
[2009] 

                                                                                    
 
 
Research report 
 
 
 
 
 
 
 
 
 
 

Use of Variable Resolution 
Transform for Musical 
Descriptor Extraction

 
 
 
 

Aliaksandr Paradzinets 

Liming Chen 

[June 2009] 

 



Use of Variable Resolution transform for musical descriptor 
extraction 

Aliaksandr Paradzinets, Liming Chen 
{aliaksandr.paradzinets, liming.chen}@ec-lyon.fr 

Ecole Centrale de Lyon 
 
As a major product for entertainment, there is a huge amount of digital musical content produced, broadcasted, 
distributed and exchanged. There is a rising demand for content-based music search services. Similarity-based music 
navigation is becoming crucial for enabling easy access to the ever-growing amount of digital music available to 
professionals and amateurs alike. This work presents new musical content descriptors and similarity measures which 
allow automatic musical content organizing (search by similarity, automatic playlist generating) and labeling 
(automatic genre classification). A novel variable resolution transform is presented and described in the context of 
music signal analysis. Higher level processing touches upon the musical knowledge extraction where the variable 
resolution transform is used in two algorithms – beat detection and multiple fundamental frequency estimation 
algorithms. The information issued from these algorithms is then used for building musical descriptors, represented 
in form of histograms (novel 2D beat histogram which enables a direct tempo estimation, note succession and note 
profile histograms etc.). A direct music information retrieval applications, namely music retrieval by similarity, 
which use aforementioned musical features are described and evaluated in this paper. 
 

1. Introduction 
As a major product for entertainment, there is a huge amount of digital musical content 
produced, broadcasted, distributed and exchanged. There is a rising demand for content-based 
music search services. Similarity-based music navigation is becoming crucial for enabling easy 
access to the ever-growing amount of digital music available to professionals and amateurs alike. 
A professional user, such as a radio programmer, may want to search for a different 
interpretation of one song to include in a radio playlist. In addition, a radio programmer has the 
need to discover new songs and artists to help his listeners to discover new music. The music 
amateur on the other hand has different needs, ranging from active music discovery for the fans, 
to the simple seed song playlist generation of similar items. Such ways to organize musical 
collections as genre classification and title structuring are important as they facilitate music 
navigation and discovery. 

The primary stage in every kind of audio based music information retrieval is signal data 
analysis. Some algorithms perform analysis in the time domain as for example several beat 
detection algorithms. But the majority of music information retrieval algorithms perform their 
computation in the frequency domain, or a time-frequency representation, to be exact. So, the 
performance of all further steps of processing is strictly dependent on the initial data 
representation. 

As compared to a vocal signal, a music signal is likely to be more stationary and posesses some 
very specific properties in terms of musical tones, intervals, chords, instruments, melodic lines 
and rhythms, etc. [1]. While many effective and high performance music information retrieval 
(MIR) algorithms have been proposed [2][3][4][5][6][7][8][9], most of these works 
unfortunately tend to consider a music signal as a vocal one and make use of MFCC-based 
features which are primarily designed for speech signal processing. Mel Frequency Cepstrum 
Coefficients (MFCC) was introduced in the 60’s and used since that time for speech signal 
processing. The MFCC computation averages spectrum in sub-bands and provides the average 
spectrum characteristics. Whereas they are inclined to capture the global timbre of a music signal 
and claimed to be of use in music information retrieval [10][11], they cannot characterize the 
aforementioned music properties as needed for perceptual understanding by human beings and 
quickly find their limits [12]. Recent works suggest combining spectral similarity descriptors 
with high-level analysis in order to overcome existing ceiling [13]. 



The Fast Fourier Transform and the Short-Time Fourier Transform have been the traditional 
techniques in audio signal processing. This classical approach is very powerful and widely used 
owing to its great advantage of rapidity. However, a special feature of musical signals is the 
exponential law of notes’ frequencies. The frequency and time resolution of the FFT is linear and 
constant across the frequency scale while the human perception of a sound is logarithmic 
according to Weber-Fechner law (including loudness and pitch perception). Indeed, as it is well 
known, the frequencies of notes in equally-tempered tuning system in music follow an 
exponential law (with each semi-tone the frequency is increased by a factor of 21/12). If we 
consider a frequency range for different octaves, this frequency range is growing as the number 
of octave increases. Thus, to cover a wide range of octaves with a good frequency grid large 
sized windows are necessary in the case of FFT; this affects the time resolution of the analysis. 
On the contrary, the use of small windows makes resolving frequencies of neighboring notes in 
low octaves almost impossible. The ability of catching all octaves in music with the same 
frequency resolution is essential for music signal analysis, in particular construction of melodic 
similarity features. Hence, as the basis of our work in music feature based MIR, we propose a 
new music signal analysis technique by variable-resolution transform (VRT) particularly suitable 
to music signal. 

Our VRT is inspired by Continuous Wavelet Transformation (CWT) introduced 20 years ago 
[14] and designed in order to overcome the limited time-frequency localization of the Fourier-
Transform for non-stationary signals. Unlike classical FFT, our VRT depicts similar properties 
as CWT, i.e. having a variable time-frequency resolution grid with a high frequency resolution 
and a low time resolution in low-frequency area and a high temporal/low frequency resolution on 
the other frequency side, thus behaving as a human ear which exhibits similar time-frequency 
resolution characteristics [15].  

1.1. Time-frequency transforms: FFT vs WT 

There are plenty of works in the literature dedicated to musical signal analysis. The common 
approach is the use of FFT (Fast Fourier Transform) which has become a de-facto standard in 
music information retrieval community. The use of FFT seems straightforward in this field and 
relevance of its application for music signal analysis is almost never motivated.  

There are some works in music information retrieval attempting to make use of wavelet 
transform as a novel and powerful tool in musical signal analysis. However, this new direction is 
not very well explored. [8] proposes to rely on discrete wavelet transform for beat detection. 
Discrete packet wavelet transform is studied in [16] to build time and frequency features in 
music genre classification. In [17], wavelets are also used for automatic pitch detection. 

As it is well known, Fourier transform enables a spectral representation of a periodic signal as a 
possibly sum of a series of sines and cosines. While Fourier transform gives an insight into the 
spectral properties of a signal, its major disadvantage is that a decomposition of a signal by 
Fourier transform has infinite frequency resolution and no time resolution. It means that we are 
able to determine all frequencies in the signal, but without any knowledge about when they are 
present. This drawback makes Fourier transform to be perfect for analyzing stationary signals 
but unsuitable for irregular signals whose characteristics change in time.  To overcome this 
problem several solutions have been proposed in order to represent more or less the signal in 
time and frequency domains. 

One of these techniques is windowed Fourier transform or short-time Fourier transform. The 
idea behind is to bring time localization into classic Fourier transform by multiplying the signal 
with an analyzing window. The problem here is that the short-time discrete Fourier transform has 
a fixed resolution. The width of the windowing function is a tradeoff between a good frequency 
resolution transform and a good time resolution transform. Shorter window leads to smaller 



frequency resolution but higher time resolution while larger window leads to greater frequency 
resolution but lower time resolution. This phenomenon is related to Heisenberg’s uncertainty 
principle which says that 
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where ∆t is a time resolution step and ∆f is a frequency resolution step. 

Remember that in our work the main goal is music analysis. In this respect, we consider a rather 
music-related example which illustrates specificities of musical signals. As it is known, the 
frequencies of notes in equally-tempered tuning system in western music follow a logarithmic 
law, i.e. adding a certain interval (in semitones) corresponds to multiplying a frequency by a 
given factor. For an equally-tempered tuning system a semitone is defined by a frequency ratio 
of 21/12. So, the interval between two frequencies is  
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If we consider a frequency range for different octaves, it is growing as the number of octave is 
higher. Thus, applying the Fast Fourier Transform we either lose resolution of notes in low 
octaves (Figure 1.1) or we are not able to distinguish high-frequency events which are closer in 
time and have shorter duration. 

Frequency resolution

Notes’ frequencies
 

Figure 1.1. Mismatch of note frequencies and frequency resolution of the FFT. 

Time-frequency representation, which can overcome resolution issues of the Fourier transform is 
Wavelet transform. Wavelets (literally “small waves”) are a relatively recent instrument in 
modern mathematics.  Introduced about 20 years ago, wavelets have made a revolution in theory 
and practice of non-stationary signal analysis [14][18]. Wavelets have been first found in the 
literature in works of Grossmann and Morlet [19]. Some ideas of wavelets partly existed long 
time ago. In 1910 Haar published a work about a system of locally-defined basis functions. Now 
these functions are called Haar wavelets. Nowadays wavelets are widely used in various signal 
analysis, ranging from image processing, analysis and synthesis of speech, medical data and 
music [17][20].   

 
Continuous wavelets transform of a function f(t)∈ L2(R) is defined as follows: 
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where a, b ∈ R, a ≠ 0. 



In the equation (1.3) ψ(t) is called basic wavelet or mother wavelet function (* stands for 
complex conjugate). Parameter a is called wavelet scale. It can be considered as analogous to 
frequency in the Fourier transform. Parameter b is localization or shift. It has no correspondence 
in the Fourier transform. 

One important thing is that the wavelet transform does not have a single set of basis functions 
like the Fourier transform. Instead, the wavelet transform utilizes an infinite set of possible basis 
functions. Thus, it has an access to a wide range of information including the information which 
can be obtained by other time-frequency methods such as Fourier transform. 

As explained in brief introduction on music signal, a music excerpt can be considered as a 
sequence of note (pitches) events lasting certain time (durations). Beside beat events, singing 
voice and vibrating or sweeping instruments, the signal between two note events can be assumed 
to be quasi-stationary. The duration of a note varies according to the main tempo of the play, 
type of music and type of melodic component the note is representing. Fast or short notes usually 
found in melodic lines in high frequency area while slow or long notes are usually found in bass 
lines with rare exceptions. Let’s consider the following example in order to see the difference 
between the Fourier transform and wavelet one. We construct a test signal as containing two 
notes E1 and A1 playing simultaneously during the whole period of time (1 second). These two 
notes can represent a bass line, which, as it is well known, does not change quickly in time. At 
the same time, we add 4 successive notes B5 with small intervals between them (around 1/16 
sec). These notes can theoretically be notes of the main melody line. Let’s see now the Fourier 
spectrogram of the test signal with a small analyzing window. 

 
Figure 1.2. Small-windowed Fourier transform (512 samples) of the test signal containing notes E1 and A1 

at the bottom and 4 repeating B5 notes at the top. 
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As we can see from Figure 1.2, while high-octave notes can be resolved in time, two bass notes 
are irresolvable in frequency domain. Now we increase the size of the window in the Fourier 
transform. Figure 1.3 illustrates the resulting spectrogram. 
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Figure 1.3. Large-windowed Fourier transform (≥1024 samples) of the test signal containing notes E1 and 

A1 at the bottom and 4 repeating B5 notes at the top. 



As we can see, two lines at the bottom of the spectrogram are now clearly distinguishable while 
the time resolution of high-octave notes has been lost. 

Finally we apply wavelet transform to the test signal. Figure 1.4 shows such Morlet-based 
wavelet spectrogram of our test signal. 
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Figure 1.4. Wavelet transform (Morlet) of the test signal containing notes E1 and A1 at the bottom and 4 

repeating B5 notes at the top. 

Of course, the given example is quite artificial; however it explains well our motivation for a 
wavelet like time-frequency representation of a signal. It is also known, that human ear exhibits 
time-frequency characteristic closer to that from wavelet transform [15].  

1.2. Other transforms and filter banks 

The idea to adapt the time/frequency scale of a Fourier-related transform to musical applications 
is not completely novel. A technique called Constant Q Transform [21]  is related to the 
Fourier transform and it is used to transform a data series to the frequency domain. Like the 
Fourier transform a constant Q transform is a bank of filters, but contrary to the Fourier 

transform it has geometrically spaced center frequencies b
k
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to the frequencies of notes.  

In general, the transform is well suited to musical data (see e.g. [22], in [23] it was successfully 
used for recognizing instruments),  and this can be seen in some of its advantages compared to 
the Fast Fourier Transform. As the output of the transform is effectively amplitude/phase against 
log frequency, fewer spectral bins are required to cover a given range effectively, and this proves 
useful when frequencies span several octaves. The downside of this is a reduction in frequency 
resolution with higher frequency bins.  

Besides constant Q transform there are bounded version of it (BQT) which use quasi-linear 
frequency sampling when frequency sampling remains linear within separate octaves. This kind 
of modification allows construction of medium complexity computation schemes in comparison 
to standard CQT. However, making the frequency sampling quasi-linear (within separate 
octaves) renders the finding of harmonic structure much more complex task. 



Fast Filter Banks are designed to deliver higher frequency selectivity maintaining low 
computational complexity. This kind of filter banks inherits all disadvantages of FFT in music 
analysis applications. 

More advanced techniques, described for example in [24] are medium-complexity methods 
which aim to overcome disadvantages of FFT and try to follow note system frequency sampling. 
However, octave-linear frequency sampling keeps the same disadvantage as in the case of 
bounded Q transforms. 

2. Variable Resolution Transform 
Our Variable Resolutions Transform (VRT) is first derived from the classic definition of 
Continuous Wavelet Transform (CWT) in order to enable a variable time-frequency coverage 
which should fit to music signal analysis better. The consideration of specific properties of music 
signal finally leads us to change the mother function as well and thus our VRT is not a true CWT 
but a filter bank.  

We start the construction of our VR Transform from Continuous Wavelet Transform defined by 
(1.3). Thus, we define our mother function as follows 
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where H(t,l) is the Hann window function of a length l with l ∈ Z as defined by (2.2). In our case 
l will lie in a range between 30-300 ms. Notice that using different different length values l 
amounts to change the mother wavelet functionΨ. 
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Once the length l is fixed, function (2.1) becomes much more similar to a Morlet wavelet. It is an 
oscillating function, a flat wave modulated by a Hann window. The parameter l defines the 
number of periods to be present in the wave. Figure 2.1 illustrates such a function with l=20 
waves. 

 
Figure 2.1. Our mother wavelet function. A flat wave modulated by a Hann window with l=20. 

We can write according to the definition of the function (since l < ∞): 
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The function is oscillating symmetrically around its 0 value, hence 
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Using (1.3) we write a discrete version of the transform for a sampled signal between the instants 
of time form t–l/2 to t+l/2. Applying the wavelet transform to the signal, we are interested in 
spectrum magnitude 
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Here W(a,b) is the magnitude of the spectral component for the signal s[t] at time instant b and 
wavelet scale a.  

The value of W(a,b) can be obtained for any a and b provided that b does not exceed the length 
of the signal. The equation (2.5) thus defines a Continuous Wavelet Transform for a discrete 
signal (time sampling).   

The scale of wavelet a can be expressed in terms of central frequency corresponding to it since 
our mother function is a unit oscillation: 

f
fa S= (2.6) 

where fS is the sampling frequency of the signal. 

A higher value of a stands for a lower central frequency. 

2.1. Logarithmic frequency sampling 

First of all, the sampling of the scale axis is chosen to be logarithmic in the meaning of 
frequency. It means that each musical octave or each note will have an equal number of spectral 
samples. Such a choice is explained by the properties of a music signal, which is known to have 
frequencies of notes to follow a logarithmic law (following the human perception). Logarithmic 
frequency sampling also simplifies harmonic structure analysis and economizes the amount of 
data necessary to cover the musical tuning system effectively. 

A voiced signal with single pitch is in the general case represented by its fundamental frequency 
and the fundamental frequency’s partials (harmonics) with the frequencies equal to the 
fundamental frequency multiplied by the number of a partial. Hence the distances between 
partials (harmonic components) and f0 (basic frequency) in logarithmic frequency scale are 
constant independently from f0. Such harmonic structure looks like a “fence”, depicted on Figure 
2.2. 

Log frequency 

2f0f0 3f0 4f0 …5f0

 



Figure 2.2. Harmonic structure in logarithmic frequency scale. 

In order to cover the frequency axis form fmin to fmax with N frequency samples with a logarithmic 
law we define a discrete function a(n), which denotes the scale of wavelet and where n stands for 
a wavelet bin number ranging in the interval 0..N-1. 
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Now the transform (2.5) sampled in both directions gives 
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Expression (2.8) is the basic expression to obtain an N-bin spectrogram of the signal at time 
instant b. Thus, for a discrete signal of length S, expression (2.8) provides S×N values for each 
instant of time, N being the number of frequency samples. The expression (2.8) is still a sampled 
version of the Continuous Wavelet Transform where the sampling of the scale axis has been 
chosen logarithmic for N samples. 

Frequency dependency on the bin number has the following form (with fmin=50, fmax=8000, 
N=1000).  
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In order to depict the time/frequency properties of music signals by this discretized wavelet 
transform with a fixed length value (l=20), let’s consider wavelet spectrograms of several test 
signals. Figure 2.3 shows the wavelet spectrogram W(n,b) of a piano recording. One can observe 
single notes on the left and chords on the right. Fundamental frequency (f0) and its harmonics 
can be observed in the spectrum of each note. As we can see from the Figure 2.3, up to 5 
harmonics are resolvable. Higher harmonics after the 5th one become indistinguishable especially 
in the case of chords where the number of simultaneously present frequency components is 
higher.  



 
Figure 2.3. Wavelet spectrogram of a piano recording (wavelet (2.1)). Single notes on the left and chords on 

the right. Up to 5 harmonics are resolvable. Higher harmonics after the 5th one become indistinguishable especially 
in the case of chords where the number of simultaneous frequency components is higher.  
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Good time resolution is important in such tasks as beat or onset detection for music signal 
analysis. The next example serves to illustrate the time resolution properties of the Variable 
Resolution Transform we are developing. In this example we examine a signal with a series of 
delta-pulses (Dirac) as illustrated in Figure 2.4 which is a wavelet spectrogram of 5 delta-pulses 
(1 on the left, 2 in the middle and 2 on the right). As we can see from this figure, Delta-pulses on 
the picture are still distinguishable even if the distance between them is only 8 ms (right case). In 
the case of FFT one need 64-sample window size in order to obtain such time resolution.   

 
Figure 2.4. Wavelet transform of a signal containing 5 delta-pulses. The distance between two pulses on the 

right is only 8 ms. 

A quite straightforward listening experiment that we have carried out reveals that the human 
auditory system is capable to distinguish delta-pulses when a distance between them is around 10 
ms. On the other hand, the human auditory system is also able to distinguish very close 
frequencies - 4Hz in average1, and down to 0.1Hz 

                                                 
1 http://tonometric.com/adaptivepitch/ 



2.2. Varying the mother function 

However, music analysis requires good frequency resolution as well. As we can see from the 
spectrogram in Figure 2.3, neither high-order partials  nor close notes are resolvable, because the 
spectral localization of the used wavelet is too wide. Increasing the length parameter l in (2.1) or 
(2.8) of the Hann window would render our wavelet transform unusable in low-frequency area 
since the time resolution in low-frequency area would rise exponentially. Thus, we propose in 
this work to make dynamic parameter l with a possibility to adjust its behavior across the scale 
axis. For such a purpose we propose to use the following law for parameter l in (2.8) instead of 
applying scale a(n) to parameter t in H(t,l): 
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where L is the initial window size, k1 and k2 – adjustable parameters 

The transform (2.8) becomes: 

[ ] S

Cn

f
etf

il
N
nk

ee
N
nkLtHbtsbnW

⋅⋅
−−

⋅⎥
⎤

⎢
⎡

⋅⎟
⎞

⎜
⎛ −⋅⋅+= ∑

min
2

2/

11,1,
l

Cn
S

ef
f −

⋅
⎦⎣ ⎠⎝2/

min

 (2.11) 

The expression (2.10) allows the effective”wavelet” width to vary in different ways: from linear 

to completely exponential to follow the original transform definition. When
minf
f

L S= , k1=0 and 

k2=C⋅N, (2.11) is equivalent to (2.8). 

 
Figure 2.5. Various l(n), depending on parameters. From linear (left) to exponential 

(right). 

Doing so, we are now able to control the time resolution behavior of our transform. In fact, such 
transform is not anymore a wavelet transform since the mother-function changes across the scale 
axis. For this reason we call the resulted transform as variable resolution transform (VRT). It 
can be also referred as a custom filter bank. 

As the effective mother-function width (number of wave periods) grows in high-frequency 
relatively to the original mother-function, the spectral line width becomes more narrow, and 
hence the transform allows to resolve harmonic components (partials) of the signal. An example 
of the spectrogram with new variable resolution transform is depicted in Figure 2.6. 
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Figure 2.6. VRT spectrogram of the piano recording used in the previous experiment. Fundamental frequencies and 

partials are distinguishable (k1=0.8, k2=2.1). 

2.3. Properties of the VR transform 

Here we proceed to study the properties of our VR transform within the scope of the present 
work, i.e., with regard to music signals.  

A music signal between 50 and 8000 Hz contains approximately 8 octaves. Each octave consists 
of 12 notes, leading to a total number of notes around 100. A filterbank with 100 filters would be 
enough to cover such octave range. In reality, frequencies of notes may differ from the 
theoretical note frequencies of equal-tempered tune because of recording and other conditions. 
Therefore for music signal analysis considered here, we are working with spectrogram size of 
1024 bins – 10 times the amount necessary which covers the note scale by 10 bins per note. 
Timbre is a one of major properties of music signal along with melody and rhythm. Let’s 
consider now a structure of partials of a harmonic signal (harmonic structure).  In Figure 2.2 we 
have depicted an approximate view of such structure in logarithmic frequency scale. According 
to the definition of the function f(n) (2.9), the distance between partial i and partial j in terms of 
number of bins is independent of the absolute fundamental frequency value.  
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An accurate harmonic analysis of music signal implies that frequency resolution in terms of 
spectrogram bin number, expressed by the spectral dispersion, should be always below the 
distance between neighboring components under consideration. 

Having the total width of 20-partial harmonic structure to be a constant around 600 points in 
terms of number of bins (n(f20) - n(f0)), we can establish that the frequency resolution of the 
obtained transform is large enough to resolve high-order partials we are interested in at all 
positions of the VRT spectrogram, especially for low octave notes. It means that a 20-partial 



harmonic structure starting from the beginning of the spectrogram will always lie above the 
dispersion curve. If we consider now the time resolution of the transform, we must recall Figure 
2.5, where various dependencies on the effective width of filter were given. If we define the 
maximum effective window size to be 180ms (recall our musical signal properties) we obtain the 
following time resolution grid as illustrated in Figure 2.7. 

 
Figure 2.7. Time resolution dependency of VR transform with k2=0.8,  k2=2.1. 

2.4. Discussion 

Our Variable Resolution Transform is derived from the classic definition of Continuous Wavelet 
Transform given in 1.1. In our previous work, we referred to our VRT as “Wavelet-Like” or 
“Pseudo-Wavelet” transform  [25][26]. Actually, our VRT is not a CWT even though they have 
many similarities. The main difference between VRT and CWT consists in the frequency axis 
sampling, as well as in the mother wavelet function which is changing its form across the scale 
(or frequency) axis in the case of VRT in order to have enough resolution details for high order 
frequency partials. This last property is not a wavelet transform, because in the true wavelet 
transform the mother function is only scaled and shifted making a discrete tiling of the time-
frequency space in the case of DWT or infinite coverage in the case of CWT. Our VRT can be 
also referred to as a specially crafted filter bank. Major differences between our VRT and a 
wavelet transform are: 

• no 100% space tiling 
• no 100% signal reconstruction (depending on parameters) 
• mother function changes 

Major similarities between our VRT and a wavelet transform are the following: 
• They are based on specially sampled version of CWT 
• with certain parameters they can provide 100% signal reconstruction 
• low time resolution and high frequency resolution in low frequency area and 
high time with low frequency resolution in high frequency area 

3. Applications: VRT-based similarity features 
The most known acoustic characteristics generally used for audio similarity measurements are 
MFCC, fluctuation patterns, “gravity” [27], etc. In this paper we propose several new acoustic 
features – 2D beat histogram, timbre histogram as well as note profile and note succession 
histograms. Unlike simple spectral features, these new measurements take into account semantic 
information such as rhythm, tonality etc. 



3.1. 2D beat histogram for rhythmic similarity 

The idea of building a beat histogram is not novel [8]. Simple 1D beat histogram can be used in 
genre classification, tempo induction as well as music similarity search. In our work we propose 
a modified histogram – a two-dimensional one. Unlike 1D histogram this 2D histogram is free 
from beat detection threshold issue. 

The beat/onset detection algorithm being used in this work is based on Variable Resolution 
Transform as all other algorithms in our work. Here the signal processed by VRT is treated a 
grayscale image. Thus, we apply image treatment operators like Sobel. In the resulting 
spectrogram image (Figure 3.1) distinct vertical lines are likely to represent beats or onsets. 

 
Figure 3.1. Treated wavelet spectrogram of musical excerpt. 

 

Further, the enhanced spectrogram W*(t, scale) is processed by calculating a beat curve in the 
following way. A small 5-sample window together with preceding large 100-sample window is 
moved across the enhanced spectrogram. The value of the beat curve in each time moment is the 
number of points in the small window with values higher than a threshold which is obtained 
from the average value of points in the large window. Numerous beat curves may be computed 
separately by dividing the spectrum into bands. For the general question of beat detection the 
only one beat curve is used. 

The probable beats are situated in beat curve’s peaks. However, the definition of final beat 
threshold for the beat curve is problematic. Adaptive and none-adaptive algorithms for peak 
detection may be unstable. Many weak beats can be missed while some false beats can be 
detected. 

 

Recall that our aim is the use of the rhythmical information for music similarity estimation. One 
of rhythmical information representation is the beat histogram. A classical one-dimensional beat 
histogram provides some knowledge only about the different beat periods while the distribution 
of beats in the meaning of their strength is not clear. At the same time beat detection algorithm 
and its parameters affect the form of the histogram. In order to avoid the dependency from the 
beat detection algorithm parameters we propose a 2D form of beat histogram, which is built with 
a beats period on the X axis and with amplitude (strength) of a beat on the Y axis (Figure 3.2). 
The information about beat strength in the proposed histogram is implicit since the histogram is 
computed upon the threshold used in beat detection. It is hence possible to avoid the 
disadvantage of recording conditions dependency (e.g. volume) and peak detection method. The 
range of threshold variation is taken from 1 to the found maximum-1. Thus, the beat strength is 
taken relatively and the volume dependency is avoided. 
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Figure 3.2. A 2-D beat histogram. 

Such histogram can likely be a feature vector for example in genre classification or music 
matching.  

The measure of rhythmic distance can be defined in numerous ways. In our experiments we have 
find out the following equation which takes into account slight variation of rhythm of musical 
pieces being compared. 
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where 
H1, H2 – beat histograms to compare 
N, M – beat histogram size 
R – an area of the following form (to allow slight variations) 

(-2, -1) (2, -1)
  

  

  

(-2, 1) (2, 1) 

3.2. Transcription-derived similarity features 
This paragraph covers aspects of higher level musical similarity metrics. Algorithms described in 
the paragraph are based on automated transcription (multiple F0 estimation) of polyphonic music 
with the use of VRT (former Continuous Wavelet-like Transform) described in [25].  

The transcription algorithm issues for each window a list of detected f0`s together with relative 
amplitudes of their partials. This information is then used for building several kinds of statistical 
characteristics (histograms). 

The simplest way to calculate a similarity distance is to calculate a distance between note 
histograms. Note histogram (profile) is computed across the whole musical title or its part and 
serves for estimation of musical similarity by tonality as well as tonality (musical key) itself. 
Tonality in music is a definition of note set used in a piece which is characterized by tonic or key 
note and mode (e.g. minor, major). Each tonality has its own distribution of notes involved in a 
play and it can be obtained from the note histogram [28]. To compare two musical titles in the 
meaning of tonal similarity we calculate a similarity of two note profiles. These profiles must be 
either aligned by the detected tonality’s key note (e.g. by Re for D-dur or D-mol) or a maximal 
similarity across all possible combinations of tonalities must be searched. 

Another musical similarity metric we propose in the current work is a similarity based on note 
successions histogram. Here probabilities of 3-note chains are collected and their histogram is 
then used as a “fingerprint” of musical title. A musical basis of such similarity metric is that if 



same passages are frequent in two musical compositions, it gives a chance that these two 
compositions have similarities in melody or harmony. 

The procedure is note successions histogram calculation is following. First, note extraction over 
the whole piece is carried out with a step of 320 samples (20ms). Then detected notes are 
grouped in local note histograms in order to find a dominant note in each grouping window. The 
size of the grouping window may vary from 100ms to 1 sec. Finally, all loudest notes are 
extracted from local histograms and their chains are collected in the note successions histogram. 
The resulting histogram is 3-dimensional histogram where each axe is a note of 3-note chain 
found in the musical piece being analyzed (Figure 3.3). 

 
Figure 3.3. Note successions histogram example in 3D. 

 

The third characteristic we extract from a musical piece is a timbre histogram. In general, 
“voiced” instruments differ from each other also by their timbre – profile of their partials. In our 
work we collect all detected notes with relative amplitude of their harmonics. Further, relative 
amplitudes of harmonics are reduced to 3-4 bits and attached together in order to form a number. 
Histogram of these numbers is then computed. Comparing of such histograms gives one more 
possibility of a similarity measurement. 

3.3. Combining of similarity types 
While pure similarity metrics could be interesting for exact matching of musical pieces by 
certain criteria, a combination of similarities have in goal building of “general” similarities like 
human listener could do (e.g. finding a piece with the same rhythm and key type could issue two 
slow sad melodies which are judged similar by a human listener). 

In our work we have studied to variant of combining. A liner combining is simple weighted sum 
of distances 

∑= iidkD  (3.2) 

Another version of liner combining is a weighted sum of ratings. In this case for every kind of 
similarity being combined its rating or position in a sorted list of similar titles is obtained. Final 
distance is computed as a weighted sum of ratings. In some cases when distances which are 
being combined have different natures and cannot be combined linearly.  

More sophisticated means of combining can involve such techniques as neuron networks trained 
on user feedback data. 
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3.4. Experiments 

Recall, that that our paper is dedicated to similarity estimation of musical pieces. Our main 
experiments have in aim an estimation of musical similarity accuracy. They consist of two 
evaluation parts – listening test and reinterpreted pieces search. 

3.4.1. Listening test 

Preliminary experiments with musical similarity search were carried out. A database of 
approximately 1000 musical composition of different artists, genres and rhythms has been 
processed. For each type of similarity metric (rhythmic, tonality, timbre and melodic) a 
similarity matrix 1000x1000 has been created. Then the system retrieved by different 
combinations of similarity metrics the 5 most similar songs from the database for a given 
example. Researches from the laboratory (not necessarily working with music) were taken as 
listeners. They were proposed to rate random queries from the database with scores from 0 (not 
similar) to 5 (very similar) according to shown similarity type. Neither songs’ titles nor artist 
names were provided to listeners. Also with a probability of 50% listeners were provided by 
random and not similar music pieces without being notified of this fact in order to avoid 
prejudgements. 

In our experiments we have used 4 pure similarity metrics: rhythmic, tonality, timbre and 
melodic; and 4 mixtures where comb1 was a combination of tonality and rhythm metrics, 
comb2 – timbre and rhythm, comb3 – tonality + melody + rhythm, comb4 –timbre + melody + 
rhythm. For the mentioned mixtures both liner and rating combinations were applied. 

Evaluation results obtained in our experiments are presented in the Table 3.1. Here for each 
similarity type there is mean and median value of totality of votes. The column “corresponding 
random” shows the mean and median of listeners’ votes for those cases when listeners were 
proposed random songs as similar. Since listeners were not notified about this fact, they still had 
to evaluate how similar were the proposed songs. These data are used as background un-truth. 
All found multiple interpretation of songs were not filtered out and considered as 5 – very 
similar.  

 Table 3.1. Listening test results (mean / median). 

Similarity 
type 

Linear 
combination 

or single 

Rating 
combination 

Corresponding 
random 

rhythmic 2.92 / 2 n/a 0.40 / 0 

tonality 3.16 / 3  2.41 / 3 

timbre 2.16 / 2  0.81 / 0 

melodic 2.23 / 2  1.60 / 2 

comb1 3.55 / 4 2.06 / 3 0.94 / 1 

comb2 2.78 / 3 3.75 / 4 0.97 / 0 

comb3 3.85 / 5 1.80 / 1 0.75 / 0 

comb4 2.49 / 3 2.26 / 3 1.01 / 0 
 

Figure 3.4 shows normalized distributions of votes for mentioned single similarity metrics. The 
upper histograms stand for distributions of votes for “random” similar songs.  
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Figure 3.4. Histograms of listeners’ votes for pure similarity metrics. 

 

On the Figure 3.5 normalized histograms of votes for composite similarities are depicted. Here 
the upper row is showing histograms of votes for random songs. Two other rows include results 
for linear (lin) and rating (rt) combinations. 
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Figure 3.5. Histograms of listeners’ votes for combined similarity metrics. 

3.4.2. Reinterpreted songs search  

Evaluation of melodic similarity metrics was based on composing of similarity playlists for 
musical titles that have multiple reinterpretations. The database of these titles used in this work is 
a certain number of musical files in MP3 format. The list is as follows. 
 

1. Ennio Morricone – “Chi Mai”, 3 interpretations 
2. Roxette – “Listen to Your Heart”, DHT – “Listen to Your Heart”, DHT – “Listen to Your Heart” (dance) 
3. Rednex – “Wish You Were Here”, Blackmore’s Night – “Wish You Were Here” 
4. Tatu – “Not Gonna Get Us” (Eng), Tatu – “Nas Ne Dogonyat” (Rus) 
5. Tatu – “All the Things She Said” (Eng), Tatu – “Ya Soshla s Uma” (Rus), Tatu – Remix 
6. Tatu – “30 minutes” (Eng), Tatu – “Pol Chasa” (Rus) 
7. Archie Shep, Benny Golson, Dexter Gordon, Mike Nock Trio, Ray Brown Trio – “Cry Me a River” (ver.1 jazz 

instrumental) 
8. Diana Krall, Tania Maria, Linda Ronstadt, Bjork, Etta James, July London – “Cry Me a River” (ver. 2. vocal) 
 

In this experiment the different interpretations of the same title are considered as “similar”. 



In the experiment playlists with 30 similar titles corresponding to each musical title in the 

tion results of music similarity measurements. 

Origi

database were built. Appearance of “a priori” similar titles at the top of playlist was considered 
as successful similarity output. The following table shows the result of playlist composition. It 
gives the information about position of appearance of similar titles in the associated playlist (1 – 
is the original music file).  

Table 3.2. Objective evalua

nal music Positions of appearance of 
composition similar titles 

Chi Mai (1), 2, 3 

Listen To Your Heart  (1), 3, 12

Wish You Were Here (1), 2 

Not Gonna Get Us (1), 2 

All the Things She Said  (1), 2, 3

30 minutes (1), 2 

Cry Me a River (ver. 1)  4, 6 (1), 2, 3,

Cry Me a River (ver. 2) (1), 2, 4, 7, 8, n/a 

 

resence of similar songs in first positions of playlists signifies good performance of given 

3.4.3. Playlist relevance evaluation 

5 songs in playlists generated for seed songs. 

ined results are as following (Table 3.3). 
m the same artist. 

Sim

P
melodic similarity metrics.  

Finally we proceed on analysis of relevance of top 
We considered two types of relevance: number of songs from the same genre and number of 
songs from the same artists. For the database we took ISMIR2004 genre classification database 
based on Magnatune collection. The database contained totally 729 titles of 128 artists in 6 
genres. 

The obta
Table 3.3. Average number songs in the same genre or fro

ilarity Same genre Same artist 
type 
Comb2_lin 3.58 0.99 
Comb2_rt 3.48 0.89 
Comb3_lin 3.07 0.86 

T ure re 3.6) depicts distribution histograms of number of songs in the same he next pict  (Figu
genre and from the same artist for the best combination which in this case is comb2_lin. 
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Figure 3.6.. Histogram of number of songs in the same genre in TOP-5 (left), and histogram of number of songs from 
the same artist in (TOP-5) (right). 

Results of relevance analysis reported in literatures includes such numbers as average 1.43 songs 
in TOP-5 with the same genre as the query [29], average 3.44 of similar genres and 1.17 of 
similar artist [3]. A result obtained from the same ISMIR’2004 database found in literature is an 
average 3.4 songs (67.9%) in TOP-5 with the same genre [30]. 

4. Conclusion 
In this paper we have considered the problem of automatic music analysis within such music 
information retrieval applications as music search by similarity (intelligent navigation) and 
automatic genre classification. 

We have proposed an appropriate tool of musical signal analysis. We presented the variable 
resolution transform as such a tool. We have shown it to be better suited for our applications. 
The goal we have achieved is to obtain a single transform which can simultaneously cover the 
whole time-frequency scale in such a way that both pitch and rhythm information is gathered at 
the same time. The advantage of the tool we have proposed is that it has logarithmic frequency 
sampling in order to follow musical notes. In comparison to some classical approaches where the 
frequency sampling is also logarithmic, we have an improved frequency resolution in high 
frequency area, allowing us to better distinguish the high-order harmonics of the signal. 

Several musical features and corresponding similarity measures have been proposed in this 
paper. Some of them were already known in literature (pitch class or note profile, 1D beat 
histogram), some of them are newly presented in the paper (note succession histogram, timbre 
histogram, 3D beat histogram). All these music features are closely related to musical content. 

In this paper we have also described a direct application of music features and the associated 
similarity measures –  music search by similarity. The evaluation we have carried out consisted 
of subjective judgment (human feedback) and objective evaluation such as relevance analysis. 
Objective evaluation showed quite good, but rather unstable results when using linear or rating 
combination of similarity measure. We have also found the best two combined similarity 
measures which were combinations of rhythm/tonality/melody and rhythm/timbre. A surprising 
result was observed when putting timbre similarity measure instead of tonality in the first 
combination, producing lower results. However, putting all distances together in a neuron-
network combination mechanism showed stable results but not higher than in the case of linear 
combinations.  

The objective analysis of similarity retrieval algorithm have shown very good similar genre rate 
– 3.58 against the best rate found in literature (3.4) in TOP-5 playlists analysis based on the 
ISMIR’04 corpus. Promising results were also achieved in search for pieces with multiple 
interpretations. 
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