is in the selection and use the appropriate
indicators to measure the operation of the system. In this section, we use the defined
monitoring operations (see Section 4.3.2) to get some indicators that are useful for
observation and analysis of the TSS operation.

TSS monitoring capacity makes possible the periodic or continuous measurement
of different data and cache actions. This provides an ongoing verification of the
progress toward the achievement of the TSS system goals; it permits the degree to
which the system responds to the requested access operations to be established and
the levels of resources to make these operations. TSS supplies some indicators for
establishing the effectiveness and efficiency of the access operations and aspects such
as cache hit rate (processed requests) and current storage capacity.

The clients of the TSS monitoring capacity are typically grid resources administra-
tors or users with special data management requirements. In contrast with other
TSS capabilities, monitoring clients directly invoke the CCS; ihis implies that CCS
supports operations addressed to an ensemble of LCS in the TSS.

The TSS implements a special coordinator module for monitoring; this coordinator
is deployed by the grid resource administrator. The coordinator can be regularly
executed to fulfill this task. The CCS supports the same monitoring operations
described in Section 4.3.2 and the coordinator monitor implements the collective
execution interacting with the LCS group. Thus the coordinator implementation
translates one monitor operation received by CCS in multiple one-to-one operations
with each LCS concerned.

Performance monitoring encompasses two main procedures: gathering information;
which is the collection of statistics about cache system operation; and information
analysis, which consists of processes for reducing and presenting the data acquired.
In this work we focus on the gathering information procedure that provides basic

128

LCS

LCS

storage
data &

storage
data &

Delegation
Service

GridFTP

RFT

GridFTP

RFT

Delegation
Service

Delegation
Service

GridFTP

RFT

CCS

storage
data &

LCS

5

1

2 3

6

5

5

4

7

Coordinator

Remote Sites

Local Site

Client

(administrator)

Figure 6.5: An example of gathering information for requests processed in TSS

elements to establish a cache performance measurement. The information analy-
sis procedure is implemented by the user and is specific to the virtual community
requirements.

Figure 6.5 illustrates the implementation of the gathering of monitoring information
using the globus environment.

Monitoring Capability Execution

Preliminarily, the client (administrator) prepares the getRequestProcessedRequest
(see Appendix D.2.5) (1), specifying the time period (start and finish datatime).
The client (administrator) invokes the GetRequestProcessed() operation interface of
the CCS (2) and passes the getRequestProcessedRequest to ask for a list of Request
elements that describes the details of individual requests processed by each LCS in
the TSS.

The CCS executes the coordinator that implements the collective monitoring oper-
ations (3). The coordinator builds a getRequestProcessedRequest for each LCS in
the TSS (4). Next, the coordinator invokes the GetRequestProcessed() operation
interface of each LCS in the TSS (5). The CCS builds a list with the set of getRe-

129

questProcessedReponse received from the LCSs (6). Finally, it returns the list as
response to the client (7).

The similar procedure is executed for other monitor operations:

• GetTransfers()

• GetDataActions()

• GetDataReplacements()

• GetStorageCapacity()

6.2.5 TSS Configuration

TSS configuration capability permits modification of the parameters that cause ac-
tions to be taken by the LCS in the TSS that make up the system to be managed.
This capacity exploits the configuration features supported by each LCS. The goal
is to modify the basic operational parameters of the set or a subset of LCS in the
TSS.

This capability is used for basic configuration control of the TSS system. It changes
the functional parameters that alter the system behaviour. This includes parameters
such as: replacement method, default time to live, resource storage, cache group,
and cache coordinator. It uses the defined configuration operations (see Section
4.3.3) for changing values of the operational parameters.

The TSS configuration capacity makes it possible to adjust the dynamic operation
of the TSS. The configuration capability permits changes in response to users or
administrator requirements. The configuration capability allows to adjust of the
operational behaviour established with the monitoring capability to be adjusted.
This provides essential support for the achievement of TSS system goals.

The clients of the TSS configuration capacity are typically grid resource adminis-
trators or users with special data management requirements. In contrast with other
TSS capabilities, the clients directly invoke the CCS; this implies that CCS supports
operations addressed to a ensemble of LCS in the TSS.

TSS implements a special coordination module for configuration; this coordinator
module is deployed by the grid resource administrator for configuration control of the
system. The CCS supports the configuration operations described in Section 4.3.3
and the coordinator implements its collective execution interacting with the LCS
group. The coordinator implementation thus translates one configuration operation
received by CCS into multiple one-to-one operations for each LCS concerned.

130

LCS

LCS

storage
data &

storage
data &

Delegation
Service

GridFTP

RFT

GridFTP

RFT

Delegation
Service

Delegation
Service

GridFTP

RFT

CCS

storage
data &

LCS

5

1

2 3

6

5

4

7

5

Coordinator

Remote Sites

Local Site

Client

(administrator)

Figure 6.6: An example of modifying the replacement method in TSS

Figure 6.6 illustrates the gathering monitoring information capability implementa-
tion using the globus environment.

Preliminarily, the client (administrator) prepares the setReplacementMethodRequest
(section D.3.2) (1) specifying the replacement method to be applied by the LCS
in the system. The client (administrator) invokes the SetReplacementMethod()
operation interface of the CCS (2) and passes the setReplacementMethodRequest
to execute the specified replacement method for each LCS in the TSS.

Configuration Execution

The CCS executes the coordinator that implements the collective configuration oper-
ations (3). The coordinator builds a setReplacementMethodRequest for each LCS in
the TSS (4). Next the coordinator invokes the SetReplacementMethod() operation
interface of the each LCS in the TSS (5). The CCS builds a list with the setRe-
placementMethodResponse elements received from LCSs (6). Finally, it returns the
list of confirmations to the client (7).

A similar procedure is executed for other configuration operations:

131

• SetDefaultTimeToLive()

• SetStorage()

• SetCacheGroup()

• SetCacheCoordinator()

6.3 Experiments

In this chapter we illustrate the collective management of a group of GCS providing
temporal storage space (TSS). The objective is to extend the caching capabilities
individually offered by the caches by implementing collective operations, especially
the possibility for a cache to request another cache to store data (on demand remote
storage).

This experiment illustrates the capacity of extensibility (see section 5.2.5) offered
by the GCS.

This experiment has not been designed to evaluate cache replacement strategies or
data redistribution heuristics. This type of issues has been intensively studied by the
research community (e.g. cf. David Coquil’s thesis in our team [35]) and is out of
the scope of this thesis. Our objective with this experiment is to use the TSS system
as proof of concept of the feasibility and effectiveness of the integration of generic
GCS instances into a collaborative network of caches. That is, this experiment has
been designed to show, on a basic example, that GCSs can be organised into a
collaborative TSS system, that provided monitoring tools can be used to analyse
the behaviour of this system (individual behaviour of a specific cache instance and
global behaviour of the system as a whole) and that re-configuration decisions can
be triggered at run-time to optimise the performance of the system.

6.3.1 Grid Simulation

We simulate a grid environment constituted by a group of ten GCSs. These GCSs
work at the same level i.e., there is no hierarchy or category between them.

Parameters related with the cache size (space capacity), the data size and the number
of files are assumed equal whatever the cache instance. This hypothesis is necessary
to eliminate the influence of these parameters on the performance of each individual
cache instance. Every GCS manages 100 gigabytes of storage; files have a fixed size
of one gigabytes. The total data generated (published) represent 3 terabytes.

132

Request patterns for the data entities (files) are assumed to verify three locality
properties (see section 6.3.3 below):

• Temporal locality: recently accessed files are likely to be accessed again.

• Geographical locality (client locality): data entities recently accessed by a
client in a specific site are likely to be accessed by other clients of the same
site.

• Spatial locality (data entity locality): data entities related to a recently ac-
cessed file are likely to be accessed [35].

Such properties are commonbly used in cache experiments. Indeed they are verified
by many distributed applications. These properties are at the basis of all cache
systems (caching randomly accessed data shows no effective benefit). In our context,
they are even more true since data are put into the TSS on demand by the user
himself.

6.3.2 Methodology of the Experiment

Simulator

The simulator consists of three modules. The cache manager module, the client
module, and the coordinator module.

The cache manager is an internal module of the GCS prototype described in section
5.4.2. The data and cache activity information used by the manager are registered
in memory using an arraylist object. Several instances of the cache manager are
concurrently executed as threads in a single machine. The threaded version of the
cache manager supports all the specified cache operations (see section 4.3).

The client builds and sends GetDataResquest messages (see appendix D.1.2) and
receives and processes GetDataResponse messages from the cache manager. Sim-
ilarly, the client builds and sends SetDataRequest messages (see appendix D.1.1)
and invokes the SetData() method of the cache manager module. The proportion of
SetData operations generated is 1/3 of the GetData operations. This ratio is based
on the hypothesis that data stored in the cache system are likely to be accessed in
the future6.

6In real conditions, SetData and GetData operations are performed on request from the user
(human user or program). The benefit of the TSS mainly depends on the access patterns. Storing
into the cache a piece of data that will never be accessed in the future is a loss of resource. So, one
can reasonably expect that users will store into the cache data that have a reasonable probability
of future access.

133

Parameter Initial value After scaling
Number of files 3,000,000 3,000
Number of requests 9,000,000 9,000
Maximum number of files by cache 100,000 100

Table 6.1: Simulation scaling
Experiment parameters before and after scaling

Finally, the coordinator monitors and coordinates the execution of the simulation.
It configures and initialises the group of GCSs using the SetCache configuration
operation (see appendix D.3.1) e.g., it sets the storage capacity and the replacement
method for each GCS thread instance. The coordinator also initialises the client and
generates the data request distribution used by the client. Finally, the coordinator
analyses the monitoring data to manage the global cache system and optimise its
performance (see section 6.3.5 below).

6.3.3 Simulation execution

The simulated grid is composed of a coordinator and ten GCSs instances (cache
managers) each logically connected to a client. All modules are executed as Java
threads on a single machine.

The coordinator generates the access patterns based on events that follow uniform
and Poisson random distributions, each event representing one data access opera-
tions (SetData() or GetData()) to be processed by one GCS instance (see section
Access Patterns below).

When a GetData() access operation is invoked, the concerned GCS checks if the
requested piece of data is stored in its cache and returns a response to the client. A
SetData() invocation triggers an update of the GCS internal catalogue information.
The GCS keeps a record of all the requests it receives (using Request header elements
(see section 4.4.1)); it uses DataActions (see appendix C.1.2) to register successful
hits of data (i.e. GetData requests that concern data stored in its cache) and data
replacements. These monitoring data have a very high value as they are used by the
coordinator to make its management and reconfiguration decisions.

The total amount of simulated data represent 3 terabytes. To enable the simulation,
a scale of 1:1000 was used. Table 6.1 illustrates this scaling.

The reason we use this scaling factor is to make the simulation of such a system
feasible on a single machine. The cache information elements for a million files
would be very memory intensive. Since we need to scale the number of files, the

134

Parameter Variability Value

Total data space invariable 3 terabytes

Cache size invariable 100 gigabytes

Data size invariable 1 gigabyte

Number of caches invariable 10

Number of files invariable 3000

Number of requests invariable 9000

Replacement method invariable LFU

Topology invariable distributed

GetData operations variable generated with Poisson dist.

SetData operations variable generated with Poisson dist.

Cache selection variable generated with Poisson dist.

Table 6.2: Simulation parameters
Summary of simulation experiment parameters

GCS storage capacity must be scaled accordingly. Indeed the performance of a
cache is directly dependent on the percentage of files that it can store. Scaling both
the number of files and the cache storage capacity allows keeping a constant ratio
between these two parameters7.

Access Patterns

We use Poisson random distributions to generate data access requests with temporal,
spatial and geographical preferences (section 6.3.1). These distributions are used in
two simulation phases: to generate the data requests (temporal and spatial locality);
to select the cache instance that will process each request (geographical locality).

Replacement method All GCSs in the experiment implement a LFU replacement
method.

Parameters setup Table 6.2 summarises the different parameters used in the simu-
lation.

6.3.4 Performance Evaluation

The coordinator thread gathers monitoring information about the state of every
GCS instance using the monitoring API provided by the GCSs and described in
section 4.3.2:

7For this reason, we do not modify the file size since this would have a direct effect on the
number of files that can be stored in a cache instance.

135

• total number of processed requests (get and retrieve)

• number of replacements that have been done

• number of get requests that have been successfully processed, i.e. that con-
cerned pieces of data stored in the cache of the GCS (successful hits)

The two first data allow estimating the workload of every cache instance; the latter
is a measurement of the performance of the GCS.

These monitoring data are used by the coordinator to analyse the activity of the
system, to compare the workloads of the various GCS instances and to take recon-
figuration decisions.

6.3.5 Grid Simulation Scenarios

As stated above, this series of simulations aims to show how one can implement
a collaborative management of a group of GCSs instances forming a TSS system.
More precisely they aim to illustrate how one can monitor cache instances activ-
ity, implement reconfiguration decisions and change dynamically cache operational
parameters.

We implemented and evaluated three basic scenarios related to the GCS capacity to
store remote data8 (also called shared storage space).

Scenario 1: Caches do not store remote data (no shared storage)

The base case against which we compare the other scenarios is when caches do not
cooperate, i.e do not use their storage capacity to store remote data. The entire
storage capacity is then used for “local” cache operations.

Scenario 2 : Caches reserve a uniform storage space for remote data
storage

Each cache reserves 10% of its storage capacity for remote data. As the system is
composed of ten GCSs, the total capacity of the shared space is therefore equivalent
to the capacity of one cache.

8Remote data storage = storage by a GCS instance of a piece of data transmitted by another
GCS instance

136

Scenario 3 : Caches provide shared storage according to their activity

Each cache shares a percentage of its storage capacity according to its activity within
the group. In the following experiments, we implemented a strategy such that only
the five caches with the lowest activity participate to the “shared space” : the less
active GCS reserves 30% of its capacity for remote data, the second less active GCS,
25%; the third, 20%; the fourth 15%; the fifth, 10%. This basic heuristics considers
that very active caches (i.e. caches that receive many requests and that make many
replacements) should be preserved from additional load ; oppositely, inactive caches
can provide a part of their capacity to store data that cannot be stored in overloaded
caches.

6.3.6 Experimental results

For each of the three scenarios, simulations were run 10 times. Each simulation was
run for 9000 requests of 3000 possible data entities. All data displayed below are
average data on 10 simulations.

Table 6.3 shows the results of the execution of scenario 1 (no shared storage). Data
are provided for each cache instance.

Rows in table are:

Replacements : percentage of data evicted by the replacement method

Requests : ratio (percentage) between the number of requests (get + retrieve)
received by the cache and the total number of requests processed by the system

Individual HR : percentage of the requests that produced a cache hit (individual
hit rate)

Participation : participation of the cache to the total hit rate, i.e. ratio between
the number of local hits and the total number of hits (percentage)

Several points should be noticed about these results :

• the activity of the GCS instances is very variable. This is an expected conse-
quence of the Poisson distributions that are used (locality patterns)

• some GCS instances (e.g. 1, 2) show a very low activity both in terms of
number of processed requests and nb of replacements

• 4 GCSs (4, 5, 6, 7) show a high replacement rate, i.e. they spend much time
for managing their storage space

137

Cache 1 2 3 4 5 6 7 8 9 10

Replacements(%) 0.1 3.7 10.1 14.7 17.6 16.6 15.1 11.6 7.0 3.2

Requests(%) 0.7 3.4 8.8 14.4 18.1 18.2 15.0 10.6 6.8 3.6

Individual HR (%) 12.3 34.7 58.2 67.9 70.3 70.6 68.5 62.7 52.5 37.1

Participation(%)1 0.1 1.8 8.0 15.3 20.0 20.2 16.2 10.4 5.5 2.1

Table 6.3: Experimental results by cache in base scenario
Average data for 9000 requests executed 10 times

A clear consequence of these remarks is that some load balancing procedure should
be implemented in order to optimize the global performance of the system. A system
in which 40% of the participating entities assume 70% of the work is definitely not
well balanced.

This argues in favour of the implementation of a global coordination of the cache
instances. This coordination suppose that :

• the system is able to monitor all the participating cache instances: cf. table
6.3

• the system is able to change the behaviour of the participating cache instances

• the system implements some load balancing and performance improvement
heuristics.

This third issue is definitely out of the scope of this thesis. It has been addressed in
our team from two different points of view :

• from a semantic and collaborative point of view (see David Coquil’s PhD [35]):
data usually show semantic correlations that replacement heuristics and cache
collaboration protocols can use to optimize the hit rate;

• from the grid infrastructure point of view (see Julien Gossa’s PhD [66]): GCS
instances should be placed and cached data should be placed/duplicated/migrated
according to the actual operational conditions (e.g., network bandwidth and
latency, CPU charge. . .).

We refer interested readers to these theses and to the extensive bibliography they
propose. In our simulations, as explained before, we implemented two basic heuris-
tics, the so-called scenarios 2 and 3.

Implementing cooperation and optimization heuristics supposes, as noted above,
that the system is able to monitor and modify the behaviour of the participating

138

cache instances. For instance, scenarios 2 and 3 require that the coordinator can
demand that GCSs reserve storage space for remote data.

We therefore run two additional simulations to illustrate these two scenarios. In
these simulations, the coordinator invokes the SetStorage() configuration operation
(see appendix D.3.4) to change the storage capacity according to scenario 2 (reduc-
tion of the capacity of all the instances by 10%) and scenario 3 (reduction of the
capacity of the five less active instances). As noted before, both scenarios reduce
the global storage capacity by 10%. This 10% reserved space is “frozen” and not
used for storing data. We then measured the cost in terms of hit rate and number
of replacements of this storage preemption.

Table 6.4 shows the performance results (average data + standard deviation) mea-
sured by these simulations.

Several points can be noticed :

• as expected, reducing the storage capacity of some cache instances reduce the
global hit rate and increases the number of replacements

• this overcost is much higher in scenario 2 than in scenario 3 : this is also
an expected result : adapting the reduction wrt the load of the GCS is more
effective than implementing a uniform reduction

• in scenario 3, the overcost is entirely undertaken by the five less active caches

• in terms of hit rate, this overcost is 3,9% for scenario 2 and 0,4% for scenario
3

In other words, these results show that one can preempt 10% for remote data storage
for a cost of 0,4%. For a grid site and GCS instance administrator, such a cost is
definitely affordable.

These preempted 10% of the total storage space are available for the system coor-
dinator to optimise the performances of the system.

As noted above, defining optimization heuristics is not the subject of this thesis. We
have mentioned research works (within or out of our team) that specifically address
this issue. From these works, some basic recommendations can be made :

• optimization strategies should be based on the monitoring and identification of
access patterns : when a data is requested from very distant site, a duplication
can be very efficient [67]; when data are correlated, prefetching techniques can
highly improve the hit rate[35]

139

Scenario No shared Uniform storage Adapted storage
storage preemption preemption

Value average std dev average std dev average std dev

Replacements 612 .8 29.6 771.5 33.45 682 23.05

Successful hits 5746.9 48.13 5523.3 92.84 5725 89.79

Table 6.4: Preemption of storage space
Performance for 9000 requests executed 10 times

• the focus must be put on overloaded cache instances ; the preempted storage
space must be used to reduce the load of the most active caches by redis-
tributing some cached data (using data remote storage, data migration or
data duplication)9

• grids are very dynamic and heterogeneous platforms : data redistributions
must be done and GCS reconfigurations must be decided with respect to the ac-
tual operational conditions (network bandwidth and latency, CPU charge. . .)
[67]10

6.3.7 Summary

In summary, these simulations show that :

• a set of GCS instances can be organised to build an operational TSS system

• the TSS coordinator has the ability to constantly monitor GCS instances using
provided monitoring methods

• the coordinator has the ability to modify the operational parameters of the
GCS instances

• specifically, the coordinator can preempt storage space on the less active GCSs
for remote storage

• under classical data access patterns, the cost for the GCSs concerned by such
a preemption is, on average, less than 1%.

9Let us consider the following example : assume that 80% of the requests are issued from 4 sites
and concern 120 Gbytes of data; assume that the GCS attached to these sites can store only 100
GB of data. Then duplicating the most requested data and remotely storing the 20 GB of data
that cannot be stored in these 4 caches can drastically improve the performance of the system.

10If the inactive caches used for redistributing data are connected by very bad network links,
then the benefit of the redistribution can be very low... or even negative !

140

6.3.8 Conclusion

The series of simulations presented in this section illustrates how a collaborative
system composed of a set of GCSs can provide temporal on-demand data storage.
These simulations are motivated by the Data Dissemination case introduced in sec-
tion 2.1.1 and the TSS Data Dissemination capability presented early in this chapter
(see section 6.2.1).

This series of simulations allows validating the operationality and effectiveness of
the monitoring APIs provided by GCS. It also exhibits how collaborative operations
can be implemented by invoking reconfiguration facilities.

In particular, these simulations show how one can preempt storage space on the less
active GCSs. This “preempted storage space” can be used to optimize and balance
the global behaviour of the system by remotely storing data, duplicating the most
requested data, migrating data to less active cache instances.

This optimization should be based on the monitoring of data access patterns and
grid operational conditions. Experiments are under way to evaluate the benefit,
in terms of hit rate, of different optimization heuristics under various conditions of
access patterns, network traffic, CPU usage.

6.4 Discussion

In this chapter we presented the design of the Temporal Storage Space (TSS) which
is a data management system that operates temporary data in automatic form. We
also showed an experience which simulates the TSS capability to provide storage
space on-demand.

Not Centralised Coordination

The conception of the TSS is based on the coordination of operations supported by
the Local Cache Services (LCS). An external service, the Collective Cache Service
(CCS), implements the coordination process between cache services. The decision
of executing the coordination in external service permits separate of the implemen-
tation of the different layers into specialised components. The LCS components
provide the base operational support and the CCS guides the intercache operations
between LCSs.

The CCS is proposed as a centralised service, this has as a main advantage the
easy implementation in grids that requires a reduced number of LCSs. It does not,
however, appropriate to scenarios that require the deployment of a significant num-
ber of caches. In this context, other implementation alternatives to be explored for

141

schemes based on distributed coordination like to peer to peer systems, representa-
tive not centralised collaborative cache systems are described in Appendix B.1. The
design of not centralised coordinated systems can take advantage of the basic access,
monitor and configuration capabilities provided by Grid Cache Services proposed in
this thesis.

The flexibility to implement different coordination systems to collaborative caches in
grids permits to respond to diverse grid data access patterns and computing models.

Cache as temporary storage provider

The TSS data dissemination capability suggests the idea to use a collaborative cache
system as an on-demand storage space provider. This implies a different utilisation
of the cache mechanism. Since the cache content conventionally is determined by the
data consumer demand, this controversial aspect is expressed often as main difference
with replication (see Section 3.6). For this reason the cache metric performance like
hit rate is limited to adequate measurement of cache performance used as storage
space provider.

The simulation described in Section 6.3 attempts to provide insights on these aspects;
it studies a scenario where the collaborative cache execute particular functions. We
have calculated the cost, in terms of the sum of the hit rates of the local caches,
produced by the implementation of a logical reassignment policy of storage space; we
have obtained a cost that we consider very low; the assumption about the invariabil-
ity of key parameters such as data and cache size, and access patterns distributions
limits the representability of the experience.

Cache Resolution

The TSS data collector capability uses the cache resolution mechanism based on
cache communication protocols: the coordinator maintains a global catalogue, or
directory, to map a data entity identifier associated with whose LCS hold the data.
This approach suggests an easy implementation of data resolution mechanisms based
on a summary or digest of the cache contents. The GetDataContent is a generic
access operation (described in Appendix D.1.4) that provides this information. LCS
inter-exchange messages indicate their content and keep directories to facilitate find-
ing documents in other caches (see Appendix B.2.2).

This centralised mechanism, however, is not appropriate to support the scalabil-
ity and deployment concerning a large number of LCSs scattered over the grid.
Other mechanisms based on resolution protocols or hashing-based method must be
explored to adapt to specific application requirements.

Catalogue consistency

The CCS maintains a weak consistency catalogue with cache information reports

142

from LCSs. We follow the same assumption used by RLS (see Section 3.6.1); the
service needs not to provide a completely consistent view of all available data copies
if the query returns to the client a subset of all extant copies, or references that
include “false positives” the client may execute less efficiently but it will not execute
incorrectly.

TTS capabilities implementation

The algorithm for selection of copies can include a wide range of parameters to
take the decision, this includes information about the individual data entity and the
individual cache installation. Complex relations can be established in the local and
collective context.

The coordinator can build an additional scheme to support global and scalable sys-
tems that include a significant number of LCSs and data information. A variety of
schemes can be built with different performance features; this includes the organi-
sation of the GCSs in distributed or hierarchical form and type of data redundancy
between them.

The monitoring capability discussed in this chapter assumes the worse case situa-
tion which detailed information is available. This generates a significative quantity
of verbose information that can have a high cost; the implementation of monitor-
ing capabilities must propose alternatives to provide this information, for example,
computing values locally from registered activity information.

We now discuss some aspects related with cooperative caching introduced in Section
2.2.2

Interaction

The TSS design is an example of a collaborative cache system composed by LCS
interactions. The cache interactions determine the capabilities supported by the
collaborative cache system. In the TSS system discussed in this chapter, particular
capabilities are implemented to operate and control temporary data between grid
locations. The set of caches operations defined in Section 4.3 and Appendix D are
used to support the TSS data access, monitor, and configuration capabilities. These
operations can be used to support a flexible composition of specific capabilities in
grid caching systems.

Organisation

TSS presents the arrangements of LCS elements to operate and control temporary
data in a common way. The organisation is strongly related with the required capa-
bilities, functions and performance to be supported by the system. TSS is designed
for scenarios concerning a small number of LCSs deployed over the grid. The support
of scenarios with a large number of storage locations over the grid does not require

143

centralised coordination components to adequate scalability and performance. There
are diverse alternatives to organise the distributed system components. For example,
using hierarchical or distributed schemes depend on requirements and application
objectives. GCS can be used as base components to support diverse required capa-
bilities.

Distributed data placement

The TSS design and simulation experience suggests simple strategies to put tempo-
rary data in different grid locations based on the particular capabilities for sharing
available storage resources between GCS. It is necessary, however, to implement de-
cision processes that support specific and particular data placement requirements.
The GCSs provide detailed and accurate information required to support coordina-
tion mechanisms.

Load balancing

The experience described in this chapter uses data and cache activity information
provided by GCSs to dynamically establish the workload on distributed caches. This
information is used to support a strategy to distribute data between a group of GCSs.
The strategy deals to minimise the collective performance degradation of the group
of caches that compose the system. However, it is indispensable to start research
works to obtain accurate knowledge about the utilisation of collaborative caches in
order to provide storage capacity on demand

144

Chapter 7

Conclusions and Future Work

In this thesis we have proposed a specification and implementation of collaborative
cache services for grid environments. This work is focused on grid applications
manipulating large volumes of data.

The processing of large amounts of data implies data movements that require con-
sumption of network bandwidth and storage space; a significant quantity of the data
is typcally used for a limited period of time. Without global coordination, resources
requested to manipulate and exchange these temporary data are used in an ineffi-
cient and non cost-effective way. This thesis proposes and analyses an approach to
managing temporary data in grids.

Caching is recognised as one of the most effective techniques for managing temporary
data. Collaborative cache systems, like web caching, have been proposed to scale
cache capabilities for distributed systems. In this sense, collaborative cache systems
appear as a natural solution for managing temporary data in a grid. However, ex-
isting solutions are not directly applicable, due to the specifics of grid environments.

Based on two use-cases, we have presented a list of requirements and constraints
that are related to the features of cache systems, the nature of grid environments
and the specifics of grid applications.

7.1 Contributions

First Contribution

Our first contribution, the specification of a reference multilayer model for grid
caching, defines and organises the main functions needed to operate and control a
collaborative cache system. The different layers separate the conceptual functions

145

of the system.

Four functional layers have been identified and defined: storage, control, collab-
oration and coordination. The storage layer represents storage resources used to
implement the cache system. The control layer regulates and registers the actions
in the storage layer. The collaboration layer defines and supports the interactions
between caches. The coordination layer supports the organisation and optimisation
of the interactions between caches.

The specification defines a set of standard cache operations required to support the
model. They are classified into three main types: access, monitoring and configu-
ration. Access operations as used to access data stored in the cache. Monitoring
operations are used to exchange information about the cache elements and their ac-
tivity. Configuration operations are used to dynamically parametrised and manage
cache instances. The specification also defines the entity information and activ-
ity information elements manipulated by cache instances to represent and exchange
information about their activity and about the cached data.

Finally, the specification defines a generic infrastructure for building collaborative
cache systems in grid environments. Multiple forms of organisation cache instances
accommodate the high variability of grid infrastructures and grid applications.

Second Contribution

Our second contribution; the design and implementation of the Grid Cache Service
(GCS) i.e., the base component used to design and build grid caching infrastructures.

In order to satisfy the grid caching requirements, we have elaborated a set of de-
sign principles to implement the GCS; these principles establish the main features
of the implementation: virtualization, autonomy, accessibility, uniformity, and ex-
tensibility. Virtualization provides an abstract view of the behaviour of the data
in a cache mechanism. Autonomy defines the cache as a distinct and independent
component with specific functions. Accessibility establishes that cache content, re-
sources and management information are accessible and shareable for a wide variety
of clients. Uniformity establishes that cache capabilities are provided in a similar
way in the whole distributed grid cache system. Extensibility establishes that col-
laboration between caches is extensible to all possible cache operations including
access, monitoring and configuration.

We have implemented a prototype of the GCS which supports and implements all
the functions specified by our grid cache model. This prototype has been developed
in Java programming language and designed to be executed with the Globus mid-
dleware. Performance tests of the GCS prototype show that the time required to
execute basic cache monitoring and configuration operations is marginal in compar-
ison to data transfers.

146

Third Contribution

Our third contribution, the design of the Temporal Storage Space (TSS), is a proof
of concept of a data management system that operates temporary data by managing
a set of distributed GCSs. The TSS design provides insights to the implementation
of the coordination layer defined in our reference grid cache model. Basically the
TSS system is composed of a group of GCSs that collaborate under the supervision
of a coordinator.

In the TSS system design, the GCS is the essential collaborative software brick used
to implement high-level coordination strategies to manage collective cache storage
resources in an efficient and cost-effective way.

We have described a series of experiments which simulates the TSS capability to
preempt and provide storage space on-demand. These simulations illustrate the
way GCS instances can be organised into a collaborative cache system in order to
provide temporal on-demand data storage. It shows how it is possible to preempt
storage space on the less active GCSs. This preempted storage space can be used
to optimise the global behaviour of the TSS system and balance the GCS instances
workload.

We present how these contributions satisfy the established initial requirements for
grid caching.

Local Operation Requirements

• Delegation of temporary data operation

The specification defines an infrastructure based on specialised cache entities
that manage temporary data that will be kept in storage resources: these spe-
cialised cache entities are implemented by the GCS. Furthermore, a GCS can
request and provide cache operations to other GCSs. The TSS illustrates the
collaboration between several GCSs to manage temporary data in a distributed
way.

• Accessibility by different types of clients

The specification defines a set of access operations to be supported by a cache
instance in a grid. GCS implements grid service interfaces to these accessible
operations over a wide range of grid applications, services, and users. TSS is
composed by a group of GCSs which provide accessibility in multiple locations.

• The uniformity of operations and interfaces

The specification defines standard access, monitoring and configuration infor-
mation, plus operations, for grid caching. GCS implements the grid interfaces

147

to these operations and associated behaviour. In the TSS, these capabilities
can be requested, interpreted and processed in the same manner at different
grid locations.

• The capacity to gather resources on demand

The proposed model in the specification determines that a grid caching system
is built from storage resources: these are handled by the control layer. Simi-
larly, they are shared by a collaboration layer. GCS is implemented as a local
administrator of temporary storage and data. TSS is used as proof of concept
of a collaborative cache system composed by GCSs to preempt storage space.
However we have only demonstrated its feasibility using simulation.

Collective Operation Requirements

• Enabling the control of storage resource

The model specified establishes that each location or organisation allows its
partners to use its resources in an automatic way. GCS supports the remote
configuration of operational parameters. For instance, in TSS, the coordinator
of the system is able to control the data copies proliferation and distribution
on behalf of the virtual organization collaboration policy.

• Coordination for effective operation

The coordination layer defined by the grid cache specifications must implement
coordination mechanims to support and optimise collective capabilities. GCS
supports the remote configuration of its essential operational parameters. TSS
experiments illustrate the implementation of basic coordination mechanisms
between GCS. However, optimising the resource usage and the system effi-
ciency requires to develop advanced cache interaction coordination heuristics.

• Accounting and monitoring activity

The specification defines that cache components must support monitoring op-
erations to trace their activity. A fundamental feature of the GCS is the
capacity of monitoring its operation in real time. This feature is related with
the capacity of supervising the detailed processed data and the cache activity.
Monitoring makes possible measurements and statistics necessary to evaluate
the global state of the system. TSS, for instance, uses these monitoring ca-
pabilities to establish the workload of the GCS instances partcipating to the
system.

148

• Flexibility to choose schemes and strategies
Grid caching specifications establish that different collaborative cache architec-
tures must be supported. GCSs are generic software components that provide
communication, monitoring, collaboration and configuration facilities. They
can be arranged into any organisational form to cope with diverse grid archi-
tectures and support diverse application contexts. TSS presents an example of
configuration based on a distributed set of GCSs and a centralised coordinator.

7.2 Future Work

Development of coordination heuristics

In this thesis a base infrastructure for grid caching infrastructure has been proposed
in which GCSs are the essential bricks used to build high level data management
systems. Experiments have shown the feasibility of the proposed approach. However,
optimising such systems requires some effective GCS coordination and distributed
cache management heuristics. Such heuristics should be adapted to the features of
the underlying grid infrastructures and applications.

Scalability and integration tests

To gain additional experience about grid caching capabilities, we plan to run exten-
sive scalability experiments in multiple grid environments. We also plan to integrate
our data caching facilities into existing applications in order to evaluate the effec-
tiveness of our system in real operational conditions.

TSS development

The capacity to gather storage on demand for temporary data is a relevant re-
quirement considering the dynamic character of resources in grid. Simulations of
the proposed Temporal Storage Space (TSS) system have demonstrated its feasi-
bility. The development of an effective prototype of TSS will require to integrate
our system with grid middleware modules, especially the grid information system
(metadata catalog), the data replication system, the message passing libraries and
the authentication/authorisation system.

Fault Tolerance

Grids are characterised by their high dynamicity and unpredictability. As a conse-
quence, grid infrastructures are subject to strong operational variations (e.g. band-
width variations) and even faults. Fault tolerance and recovery mechanisms should
therefore be studied and integrated within coordination heuristics.

149

Inter virtual organisation collaboration

The proposed cache infrastructure has been designed to be implemented within a
virtual organisation. This limits the capacity of this infrastructure to cope with
peaks of data requests. A potential solution is to allows different cache infrastruc-
tures attached to different virtual organisations collaborate e.g., exchange or lend
storage on demand. This requires to develop negotiation protocols and accounting
procedures.

150

Appendix A

Cache Replacement Methods

A.1 Replacement methods

A key aspect of the effectiveness of cache systems is the data content replacement
algorithm which can improve the cache performance. The cache replacement al-
gorithm guides the process will realize when the cache becomes full and old data
objects must be removed to make space for new ones. Usually, a cache assigns some
kind of value to each data object and removes the least valuable ones. The meaning
of valuable varies according to different strategies. Typically, the value of the data
object is related to the probability that it will be requested again, thus it attempts
maximize the hit ratio. Research communities have proposed numerous replacement
algorithms, we present some representative works.

A.1.1 Classical algorithms

There three traditional replacement algorithms:

Least Recently Used (LRU) This strategy removes the least recently referenced
data object. It is widely used in different areas such as database buffer man-
agement, memory paging and disk buffers.

Least Frequently used (LFU) Removes the least frequently requested object.

SIZE [2] This strategy removes the largest size data object. The LRU strategy is
often applied to objects with the same size.

The replacement strategies can be classified in five categories proposed in [95],

151

• recency-based strategies

• frequency-based strategies

• recency and frequency-based strategies

• function-based strategies

• randomized strategies

We present some representative methods of each category in the following sections:

A.1.2 Recency-Based Strategies

These strategies use recency (time of the last reference to the object) as a principal
parameter. Most of them are extensions of the LRU algorithm. LRU is based on the
locality of reference established in request flows. Locality of reference characterizes
the ability to predict future accesses to data objects from past accesses. Tempo-
ral locality refers to repeated accesses to the same data object within small time
periods. It implies that recently accessed data objects have a high probability to
be accessed again in the future. Another type of locality is spatial locality which
refers to access patterns where accesses to some data objects imply accesses to other
objects physically near. Recency-based strategies exploit the temporal locality seen
in request flows. It implies that references to some objects can predict future refer-
ences to other objects. The replacement strategies can be classified in five categories
proposed

LRU-Threshold [1] . A data object is not cached when its size exceeds a given
threshold. Otherwise this strategy works like LRU.

LRU-Min [1]. It is a variant of LRU with predisposition in favor of smaller objects.
If there are any objects in the cache which have size being at least S, LRU-MIN
evicts the least recently used object from the cache.

History LRU [121]. HLRU proposes a strategy based on history of past references
is associated to each cached object. A function hist(x, h) defines the time of
the past h-th reference to a specific cached object x. HLRU algorithm will
replace the cached objects with the maximum hist value.

Recency-based strategies consider temporal locality as the main factor. This can
be favourable for scenarios that present data access with temporal locality like, for
example, web requests streams. The utilisation of these methods is rather adaptive
according to workload changes. Additionally they are simple to implement and are
fast.

152

A.1.3 Frequency-Based Strategies

These strategies use frequency (number of requests to an object) as a principal
factor. Frequency-based strategies are in a certain sense extensions of the LFU
algorithm. They are based on the fact that different data objects have different
activity access and that this activity result in different frequency request. Frequency-
based strategies track this activity values and use them for future decisions.

LFU-Aging [9]. With LFU, objects that were very popular during one time period
can remain in the cache even when they are not requested for a long time
period. LFU-Aging uses a threshold. If the average value of all frequency
counters exceeds this threshold all frequency counters are divided by 2.

Alfa Aging [135]. This is an explicit aging method with a periodic aging function.
At a periodic time (e.g., 1 hr) the value of every object is decreased to alfa
times its original value. Each hit causes the function to be increased by one.

swLFU (Server-Weighted LFU) [77]. This strategy uses a weighted frequency
counter. The weight of an object indicates how much the server of data object
appreciates caching of that object. The server can influence caching of the
object.

Frequency-based strategies are valuable in static environments where the popularity
of objects does not change very much over a specific time period such day or week.
In contrast, LFU-based strategies require a more complex cache management. LFU
can be implemented, for example with a priority list.

A.1.4 Recency/Frequency-Based Strategies

These strategies use recency and frequency, and often additional, factors to select a
data object for replacement:

SLRU (Segmented LRU) [10]. The SLRU techique partitions the cache into two
segments: an unprotected segment and a protected segment. The protected
segment keeps the popular objects. First time admitted objects in the cache
are placed in the unprotected segment, then, if the data object is requested
afterwards (cache hit) the object is moved to the protected segment. Both
segments are controled with the LRU method, but only data objects from the
unprotected segment are removed. Data from the protected segment are trans-
fered back to the unprotected segment as the most recently used object. This
strategy requires to establish the parameter that determines what percentage
of the cache space is assigned to each segment.

153

HYPER-G [2]. This strategy combines LRU, LFU, and SIZE. At first the least
frequently used object is chosen. If there is more than one object that meets
this criterion the cache chooses the least recently used among them. If this
still does not give a unique object to replace the largest object is chosen.

A.1.5 Function-Based Strategies

These strategies evaluate a specific function incorporating different factors. They
mostly use weighting parameters for different factors. The function calculates the
activity or value of a data object. The strategy chooses the data object with the
smallest activity or value.

Greedy Dual Size [19]. GD-Size associates a cost with each object and evicts
object with the lowest cost/size.

Bolot and Hoschka strategy [15] employs a weighted rational function of the
transfer time cost, size, and time of last access.

If designed properly, these strategies can avoid the problems of recency and frequency
based strategies but due to the special procedures, most of these strategies introduce
additional complexity.

Function-Based Strategies permit a proper choice of weighting parameters, thus is
possible to try to optimize the performance metric. They consider a number of
factors for handling different workload situations. Choosing appropriate weights is
a difficult task. Some proposals assume that the weights are derived from trace
studies. This is a simple but error susceptible approach. Server workloads change
over time and require some adaptive setting of the parameters.

A.1.6 Randomized Strategies

These strategies use random mechanisms to select a data object for replacement.
Randomized strategies constitute a different nondeterministic approach to cache
replacement.

RAND . This strategy removes a random object.

HARMONIC [71]. Whereas RAND uses equal probability for each object, it re-
moves from cache one item at random with a probability inversely proportional
to its specific cost and size of the data object. The replacement strategies can
be classified in five categories proposed

154

Randomized strategies try to reduce the complexity of the replacement process with-
out sacrificing too much quality . Randomized strategies do not need special data
structures for inserting and deleting objects and they are simple to implement. In
contrast, they are inconvenient to evaluate: they can provide different results in
situations with the same conditions.

Other work explores alternatives for the above categories. Thus, (CODOR) Cold-
est Document Replacement is a semantic approach for cache replacement method
proposed in our research team [37] [35]. CODOR is a replacement method based
on semantic relevance topics of data content. It gives a numerical value to data
objects (documents) that reflects its current interest among a community. This
value called ’temperature’ is calculated based a previous semantic indexing process
of the document and its dynamic access in the cache. A collaborative proxy-cache
architecture is proposed based on exchanging information about the temperature
variation between caches [36] [35].

155

Appendix B

Cooperative Web Caching

An important aspect of cooperative caching design is how the caches are organized
at different locations of the distributed system. This aspect is essential to establish
the possibilities of interactions and the relationships between the group of caches. A
review of the literature suggests four main types of schemes or architectures: hier-
archical, distributed, organizational based on multicast and peer to peer approach.
A concise overview is presented in this section.

B.1 Cooperative Cache Architectures

B.1.1 Hierarchical Cache

The hierarchical cache establishes several levels of relationship between caches. This
organization creates a tree-like structure to allow these caches to work between levels
and support cooperative interactions. The harvest project [17] [16] introduced the
notion of hierarchical cache in web. Initially, the system was implemented caching
data objects in HTTP, FTP, WAIS, Gopher and DNS maps. But later the main
interest was centered in HTTP traffic. The Harvest cache hierarchy was designed
to resolve data queries between several caches. In this context, a cache can resolve
data misses through other caches. The cooperative cache resolution mechanism
distinguishes between parent and sibling caches.

The parent cache is upper in the hierarchy, a sibling is one in the same level in the
hierarchy. When a cache does not have a data object it invokes a remote procedure
to all siblings and parents. The request is resolved through the first cache that return
the response. The resolution algorithm select through the original server or cache
that provides the data most efficiently [28]. Usually, in hierarchical designs, child
caches can query parent caches and children can query each other but parents never

156

query children. When a request is not satisfied by the specific cache the request
is redirected recursively to the parent cache. Finally, when the document is found,
either at a cache or at the original server, it travels down the hierarchy leaving a
copy at each of the intermediate caches along its path. Further requests for the same
document travel up the caching hierarchy until the document is hit at some cache
level. This creates a cache organi zation where information gradually filters down
to the leaves of the hierarchy.

In the [17] authors indicate that measurement of this approach ran approximately
twice as fast as the CERN cache (that is not hierarchical), and the distribution of
data object retrieval times has a much shorter tail than the cache deployed in CERN.
However they do not provide detailed descriptions of the realized experiences.

The hierarchical approach was well accepted and implemented. Squid [111] is an
open distribution of a proxy cache with the continuation of the Harvest goals. Squid
implementation incorporates several improvements such as heuristic search of data
objects among cache neighbors based on weighs. Each cache gives a weight to other
caches which permits to select the cache to send queries.

A problem of the hierarchical cache is the placement of data copies through groups of
caches. In the initial approach a copy of the data object is stored in all intermediate
caches of each level of the path toward the initial request. This characteristic is not
always optimal: in [79] an algorithm is proposed to makes copies on some caches
in the same level. The proposed algorithm selects the caches that keep the copies,
however, it requires detailed information about realtime operational conditions of
sling caches and in practice that information is not frequently available. Other work
[81] proposes meta algorithms for hierarchical caches: these meta algorithms are
charged for selecting a global placement of data objects in the group of caches in
the hierarchy.

There are several problems associated with a hierarchy topology [69] [71]: the caches
must be placed at strategic points in the network; this often requires significant
coordination between caches. Parent or root caches may become bottlenecks and
create long queuing delays. Different levels of the hierarchy may add delays. Storing
multiple copies of the same data objects create data content proliferation and often
unappropriate use of storage resources.

B.1.2 Multicast Approach

Adaptive Web caching considers the problem of global data dissemination [136]
[89]. It deals in particular with the problem created by the ”hot spot” phenomenon
where specific content can, suddenly, become massively popular and high in de-
mand. Adaptive web caching proposes an approach based on multicast to resolve
the increasing scale of data dissemination. In that context, when multiple users are

157

USER−1

USER−2

G1 G2

G3

G4

G5

G6

G7

C2

C1

C3

C4
C5

C6

C7

Data source

Figure B.1: An example of multicast caching

interested in the same data, a copy of data can be obtained from the original server
and then forwarded using muticast to all interested users.

Data content requests on the Internet, however, is asynchronous because different
users request web content at different times. Therefore, its proposed to use caches
to multicast data dissemination. Adaptive caching consists of multiple distributed
cache groups called meshes. These meshes are organized based on content, demand,
and also include web servers. In this architecture web servers and caches are orga-
nized into multiple, overlapping multicast groups, like shown in the figure B.1.

When a user requests a data object it sends the request to a nearby cache. If it
does not find the requested data object in its local cache it multicasts the request
to a nearby local group of which it is a member; if some cache in rhe group has
the requested data it multicasts the requested data object and the initial cache will
forward a copy back to the user. However, in case of a cache miss within the local
group, the cache joins more than one multicast group, so that all the cache groups
heavily overlap each other. When there is a cache miss in one group each cache of
the current group checks to see if its other group lies in the direction towards the
originating server of the requested Web document. When a cache finds itself in the
right position to forward the request it also informs the current group when doing
so.

In case the second cache group has a miss again the request will be forwarded further
following the same rules. Proceeding in this fashion the request either reaches a cache
group with the data object, or otherwise is forwarded through a chain of overlaping
cache groups between the client and the originating server until it reaches the group
that includes the original server of the requested data object. Once the request
reaches a group in which one or more servers have the requested data, the node

158

holding the page multicasts the response to the group.

In order for this caching infrastructure to be scalable the organization of Web caches
into overlapping groups must be self-configuring. Self-organizing algorithms and pro-
tocols are proposed that allow cache groups to dynamically adjust themselves ac-
cording to changing conditions in network topology, traffic load, and user demands.
Thus, the adaptive caching uses the Cache Group Management Protocol (CGMP)
and the Content Routing Protocol (CRP). CGMP specifies how meshes are formed
and how individual caches join and leave those meshes. In general, caches are orga-
nized into overlapping multicast groups which use voting and feedback techniques
to estimate the usefulness of admitting or excluding members from that group. The
ongoing negotiation of mesh formation and membership results in a virtual topol-
ogy. CRP is used to locate cached content from within the existing meshes. CRP
takes advantage of the overlapping nature of the meshes as a means of propagating
object queries betw een groups as well as propagating popular objects throughout
the mesh.

An important assumption of the adaptive caching approach is that the deployment
of cache clusters across administrative domains is not an issue. If the topologies are
more flexible the administrative cache policies must be relaxed so that groups form
naturally in different locations of the network.

LSAM

The LSAM Large Scale Active Middleware [119] is an architecture that uses a self-
organizing multicast push based on interest groups. The LSAM proxy is deployed
near both clients and servers. Near the client the proxy acts as an intelligent cache,
allowing multicast channels to preload it with relevant pages. Near the server the
proxy acts as an intelligent pump, managing multicast groups and detecting page
affinities to multicast related information to a set of interested client caches.

The LSAM uses multicast for automated push of popular web pages. LSAM proxies
are deployed as a server pump and a distributed filter hierarchy. These components
automatically track the popularity of web page groups, and also automatically man-
age server push. In this architecture web pages are organized in affinity groups in
relationship with their popularity. Individual requests trigger multicast responses
when these pages are members of active affinity groups. A request is checked at
intermediate proxies and forwarded to the server. The response is multicast to the
filters in the group by the pump and unicast from the final proxy back to the orig-
inating client. Subsequent requests are handled locally from the filters near the
clients.

159

IMPPS

The IMPPS Intelligent Multicast Push and Proxy System [83] is a system for inter-
active multicast cache running both at the end-user location and at the base station.
IMPPS uses reliable multicast instead of TCP/IP to interactively request and reply
web based content. Furthermore, IMPPS can be used to keep the web caches up to
date by pushing fresh and popular web contents. This architecture is proposed in the
context of LMDS (Local Multipoint Distribution Service) [72], a broadband wireless
access technology that provide two-way transmission of data and multimedia.

Requests from the clients are received by the IMPPS proxy-cache through unicast
IP. If the data is not available the request is forwarded via reliable multicast to
the authenticated remote IMPPS proxy-caches. The remote IMPPS proxy/cache
checks whether the requested web object can be served from the remote IMPPS
proxy-cache or whether it has to be fetched from the Internet. In case of a local hit,
the remote IMPPS proxy-cache sends the web data object back via multicast. If the
web data object is not cached, it is requested from a nearby proxy via multicast.
IMPPS proxies/caches communicate with each other using the MCP (Multicast
Cache Protocol) that is provided by a specific transport multicast protocol that
replaces the IP multicast. The IMPPS proposes the utilisation of push tecniques to
disseminate fresh web content via multicast into the web-caches of the end-users.

B.1.3 Distributed Cache

Caches can be also organized to work in the same level: in this option it is necessary
to create mechanisms or protocols to decide which cache will be contacted. In these
cases, the protocols usually require information about the content of every other
cache. In this context, cache content information is distributed among caches in the
system. Sometimes, a hierarchical distribution mechanism is employed. However,
the hierarchy is used only to distribute index information, not data content. Some
distributed cache protocols are described later in this section.

Distributed caching allows better load balance work between caches and provides
more capacities for fault tolerance. Nevertheless, it can create other troubles such
as high connection times, more bandwith usage, and administrative conflicts.

CRISP

CRISP (Caching and Replication for Internet Service Performance) is a distributed
architecture proposed in [58] [57]. In CRISP caches are structured as a collective of
autonomous web proxies sharing their cache directories through a common mapping
service that can be queried with at most one message exchange.

160

The CRISP architecture consists of a set of caching servers (proxies), which directly
serve requests from clients, and a mapping service, which is responsible for main-
taining the global directory of objects stored in the caching servers. On a local cache
miss, each caching server queries the mapping service to determine if the object is
resident elsewhere in the collective cache. If the mapping service reports a hit, then
the object is fetched directly from the peer caching server. Caching servers keep the
global directory current by reporting object fetches and evictions to the mapping
service.

Individual servers may be configured to replicate all or part of the global map in
order to balance access cost, overhead and hit ratio, depending on the size and
geographic dispersion of the collective cache.

In [99] studies the cases in which distant copies of objects in the cache may not
be worth fetching and for which the source server may be a better choice. Thus, it
proposes that instead of maintaining the global directory with information of cached
data objects, each node maintains a directory of objects cached in its vicinity. For
each CRISP proxy this directory is different.

Distributed Caching

A distributed caching approach is proposed in [96] and while the hierarchy is still
present in this scheme, it exploits the hierarchy for indexing distributed documents.
It proposes to avoid the use of caches at the root and upper levels of the hierarchy to
resolve requests and store cached documents. Instead, only the leaf caches would be
responsible for retrieving and storing the objects, while the upper level caches would
be used to maintain information about the contents of these caches. This scheme
removes the requirement for upper level nodes to maintain large storage resources.

Figure B.2 illustrates how such approach works for a hierarchy of three levels. In
this case, neither nodes A, B or C are caching objects: they are instead used only to
propagate cache information. For example; if node F requires an object it queries
node B. Here node B does not know where a copy of the object can be found.
However, instead of returning a miss immediately to F it propagates the query to
A. If Node A is also unable to locate the object returns a miss to B which then
propagates this information back to F. This recursive querying approach allows
the entire cache contents to be searched very quickly so that node F can correctly
determine that there is no cached copy of the requested object and thus retrieve it
from its primary site.

When a miss is encountered by a leaf cache and it resolves the request from its
primary site, a mechanism is required to indicate to the upper level nodes in the
hierarchy that the document has been cached. This procedure is known as an adver-
tisement. Node F sends an advertisement message to its parent B. The advertisement

161

A

B C

F G D E

Query

Query

Miss

Miss

Hierchical relation

Query/Response

Node without cache content

Node with cache content

Figure B.2: An example of distributed cache

is then propagated recursively to the root node. If a child of node B requests the
object then B will have information about where to find it. If a child of node C
requests an object by recursively querying, then the root node A will indicate that a
copy may be found at F. Rather than returning the actual object from its cache, the
upper level cache returns a reference to the cached object consisting of a Uniform
Resource Locator (URL) and information about the size and modification time of
the object.

Distributed Hint Hierarchy

This architecture is described in [117]: it separates data paths from metadata paths
and maintains a hierarchy of metadata that registers where copies of data are stored.
It maintains location hints so that caches can locate nearby copies of data: it uses
a direct cache to cache data transfers to send the data directly back.

This strategy uses a hierarchy to distribute hints. It only stores data at the leaves
of the hierarchy and it always transfers data directly between caches rather than
through the hierarchy. To facilitate widespread sharing of data among large numbers
of caches, it compresses the size of hints so that hint caches can track the contents
of several caches and it uses the hierarchy to distribute hints efficiently.

The system propagates hint updates through an index hierarchy to reduce the

162

amount of information sent globally. When a node in the index hierarchy learns
about a new copy of data from a child, or the local data cache if it is the leaf, it
propagates that information to its parent only if the new copy is the first copy stored
in the subtree rooted at the parent. The node determines this by examining its local
hint cache; if the parent had already informed the node of a copy in the subtree
of the parent, then the node terminates the update propagation. Similarly, when a
node learns about a new copy of data from a parent, it propagates that knowledge
to its children if none of its children had previously informed it of a copy.

RELAIS

The Relais system [73] [88] allows a group of caches and mirrors to cooperate in or-
der to improve web caching within an organization. Relais guarantees to its clients
a monotonic and rapid progress on the retrieval versions of the documents. Relais
provides a distributed directory with the contents of all data providers in the orga-
nization. The directory is always replicated, ensuring that name resolution is always
a local operation.

The Relais architecture comprises four components: intermediate providers, provider
agents, location proxies and directory managers.

intermediate providers stores document copies within the organization. Some
examples of intermediate providers include web caching proxies, mirrors, archives,
file systems, etc.

provider agent allows an intermediate provider to register documents in their
posession with the shared distributed directory. An intermediate provider
notifies its provider agent when adding or removing a documen and when
detecting a newer version of a document.

location proxy enables a user to transparently access the group of intermediate
providers that make up the organization-wide distributed cache.

directory managers perform registration and removal of document locations, in-
validation of cached copies when their originals are updated and lookup of
available locations.

Directory service of Relais permits efficient and transparent location of document
copies cached within the organization boundaries. Relais provides a basic structure
for efficient sharing of information among well delimited groups of users, possibly
distributed at geographically separate sites. An important characteristic is that
permits connects different kinds of data sources such as web caching proxies, file
systems, and replicated databases.

163

B.1.4 Peer to Peer Cache

Squirrel

Squirrel is a cooperative cache system based on a peer-to-peer scheme [75]. The
key idea in Squirrel is to allow mutual sharing of data objects among client nodes.
Thus, web browsers on every node maintain a local cache of the web objects recently
accessed by the browser. Squirrel enables these nodes to export their local caches to
other nodes in the corporate network, in this way they build a large shared virtual
cache. Each node then performs both web browsing and web caching.

Squirrel uses a self-organizing and peer-to-peer routing protocol called Pastry as its
object location service, to identify and route to nodes that cache copies of a requested
object. Pastry provides the functionality of a scalable distributed hash-table that
permits to map a given data object key to a unique active node in the network.
The system assigns uniformly a portion of URL space to participating caches using
a hash function.

Each client runs an instance of Squirrel software and configures the web browser in
that node to use this Squirrel instance as its proxy cache. The browser and Squirrel
share a single cache managed by the Squirrel instance. User browsers issue their
requests to the Squirrel proxy running on the same node. The proxy checks the
local cache, just as the browser would normally have done to exploit the client-side
locality. If a copy of the object is not found in this cache, then Squirrel essentially
tries to locate a copy in some other cache. It starts by mapping the object URL
(the key) to a node in the network and then it invokes the Pastry routing procedure
to forward the request to the node with the node indentifier numerically closest to
this object indentifier. It designates the recipient as the home node for this object.

This architecture proposes two approaches for request resolution based on the ques-
tion of whether the particular node actually stores the data object, or whether it
only maintains a directory of the information about a small set of nodes that store
the object. These nodes, called delegates, are nodes whose browsers have recently
requested the object, and are likely to have it in their local caches.

BuddyWeb

BuddyWeb [125] is a peer-to-peer based collaborative web caching system designed
for enterprise networks. It combines the power of mobile agents into peer-to-peer
systems to perform operations at sites of peers. In BuddyWeb, all the local cache of
participating nodes are available to be shared, and the nodes within the enterprise
network will be searched first before remote external accesses are invoked. Buddy-
Web is supported by local components called BestPeer.

164

Whenever the web browser submits a URL request or keyword queries, the local
proxy will receive and rewrite the query into the input format of the BestPeer. The
query will then be passed to BestPeer component and it generates a mobile agent
and dispatches it to the network to search for matching documents. Upon receiving
a match, BestPeer passes the information about document location, back to the local
proxy. In this way, the local proxy will issue HTTP request directly to the peer that
has the documents. The peer, upon receiving the HTTP request, will process it by
the HTTP daemon, and sends the requested documents to the requester.

The peer network can dynamically reconfigure itself based on the similarity of its
interests. This similarity is established analysing the user fetched documents. The
routing strategy is also based on the idea of similarity of content of the peers. Query
are routed from a peer to its neighbor that has the highest similarity value.

Kache

The Kache [84] is a cooperative caching system implemented over a peer-to-peer
system called Kelips. Kelips implements an index over a set of participating caches
(nodes) where applications can insert (key,value) pairs into an indexing structure,
and can perform lookup operations on the keys, retrieving the associated value.
In this peer-to-peer indexing structure the objects can be inserted, retrieved, and
deleted from a distributed collection of nodes. The key of a cached web object copy
consists of its original URL, and the value would specify the location of the cached
copy.

Kelips consists of virtual affinity groups; each node lies in an affinity group de-
termined by using a consistent hashing function to map the identifier of node (IP
address and port number).

For query routing, Kelips starts with a single query in the hope that it will locate
the desired data resource rapidly. However, if a resource lookup or insert query fails,
the querying node retries the query in a more aggressive multi-hop mode. Query
retries occur along several axes: first, the querying node can concurrently send the
query to multiple contacts; second, contacts could be asked to forward the query
within their affinity group; and finally, the querying node could request the query
to be executed at another node in its own affinity group (if this is different from the
affinity group of the resource).

B.2 Cache Communication Protocols

Typical cache interaction consists in the exchange of information about cache con-
tent or direct exchange of data content. Different cooperative architectures need a

165

intercache communication protocol to support this function. Several protocols have
been proposed for different works. An over view is presented in this section.

B.2.1 Internet Cache Protocol (ICP)

The Internet Cache Protocol (ICP) [127] [126] was initially developed by Peter
Danzig, et. al. [128] at the University of Southern California as a central com-
ponent of hierarchical caching architecture in the Harvest research project [16].

ICP defines a lightweight message format used for communicating among web caches.
This communication protocol is primarily used in a cache group to locate specific
Web objects in neighboring caches. One cache sends an ICP query to its neighbors.
The neighbors send back ICP replies indicating a hit or a miss.

When a cache does not hold a requested object, it may ask via a query message
ICP QUERY whether any of its neighbor caches has the object. If any of the neigh-
bors has the requested object it receives a message ICP HIT, and the cache will
request it from them. If none of the neighbors has the object, it receives messages
ICP MISS, and the cache must forward the request either to a parent, or directly
to the originating server.

By default a cache sends an ICP QUERY message to each neighbor cache. Normally,
it expects to receive a ICP HIT reply from one of the neighbors. Because ICP uses
UDP as underlying transport, ICP queries and replies may sometimes be dropped
by the network. The cache installs a timeout event in case not all of the expected
replies arrive.

ICP protocol is supported by several proxy cache implementation like Squid, Mi-
crosoft ISA, Cisco Cache Enging and BlueCoat.

The Hypertext Caching Protocol (HTCP) was designed as a successor to the ICP. Its
objective is to increase the integration with HTTP. In general the global operation is
similar, HTCP fixes some limitation of ICP, thus it permits full request and response
headers to be used in the cache management in contrast with simple URL used in
ICP. The HTCP requests are designed for enabling HTCP replies to more accurately
describe the behavior that would occur as a result of a subsequent HTTP request of
the same resource.

B.2.2 Cache Digests

A cache digest [102] proposes a technique which allows caches to efficiently inform
each other about their contents without query reply scheme. Instead of transfer

166

the entire list of data objects from a cache to another, a summary or digest of the
contents of each cache is exchanged. These digest are compressed in a special array
of bits called Bloom Filter.

To add an entry to the bloom filter, a small number of independent hash functions
are computed for the key of entry (usually the URL). The hash function values
specify which bits of the filter should be turned on. To check whether a specific
entry is in the filter, it calculates the same hash function values for its key and
examine the corresponding bits. If one or more of the bits is off, then the entry is
not in the filter. If all bits are on, there is a probability that the entry is in the filter.

However, Bloom Filters do not perfectly represent all of the items they encode.
Occasionally the Bloom Filter will incorrectly report some item is present, when in
fact it is not. For web caches, this means to generate a remote cache miss when it
was expecting a cache hit.

Cache Digests use a pull technique for disseminating cache digests. The caches
exchange digests via HTTP. Pull fits very well with the current distribution and
access control schemes for web objects. For digest updates, after a proxy gets a
digest from its neighbor, the digest is no longer synchronized with the contents of
the cache of the neighbor. In that case is necessary for a proxy to notify its digest
users about recent changes in its cache contents.

The Summary Cache [51] is a similar protocol based on exchange of summary or
digest of the cache contents generated using a hash function. To reduce the overhead
the summaries are stored as a Bloom Filter and it does not have to be updated every
time the cache directory is changed; rather, the update can occur upon regular time
intervals or when a certain percentage of the cached documents are not reflected in
the summary.

B.2.3 CARP

The Cache Array Routing Protocol CARP) describes a distributed caching protocol
based on a known membership list of loosely coupled proxies and a hash function for
dividing URL space among those proxies [101] [122]. CARP provides a deterministic
request resolution path; there is no query messaging between proxy servers.

The basic mechanism of CARP is:

• All proxy servers are registered through an array membership list which is
automatically updated through a time-to-live (TTL) countdown function that
regularly checks for active proxy servers.

• A hash function is computed for the name of each proxy server.

167

• A hash value of the requested URL is calculated.

• The hash value of the URL is combined with the hash value for each proxy.
Whichever URL plus the proxy hash comes up with the highest value becomes
owner of the information cache.

The result is a deterministic location for all cached information, meaning that the
downstream proxy server can know exactly where a requested URL is either already
stored locally, or will be located after caching. Because the hash functions used to
assign great values, the result is a statistically distributed load balanced across the
array.

The deterministic request resolution path provided by CARP avoids the need to
maintain massive location tables for cached information. The client simply runs the
same math function across an object to determine where the object is.

The division of URL space among a group or array of proxy caches permits to
eliminate the duplication of contents that otherwise occurs on a group of proxy
servers. For example, with the ICP protocol a group of proxy servers can rapidly
evolve into essentially duplicate caches of the most frequently requested URLs. The
hash-based routing of CARP keeps this from happening, allowing all proxy servers
to exist as a single logical cache. The result is a more efficient use of server resources.

B.2.4 Web Cache Coordination Protocol (WCCP)

The Web Cache Communication Protocol (WCCP) [33] [34] was originally developed
by Cisco. WCCP enables routers or switches to transparently redirect the HTPP
packets to caches rather than to intended host sites. It also balances the traffic load
across a group of caches.

WCCP defines a Service Group of one or more routers plus one or more web-caches
working together in the redirection of the traffic. The purpose of the interaction
in WCCP is to establish and maintain the transparent redirection of selected types
of traffic flowing through a group of routers. The selected traffic is redirected to
a group of caches with the aim of optimizing the resource usage and lowering the
response times.

Unlike other cache protocols, WCCP uses the IP address of the web server instead of
the URL to calculate the hash function. A redirection hash table is maintained by the
router. This table maps the hash index derived from a HTTP packet to be redirected
to the IP address of a destination cache. Thus a router checks the destination IP
of the HTTP packets passing through it against its set of caches. A primary key is
formed from the packet and hashed to yield an index into the redirection hash table.

168

If the entry contains a cache index then the packet is redirected to that cache. If
the entry is unassigned the packet is forwarded normally.

Once the service group has been established, one of the caches is designated to
determine load assignments among the caches. The role of this cache is to determine
how traffic should be allocated across caches. The assignment information is passed
to the entire service group from the designated cache so that the routers of the group
can redirect the packets properly and the cache of the group can manage their load
better.

169

Appendix C

Activity Information Elements

C.1 Activity Information Elements

C.1.1 Storage Usage

Storage usage is the information activity about storage capacity used by the storage
entity at a specific time. It is used to establish the available storage capacity of a
storage resource in a dynamic way. It permits to establish historical utilisation of
the storage resource. The figure C.1 shows the XML Schema element definition of
the storage usage activity information.

<xsd:element name="storage_usage">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="dateTime" type="xsd:dateTime"/>

<xsd:element name="used_storage">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base="xsd:integer">

<xsd:attribute name="units" type="storageUnitsType" use="required"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:integer"/>

</xsd:complexType>

</xsd:element>

Figure C.1: XML Schema element definition of the storage usage activity information

170

C.1.2 Data Action

Data action is the information that registers the individual activity of each data
entity. This information permits tracing in detail the access operations realised on
a specific data object. This includes the main record of the data access operations.
It also includes the internal operations initiated by the cache system: it comprises
the source or entity (local cache instance, remote cache instance, client etc) that
causes the action. Making data action information available makes it possible to
establish the degree of activity of particular data objects. The figure C.2 shows the
XML Schema element definition of the data action activity information.

<xsd:element name="data_action">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="operation" type="dataActionsType"/>

<xsd:element name="source" type="xsd:string" />

<xsd:element name="dateTime" type="xsd:dateTime" />

<xsd:element name="data_id" type="xsd:integer" />

<xsd:element name="data_name" type="xsd:string"/>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:integer" />

</xsd:complexType>

</xsd:element>

Figure C.2: XML Schema element definition of data action activity information

C.1.3 Data Transfer

Data Transfer is the activity information that registers the individual data transfers
between cache instances. This information establishis in a detailed manner the data
transfers realised between cache instances. The analysis of this information permits
to know the behaviour of the system in relation to resource usage in the context
of a global data movement. Similarly it is the base to establish data movement
patterns in the distributed system. Recognising data movement patterns allows the
execution of sophisticated data distribution strategies. Transfer data information
comprises the source and destination locations (cache instances) and transfer time
elapsed. The figure C.3 shows the XML Schema element definition of the data
transfer activity.

C.1.4 Request

Request is the activity information element used to register the individual request
processed by a cache instance. This information permits to measure the performance

171

<xsd:element name="data_transfer">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="data_id" type="xsd:integer" />

<xsd:element name="data_name" type="xsd:string" />

<xsd:element name="cache_source" type="xsd:string" />

<xsd:element name="cache_destination" type="xsd:string" />

<xsd:element name="start_date_time" type="xsd:dateTime" />

<xsd:element name="finish_date_time" type="xsd:dateTime"/>

<xsd:element name="status" type="statusType" />

</xsd:sequence>

<xsd:attribute name="id" type="xsd:integer" />

</xsd:complexType>

</xsd:element>

Figure C.3: XML Schema element definition of data transfer activity information

and effectiveness of the cache instance. Request information include the name the
operation demanded, the type of request (client or intercache), the type of response
(successful, failed, not supported), and the time elapsed for processing of the request.
The figure C.4 shows the XML Schema element definition of the request element.
The status element indicates the state of requests like submitted, started, finish,
cancelled or undefined.

<xsd:element name="request">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="operation" type="operationsType"/>

<xsd:element name="type_request" type="requestType"/>

<xsd:element name="type_response" type="responseType"/>

<xsd:element name="start_date_time" type="xsd:dateTime" />

<xsd:element name="finish_date_time" type="xsd:dateTime"/>

<xsd:element name="status" type="statusType" minOccurs="0"/>

<xsd:element name="source" type="xsd:string" />

<xsd:element name="destination" type="xsd:string" />

</xsd:sequence>

<xsd:attribute name="id" type="xsd:integer" />

</xsd:complexType>

</xsd:element>

Figure C.4: XML Schema element definition of request activity information

172

Appendix D

Cache Operations Definitions

D.1 Access Operations

The operations discussed in this section need appropriate security priviledges to
succeed. The users need to be authorised and authenticated to perform data object
access actions: we assume that the users are authorised and authenticated by a
service or system defined by the community that deploys the grid. In other work
our research team proposes an architecture for the protection of confidential data
on Grids [107] [106] [105].

D.1.1 SetData()

SetData() is used to register in the cache service a data entity element (section 4.6.1)
that corresponds to a new data object placed in the storage resource managed by the
cache instance. The SetDataRequest needs as parameter a data entity element with
name as a unique identifier (for example Logical File Name). Additional items are
optional and merely descriptive information; including Metadata entity 4.6.1.

The operation implementation updates values for size, internal path location and
creation date using local underlying I/O facilities. For intercache working, the im-
plementation operation starts the data transfer between cache services using the
mechanism of data transport (see section 3.3). The cache service creates a unique
numerical identification id for each data entity registered which is used internally
for the cache system.

The operation returns a SetDataResponse element with the operation confirmation
which can be successful, failed or not supported. The figure D.1 shows the XML
Schema element definition of the SetData() operation.

173

<xsd:element name="SetDataRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element ref="data" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="SetDataResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.1: XML Schema element definition of the SetData() operation

D.1.2 GetData()

GetData() is used to retrieve from the cache service a data entity element (section
4.6.1) that corresponds to data object storage in the cache instance. The Get-
DataRequest needs as parameter a data name supplied as unique identifier (for
example Logical File Name) with the SetData() operation (see section D.1.1) or the
id registered by the cache service.

In the working intercache, the cache service starts the data transfer between cache
services using a mechanism for data transport (see section 3.3). The cache service
can execute a mechanism for the collaborative resolution between several caches, this
only will be possible if collaborative mechanism are implemented and configured by
the cache group.

The GetDataResponse return the data entity element if the data object is present in
the cache system. On the contrary, the type response of the response header is set to
failed. The figure D.2 shows the XML Schema element definition of the GetData()
operation.

D.1.3 RemoveData()

RemoveData() is used for removing; each specified data entity from the cache services
a data entity element (section 4.6.1) that corresponds to the data object storage in
the cache instance. Similar to GetDataRequest the RemoveDataRequest, it needs as
parameter a data name supplied as a unique identifier (for example a Logical File

174

<xsd:element name="GetDataRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element name="data_id" type="xsd:string"/>

<xsd:element name="data_name" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="GetDataResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

<xsd:element ref="data" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.2: XML Schema element definition of the GetData() operation

Name) with the SetData() operation (see section D.1.1) or the id registered by the
cache service.

The RemoveDataResponse returns the data entity element if the data object is
present in the cache system. In the contrary case, the type response of the response
header is set in failed. The figure D.3 shows the XML Schema element definition of
the RemoveData() operation.

D.1.4 GetDataContent()

GetDataContent() returns the list of all data entity elements (section 4.6.1) that are
stored in the cache instance. The GetDataContentRequest does not take parameters
in addition to requestHeader.

This operation can be used to exchange content indexes between cache instances.
Other processes can be implemented based on this information, for example, control
copy proliferation among the cache group.

The GetDataContentResponse returns a list of data entity elements. On the contrary
case, the type response of response header is set to failed. The figure D.4 shows the
XML Schema element definition of the GetDataContent() operation.

175

<xsd:element name="RemoveDataRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element name="data_id" type="xsd:string"/>

<xsd:element name="data_name" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="RemoveDataResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

<xsd:element ref="data" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.3: XML Schema element definition of the RemoveData() operation

<xsd:element name="GetDataContentRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="GetDataContentResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

<xsd:element ref="data" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.4: XML Schema element definition of the GetDataContent() operation

D.1.5 SetMetatada()

SetMetatada() updates the metadata entity information (section 4.6.1) that cor-
responds to data entity (section 4.6.1) managed by the cache system. The Set-
MetatadaRequest element takes as parameters the data name or data id of the data
entity and the data metadata element with information to register.

176

This operation permits to update the description information about data content
managed by the cache. This is basic functionality that does not substitute a meta-
data management mechanism. Metadata in the cache system can be used to add a
complementary description of data in cache. The operation implementation can be
supported by a metadata catalog based on a database management system.

The operation returns a SetMetatadaResponse element with operation confirmation.
If the data entity does not exist in the cache system, the type response in the
responseHeader is set to failed. The figure D.5 shows the XML Schema element
definition of the SetMetatada() operation.

<xsd:element name="SetMetatadaRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element name="data_name" type="xsd:string"/>

<xsd:element name="data_id" type="xsd:integer"/>

<xsd:element ref="data_metadata"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="SetMetatadaResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.5: XML Schema element definition of the SetMetatada() operation

D.1.6 GetMetatada()

GetMetatada() retrieves the metadata entity information (section 4.6.1) that corre-
sponds to a data entity (section 4.6.1) in the cache system. The getMetatadaRequest
element takes as parameters the data name or data id of the data entity.

This operation is used to get a basic and complementary information about the data
content in the cache system. The operation implementation can be supported by a
metadata catalogue based on a database management system.

The operation returns a getMetatadaResponse element with the metadata entity
requested. In a negative case, if the data entity does not exist in the cache system,
the type response in the response header is set to failed. The figure D.6 shows the
XML Schema element definition of the GetMetatada() operation.

177

<xsd:element name="getMetatadaRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element name="data_name" type="xsd:string"/>

<xsd:element name="data_id" type="xsd:integer"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getMetatadaResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

<xsd:element ref="data_metadata"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.6: XML Schema element definition of the GetMetatada() operation

D.2 Monitor Operations

D.2.1 GetCache()

GetCache() retrieves the cache entity information (section 4.6.1) that corresponds to
a cache service instance. The getCacheRequest element does not take as parameters
in addition to requestHeader.

This operation permits to know the current description and configuration of a cache
service instance. Gathering cache entity information from a group of caches permits
to establish the global state of the collective system.

The operation returns a getCacheResponse element with the cache entity information
requested. If the cache entity does not exist in the cache instance, the type response
in the response header is set to failed. The figure D.7 shows the XML Schema
element definition of the GetCache() operation.

D.2.2 GetReplacementMethod()

GetReplacementMethod() retrieves the name of replacement method applied in a
cache instance. It is registered in the replacement method element of cache entity
information (section 4.6.1). The getReplacementMethodRequest element does no take

178

<xsd:element name="getCacheRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getCacheResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

<xsd:element ref="cache" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.7: XML Schema element definition of GetCache() operation

parameters in addition to requestHeader.

This operation permits to know dynamically the replacement method applied by a
cache service.

The operation returns a getReplacementMethodResponse element with the name
of the replacement method in execution. The figure D.8 shows the XML Schema
element definition of the GetReplacementMethod() operation.

<xsd:element name="getReplacementMethodRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getReplacementMethodResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

<xsd:element name="replacement_method" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.8: XML Schema element definition of the GetReplacementMethod() oper-
ation

179

D.2.3 GetStorage()

GetStorage() retrieves the storage entity information (section 4.6.1) that corresponds
to a storage resource registered in a cache service instance. The getStorageRequest
element takes as parameter the storage identification of the storage element.

This operation permits to establish the configuration of a storage resource in a
particular cache service instance. It is used to analyse and evaluate the features of
the available storage resources.

The operation returns a getStorageResponse element with the storage entity infor-
mation required. If the cache entity has not registered the storage resource, the type
response in the responseHeader is set to failed . The figure D.9 shows the XML
Schema element definition of the GetStorage() operation.

<xsd:element name="getStorageRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element name="storage_id"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getStorageResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

<xsd:element ref="storage"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.9: XML Schema element definition of the GetStorage() operation

D.2.4 GetCacheGroup()

GetCacheGroup() retrieves the cache group entity information (section 4.6.1) regis-
tered in a cache instance. The getCacheGroupRequest element takes as parameters
the cache group identifier or the cache group name of the cache group.

This operation permits to monitor the configuration information of a cache service.
This information is essential to support the implemented intercache collaboration
mechanisms between groups of caches.

180

The operation returns a getCacheGroupResponse element with the cache group en-
tity required. If the cache entity does not have registered a group, the type response
in the response header is set in failed. The figure D.10 shows the XML Schema
element definition of the GetCacheGroup() operation.

A cache service can participate to several groups. Each cache instance keeps one
or several Cache Group information entities (see section 4.6.1) that record the
members of different groups.

<xsd:element name="getCacheGroupRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element name="cache_group_id" type="xsd:integer"/>

<xsd:element name="cache_group_name" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getCacheGroupResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

<xsd:element ref="cache_group" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.10: XML Schema element definition of GetCacheGroup() operation

D.2.5 GetRequestProcessed()

GetRequestProcessed() returns a subset of the total request elements (section C.1.4)
registered by the cache instance. The getRequestProcessedRequest takes as parame-
ters the initial and final date of the time period required.

This operation permits to obtain the detailed information about the request pro-
cessed by the cache service at specific time period. An extension of the operation
can include other parameters such as the type request, the type response, the status,
the source or thedestination. The operation implementation can be supported by
queries to a database management system that registers the requests processed by
the system.

The operation returns a getRequestProcessedResponse element with a list of the
request elements. The figure D.11 shows the XML Schema element definition of the
GetRequestProcessed() operation.

181

<xsd:element name="getRequestProcessedRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element name="start_date_time" type="xsd:dateTime"/>

<xsd:element name="finish_date_time" type="xsd:dateTime"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getRequestProcessedResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

<xsd:element ref="request" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.11: XML Schema element definition of the GetRequestProcessed() opera-
tion

D.2.6 GetTransfers()

GetTransfers() returns a subset of the total transfer data elements (section C.1.3)
registered by the cache instance. The getTransfersRequest takes as parameters the
initial and final date of the time period required.

This operation permits to obtain the detailed information about the data transfers
realised by the cache service at specific time period. An extension of the operation
can include other parameters in addition to time period such as the data entity, the
source, the destination or the status. The operation returns a getTransfersResponse
element with a list of the transfer data elements required. The figure D.12 shows
the XML Schema element definition of the GetTransfers() operation.

D.2.7 GetDataActions()

GetDataActions() returns a subset of the total data action elements (section C.1.2)
registered by the cache instance. The GetDataActionsRequest takes as parameters
the initial and final date of the time period required.

This operation permits to obtain the detailed information about the data actions
realised by the cache service at specific time period. An extension of the operation
can include other parameters in addition to time period such as the operation, the

182

<xsd:element name="getTransfersRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element name="start_date_time" type="xsd:dateTime"/>

<xsd:element name="finish_date_time" type="xsd:dateTime"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getTransfersResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

<xsd:element ref="transfer_data" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.12: XML Schema element definition of GetTransfers() operation

source or the data entity. The combination of these parameters permit the extraction
statistical information derived from data action activity information registered. For
example, it is possible to establish the number of access to a specific data entity at a
particular time period. The operation implementation can be supported by queries
to a database management system that registers the data actions realised by the
system.

The operation returns a GetDataActionsResponse element with a list of data ac-
tion elements. The figure D.13 shows the XML Schema element definition of the
GetDataActions() operation.

D.2.8 GetDataReplacements()

GetDataReplacements() returns the number of data replacements realised by the
cache service instance. This value is obtained by calculation on a subset of the
total data action elements (section C.1.2) registered by the cache instance. The
GetDataReplacementsRequest takes as parameters the initial and final date of the
time period required.

This operation obtains the number of data replacements realised by the cache service
at specific time period. It is a result derived from information registered with data
action elements. This measure permits to monitor an operational parameter in
relationship with the cache service load. The operation implementation can be
supported by queries to a database management system that registers the data

183

<xsd:element name="GetDataActionsRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element name="start_date_time" type="xsd:dateTime"/>

<xsd:element name="finish_date_time" type="xsd:dateTime"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="GetDataActionsResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

<xsd:element ref="data_action" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.13: XML Schema element definition of the GetDataActions() operation

actions realised by the system.

The operation returns a GetDataReplacementsResponse with the number of data
replacements. The figure D.14 shows the XML Schema definition element of the
GetDataActions() operation.

<xsd:element name="GetDataReplacementsRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element name="start_date_time" type="xsd:dateTime"/>

<xsd:element name="finish_date_time" type="xsd:dateTime"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="GetDataReplacementsResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

<xsd:element name="number_replacements" type="xsd:integer"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.14: XML Schema element definition of the GetDataActions() operation

184

D.2.9 GetStorageCapacity()

GetStorageCapacity() returns the current quantity of storage available as managed
by the cache instance. The getStorageCapacityRequest does not takes parameters.

This operation obtains the current storage capacity available in a cache service. This
value permits to gather information from several caches to establish dynamically
their collective capacity. The operation implementation can be obtained from data
elements 4.6.1 registered or from functions supported for the storage management
subsystem in the local installation.

The operation returns a getStorageCapacityResponse with the capacity value. The
figure D.15 shows the XML Schema definition element of the GetStorageCapacity()
operation.

<xsd:element name="getStorageCapacityRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getStorageCapacityResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

<xsd:element name="capacity" type="xsd:integer"/>

<xsd:element name="capacity_unit" type="storageUnitsType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.15: XML Schema element definition of the GetStorageCapacity() operation

D.3 Configuration Operations

Configuration operations are invoked by grid resource administrators that require
to configure collaborative cache systems.

185

D.3.1 SetCache()

SetCache() updates the cache entity information (section 4.6.1) that corresponds to a
particular cache service instance. The setCacheRequest element takes as parameters
the cache element with information that describes the cache service instance to
register.

This operation updates the configuration information of a cache service. It is used
to start the service or updates one or more elements of a cache entity information.
It updates several values with only one operation. The operation implementation
must initiate the actions related with the configuration modifications.

The operation returns a setCacheResponse element with operation confirmation. If
the cache entity was not updated in the cache system, the type response in the
response header is set to failed. The figure D.16 shows the XML Schema definition
element of the SetCache() operation.

<xsd:element name="setCacheRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element ref="cache"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="setCacheResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.16: XML Schema element definition of the SetCache() operation

D.3.2 SetReplacementMethod()

SetReplacementMethod() actives the replacement method in the cache instance. It
also updates the value in the replacement method element of cache entity information
(section 4.6.1). The setReplacementMethodRequest element takes as parameters the
name of the new replacement method.

This operation configures dynamically the replacement method applied by a cache
service. It is used to modify the operation and possibly the performance of the cache

186

service. In the operation implementation different replacement methods can be sup-
ported. The specified method is applied immediately the operation is processed.
Cache instance implements the necessary procedures to update the parameters re-
quired by each configuration.

The operation returns a setReplacementMethodResponse element with response header.
Thus the type response element can have successful values if the method was changed,
or not supported if the cache mechanism does not implement the method required.
The figure D.17 shows the XML Schema definition element of the SetReplacement-
Method() operation.

<xsd:element name="setReplacementMethodRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element name="replacement_method" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="setReplacementMethodResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.17: XML Schema element definition of the SetReplacementMethod() op-
eration

D.3.3 SetCacheGroup()

SetCacheGroup() updates the cache group entity information (section 4.6.1) that
describes a cache group which the cache service is member. The setCacheGroupRe-
quest element takes as parameters the cache group element with the list of members
of the group.

This operation permits updates the group configuration information of a cache ser-
vice. It is used to inform each member the list the members belong to a group.
It also supports the mechanisms that manage the addition and retire of members.
This cache group information is essential to support the intercache collaboration
mechanisms.

The operation returns a setCacheGroupResponse element. The figure D.18 shows
the XML Schema definition element of the SetCacheGroup() operation.

187

<xsd:element name="setCacheGroupRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element ref="cache_group"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="setCacheGroupResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.18: XML Schema element definition of the SetCacheGroup() operation

D.3.4 SetStorage()

SetStorage() updates the storage entity information (section 4.6.1) that corresponds
to a storage resource controlled by a cache service instance. The setStorageRequest
element takes as parameter the storage element with information that describes the
storage resource to register.

This operation permits to assign the configuration information of a storage resource
to be managed by a cache service instance. It is used to update storage resources
configuration in a cache service. The operation implementation interacts with con-
figured resource using the I/O facilities in the local installation.

The operation returns a setStorageResponse element. The figure D.19 shows the
XML Schema definition element of the SetStorage() operation.

D.3.5 SetDefaultTimeToLive()

SetDefaultTimeToLive() sets the minimal time that a data object must be kept in
cache before it can be evicted. It updates the default ttl element of cache entity
information (section 4.6.1) of the cache service instance in execution. The setDe-
faultTimeToLive element takes as a parameter the time to be applied.

This operation permits to configure dynamically the default time to live applied
by a cache service to data entities. It is used to regulate cache replacement rate.
The operation implementation can support this option with different replacement

188

<xsd:element name="setStorageRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element ref="storage"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="setStorageResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.19: XML Schema element definition of the SetStorage() operation

methods. The specified time value is applied immediately the operation is processed.

The operation returns a setDefaultTimeToLiveResponse element. The type response
element can have the values: successful if the value was applied, or not supported
if the cache mechanism does not implement this option. The figure D.20 shows the
XML Schema element definition of the SetDefaultTimeToLive() operation.

<xsd:element name="setDefaultTimeToLiveRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element name="time" type="timeUnitsType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="setDefaultTimeToLiveResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.20: XML Schema element definition of the SetDefaultTimeToLive() time
to live operation

189

D.3.6 SetCacheCoordinator()

SetCacheCoordinator() sets the cache instance coordinator by default of a cache
service. The coordinator is typically a high level cache instance in a collaborative
hierarchical organisation (section B.1.1). The setCacheCoordinatorRequest element
takes as parameter the cache identification that identify the coordinator cache.

This operation permits to assign dynamically a cache instance as coordinator or
high level cache in a collaborative hierarchical organisation. It is used to modify the
relationship between a group of caches. The operation implementation depends of
the collaborative cache mechanisms supported by the cache services involved.

The operation returns a setCacheCoordinatorResponse element. The type response
element can have the values: successful, if the value was applied, or not supported
if the cache mechanism does not implement this option. The figure D.21 shows the
XML Schema element definition of the SetCacheCoordinator() operation.

<xsd:element name="setCacheCoordinatorRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element name="cache_id" type="xsd:integer"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="setCacheCoordinatorResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.21: XML Schema element definition of SetCacheCoordinator() operation

D.3.7 SetCacheCollectiveWork()

SetCacheCollectiveWork() actives or inactives the cache operation in collective mode.
With the collective mode active the cache service works invoking capabilities from
other cache services. With the collective mode inactivate the cache service does not
invoke external capabilities. The setCacheCollectiveWorkRequest element takes as
parameter a boolean value that actives or inactives the option.

This operation turns off the capacity of the cache instance for request operations

190

from other caches. It is used to stop or start the collective operation of an individual
cache instance.

The operation returns a setCacheCollectiveWorkResponse element. The type re-
sponse element can have the values: successful if the new mode was applied, or
not supported if the cache mechanism does not implement this option. The figure
D.22 shows the XML Schema definition element of the SetCacheCollectiveWork()
operation.

<xsd:element name="setCacheCollectiveWorkRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="requestHeader"/>

<xsd:element name="name="work_on_collective_mode" type="xsd:boolean" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="setCacheCollectiveWorkRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="responseHeader"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure D.22: XML Schema element definition of the SetCacheCollectiveWork ()
operation

191

Bibliography

[1] ABRAMS M., STANDRIDGE C., ABDULLA G., et al . Caching Prox-
ies: Limitations and Potentials. Technical report [on-line]. Virginia Poly-
technic Institute & State University, Blacksburg, VA, USA, 1995. Available
from: http://ei.cs.vt.edu/succeed/www4/www4.html (webpage visited on
29.03.2007).

[2] ABRAMS M., STANDRIDGE C., ABDULLA G., et al . Removal Policies in
Network Caches for World-Wide Web Documents. In : SIGCOMM, 1996, pp
293–305.

[3] AHMED M., ZAHEER R., QADIR M. Intelligent cache management for data
grid. In : ACSW Frontiers ’05: Proceedings of the 2005 Australasian workshop
on Grid computing and e-research, 2005, Darlinghurst, Australia, Australia.
Australian Computer Society, Inc., pp 5–12.

[4] ALLCOCK W. GridFTP: Protocol Extensions to FTP for the Grid. Technical
report [on-line]. Global Grid Forum, 2003. Available from: http://www.ogf.
org/documents/GFD.20.pdf (webpage visited on 16.04.2007).

[5] ALLIANCE GLOBUS, IBM . The WS-Resource Framework (WSRF). Tech-
nical report [on-line]. Globus Alliance, 2004. Available from: http:

//www.globus.org/wsrf (webpage visited on 11.08.2007).

[6] ALTINEL M., BORNHÖVD C., KRISHNAMURTHY S., et al . Cache Tables:
Paving the Way for an Adaptive Database Cache. In : VLDB, 2003, pp 718–
729.

[7] ANTONIOLETTI M., ATKINSON M., PATON N., et al . The design and im-
plementation of Grid database services in OGSA-DAI. Concurrency - Practice
and Experience, 2005, vol. 17, no2-4, pp. 357-376.

[8] ANTONIOLETTI M., COLLINS B., PATON N., et al . Web Services Data
Access and Integration. Technical report [on-line]. Global Grid Forum, 2006.
Available from: http://www.ogf.org/documents/GFD.76.pdf (webpage vis-
ited on 16.04.2007).

[9] ARLITT M., CHERKASOVA L., DILLEY J., et al . Evaluating Content
Management Techniques for Web Proxy Caches. SIGMETRICS Perform. Eval.
Rev., 2000, vol. 27, no4, pp. 3–11.

192

[10] ARLITT M., FRIEDRICH R, JIN T. Performance evaluation of Web proxy
cache replacement policies. Perform. Eval., 2000, vol. 39, no1-4, pp. 149-164.

[11] BAKKER A., AMADE E., BALLINTIJN G., et al . In : USENIX Annual
Technical Conference, FREENIX Track, 2000, pp 141–152.

[12] BARU C., MOORE R., RAJASEKAR A., et al . The SDSC Storage Resource
Broker. In : Proceedings of the 1998 conference of the Centre for Advanced
Studies on Collaborative Research, November 30 - December 3, 1998, Toronto,
Ontario, Canada. 1998, IBM, pp 5.

[13] BIOMEDICAL INFORMATICS RESEARCH NETWORK . BIRN [on-line].
Available from: http://www.nbirn.net (webpage visited on 16.04.2007).

[14] BLAZE M., ALONSO R. Dynamic Hierarchical Caching for Large-Scale Dis-
tributed File Systems. In : ICDCS, 1992, pp 521–528.

[15] BOLOT J-C., HOSCHKA P. Performance Engineering of the World Wide
Web: Application to Dimensioning and Cache Design. Computer Networks,
1996, vol. 28, no7-11, pp. 1397-1405.

[16] BOWMAN C., DANZIG P., HARDY D., et al . The Harvest Information
Discovery and Access System. Computer Networks and ISDN Systems, 1995,
vol. 28, no1–2, pp. 119–125 (or 119–126).

[17] BOWMAN C., DANZIG P., MANBER U., et al . Scalable Internet Resource
Discovery: Research Problems and Approaches. Commun. ACM, 1994, vol.
37, no8, pp. 98–ff.

[18] BRAY T., PAOLI J., SPERBERG-MCQUEEN C. Extensible Markup Lan-
guage (XML). World Wide Web Journal, 1997, vol. 2, no4, pp. 27-66.

[19] CAO P., IRANI S. Cost-Aware WWW Proxy Caching Algorithms. In :
USENIX Symposium on Internet Technologies and Systems, 1997.

[20] CARDENAS Y., PIERSON J-M, BRUNIE L. Service de Cache pour les Grilles
de Calcul. In : F. CLOPPET , J. PETITN. VINCENT Extraction des connais-
sances: état et perspectives, RNTI E-5 ISBN: 978-2-85428-707-3, chapter 6.
Editions Cépaduès, 2005.

[21] CARDENAS Y., PIERSON J-M., BRUNIE L. Uniform Distributed Cache
Service for Grid Computing. In : DEXA Workshops. 2005, IEEE Computer
Society, pp 351–355.

[22] CARDENAS Y., PIERSON J-M., BRUNIE L. Management of Cooperative
Cache in Grids. In : 2nd International Workshop on Data Management in
Grids DMG VLDB 2006 32nd International Conference on Very Large Data
Bases, VLDB Data Management in Grids Workshop 2006, sep 2006, pp 38–49.

193

[23] CARDENAS Y., PIERSON J-M., BRUNIE L. Temporal Storage Space for
Grids. In : Second International Conference on High Performance Computing
and Communications (HPCC 2006), Lecture Notes in Computer Science. sep
2006, Springer, pp 803–812.

[24] CARDENAS Y., PIERSON J-M., BRUNIE L. Management of a Coopera-
tive Cache in Grids with Grid Cache Services. Concurrency and Computa-
tion:Practice and Experience, nov 2007, vol. 19, no16, pp. 2141–2155.

[25] CARON E., DESPREZ F., NICOD J-M., et al . A Scalable Approach to
Network Enabled Servers. In : Euro-Par ’02: Proceedings of the 8th In-
ternational Euro-Par Conference on Parallel Processing, 2002, London, UK.
Springer-Verlag, pp 907–910.

[26] CENTRE EUROPEEN POUR LA RECHERCHE NUCLAIRE . Cern Ad-
vanced Storage Manager (CASTOR) [on-line]. Available from: http://

castor.web.cern.ch/castor (webpage visited on 16.04.2007).

[27] CENTRE EUROPEEN POUR LA RECHERCHE NUCLAIRE . LHC Com-
puting Grid Project [on-line]. Available from: http://lcg.web.cern.ch/LCG
(webpage visited on 16.04.2007).

[28] CHANKHUNTHOD A., DANZIG P., NEERDAELS C., al . A Hierarchical
Internet Object Cache. In : USENIX Annual Technical Conference, 1996, pp
153–164.

[29] CHERVENAK A., DEELMAN E., FOSTER I., et al . Giggle: a framework
for constructing scalable replica location services. In : SC, 2002, pp 1–17.

[30] CHERVENAK A., FOSTER I., KESSELMAN C., et al . The Data Grid:
Towards an architecture for the distributed management and analysis of large
scientific datasets. Journal of network and computer applications, 2000, vol.
23, no3, pp. 187-200.

[31] CHERVENAK A., SCHULER R., KESSELMAN C., et al . Wide Area Data
Replication for Scientific Collaborations. In : GRID ’05: Proceedings of the
6th IEEE/ACM International Workshop on Grid Computing, 2005, Washing-
ton, DC, USA. IEEE Computer Society, pp 1–8.

[32] CHRISTENSEN E., CURBERA F., MEREDITH G., et al . Web Services
Description Language (WSDL). Technical report [on-line]. World Wide
Web Consortium (W3C), 2001. Available from: http://www.w3.org/TR/wsdl
(webpage visited on 11.08.2007).

[33] CIESLAK M., FORSTER D. Web Cache Coordination Proto-
col V1.0 [on-line]. Available from: http://www.wrec.org/drafts/

draft-ietf-wrec-web-pro-00.txt (webpage visited on 28.03.2007).

[34] CIESLAK M., FORSTER D., TIWAN G., et al . Web Cache Coordina-
tion Protocol V2.0 [on-line]. Available from: http://www.web-cache.com/

Writings/Internet-Drafts (webpage visited on 28.03.2007).

194

[35] COQUIL D. Conception et Mise en Oeuvre de Proxies Sémantiques et
Coopératifs. PhD thesis. Villeurbanne, France : INSA de Lyon, March 2006,
208 p.

[36] COQUIL D., BRUNIE L., PIERSON J-M. Semantic collaborative web caching.
In : Ling Tok Wang, Dayal Umeshwar, Bertino Elisa, Ng Wee Keong, Goh
Angela 3rd International Conference on Web Information Systems Engineering
(WISE 2002). 2002, IEEE Computer Society, pp 30–42.

[37] COQUIL D., BRUNIE L., SIMON S. Software Architectures for Collaborative
Proxies in Wide Area Information Systems. In : Tjoa A. Min, Wagner Roland
12th International Workshop on Database and Expert Systems Applications
(DEXA 2001). 2001, IEEE Computer Society, pp 146–150.

[38] DAIS-WG . The OGSA-DAI Project [on-line]. Available from: http://www.
ogsadai.org.uk (webpage visited on 16.04.2007).

[39] DATAGRID PROJECT , GLOBUS ALLIANCE . Replica Location Service
(RLS) [on-line]. Available from: http://www.globus.org/toolkit/data/

rls (webpage visited on 16.04.2007).

[40] DEHNE F., LAWRENCE M. Cooperative Caching for Grid Based DataWare-
houses. In : Seventh IEEE International Symposium on Cluster Computing
and the Grid, 2007. CCGRID 2007.

[41] DEL-FABBRO B., NICOD J-M., LAIYMANI D., et al . DTM: a service
for managing data persistency and data replication in network-enabled server
environments. Concurr. Comput. : Pract. Exper., 2007, vol. 19, no16, pp.
2125–2140.

[42] D’ORAZIO L., JOUANOT F., RONCANCIO C., et al . Distributed Semantic
Caching in Grid Middleware. In : WAGNER R., REVELL N., PERNUL G.
DEXA, volume 4653 of Lecture Notes in Computer Science. 2007, Springer,
pp 162–171.

[43] D’ORAZIO L., VALENTIN O., RONCANCIO C., et al . Services de cache et
intergiciel pour grilles de données. In : LAURENT D. 22èmes Journées Bases
de Données Avancées, BDA 2006, Lille, 17-20 octobre 2006, Actes (Informal
Proceedings), 2006.

[44] DUBOIS M., SCHEURICH C., BRIGGS F. Synchronization, Coherence, and
Event Ordering in Multiprocessors. IEEE Computer, 1988, vol. 21, no2, pp.
9-21.

[45] E.OTOO , OLKEN F., SHOSHANI A. Disk cache replacement algorithm
for storage resource managers in data grids. In : Supercomputing ’02: Pro-
ceedings of the 2002 ACM/IEEE conference on Supercomputing, 2002, Los
Alamitos, CA, USA. IEEE Computer Society Press, pp 1–15.

195

[46] ESCHMANN F., KLAUER B., MOORE R., et al . SDAARC: An Extended
Cache-Only Memory Architecture. IEEE Micro, 2002, vol. 22, no3, pp. 62-70.

[47] EUROPEAN COMMISSION . Enabling Grids for E-science project [on-line].
Available from: http://www.eu-egee.org (webpage visited on 22.10.2007).

[48] EUROPEAN DATAGRID PROJECT , PARTICLE PHYSICS DATA GRID
PROJECT . Grid Data Mirroring Package (GDMP) [on-line]. Available
from: http://project-gdmp.web.cern.ch/project-gdmp (webpage visited
on 16.04.2007).

[49] EUROPEAN UNION . The DataGrid Project [on-line]. Available from:
http://eu-datagrid.web.cern.ch (webpage visited on 22.10.2007).

[50] EXOLAB GROUP . Castor Project [on-line]. Available from: http://www.
castor.org (webpage visited on 11.08.2007).

[51] FAN L., CAO P., ALMEIDA J., et al . Summary Cache: A Scalable Wide-
Area Web Cache Sharing Protocol. IEEE/ACM Trans. Netw., 2000, vol. 8,
no3, pp. 281-293.

[52] FERMI NATIONAL ACCELERATOR LABORATORY . Fermilab Mass
Storage System (MSS) [on-line]. Available from: http://www-isd.fnal.

gov/enstore (webpage visited on 16.04.2007).

[53] FOSTER I. The Anatomy of the Grid: Enabling Scalable Virtual Organiza-
tions. In : First IEEE International Symposium on Cluster Computing and
the Grid (CCGrid 2001), May 15-18, 2001, Brisbane, Australia. 2001, IEEE
Computer Society, pp 6–7.

[54] FOSTER I., KESSELMAN C. The Globus project: a status report. Future
Generation Computer Systems, 1999, vol. 15, no5–6, pp. 607–621.

[55] FOSTER I., KESSELMAN C., NICK J., et al . Grid Services for Distributed
System Integration. IEEE Computer, 2002, vol. 35, no6, pp. 37-46.

[56] FOSTER I., TUECKE S., UNGER J. OGSA Data Services. Technical report
[on-line]. Global Grid Forum, 2003. Available from: http://forge.ggf.

org/projects/dais-wg (webpage visited on 16.04.2007).

[57] GADDE S., CHASE J., RABINOVICH M. A Taste of Crispy Squid. In
: Proceedings of the Workshop on Internet Server Performance (WISP’98),
1998.

[58] GADDE S., RABINOVICH M., CHASE J. Reduce, Reuse, Recycle: An Ap-
proach to Building Large Internet Caches. In : HOTOS ’97: Proceedings of
the 6th Workshop on Hot Topics in Operating Systems (HotOS-VI), 1997,
Washington, DC, USA. IEEE Computer Society, pp 93.

196

[59] GHARACHORLOO K., LENOSKI D., LAUDON J., et al . Memory Consis-
tency and Event Ordering in Scalable Shared-Memory Multiprocessors. In :
25 Years ISCA: Retrospectives and Reprints, 1998, pp 376–387.

[60] GIBSON G., KLEIMAN S., SHEPLER S., et al . High performance NFS:
facts and fictions. In : SC. 2006, ACM Press, pp 68.

[61] GLOBAL GRID FORUM . Reliable File Transfer (RFT) Service [on-
line]. Available from: http://www.globus.org/toolkit/docs/4.0/data/

rft (webpage visited on 11.08.2007).

[62] GLOBAL GRID FORUM AND ENTERPRISE GRID ALLIANCE . Open
Grid Forum [on-line]. Available from: http://www.gridforum.org (webpage
visited on 11.08.2007).

[63] GLOBUS ALLIANCE . Globus Toolkit [on-line]. Available from: http:

//www.globus.org/toolkit (webpage visited on 11.08.2007).

[64] GOLDSTEIN J., LARSON P. Optimizing Queries Using Materialized Views:
A practical scalable solution. In : SIGMOD Conference, 2001, pp 331–342.

[65] GOODMAN J. Cache Consistency and Sequential Consistency. Technical
Report 61, IEEE SCI Commitee, 1989.

[66] GOSSA J. Modélisation et outils génériques pour la résolution des problémes
liés a la répartition des ressources sur grilles. PhD thesis. Villeurbanne, France
: INSA de Lyon, December 2007, 218 p.

[67] GOSSA J., PIERSON J-M., BRUNIE L. Dynamic Placement of Content
Replica in Ditributed Multimedia System. Technical Report RR-Liris-2005-
004, LIRIS INSA Lyon, feb 2005.

[68] GRAY J., HELLAND P., O’NEIL P., et al . The Dangers Of Replication
And A Solution. In : SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD
international conference on Management of data, 1996, New York, NY, USA.
ACM Press, pp 173–182.

[69] GRIPHYN . The GriPhyN Project [on-line]. Available from: http://www.

griphyn.org (webpage visited on 16.04.2007).

[70] HIGH PERFORMANCE STORAGE SYSTEM . (HPSS) [on-line]. Avail-
able from: http://www.hpss-collaboration.org/hpss (webpage visited on
16.04.2007).

[71] HOSSEINI-KHAYAT S. Replacement algorithms for object caching. In : SAC
’98: Proceedings of the 1998 ACM symposium on Applied Computing, 1998,
New York, NY, USA. ACM Press, pp 90–97.

197

[72] IEEE WORKING GROUP ON BROADBAND WIRELESS ACCESS STAN-
DARDS . LMDS Local Multipoint Distribution Service [on-line]. Avail-
able from: http://grouper.ieee.org/groups/802/16 (webpage visited on
22.10.2007).

[73] INRIA . The Relais project [on-line]. Available from: http://www-sor.

inria.fr/projects/relais (webpage visited on 26.03.2007).

[74] IVOA . International Virtual Observatory Alliance [on-line]. Available from:
http://www.ivoa.net (webpage visited on 16.04.2007).

[75] IYER S., ROWSTRON A., DRUSCHEL P. Squirrel: A Decentralized Peer-
To-Peer Web Cache. In : PODC, 2002, pp 213–222.

[76] JANG H., MIN K., JOU W. SEOK, et al . A Path Based Internet Cache
Design for GRID Application. In : LI M., SUN X., DENG Q., et al GCC
(2), volume 3033 of Lecture Notes in Computer Science. 2003, Springer, pp
455–458.

[77] KELLY T., JAMIN S., MACKIE-MASON J. Variable QoS from shared Web
caches: User-centered Design And Value-Sensitive Replacement. In : In Pro-
ceedings of the MIT Workshop on Internet Service Quality Economics (ISQE
99), Cambridge, MA, 1999 [on-line]. Available from: http://citeseer.ist.
psu.edu/article/kelly99variable.html (webpage visited on 29.03.2007).

[78] KISTLER J. Disconnected Operation in a Distributed File System, volume
1002 of Lecture Notes in Computer Science. Springer, 1995.

[79] KORUPOLU M., PLAXTON C., RAJARAMAN R. Placement Algorithms
for Hierarchical Cooperative Caching. J. Algorithms, 2001, vol. 38, no1, pp.
260–302.

[80] LAMPORT L. How to Make a Multiprocessor Computer That Correctly Exe-
cutes Multiprocess Programs. IEEE Trans. Computers, 1979, vol. 28, no9, pp.
690-691.

[81] LAOUTARIS N., SYNTILA S., STAVRAKAKIS I. Meta Algorithms for Hi-
erarchical Web Caches. In : Proceedings of the 2004 IEEE International
Conference on Performance, Computing, and Communications. 2004, IEEE,
pp 445 – 452.

[82] LILJA D. Cache Coherence in Large-Scale Shared-Memory Multiprocessors:
Issues and Comparisons. ACM Comput. Surv., 1993, vol. 25, no3, pp. 303-338.

[83] LINDER H., CLAUSEN H., STERING W. A Multi-Level, Multicast Web
Caching System for Interconnected LMDS Networks [on-line]. Available
from: http://citeseer.ist.psu.edu/554248.html (webpage visited on
24.03.2007).

198

[84] LINGA P., GUPTA I., BIRMAN K. Kache: Peer-to-Peer Web Caching Using
Kelips [on-line]. Available from: http://www.cs.cornell.edu/projects/

quicksilve (webpage visited on 26.03.2007).

[85] LIP COMPUTER SCIENCE LABORATORY OF THE ENS LYON . Diet
Project [on-line]. Available from: http://graal.ens-lyon.fr/diet (web-
page visited on 11.11.2007).

[86] LIRIS , IRIT , LIFL . GGM Project [on-line]. Available from: http://

liris.cnrs.fr/projects/ggm (webpage visited on 11.08.2007).

[87] LUO Q., KRISHNAMURTHY S., MOHAN C., et al . Middle-tier database
caching for e-business. In : SIGMOD Conference, 2002, pp 600–611.

[88] MAKPANGOU M., PIERRE G., KHOURY C., et al . Replicated Directory
Service for Weakly Consistent Replicated Caches. In : Proceedings of the 19th
IEEE International Conference on Distributed Computing Systems (ICDCS
’99), may 1999.

[89] MICHEL B., NGUYEN K., ROSENSTEIN A., et al . Adaptive Web Caching:
Towards a New Global Caching Architecture. Computer Networks, 1998, vol.
30, no22-23, pp. 2169-2177.

[90] OBJECT MANAGEMENT GROUP . Common Object Request Broker Archi-
tecture (CORBA) [on-line]. Available from: http://www.omg.org (webpage
visited on 08.03.2007).

[91] OPEN GRID FORUM . Info Dissemination Working Group (INFOD-WG)
[on-line]. Available from: https://forge.gridforum.org/sf/projects/

infod-wg (webpage visited on 16.04.2007).

[92] PEARLMAN L., C.KESSELMAN , GULLAPALLI S., et al . Distributed Hy-
brid Earthquake Engineering Experiments: Experiences with a Ground-Shaking
Grid Application. In : HPDC ’04: Proceedings of the 13th IEEE International
Symposium on High Performance Distributed Computing (HPDC’04), 2004,
Washington, DC, USA. IEEE Computer Society, pp 14–23.

[93] PETERSEN K., SPREITZER M., TERRY D., et al . Flexible Update Propa-
gation For Weakly Consistent Replication. In : SOSP ’97: Proceedings of the
sixteenth ACM symposium on Operating systems principles, 1997, New York,
NY, USA. ACM Press, pp 288–301.

[94] PIERSON J-M, GOSSA J., CARDENAS Y., et al . GGM Efficient Navi-
gation and Mining in Distributed Geno-Medical Data. IEEE Transactions on
NanoBioscience, may 2007, vol. 6, no2, pp. 110–116.

[95] PODLIPNIG S., LASZLO B. A Survey Of Web Cache Replacement Strategies.
ACM Comput. Surv., 2003, vol. 35, no4, pp. 374–398.

[96] POVEY D., HARRISON J. A distributed Internet Cache. In : Proceedings of
the 20th Australian Computer Science Conference, Sydney, Australia, 1997.

199

[97] PPDG . PARTICLE PHYSICS DATA GRID COLLABORATORY PI-
LOT [on-line]. Available from: http://www.ppdg.net (webpage visited on
16.04.2007).

[98] PRZYBYLSKI S. The Performance Impact of Block Sizes and Fetch Strategies.
In : ISCA, 1990, pp 160–169.

[99] RABINOVICH M., CHASE J., GADDE S. Not All Hits Are Created Equal:
Cooperative Proxy Caching Over A Wide-Area Network. Computer Networks
and ISDN Systems, 1998, vol. 30, no22–23, pp. 2253–2259.

[100] RAMACHANDRAN U., SHAH G., KUMAR R., et al . Scalability Study of
the KSR-1. Parallel Computing, 1996, vol. 22, no5, pp. 739-759.

[101] ROSS K. Hash-Routing for Collections of Shared Web Caches. IEEE Network
Magazine, 1997.

[102] ROUSSKOV A., WESSELS D. Cache digests. Computer Networks and =
ISDN Systems, 1998, vol. 30, no22–23, pp. 2155–2168.

[103] SAN DIEGO SUPERCOMPUTER CENTER . Storage Resource Broker
(SRB) [on-line]. Available from: http://www.sdsc.edu/srb (webpage vis-
ited on 16.04.2007).

[104] SATYANARAYANAN M. Scalable, Secure, and Highly Available Distributed
File Access. IEEE Computer, 1990, vol. 23, no5, pp. 9-21.

[105] SEITZ L. Design and Implementation of Secure Mechanisms for Sharing Con-
fidential Data; Application to the Management of Biomedical Data in a Grid
Computing Environment. PhD thesis. Villeurbanne, France : INSA de Lyon,
July 2005, 180 p.

[106] SEITZ L., MONTAGNAT J., PIERSON J-M., et al . Authentication and
Authorization Prototype on the grid for Medical Data Managements. In :
Press IOS Confrence Healthgrid 2005, Technology and Informatics, apr 2005,
pp 222–233.

[107] SEITZ L., PIERSON J-M, BRUNIE L. Encrypted Storage of Medical Data
on a Grid. Methods of Information in Medicine, jan 2005, vol. 44, no2, pp.
198–202.

[108] SHOSHANI A., SIM A., GU J. Storage Resource Managers: Middleware
Components for Grid Storage. In : In Nineteenth IEEE Symposium on Mass
Storage Systems (MSS’02), 2002, pp 209–223.

[109] SKILLICORN D. The Case for Datacentric Grids. In : IPDPS ’02: Proceed-
ings of the 16th International Parallel and Distributed Processing Symposium,
2002, Washington, DC, USA. IEEE Computer Society, pp 313.

[110] SMITH A. Cache Memories. ACM Computer Survey, 1982, vol. 14, no3, pp.
473-530.

200

[111] SQUID PROJECT . Squid Web Proxy Cache [on-line]. Available from:
http://www.squid-cache.org (webpage visited on 26.03.2007).

[112] STANFORD LINEAR ACCELERATOR CENTER . The Babar Detector [on-
line]. Available from: http://www-public.slac.stanford.edu (webpage
visited on 16.04.2007).

[113] STOCKINGER H., SAMAR A., HOLTMAN K., et al . File and Object Repli-
cation in Data Grids. In : 10th IEEE International Symposium on High
Performance Distributed Computing (HPDC-10 2001), San Francisco, CA,
USA. 2001, IEEE Computer Society, pp 76–86.

[114] STORAGE RESOURCE MANAGEMENT WORKING GROUP . Storage
Resource Manager [on-line]. Available from: http://sdm.lbl.gov/srm-wg

(webpage visited on 16.04.2007).

[115] TANENBAUM A. Structured Computer Organization, chapter Parallel Com-
puter Architectures. Prentice Hall, Upper Saddle River, 5 edition edition,
2005.

[116] TANENBAUM A., STEEN M. VAN. Distributed systems principles and
paradigms. Prentice Hall, New Jersey, 2002.

[117] TEWARI R., DAHLIN M., VIN H., et al . Beyond Hierarchies: Design Con-
siderations for Distributed Caching on the Internet. Technical Report TR98-0,
UTCS, 1998.

[118] TIERNEY B., JOHNSTON W., LEE J., et al . A data intensive distributed
computing architecture for grid applications. Future Gener. Comput. Syst.,
2000, vol. 16, no5, pp. 473–481.

[119] TOUCH J., HUGHES A. LSAM Proxy Cache: A Multicast Distributed Virtual
Cache. Computer Networks, 1998, vol. 30, no22-23, pp. 2245-2252.

[120] UNIVERSITY OXFORD. eDiaMoND grid computing project [on-line]. Avail-
able from: http://www.ediamond.ox.ac.uk (webpage visited on 16.04.2007).

[121] VAKALI A. LRU-based Algorithms for Web Cache Replacement. In : EC-
Web, 2000, pp 409–418.

[122] VALLOPPILLIL V., ROSS K. Cache Array Routing Protocol v1.0 [on-line].
Available from: http://icp.ircache.net/carp.txt (webpage visited on
28.03.2007).

[123] VENUGOPAL S., BUYYA R., RAMAMOHANARAO K. A taxonomy of
Data Grids for distributed data sharing, management, and processing. ACM
Comput. Surv., 2006, vol. 38, no1, pp. 3.

[124] WALLACH D., DALLY. W. A Hierarchical Protocol for Shared memory on
a Distributed Memory Machine. In : International Symposium on Shared
Memory Multiprocessing, 1991.

201

[125] WANG X., NG W., OOI B., et al . BuddyWeb: A P2P-based Collaborative
Web Caching System. In : Web Engineering and Peer-to-Peer Computing:
Networking 2002 Workshops, may 2002, Pisa, Italy. pp 247–251.

[126] WESSELS D., CLAFFY K. Application of Internet Cache Protocol (ICP),
version 2, 1997.

[127] WESSELS D., CLAFFY K. Internet Cache Protocol (ICP), version 2, 1997.

[128] WESSELS D., CLAFFY K. ICP and the Squid Web Cache. IEEE Journal on
Selected Areas in Communication, 1998, vol. 16, no3, pp. 345–357.

[129] WIESMANN M. Comparison of Database Replication Techniques Based on
Total Order Broadcast. IEEE Transactions on Knowledge and Data Engineer-
ing, 2005, vol. 17, no4, pp. 551–566. Member-Andre Schiper.

[130] WILKES M. Slave memories and dynamic storage allocation. IEEE Transac-
tions on Electronic Computers, 1965, vol. EC-14, no2, pp. 270-271.

[131] WOLSKI R., SPRING N.T., HAYES J. The network weather service: a dis-
tributed resource performance forecasting service for metacomputing. Future
Generation Computer Systems, 1999, vol. 15, no5–6, pp. 757–768.

[132] WORLD WIDE WEB CONSORTIUM . Simple Object Access Protocol
(SOAP) [on-line]. Available from: http://www.w3.org/TR/soap (webpage
visited on 11.08.2007).

[133] WORLD WIDE WEB CONSORTIUM . Web Services Architecture [on-
line]. Available from: http://www.w3.org/TR/ws-arch (webpage visited on
11.08.2007).

[134] XU Z., SOHONI S., MIN R., et al . An Analysis of Cache Performance of
Multimedia Applications. IEEE Trans. Computers, 2004, vol. 53, no1, pp.
20-38.

[135] ZHANG J., IZMAILOV R., REININGER D., et al . Web Caching Framework:
Analytical Models and Beyond. In : WIAPP ’99: Proceedings of the 1999
IEEE Workshop on Internet Applications, 1999, Washington, DC, USA. IEEE
Computer Society, pp 132.

[136] ZHANG L., FLOYD S., JACOBSON V. Adaptive Web Caching [on-
line]. Available from: http://citeseer.ist.psu.edu/zhang97adaptive.

html (webpage visited on 22.03.2007).

202

