
Efficient Privacy Preserving Protocols
for Decentralized Computation of Reputation

Omar Hasan
INSA Lyon, France

omar.hasan@insa-lyon.fr

Elisa Bertino
Purdue University, IN, USA
bertino@cs.purdue.edu

Lionel Brunie
INSA Lyon, France

lionel.brunie@insa-lyon.fr

ABSTRACT
We present three different privacy preserving protocols for
computing reputation. They vary in strength in terms of
preserving privacy, however, a common thread in all three
protocols is that they are fully decentralized and efficient.
Our protocols that are resilient against semi-honest adver-
saries and non-disruptive malicious adversaries have linear
and loglinear communication complexity respectively. We
evaluate our proposed protocols on data from the real web
of trust of Advogato.org.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—Distributed applications; K.4.1 [Computers
and Society]: Public Policy Issues—Privacy

General Terms
Security, Algorithms, Performance, Human Factors

Keywords
trust, reputation, privacy, decentralized

1. INTRODUCTION
Reputation systems represent a key technology for secur-

ing distributed applications from misuse by dishonest enti-
ties. A reputation system computes reputation scores of the
entities in the system, which helps single out those that are
exhibiting less than desirable behavior. Examples of reputa-
tion systems may be found in several application domains:
E-commerce websites such as eBay (ebay.com) and Amazon
(amazon.com) use their reputation systems to discourage
fraudulent activities. The EigenTrust [10] reputation system
enables peer-to-peer file sharing systems to filter out peers
who provide inauthentic content. The web-based commu-
nity of Advogato.org uses a reputation system [13] for spam
filtering.

The reputation score of a target entity is a function of the
feedbacks provided by other entities. Thus an accurate rep-
utation score is possible only if the feedbacks are accurate.
However, it has been observed that the users of a reputation
system may avoid providing honest feedback. The reasons
for such behavior include fear of retaliation from the target
entity or mutual understanding that a feedback value would

be reciprocated. eBay originally allowed buyers and sellers
to assign each other positive, neutral or negative feedback.
A study [15] of eBay’s reputation system revealed that there
is a high correlation between buyer and seller feedback and
over 99% of the feedback is positive. As discussed in [14],
this could either imply that mutually satisfying transactions
are in fact the norm or that the users are not providing hon-
est feedback due to the above cited reasons. The actual
cause was obvious as the latter when eBay recently revised
its reputation system [6] citing that“. . . the [earlier] feedback
system made some buyers reluctant to hold sellers account-
able. For example, buyers fear retaliatory feedback from sell-
ers if they leave a negative.” Now sellers are not permitted
to assign negative or neutral feedback to the buyers.

A more general solution to the problem of lack of honest
feedback is computing reputation scores in a privacy preserv-
ing manner. A privacy preserving protocol for computing
reputation scores operates such that the individual feedback
of any entity is not revealed to other entities in the system.
The implication of private feedback is that there are no con-
sequences for the feedback provider and thus he is uninhib-
ited to provide honest feedback. In this paper we focus on
privacy preserving protocols for decentralized additive repu-
tation systems. These reputation systems are characterized
by the absence of a central authority and the computation
of reputation scores in an additive manner.

The privacy preserving protocols for computing reputa-
tion that have been discussed in the literature, either rely
on specialized hardware, are centralized, or have high com-
munication complexity associated with them. For instance,
a protocol described in [14] has a communication complexity
of O(n2), where n is the number of feedback providers for a
target entity. Further literature is discussed in section 8.

In this paper, we present three different protocols with
varying strengths in terms of preserving privacy. The com-
mon thread in all three protocols is that they are fully decen-
tralized and efficient. Our protocol that is resilient against
non-disruptive malicious adversaries has loglinear communi-
cation complexity. A recent protocol with similar strengths
by Pavlov et al. [14] is quadratic. We evaluate our proposed
protocols on data from the web of trust of Advogato.org. To
the best of our knowledge, this is the first work to evaluate
a decentralized privacy preserving protocol for computing
reputation on data from a real and large web of trust.

1

2. PRELIMINARIES
In this section we introduce several definitions that lay the

foundation for the work presented in subsequent sections.

2.1 Decentralized Additive Reputation Systems
The reputation system that we present in this paper can

be classified as a Decentralized Additive Reputation System.
We quote the following definition from [14]:

Decentralized Additive Reputation System. Reputa-
tion System R is said to be a Decentralized Additive Repu-
tation System if it satisfies two requirements:

1. Feedback collection, combination, and propagation are im-
plemented in a decentralized way.

2. Combination of feedbacks provided by agents is calculated
in an additive manner.

In a Decentralized Additive Reputation System, the rep-
utation of an agent is in essence computed as follows: the
agents that have local feedback about that agent, collaborate
and contribute their local feedback values to arrive at the
sum of those values. The sum is considered the reputation
value of the agent.

Summation of local feedbacks about an entity to com-
pute it’s global reputation is an approach adopted by several
reputation systems including the successful eBay reputation
system (ebay.com). The advantage of this approach is that
it is intuitive and thus the meaning of a reputation value is
easily understood by the users.

Please note that although the eBay reputation system is
additive, it is not decentralized. A centralized reputation
system such as eBay is appropriate for the web based e-
commerce application, which is inherently centralized. Our
solution is thus not intended to be a privacy preserving alter-
native to the eBay reputation system. Our solution targets
decentralized applications, examples of which include peer-
to-peer file sharing, MANETs, etc.

2.2 Preserving Privacy
Here we define what we mean by preserving the privacy

of an agent in a Decentralized Additive Reputation System.
Preserving Privacy. Let a be an agent that contributes

its local feedback about an agent t, as part of a protocol to
compute the reputation of agent t. Then the privacy of agent
a is said to be preserved if during or after the execution of
the protocol, no other agent in the system is able to learn
agent a’s local feedback.

In this paper we will consider two types of attacks that
can lead to the leakage of an agent’s local feedback values:

Type 1 Attack. An agent a, as part of a protocol to com-
pute the reputation of an agent t, exchanges intermediate
information with other agents. Those agents either individ-
ually or as a group of colluders try to derive the private local
feedback of agent a about agent t from those intermediate
values.

Type 2 Attack. An adversary observes the reputation of
agent t immediately before and after agent a updates its
local feedback about agent t. Since the reputation is com-
puted in an additive manner, the adversary can learn about
agent a’s private local feedback as: δl = r′t − rt, where δl is
the difference between agent a’s previous and current local
feedback about agent t, and rt and r′t are the reputation

values of agent t before and after the update respectively. If
agent a assigned feedback to agent t for the first time, then
δl is equal to its complete feedback about agent t.

To the best of our knowledge this is the first work which
addresses the Type 2 attack in a decentralized additive rep-
utation system.

2.3 Adversarial Models
We identify three types of adversarial agents in the context

of preserving privacy in a reputation system:

Semi-Honest Agents. Semi-honest agents always correctly
follow the protocol for computing the reputation of an agent.
However, semi-honest agents are curious about the private
local feedbacks of other agents. They will use intermediate
information received during the protocol and any other in-
formation that they can receive through legitimate means
to derive the local feedbacks of other agents. Semi-honest
agents may also collude to satisfy this goal.

Non-Disruptive Malicious Agents. Malicious agents are
not bound to conform to the protocol. They may deviate
from the protocol as and when they deem necessary. They
may participate in extra-protocol activities, devise sophisti-
cated strategies, and collude to learn the private local feed-
backs of other agents. Non-Disruptive Malicious agents have
a single objective: to learn private feedbacks of other agents.
They do not intend to disrupt the normal function of the
protocol other than to achieve this objective.

Disruptive Malicious Agents. Disruptive malicious agents
have exactly the same capabilities as non-disruptive mali-
cious agents in terms of learning the private feedbacks of
other agents. This implies that if non-disruptive malicious
agents are unable to learn the private feedback of a par-
ticular agent then disruptive malicious agents cannot do so
either. What differentiates disruptive malicious agents from
those who are non-disruptive is that the former have objec-
tives beyond learning the private feedbacks of other agents.
Their objectives may range from gaining illegitimate advan-
tage over other agents by tampering with the protocol to
completely denying the services of the reputation system to
other agents.

Protocols that preserve privacy under the first two mod-
els are provided in this paper. A protocol that is resilient
against disruptive malicious adversaries is identified as fu-
ture work. We do however discuss some possible techniques
for a protocol for the third adversarial model in section 9.

2.4 Data Perturbation
Data perturbation is a technique for hiding a data item

by adding noise to it. The noise added is sufficiently large in
order to make the derivation or estimation of the data item
from the resulting sum highly improbable.

We quote the Data Perturbation Assumption from [5] as
follows (variable r in the original definition is given here as
variable y):

Data Perturbation Assumption. If an input is x ∈ X,
we assume that x + y effectively preserves the privacy of x
if y is a secret random number uniformly distributed in a
domain F , where |F | � |X|.

As an example, let’s consider that a value x = 0.5 ∈ [−1, 1]
is to be hidden. If we add a secret random number y =

2

−3.2 ∈ [−10, 10] to x, then the sum x + y = −2.7. In this
case it is impossible to learn the value of x from the sum.

The data perturbation technique is well established in sev-
eral domains including privacy-preserving data mining [1],
[17], and secure two party [5], [7] and multi-party [7] com-
putation.

With data perturbation there is some probability that x
will not be hidden properly. In the above example, if x = 1
and the secret random number turns out to be y = 10,
then the sum would be x + y = 11, which would give away
the value of x. Please see section 7.2 for a heuristic that
suppresses such occurrences.

3. THE BASIC FRAMEWORK OF THE REP-
UTATION SYSTEM

In this section we present the basic framework of our de-
centralized additive reputation system.

The reputation system comprises of N agents. The set of
agents in the system is given as A = {ai : 1 ≤ i ≤ N}.

After two agents interact, they each may assign the other
a feedback value. A feedback value represents one agent’s
local view of the trustworthiness of another agent. The feed-
back value assigned by an agent a to an agent t is given as
lat ∈ [−1, 1]. The choice of feedback values is real num-
bers between −1 and 1, which allows infinite resolution for
expressing trust. −1 implies “minimum trust”, 0 implies
“neutral trust”, and 1 implies “maximum trust”.
rt ∈ R represents the global reputation value of an agent

t. Higher values indicate higher reputation.
There is no central authority in the system. Feedback

values are stored locally by the agents who assigned them.
For example, a feedback value lat is stored by the agent a.
The global reputation values are transient.

When an agent q wishes to determine the reputation rt of
an agent t, we refer to agent q as the querying agent and to
agent t as the target agent. The agents that have assigned
feedback to agent t are called the source agents and they are
given as the set St = {s : s ∈ A∧ lst exists}. nt = |St| is the
number of source agents for agent t.

To determine the reputation of agent t, agent q initiates
a reputation computation protocol, which at minimum in-
volves the source agents and terminates with q learning the
current reputation of agent t. The protocols that we discuss
in this paper compute the reputation in an additive manner.

In each of the next three sections we describe a different
reputation computation protocol. The three protocols are
given in the order of their strength in preserving the privacy
of agents with the last one being the strongest.

4. PROTOCOL 1: SECURE SUM
The secure sum protocol [4], [17] is a well known proto-

col that computes the sum of local values of multiple sites
without revealing the local value of any site. The protocol is
clearly applicable to the problem at hand of computing the
reputation of an agent in an additive manner while preserv-
ing the privacy of local feedback values. However, the secure
sum protocol in its simple form has several shortcomings
which we will highlight after describing the protocol. We
include the secure sum protocol here to establish a sense of
the challenges faced in developing a privacy preserving rep-
utation computation protocol for a decentralized additive
reputation system. A variant of the secure sum protocol

adapted for computing the reputation of a target agent t in
our reputation system is described below.

Each agent a maintains Sa, the set of its source agents.
That is, each agent maintains a set of the agents that have
interacted with it and have reported assigning feedback to
it.

The steps of the protocol are as follows:

1. The querying agent q retrieves St from the target agent
t.

2. Agent q creates an ordered list of the agents in St, which

is given as the vector
−→
St = (s1, s2, . . . , sn), where s1, s2, . . . , sn

refer to the agents in St and n = |St|.
3. Agent q sends the vector

−→
St and y to agent s1. y is a

random number in [−Y, Y].

4. Agent s1 upon receipt of the vector
−→
St and y, computes

vs1 = y + ls1t. Agent s1 sends
−→
St and vs1 to s2.

5. Each subsequent agent si that receives the vector
−→
St and

vsi−1 , computes vsi = vsi−1 + lsit, and sends the vector
−→
St and vsi to si+1.

6. The last agent sn upon receipt of the vector
−→
St and vsn−1 ,

computes vsn = vsn−1 + lsnt, and sends vsn to q.
7. q computes rt = vsn − y.

The privacy of s1’s local feedback value is preserved as it
sends y+ls1t to s2. Given the data perturbation assumption,
since y is added to ls1t, s2 is unable to determine ls1t from
the sum. Similarly when any agent si sends vsi−1 + lsit =

y+
∑i−1

j=1 lsjt + lsit to si+1, data perturbation prevents si+1

from learning lsit or any lsjt.
Agent q receives y+

∑n
i=1 lsit and computes the result by

subtracting y. Assuming n ≥ 2 and that the local feedback
values are uniformly distributed over their range, it is highly
improbable for q to be able to distinguish the individual local
feedback values of the source agents.

We observe that this protocol preserves privacy against
the type 1 attack only when agents are not colluding. If
agents si−1 and si+1 collude, they can compute agent si’s
local feedback value as follows: lsit = vsi − vsi−1 . Agent si

has no control over who si−1 and si+1 are in this protocol.

Agent q, who establishes the order of
−→
St, can set up any

agent for the privacy of that agent to be breached in this
manner.

Since the reputation value is the deterministic sum of all
local feedback values, it is also straightforward to mount the
type 2 attack against any agent.

Considering these issues, it is clear that the reputation
computation protocol based on secure sum does not preserve
privacy against either type of attack under any of the three
adversarial models.

The protocol requires n + 1 messages to be exchanged
thus the complexity of the protocol in terms of messages
exchanged is O(n), where n is the number of source agents
of a target agent t.

3

5. PROTOCOL 2: RESILIENCY AGAINST
SEMI-HONEST ADVERSARIES

We now present a reputation computation protocol that
preserves privacy against both types of attacks under the
semi-honest adversarial model. A brief summary of the pro-
tocol is given below followed by a formal description in the
next subsection. As in protocol 1, each agent a maintains
Sa, the set of its source agents.

• The protocol is initiated by a querying agent q to deter-
mine the reputation of a target agent t. Agent q retrieves
St from t and initiates the forwards round by sending
S = St and r = 0 to an agent randomly selected from St.

• The receiving agent adds its local feedback value and a
random number y ∈ [−Y, Y] to r. After removing itself
from S, the agent sends the updated S and r to the agent
in S that it trusts the most to respect its privacy. The
protocol continues with the forwards round in this man-
ner until the last agent in S updates r and sends it to a
pre-trusted or seed agent.

• The seed agent generates a random number x ∈ [−Y, Y]
and then selects n = |St| numbers such that the sum of
those numbers is equal to x. It sends each of those num-
bers to distinct agents in St. The seed then initiates the
backwards round by sending S = St and r to a randomly
selected agent in St.

• The receiving agent removes the random number y from
r that it added to it in the forwards round. The agent
adds to r, the number that it received from the seed. The
agent then removes itself from S and sends the updated S
and r to the agent in S that it trusts the most. However,
it selects an agent that is different from the agent that
it selected in the forwards round. The backwards round
continues in this manner until the last agent in S updates
r and then sends it to q.

• The value of r that q receives is the sum of the local
feedback values of all agents in St and x. This value of r
is considered the reputation value of agent t.

Proof of privacy is provided in section 5.3, however, the
general ideas behind the defenses of this protocol against the
two types of attacks are summarized as follows:

Type 1 Attack. Each agent exchanges information with
five agents during the protocol. All five of those agents must
collude to learn the local feedback value of the agent. This
can be highly improbable since two of those agents are trust-
worthy agents selected by the agent himself and another one
is a highly trusted seed agent.

Type 2 Attack. The true sum of the local feedback values
of all agents in St is never learned by any agent. The re-
sult of the protocol is a value that is probabilistically close
to the true sum. This is achieved by the random number
added by the seed agent. Thus simply observing a reputa-
tion value before and after an update, does not reveal the
local feedback of the updater agent. This type of attack can
be successful if the seed agent colludes with agent q, how-
ever, this has low probability given that the seed agent is
highly trusted.

The key innovation in this protocol is that an agent him-
self selects trustworthy agents whom he wants to share in-
termediate information with. The advantages of this ap-
proach are twofold: Firstly, since the agent himself selects
the agents whom to trust, he can choose them such as to
maximize the probability that his privacy will be preserved.
Choosing the agents whom to trust also allows an agent to
be aware of the exact value of that probability (please see
section 5.3 for detail). Secondly, since each agent exchanges
messages with a constant number of other agents, the com-
munication complexity of the protocol is linear. This is in
contrast to the protocol presented by Pavlov et al. [14] for
a similar adversarial model, which requires each agent to
exchange messages with all other agents in the protocol re-
sulting in quadratic communication complexity. Another
innovation in our protocol is the presence of seed agents,
which help in preventing the type 2 attack. Additionally,
we also evaluate our protocol on data from a real and large
web of trust (section 7).

5.1 Formal Description
As in the secure sum protocol, each agent a maintains Sa,

the set of its source agents.
Some of the agents in the system are identified as seed

agents. The set of seed agents is given as D = {di : di ∈
A ∧ 1 ≤ i ≤ N}. The set D is universally known by all
agents in the system. The concept of seed agents is used in
many successful reputation systems including Advogato [13]
and EigenTrust [10]. Seed agents are typically those agents
who joined the system at its inception and are thus known to
have been thoroughly vetted and highly trustworthy. The
trustworthiness of seed agents is universally considered in
the system to be at least 0.99 ∈ [−1, 1]. This is a reasonable
assumption, given that in the practical and very successful
Advogato reputation system, the seed agents are considered
100% trustworthy.

Each query is uniquely identified by a sequence of three
variables q, t, p, where q is the querying agent, t is the target
agent, and p is the timestamp when the query was initiated.

Each agent maintains three vectors
−→
A ,
−→
X , and

−→
Y for

storing the variables a(q,t,p) ∈ A, x(q,t,p) ∈ [−Y, Y], and
y(q,t,p) ∈ [−Y, Y] respectively.

The agents communicate using messages. Each message
comprises of a tuple whose first element identifies the type
of the message.

All agents in the system are driven by a common protocol
and thus exhibit homogeneous behavior. The protocol for an
agent a in the system is given in appendix A as a collection
of events and associated actions.

5.2 Correctness
Theorem If all agents properly follow Protocol 2, then at

the completion of a query, rt =
∑

a∈St
lat + x.

Proof. Please see appendix B.

5.2.1 Accuracy of Reputation Values
The addition of x implies that the result of the query

deviates from the true sum by a random value on the in-
terval [−Y, Y]. We discuss two approaches of quantifying
the difference between the actual reputation value and the
perturbed reputation value: 1) absolute difference, and 2)
relative difference.

4

The absolute difference is given as: absolute difference
= |actual reputation − perturbed reputation|. Since x ∈
[−Y, Y], ⇒ absolute difference ≤ Y .

The relative difference is expressed as: relative difference
= |actual reputation − perturbed reputation| / actual reputa-
tion, where actual reputation 6= 0. From the previous equa-
tions: relative difference ≤ (Y / actual reputation). The
bound on relative difference is inversely proportional to the
actual reputation. As the actual reputation increases, the
bound on relative difference will decrease.

We argue that absolute difference is a more objective in-
terpretation of the difference between actual and perturbed
reputations. The bound for absolute difference remains con-
stant (Y) and is independent of the reputation values. Whereas,
depending on the actual reputation value, the bound for rel-
ative difference can vary between 0 and ∞ (both exclusive).
In terms of absolute difference, the accuracy of a reputation
value is given as ±Y .

Please refer to section 7.4 for further discussion on the
accuracy of reputation values computed by the protocol.

5.3 Preserving Privacy
If a trust relationship exists between two agents a and k,

then lak ∈ [−1, 1] is interpreted as the amount of trust a has
in k to not attack it to learn its private data. Let’s say that
Za = {z : z ∈ A ∧ z will attack a} is the set of all agents
in A who will attack a if given the opportunity. Then we
can also state that lak is the amount of trust a has in k
to not belong to Za. The relationship between lak and the
probability P (k ∈ Za) is assumed to be as follows:

P (k ∈ Za) =

 1− lak if lak ≥ 0
1 if lak < 0
1 if lak does not exist

Since by definition agents are curious, if agent a does not
have a positive trust relationship with agent k, it is assumed
that k will attack a to learn its private data.

For a seed agent d, P (d ∈ Za) = 1− 0.99 = 0.01.
Theorem If the agents who participate in Protocol 2 are

semi-honest, then at the completion of a query, the probabil-
ity that a type 1 attack will reveal the local feedback value of
an agent a ∈ St, who is not the last agent in the forwards
or the backwards round, is: P (a(f,out) ∈ Za)× P (a(b,out) ∈
Za)× P (d ∈ Za).

Proof. Please see appendix B.

Theorem If the agents who participate in Protocol 2 are
semi-honest, then at the completion of a query, the probabil-
ity that a type 1 attack will reveal the local feedback value of
an agent a ∈ St is at most P (d ∈ Za).

Proof. Please see appendix B.

Theorem If the agents who participate in Protocol 2 are
semi-honest, then the probability that a type 2 attack will
reveal the local feedback value of an agent a ∈ St is at most
P (d ∈ Za).

Proof. Please see appendix B.

Under both types of attacks, the probability that the pri-
vacy of agent a’s local feedback value will be preserved is at
least: 1− P (d ∈ Za) = 99%.

Please note that in the case of type 1 attack, an agent
does not rely solely on a seed agent for it’s privacy unless

it is unable to find other trustworthy agents over the course
of the protocol. However, as we observe in the experiment
in section 7.3 conducted on a real and large web of trust,
a large majority of the agents is able to find trustworthy
agents thus avoiding total reliance on the seed agent.

Even though the seed agents are highly trustworthy and
their effectiveness has been demonstrated in systems such as
EigenTrust and Advogato, it is possible that an agent might
not feel comfortable sharing its feedback when it has to rely
solely on a seed agent for its privacy. A simple extension to
the protocol which enables agents to abstain from providing
feedback is as follows: Due to the absence of trustworthy
agents or due to any other reason if an agent is unwilling to
contribute its feedback, it can provide dummy feedback of
value 0 and indicate to the querying agent or alternatively all
agents in the protocol that it has abstained from providing
its real feedback. The agent can participate in the rest of
the protocol as usual.

The privacy guarantee for a type 2 attack relies solely on a
seed agent. However, since to the best of our knowledge this
work is the first attempt to a solution for the type 2 attack
in a decentralized additive reputation system, we believe
that it is a step towards stronger privacy guarantees. We
can also make the following enhancement to the protocol to
eliminate total reliance on a seed agent in the case of a type
2 attack: Let’s assume that when an agent assigns feedback

to a target agent, b |Sa|
3
c = γ, where γ is some constant.

The agent contributes its real feedback only if (b |Sa|
3
c =

γ ∧ |Sa| mod 3 = 0) ∨ b |Sa|
3
c > γ. This implies that a new

source agent contributes its feedback only when there are at
least two other agents contributing their values for the first
time. Thus a type 2 attack is unable to differentiate between
the feedbacks provided by the three new source agents. This
solution is complementary to the existence of the seed agent
since it is also probabilistic in terms of preserving privacy.
A number higher than 3 would increase the probability of
privacy being preserved while decreasing the rate at which
new feedback effects the reputation.

5.4 Communication Complexity
For n source agents, the protocol requires n+1 messages in

the forwards round, n+ 1 messages in the backwards round,
n messages from the seed agent to the source agents, and 2
messages between the querying agent and the target agent.
The total number of messages required is 3n + 4, thus the
complexity of the protocol in terms of number of messages
exchanged is O(n). This is in contrast to the complexity of
O(n2) of the protocol secure under the semi-honest model
described in [14].

In terms of bandwidth used, our protocol requires trans-
mission of O(n2) number of agent IDs and O(n) number of
integers over the course of a query. In contrast, the pro-
tocol given in [14] requires transmission of O(n2) number
of agent IDs as well as O(n2) number of integers. In prac-
tice, our protocol would also economize on bandwidth due
to the fewer number of connections that it requires to be
established between agents (linear vs. quadratic in [14]).

5

6. PROTOCOL 3: RESILIENCY AGAINST
NON-DISRUPTIVE MALICIOUS ADVER-
SARIES

In this section we present protocol 3, which is an extended
version of the protocol 2 introduced in the previous section.
Protocol 3 preserves privacy against the type 1 and type 2 at-
tacks under the non-disruptive malicious adversarial model.

Protocol 2 assumes that all agents would follow the pro-
tocol properly. However, non-disruptive malicious agents
are not bound to conform to the protocol. They can deviate
from the protocol as well as take actions that are outside the
protocol in attempt to learn local feedbacks of other agents.
We anticipate the following actions that non-disruptive ma-
licious agents could take to sabotage protocol 2.

1. A non-disruptive malicious agent could eavesdrop on the
communication of an agent in St and learn all the mes-
sages that it exchanges with other agents over the course
of a query.

2. Agent q could drop agents from St, keeping only those
agents who are colluding with it along with one non-
colluding agent who is under attack. To gain unfair ad-
vantage, agent t could also drop the agents from St whom
he thinks might have rated him poorly.

3. Agent q or an agent in St could drop agents from S be-
fore they have participated in the query, keeping only
those agents who are colluding with it along with one
non-colluding agent who is under attack.

6.1 Extensions to Protocol 2
Protocol 3 adds the following extensions to Protocol 2 to

make it resistant to the malicious actions described above.

6.1.1 Secure Communication
Eavesdropping is prevented by requiring all messages to be

exchanged via secure communication, which can be achieved
through a protocol such as TLS (Transport Layer Security)
or SSL (Secure Sockets Layer).

6.1.2 Source Managers
The set Sa is no longer maintained by agent a. In Protocol

3, the set Sa is maintained for agent a by two or more other
agents in the system independently of each other. Those
agents are called the source managers of agent a.

When a source agent assigns feedback to a target agent,
it reports that event to each of the source managers of the
target agent. The source managers add the source agent to
the set St that they each maintain for the target agent t.

Agent q retrieves the set St from the source managers of
agent t. It is possible that a number of the source agents
are colluding with agent t and thus drop agents from St as
desired by t. To counter this problem, an agent that needs
the set St, retrieves it from all the source managers of agent
t and then takes the union of all those sets to get the final
St. Thus even if a single source manager is honest, the final
set St would include all source agents of agent t.

To retrieve St from a source manager of agent t in Protocol
3, agent q sends the tuple (REQUEST FOR TUPLE, q, t, p)
to the source manager. The source manager returns a signed
credential which includes St and (q, t, p). Agent q creates

a vector
−→
P that includes this credential retrieved from all

source managers of agent t. The simple set St that is part

of messages in Protocol 2 is replaced by the vector
−→
P in

Protocol 3. Each agent, participating in a query identified
by (q, t, p), that receives this vector can derive the final St

by taking the union of all sets in the credentials. Each agent

who receives
−→
P verifies that it includes the credential from

all source managers of t and that each credential is signed
by the issuing source manager. This measure prevents agent
q from dropping agents from St.

We now discuss how the source managers of an agent t
are located.

Score managers of a peer in the EigenTrust [10] repu-
tation system are other peers that compute its reputation
score. The following excerpt from [10] describes how score
managers are assigned and located in EigenTrust.

To assign score managers, we use a distributed hash
table (DHT), such as CAN or Chord. DHTs use a hash
function to deterministically map keys such as file names
into points in a logical coordinate space. At any time,
the coordinate space is partitioned dynamically among
the peers in the system such that every peer covers a
region in the coordinate space. Peers are responsible for
storing (key, value) pairs the keys of which are hashed
into a point that is located within their region.

In our approach, a peer’s score manager is located by
hashing a unique ID of the peer, such as its IP address
and TCP port, into a point in the DHT hash space. The
peer which currently covers this point as part of its DHT
region is appointed as the score manager of that peer. All
peers in the system which know the unique ID of a peer
can thus locate its score manager.

We implement source managers in the same manner as
described above for score managers in EigenTrust. Peers in
EigenTrust correspond to agents in our system.

6.1.3 Verifiable Participation
To prevent an agent from maliciously dropping other agents

from the set S, Protocol 3 implements the following mea-
sures:

A new element, vector
−→
Q is added to the tuples of the

FORWARDS and BACKWARDS messages.

The vector
−→
Q is empty in the first FORWARDS message

sent out by the querying agent. An agent a ∈ St processes a
FORWARDS message the same as in Protocol 2. However,

it also adds a signed credential Cforwards
a to the vector

−→
Q

before sending it out. The content of Cforwards
a is the se-

quence (F , q, t, p), where F is a constant. Each agent that
receives a FORWARDS message verifies that for any agent k
that is in St but not in S, the credential Cforwards

k with the

correct q, t, and p is present in the vector
−→
Q . This ensures

that agents cannot be arbitrarily dropped by non-disruptive
malicious agents in the forwards round.

Similar steps are taken in the backwards round. The seed

agent sends out an empty
−→
Q . In addition to the regular

processing of a BACKWARDS message, an agent a ∈ St

adds a signed credential Cbackwards
a to the vector

−→
Q before

sending it out. The content of Cbackwards
a is the sequence

(B, q, t, p), where B is a constant. Verification is done by
each agent in the same manner as in the forwards round,
thus also preventing any agents maliciously being dropped
from S in the backwards round.

6

6.2 Communication Complexity
The querying agent and each of the source agents need to

perform a DHT lookup to locate the target agent’s source
managers. Considering a DHT such as Chord [16], which
requires O(log N) messages for a lookup, the number of ad-
ditional messages required by protocol 3 is (n+1)·O(log N),
or O(n log N). The communication complexity of protocol
3 is thus: O(n) +O(n log N), or O(n log N).

Figure 1 compares protocol 3 with the protocol by Pavlov
et al. [14] that is resilient against non-disruptive malicious
adversaries. Our protocol performs better after n = 13 for
N = 11, 558 (Advogato.org) and after n = 19 for N =
1, 000, 000.

Figure 1: Protocol 3 vs Pavlov et al.

Please note that protocol 3 is not resilient against dis-
ruptive malicious agents, who could disrupt the system by
dropping messages or by adding values that are out of range.
However, such an action would still not reveal private feed-
backs of other agents. An efficient protocol that is resilient
against disruptive malicious agents is identified as future
work. Please see section 9 for a discussion of some possible
techniques for a protocol resilient against disruptive mali-
cious agents.

7. EXPERIMENTS
We conduct three experiments to examine different as-

pects of Protocol 2 (which is also the foundation for protocol
3). The data set and the implementation of the experiments
are described in the next two sections. The final three sec-
tions give details of the experiments.

7.1 Data Set
The data set that we use for our experiments is the real

web of trust of Advogato.org [13]. Advogato.org is a web-
based community of open source software developers. A
major focus of the site is a peer rating system. The members
of the site rate each other in terms of their trustworthiness.
The choice of feedback values are master, journeyer and
apprentice, with master being the highest level in that order.
The result of these ratings among members is a rich web
of trust, which comprises of 11, 558 users and 51, 119 trust
ratings.

The instance of the Advogato web of trust referenced in
this paper was retrieved on November 19, 2007 by crawl-
ing the Advogato.org web site with a script that we wrote
in Python. To conform the Advogato web of trust to our
framework, we substitute its three feedback values as follows:
master = 1.0, journeyer = 0.66, and apprentice = 0.33.
The Advogato rating system does not offer any feedback

values for neutral or negative trust. Advogato.org identifies
four seed users (raph, miguel, mako, alan), who are consid-
ered the most trustworthy users in the system.

The Advogato web of trust may be viewed as a directed
weighted graph, with users as the vertices and trust ratings
as the directed weighted edges of the graph. The number of
vertices with no outgoing edges is 5, 832 and the number of
vertices with no incoming edges is 5, 548.

7.2 Implementation
The experiments have been implemented as individual

Java programs. Each program starts off by creating agent
objects and references that correspond to the vertices and
the edges of the Advogato web of trust respectively. The
program then initiates queries according to the algorithm
of the experiment and logs the required data to file. The
user cbz is randomly selected as the querying agent for the
experiments. The set of seed agents is made up of the four
users identified by Advogato as seeds.

We choose Y as 2, which implies that the random num-
bers used in the protocol lie on the interval [−2, 2]. We add
the following heuristic to the forwards round of the protocol
(l is the local feedback value of an agent and y is the random
number added to it for data perturbation): if |l+ y| > Y , y
is regenerated until the condition holds false. This heuristic
inhibits instances of data perturbation which fail to com-
pletely hide the local feedback value. The heuristic also
allows us to use Y = 2 instead of a higher number.

7.3 Experiment: Probability that Privacy will
be Preserved

We conduct this experiment to observe the effectiveness
of the protocol in preserving the privacy of agents in a real
web of trust.

Algorithm: The querying agent queries the reputation
of every other agent in the environment (a total of 11, 557
agents). Over the course of successful queries, we consider
every instance of a source agent a that is not the last agent
in either the forwards or the backwards round. The following
information is logged for all such instances of source agents:
t, a, P (a(f,out) ∈ Za), and P (a(b,out) ∈ Za).

Results: Queries succeed for 3, 761 target agents since
the rest of the agents have less than 2 source agents. Over
the course of successful queries, the number of instances of
source agents is 45, 109. As discussed in theorem B, the
probability that a type 1 attack will reveal the local feed-
back value of an agent a is given as: P (a(f,out) ∈ Za) ×
P (a(b,out) ∈ Za) × P (d ∈ Za). The trustworthiness of seed
agents is universally considered as at least 0.99, which im-
plies that P (d ∈ Za) ≤ 0.01 for all instances of source agents.
The probability that the privacy of a source agent will be
preserved is the complement of the probability that its lo-
cal feedback value will be revealed. The probability that
privacy will be preserved is computed for all instances of
source agents. The frequency distribution of the probabili-
ties is given in table 1.

Discussion: The probability that the privacy of a source
agent will be preserved is always at least 99%. This is made
possible due to the participation of a seed agent in each
query. A high percentage (68.2%) of source agents are able
to find trustworthy agents among fellow source agents in
the forwards and/or the backwards round. This results in
a probability that is higher than the default. A significant

7

Table 1: Probability that privacy will be preserved.

Probability Count Percentage (Total: 45, 109)
99.00% 14, 354 31.8%
99.33% 3, 068 6.8%
99.55% 774 1.7%
99.66% 7, 313 16.2%
99.77% 2, 102 4.7%
99.88% 5, 679 12.6%

100.00% 11, 819 26.2%

percentage (26.2%) of instances of source agents receive a
100% guarantee that their privacy will be preserved.

This experiment does not cover instances of source agents
who are last in either the forwards or the backwards round.
However, please note that as discussed in section 5.3, the
probability that their privacy will be preserved is also at
least 99%. A simple extension to the protocol is also sug-
gested in the same section which enables agents to abstain
from contributing their feedback when they do not receive
a sufficient privacy guarantee.

7.4 Experiment: Accuracy of the Reputation
Scores

In the following experiment we observe the effect of adding
the random variable x ∈ [−Y, Y] (for perturbation) on the
accuracy of the reputation scores.

Algorithm: The querying agent queries the reputation
of every other agent. The following information is logged for
each of the target agents: t, actual reputation of t (without
the addition of x), perturbed reputation of t (computed by
the protocol, with the addition of x).

Results: Figure 2 depicts a scatter plot of the actual
reputation values and the perturbed reputation values. The
80 target agents with actual scores that range from 60.33 to
726.97 have been omitted to provide a better resolution of
the more densely populated area. The perturbed reputation
values of all agents (including the 80 agents not plotted) are
within ±2 of their corresponding actual reputation values.

The average difference between the actual and the per-
turbed reputation values is 1.00 (rounded down to two dec-
imal places).

Discussion: The results follow the discussion in section
5.2.1. The absolute difference between the actual reputation
of a target agent and the corresponding perturbed reputa-
tion is at most Y (2 in this case). The addition of the ran-
dom variable x ∈ [−2, 2] does not have a drastic effect on
reputation values in the case of this data set. Actual rep-
utation values that may be interpreted as low, remain low
after being perturbed. Similarly, reputation values that are
relatively high, stay high.

7.5 Experiment: Load on Agents
In this experiment we observe the load that an agent has

to bear to fulfill its role as a source agent. The experiment
sets up the following scenario: in a unit of time, every agent
in the system initiates one query to learn the reputation of a
random unknown agent. We would like to know: 1) within
that unit of time, the number of queries that an agent has
to participate in as a source agent, 2) the relationship of
that load to the number of feedbacks assigned by the agent

Figure 2: Actual reputation vs perturbed reputa-
tion.

Figure 3: Load on agents.

(number of outgoing edges).
Algorithm: Each of the 11, 558 agents in the system,

randomly selects a previously unknown agent and queries
its reputation. The following information is recorded for
each agent: the number of queries that it participates in as
a source agent over the course of the experiment.

Results: The number of successful queries is 3, 649. The
rest of the queries do not succeed since their target agents
have less than 2 source agents. Figure 3 shows a scatter plot
of the number of outgoing edges of an agent and the number
of queries that it participates in as a source agent. The lin-
ear correlation (Pearson) between the two variables is 0.99
(rounded down to two decimal places). The average num-
ber of queries that an agent has to participate in is 0.68 per
feedback assigned. There are 5, 832 agents who have 0 out-
going edges. They have not been considered for computing
this average as they have not assigned any feedback.

Discussion: Clearly, there is a recurring cost associated
with each feedback that an agent assigns. However, this does
not imply that agents would avoid assigning feedback. Gen-
erally, a strong incentive in reputation systems for assigning
feedback is that other agents reciprocate. An agent that as-
signs no feedback and thus receives no feedback would find
itself in the undesirable state of having no reputation.

8. RELATED WORK
Our work shares many similarities with the work by Pavlov

et al. [14], which also focuses on decentralized additive rep-
utation systems. However, their protocol that is resilient

8

against non-malicious disruptive adversaries requires O(n2)
messages for n source agents. In our protocol, agents ex-
change messages with a constant number of agents which
leads to a tighter bound. Moreover, we identify the type 2
attack and present a solution for it. Additionally, we also
provide experimental evaluation of our proposal. Pavlov et
al. also present a protocol that is resilient against malicious
disruptive adversaries. That protocol has a communication
complexity of O(n3).

A number of privacy preserving reputation systems are
based on the premise that a trusted hardware module is
present at every agent. A decentralized system proposed
by Kinateder and Pearson [11] requires a Trusted Platform
Module (TPM) chip at each agent. The TPM enables an
agent to demonstrate that it is a valid agent and a legitimate
member of the reputation system without disclosing its true
identity. This permits the agent to provide feedback anony-
mously. Voss et al. [18] and Bo et al. [3] also present decen-
tralized systems which are based on similar lines, however
they both suggest using smart cards as the trusted hardware
modules. A later system by Kinateder et al [12] avoids the
hardware modules, however it requires anonymous routing
infrastructure at the network level. These systems clearly
differ from our approach, which does not mandate special-
ized platforms.

Several privacy preserving reputation systems have the
concept of e-cash as their basis. One such system is sug-
gested for centralized environments by Ismail et al. [9].
Later, in [8], they also propose a decentralized version. How-
ever, an essential part of their architecture is a“trusted third
party” – a central authority, which creates a single point of
failure. A reputation system for decentralized anonymous
networks which makes use of e-cash is presented by An-
droulaki et al. [2]. However, due to the presence of a central
“bank” in the system, it also suffers from the problem of a
single point of failure. In comparison, our architecture does
not have this limitation. Please note that there is no bound
on the number of seed agents in our system.

None of the works cited above provide evaluation of the
proposed systems with data from a real web of trust.

9. FUTURE WORK
We are currently working on the development of an effi-

cient protocol that is resilient against disruptive malicious
agents. We identify two main actions that disruptive mali-
cious agents may take to disrupt the system: 1) drop mes-
sages, 2) add values that are out of range.

A provisional solution for the first problem is as follows:
Each message is relayed by the querying agent. The sender
agent, instead of sending a message directly to the recip-
ient agent, must send the message to the querying agent.
The querying agent then relays the message to the recipi-
ent agent. This enables the querying agent to identify any
agent that drops a message. To prevent the querying agent
from compromising the privacy of agents, each message is en-
crypted by the sender with the recipient’s public key. This
technique prevents agents from maliciously dropping mes-
sages, however, it requires a significant number of expensive
cryptographic operations. The theoretical bound remains
unchanged, however, in practice the solution would raise the
number of messages in protocol 2 to approximately twice as
before.

For a solution to the problem of out of range values, we

are currently looking at homomorphisms and zero knowledge
proofs, and secure voting protocols.

10. CONCLUSION
We presented novel privacy preserving protocols for com-

puting reputation in decentralized environments under semi-
honest and non-disruptive malicious adversarial models. The
protocols draw their strength from elements that include
data perturbation, presence of pre-trusted seed agents, and
most importantly the ability of feedback providers to them-
selves select trustworthy agents that they want to share in-
termediate information with. Our protocol that is resilient
against non-disruptive malicious adversaries has loglinear
communication complexity. This makes the protocol more
efficient than comparable protocols discussed in the litera-
ture. Moreover, our protocols are fully decentralized and
do not suffer from any single points of failure. An experi-
ment conducted on data from the real web of trust of Ad-
vogato.org demonstrates that the protocols preserve the pri-
vacy of agents with high success. An important direction for
future work is the development of an efficient protocol that
is resilient against disruptive malicious adversaries.

11. REFERENCES
[1] R. Agrawal and R. Srikant. Privacy-preserving data

mining. In Proc. of the ACM SIGMOD Conf. on
Management of Data, 2000.

[2] E. Androulaki, S. G. Choi, S. M. Bellovin, and
T. Malkin. Reputation systems for anonymous
networks. In Proc. of the 8th Privacy Enhancing
Technologies Symp. (PETS 2008), 2008.

[3] Y. Bo, Z. Min, and L. Guohuan. A reputation system
with privacy and incentive. In Proc. of the 8th ACIS
Intl. Conf. on Soft. Eng., AI, Networking, and
Parallel/Distributed Comp. (SNPD’07), 2007.

[4] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and
M. Y. Zhu. Tools for privacy preserving distributed
data mining. SIGKDD Explorations, Jan. 2003.

[5] W. Du. A Study of Several Specific Secure Two-Party
Computation Problems. PhD thesis, Purdue
University, West Lafayette, IN, USA, 2001.

[6] eBay. Upcoming changes to feedback.
http://pages.ebay.com/services/forum/new.html,
2008. Retrieved June 30, 2008.

[7] O. Goldreich. Secure multi-party computation.
Working Draft, Version 1.4, 2002.

[8] R. Ismail, C. Boyd, A. Josang, and S. Russell. Private
reputation schemes for p2p systems. In Proc. of the
2nd Intl. Workshop on Security in Info. Systems, 2004.

[9] R. Ismail, C. Boyd, A. Josang, and S. Russell. Strong
privacy in reputation systems. In Proc. of the 4th Intl.
Workshop on Info. Security Apps. (WISA’03), 2004.

[10] S. D. Kamvar, M. T. Schlosser, and H. GarciaMolina.
The eigentrust algorithm for reputation management
in p2p networks. In Proc. of the 12th Intl. Conf. on
World Wide Web (WWW 2003), 2003.

[11] M. Kinateder and S. Pearson. A privacy-enhanced
peer-to-peer reputation system. In Proc. of the 4th
Intl. Conf. on E-Commerce and Web Techs., 2003.

[12] M. Kinateder, R. Terdic, and K. Rothermel. Strong
pseudonymous communication for peer-to-peer

9

reputation systems. In Proc. of the 2005 ACM Symp.
on Applied Computing, 2005.

[13] R. Levien. Attack resistant trust metrics. Manuscript,
University of California - Berkeley.
www.levien.com/thesis/compact.pdf, 2002.

[14] E. Pavlov, J. S. Rosenschein, and Z. Topol.
Supporting privacy in decentralized additive
reputation systems. In Proc. of the 2nd Intl. Conf. on
Trust Management (iTrust 2004), 2004.

[15] P. Resnick and R. Zeckhauser. Trust among strangers
in internet transactions. The Economics of the
Internet and E-Commerce. Vol. 11 of Advances in
Applied Microeconomics, pages 127–157, 2002.

[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proc. of the
2001Conf. on Apps., Technologies, Architectures, and
Protocols for Computer Communications, 2001.

[17] J. Vaidya and C. Clifton. Privacy-preserving data
mining: Why, how, and when. IEEE Security and
Privacy, 2(6):19–27, November 2004.

[18] M. Voss, A. Heinemann, and M. Muhlhauser. A
privacy preserving reputation system for mobile
information dissemination networks. In Proc. of the
1st Intl. Conf. on Security and Privacy for Emerging
Areas in Comm. Networks (SECURECOMM), 2005.

APPENDIX
A. PROTOCOL 2

need arises to determine rt

� initiate query to determine rt
1 send tuple (request for sources) to t
2 receive tuple (sources, St) from t
3 if |St| ≥ 2
4 then a(f,out) ← random element(St)
5 q ← a
6 p← timestamp()
7 r ← 0
8 send tuple (forwards, q, t, p, r, St, St) to a(f,out)

tuple (request for sources) received from agent k

1 send tuple (sources, Sa) to k

Figure 4: Protocol 2.

B. PROOFS

Theorem 1. If all agents properly follow Protocol 2, then
at the completion of a query, rt =

∑
a∈St

lat + x.

Proof. In the forwards round, the tuple (FORWARDS,
q, t, p, r, S, St) arrives once at each agent in St. When the
querying agent initiates the query, r = 0, and when the
tuple arrives at the seed, each a ∈ St has added the val-
ues of its lat and y(q,t,p) to it. Let’s say that the set St =
{a1, a2, . . . , an} and let’s refer to the y(q,t,p) value of agent
ai as yai

(q,t,p). Then the value of r when it reaches the seed is

r =
∑n

i=1 lait +
∑n

i=1 y
ai
(q,t,p). The seed sends x1, x2, . . . , xn

to a1, a2, . . . , an respectively.
∑n

i=1 xi = x. The seed then
initiates the backwards round.

tuple (forwards, q, t, p, r, S, St) received from agent a(f,in)

1 if a ∈ S ∧ |St| ≥ 2
2 then r(f,in) ← r
3 y(q,t,p) ← random(−Y, Y)
4 r(f,out) ← r(f,in) + lat + y(q,t,p)

5 S(f,in) ← S
6 S(f,out) ← S(f,in) − a
7 if |S(f,out)| > 0
8 then a(f,out) ← trustworthy(a, S(f,out))
9 a(q,t,p) ← a(f,out)

10 send tuple (forwards, q, t, p, r(f,out),
S(f,out), St) to a(f,out)

11 else
12 a(f,out) ← random element(D)
13 a(q,t,p) ← nil
14 send tuple (seed, q, t, p, r(f,out),

S(f,out), St) to a(f,out)

15 store y(q,t,p) and a(q,t,p) in
−→
Y and

−→
A respectively

tuple (seed, q, t, p, r, S, St) received from agent a(f,in)

1 if a ∈ D ∧ S = φ
2 then n← |St|
3 x← random(−Y, Y)
4 selectx1, x2, . . . , xn uniformly from [−Y, Y]

such that
∑n

i=1 xi = x
5 Stemp ← St

6 for i← 1 to n
7 do si ← random element(Stemp)
8 Stemp ← Stemp − si

9 send tuple (partx, q, t, p, xi) to si

10 a(b,out) ← random element(St)
11 send tuple (backwards, q, t, p, r, St) to a(b,out)

tuple (partx, q, t, p, x) received from agent d

1 if d ∈ D ∧ y(q,t,p) and a(q,t,p) exist in
−→
Y and

−→
A respectively

2 then x(q,t,p) ← x

3 storex(q,t,p) in
−→
X

tuple (backwards, q, t, p, r, S) received from agent a(b,in)

1 if a ∈ S ∧ y(q,t,p), a(q,t,p), and x(q,t,p) exist in
−→
Y ,
−→
A , and

−→
X respectively

2 then r(b,in) ← r
3 r(b,out) ← r(b,in) − y(q,t,p) + x(q,t,p)

4 S(b,in) ← S
5 S(b,out) ← S(b,in) − a
6 if |S(b,out) − a(q,t,p)| > 0
7 then a(b,out) ← trustworthy(a,

S(b,out) − a(q,t,p))
8 send tuple (backwards, q, t, p,

r(b,out), S(b,out)) to a(b,out)

9 else if |S(b,out)| > 0
10 a(b,out) ← trustworthy(a, S(b,out))
11 send tuple (backwards, q, t, p,

r(b,out), S(b,out)) to a(b,out)

12 else a(b,out) ← q
13 send tuple (result, q, t, p,

r(b,out), S(b,out)) to a(b,out)

14 discard y(q,t,p), a(q,t,p), and x(q,t,p)

tuple (result, q, t, p, r, S) received from agent a(b,in)

1 if a = q
2 then rt ← r � query complete

Figure 5: Protocol 2 (contd.).

In the backwards round, the tuple (BACKWARDS,
q, t, p, r, S) arrives once at each agent. Each of those n

10

Table 2: Description of the functions used in Proto-
col 2.

Function Description
random element(S) Returns a random element from the set

S
timestamp() Returns current time. For any given

target, an agent can only initiate one
query per the smallest unit of time in
the timestamp.

random(x,y) Returns a random number uniformly
distributed on the interval [x, y]

trustworthy(a, S) Returns an agent k from the set S such
that lak ≥ 0 ∧ ∀s ∈ S − k, lak ≥ las.
If two or more agents meet this crite-
ria, then one of the agents is selected
at random. If none of the agents meet
this criteria, then an agent is selected
at random from S.

agents, ai ∈ St subtracts yai
(q,t,p) from r and adds xi to it.

When (RESULT, q, t, p, r, S) arrives at q, all agents ai ∈ St

have removed yai
(q,t,p) and added xi to r, thus r =

∑n
i=1 lait+∑n

i=1 y
ai
(q,t,p)−

∑n
i=1 y

ai
(q,t,p)+

∑n
i=1 xi, or rt = r =

∑
a∈St

lat+
x.

Theorem 2. If the agents who participate in Protocol 2 are
semi-honest, then at the completion of a query, the probabil-
ity that a type 1 attack will reveal the local feedback value of
an agent a ∈ St, who is not the last agent in the forwards
or the backwards round, is: P (a(f,out) ∈ Za)× P (a(b,out) ∈
Za)× P (d ∈ Za).

Proof. An agent a ∈ St, who is not the last agent in
the forwards round, exchanges information with five agents
from the start to the end of a query. Those agents are iden-
tified in the protocol as a(f,in), a(f,out), a(b,in), a(b,out), and
d. In a type 1 attack, agents may act individually or they
may collude. Let’s first see what each of these agents learns
individually.
a(f,in) does not receive anything from a thus it does not

learn anything. a(f,in) knows:

r(f,in) = c1 (1)

c1, c2, . . . are constants.
a(f,out) receives r(f,out) = r(f,in) + lat + y(q,t,p) from a.

Since r(f,in) + y(q,t,p) is added to lat, a(f,out) does not learn
lat (data perturbation). It does not learn y(q,t,p) due to the
same assumption. a(f,out) knows:

r(f,in) + lat + y(q,t,p) = c2 (2)

a(b,in) does not receive anything from a thus it does not
learn anything. a(b,in) knows:

r(b,in) = c3 (3)

a(b,out) receives r(b,out) = r(b,in)− y(q,t,p) +x(q,t,p) from a.
Since r(b,in) − lat + x(q,t,p) is still added to lat, a(b,out) does
not learn lat (data perturbation). a(b,out) knows:

r(b,in) − y(q,t,p) + x(q,t,p) = c4 (4)

d does not receive anything from a thus it does not learn
anything. d knows:

x(q,t,p) = c5 (5)

Now let’s see what the agents learn if they collude. The set
{a(f,in), a(f,out), a(b,in), a(b,out), d} allows 32 possible subsets
of colluding agents. The colluding agents are able to deter-
mine lat only with the subset {a(f,in), a(f,out), a(b,in), a(b,out), d},
that is if it contains all five agents.

From equations 1 and 2 we have:

c1 + lat + y(q,t,p) = c2

lat + y(q,t,p) = c6 (6)

From equations 3, 4, and 5 we have:

c3 − y(q,t,p) + c5 = c4

y(q,t,p) = c7 (7)

Subtracting equation 7 from equation 6 we get:

lat + y(q,t,p) − y(q,t,p) = c6 − c7
lat = c8

As observed, lat can be revealed only if a(f,in), a(f,out),
a(b,in), a(b,out), and d are all in Za. The probability that
these five agents are in Za is: P (a(f,in) ∈ Za)×P (a(f,out) ∈
Za)× P (a(b,in) ∈ Za)× P (a(b,out) ∈ Za)× P (d ∈ Za).

Since a has no control over who a(f,in) and a(b,in) are, we
assume that they are in Za and thus P (a(f,in) ∈ Za) = 1
and P (a(b,in) ∈ Za) = 1.

Thus the probability that a type 1 attack will reveal the
local feedback value of an agent a ∈ St, who is not the
last agent in the forwards round, is: P (a(f,out) ∈ Za) ×
P (a(b,out) ∈ Za)× P (d ∈ Za).

Theorem 3. If the agents who participate in Protocol 2 are
semi-honest, then at the completion of a query, the probabil-
ity that a type 1 attack will reveal the local feedback value of
an agent a ∈ St is at most P (d ∈ Za).

Proof. In the forwards round, the privacy of an agent
a is preserved due to the addition of y to its local feedback
value lat. The value of y is a secret known only by a itself,
thus the probability that y or lat will be revealed is 0. In the
backwards round, a’s privacy is preserved by the addition of
x to lat. Other than a, the value of x is known only by
the seed agent d. The probability that x will be revealed
is P (d ∈ Za). Any attacker or collective of attackers must
know x to learn lat. Thus, the probability that lat would be
revealed is at most P (d ∈ Za).

Theorem 4. If the agents who participate in Protocol 2 are
semi-honest, then the probability that a type 2 attack will
reveal the local feedback value of an agent a ∈ St is at most
P (d ∈ Za).

Proof. Let’s say that a querying agent q mounts an at-
tack of type 2 on agent a. Immediately before agent a up-
dates lat, q queries for the reputation of agent t and receives
rt which is given as:∑

k∈A−a

lkt + lat + xd = c1 (8)

where d is the seed agent in the query and xd is the random
value that it adds. c1, c2, . . . are constants.

Then immediately after agent a updates lat, q queries
again for the reputation of agent t and receives r′t which
is given as: ∑

k∈A−a

lkt + l′at + xd′ = c2 (9)

11

where r′t and l′at are the updated values of rt and lat re-
spectively, d′ is the seed agent in the query and xd′ is the
random value that it adds.

From equations 8 and 9 we have:

c1 − lat − xd = c2 − l′at − xd′

lat − l′at = c3 − xd + xd′ (10)

Equation 10 shows that to learn δl = lat − l′at, the seed
agents d and d′ would have to be in Za. The probability
that both d and d′ are in Za is: P (d ∈ Za)× P (d′ ∈ Za).

The probability for q to learn δl is at its highest if d and
d′ are the same agents. In that case the probability would
be P (d ∈ Za).

Thus the probability that a type 2 attack will reveal the
local feedback value of an agent a ∈ St is at most P (d ∈
Za).

12

