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Abstract. Automatic segmentation of videos is widely used for structuring and is a necessary 

preliminary step for many applications. In this report we propose an optimal strategy for the 

temporal segmentation issue on the basis of statistical modeling. The goal is to maximize the 

performance metrics of recall and precision directly, which is in contrast to the conventional 

approaches where the output segments are chosen based rather on intuition, by recovering, for 

instance, the most probable path through the model space. Application of optimal strategy 

requires the proper choice of model on the video of interest. Based on the theory of hidden 

Markov models and their extensions, we consider a video as a stochastic automaton – statistical 

generalization of the finite state machine. This enables us to take into account the correlation 

between semantic segments at different levels of abstraction (for hierarchical models) and the 

non-uniform distribution of segment duration. The resulting segmentation technique is 

considered as opposed to the conventional Viterbi algorithm. 

 

1 Introduction 
In practical applications it is difficult to find features or keys which would enable unambiguous 

segmentation of video. The ambiguity can be caused by the unreliability of the key detection or 

by the absence of the direct dependency. In the conventional deterministic approach this 

uncertainty is often ignored or is taken into account very roughly at the expense of the significant 

growth of system complexity. In this report we propose a statistical approach, enabling the keys 

to be treated in a probabilistic manner. This allows one to take into account “soft” grammar 

constraints imposed on the semantic structure and expressed in the form of probability 

distributions. Moreover, the multiple keys, being considered as statistical variables, can be more 

easily fused into one, more reliable decision in the case of their collisions. Based on the theory of 

hidden Markov models and their extensions, we consider a video as a stochastic automaton – 

statistical generalization of the finite state machine. This enables us to take into account the 

correlation between semantic segments at different levels of abstraction (for hierarchical models) 

and the non-uniform distribution of segment duration. 

 Further in this report we first consider the general principles how to chose the optimal 

segments based on the corresponding probability estimates. In contrast to the conventional 

approach which chooses the single best path for the state variables, we focus on the state 

transitions so as to find the optimal segmentation in terms of recall and precision. Then we 

consider the video segmentation task based, more specifically, on a hidden Markov model and its 

extensions. 
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2 Segmentation Principles 

2.1 Optimality Criterion 

We consider video segmentation as detection of segment boundaries at discrete time moments 

given an input set of features extracted from raw video. These time moments or candidate points 

of segment boundaries can be chosen in various ways. In the tasks considered in this report they 

are camera shot boundaries since the semantic segments of interest are defined as groups of 

shots. Alternatively the candidate points might be determined by the boundaries of mid-level 

events or simply chosen at discrete times regularly spaced with an interval providing acceptable 

temporal resolution. 

To indicate the absence or presence of a segment boundary at time index t we use a 

binary variable }1,0{∈ts . So, the aim of segmentation of a video is to find an optimal 

sequence },...,,{ 21 Tssss ≡ , where T is the number of candidate points within the video. If 

segments differ by their semantic meaning, we should also provide semantic labels },{ tt fp of 

contiguous segments adjacent to each segment boundary at time t, where p is the type of the 

preceding segment and f – the type of the following one. Let’s denote the sequence of N time 

indexes corresponding to scene boundaries as },...,,{ 21 Nbbbb ≡ . As each segment must have the 

same semantic label at the ends, the following constraints are imposed: 

 1,...,2,1,
1

−=∀=
+

Nipf
ii bb . (1)

In the general case of hierarchical content structure semantic segments are identified by their 

type defined at the current semantic level and by the type of the corresponding higher-level 

segments. We suppose in this case that all these nested identifiers for each segment are 

enumerated into one label. 

 To deal properly with the uncertainty of real observable data, we consider the 

segmentation task in a probabilistic manner by modeling the video as a stochastic process. The 

task is, then, to find optimal values of random variables st at each time index t as well as the 

corresponding segment labels given a set of observable data generated according to a 

probabilistic law. But what criterion of optimality should be used? The common approach is to 

find the most probable sequence of appropriate state variables related to an input video. In 

boundary-based segmentation methods, when semantic labels of segments are not of interest, 

these variables are our binary indicators of segment boundaries s, as it is the case for story 

segmentation in [HSU 03, HSU 04]. Alternatively, in segment-based segmentation methods, the 

temporal dynamics within segments are modeled by a sequence of states, often using hidden 

Markov models (HMM). For example, TV news broadcasts are segmented into story units in 
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[LEK 02] using a four-states ergodic HMM; in [EIC 99] logical units of news programs are 

segmented and classified into six main types where each unit type is represented with a HMM. 

The most probable sequence of states is computed using computationally effective procedures 

based on dynamic programming, such as a Viterbi algorithm. 

Let’s consider this approach from the perspective of the measures used to numerically 

evaluate the segmentation performance. Recall and precision frequently serve as such measures. 

They are widespread in information retrieval [RIJ 79, LEW 91] and are standard in story 

segmentation [GUI 04]. The performance measures are obtained by comparing the actual and 

claimed segment boundaries of the same video. This is illustrated in Figure 1 where the chain of 

actual segments is represented by the upper stripe and that of claimed ones – by the lower; 

different segment types are encoded by different color. An actual boundary is defined to be 

detected if there is at least one claimed boundary which lies in the vicinity measured by a 

temporal ambiguity τ and both the boundaries separate the segments of the same type. Otherwise 

the actual boundary is defined as a miss. Similarly a claimed boundary is defined as a correct one 

if there is at least one actual boundary within the limits of the ambiguity τ (which is assumed to 

be the same as for actual boundaries) and both the boundaries separate the segments of the same 

type. Otherwise the claimed boundary is defined as a false alarm. In fact, an ambiguity window 

2τ (see Figure 1) is considered around each actual boundary – if one or several claimed 

boundaries, which separate the same segments, fall into this window, the corresponding 

boundaries are defined to be detected and correct (similarly we could place the ambiguity 

window around each claimed boundary, as the ambiguity time is the same for the actual and 

claimed segments). If the time interval between two consecutive claimed boundaries is less than 

2τ, then it is possible that they are both correct and correspond to the same actual boundary and 

vice versa. Therefore the number of correct and detected boundaries is not generally the same. 

 

 
Figure 1. Comparison of segment boundaries. 
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Recall and precision measure the proportion of actual segment boundaries detected and 

the proportion of correct claimed segment boundaries respectively. Denoting the number of 

actual boundaries detected as Na.d., the number of correct clamed boundaries – as Nc.c., the 

number of false alarms  – as Nf.a., the number of misses – as Nm, recall r and precision p are 

written as: 

 
mda

da

NN
N

r
+

=
..

.. , (2) 
 

 
....

..

afcc

cc

NN
N

p
+

= . (3) 
 

System performance measured by recall and precision focuses on time indexes 

corresponding to segment boundaries. Thus there is no need to take into account all the candidate 

points at the same time, like in the methods where the most probable sequence of states is found 

for the whole video. Moreover, in the most cases the moments of absence of segment boundaries 

are predominant, and the minor points of segment boundaries become negligible when 

optimizing the whole state sequence. This can deteriorate considerably the segmentation 

performance. Consider, for example, the situation where a segment boundary can be surely 

detected in a time range covering several candidate points, but the probability to find this 

boundary at each single point is quite low. Segmentation through finding the most probable state 

path for the whole video is likely to ignore the boundary, resulting in increase of number of 

misses and, hence, low recall. 

In this report we derive the optimal decision rule for the segment boundary detection 

based on recall and precision which are chosen to measure the system performance. Let’s 

suppose that a fixed number N of distinct candidate points are claimed as segment boundaries 

and the total number of actual boundaries is Na. It is not difficult to see that the denominator in 

expression (2) and (3) is equal to Na and N respectively. Hence, in order to maximize recall and 

precision, N claimed boundary should be selected so that to provide the maximum values for 

Na.d. and Nc.c.. This minimizes the number of false alarms and the number of misses written as 

 .... ccaf NNN −= , (4)

 ..daam NNN −= . (5)

Let’s further assume that segments cannot be of zero duration and that the coincidence between a 

claimed boundary and an actual one (allowing us to consider the claimed boundary to be correct 

and the actual one to be detected) is established only in the case where these boundaries occur 

exactly at one time (i.e. the time ambiguity τ is zero). Under these assumptions each correct 

claimed boundary correspond to one and only one actual boundary detected and, hence, 
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 .... ccda NN =  (6)

which is the only value to be maximized. 

Let’s now derive an expression for Nc.c. To distinguish the claimed (computed) segment 

boundaries the actual ones, we use a tilde. Thus, the result of computed segmentation for an 

input video is denoted as a sequence of tuples }~,~,~{ ttt fps  while the actual subdivision into 

segments is represented as },,{ ttt fps where, as earlier, }1,0{∈s  is an indicator of the presence 

(s=1) or absence (s=0) of segment boundary, p and f – the labels of segments preceding and 

following the point under consideration, t – a time index. Then, since each claimed segment 

boundary bi is considered to be correct if it coincides with an actual one, Nc.c is written as 

 ∑
=

−−−=
N

i
bbbbbcc iiiii

ffppsN
1

.. )~,~,1(δ , (7)

where the discrete delta function δ  is defined for three arbitrary variables x, y, z as 

 
⎩
⎨
⎧ ===

=
otherwise

zyxif
zyx

0
0,0,0,1

),,(δ  (8)

As an input video is modeled as a stochastic process, Nc.c is a random variable, and we consider 

its expected value instead: 

 ∑∑
==

====−−−=
N

i
bbbbb

N

i
bbbbbcc iiiiiiiiii

ffppsPffppsENE
11

.. )~,~,1()}~,~,1({}{ δ , (9)

where ),,1( iii fpsP =  denotes the posterior probability of the presence of a boundary between 

segments pi and fi at candidate point i. 

Hence, assuming that the probability ),,1( ttt fpsP = of segment boundary is pre-

calculated for each candidate point t and each segment labels pair },{ tt fp , the optimal 

segmentation selects N segment boundaries so as to maximize the rightmost sum of expression 

(9). The more is N, the more points of low probability are generally selected and, hence, the less 

is the relative expected number of correct boundaries among them. On the other hand, the value 

N should be high enough to provide an acceptable level of misses. So, this value controls the 

trade-off between the number of false alarms and the number of misses and, hence, between 

precision and recall.  

N can be chosen so as to provide the maximum of an integral performance measure. In 

this report it is a F1 measure which is a harmonic mean of recall and precision: 

 pr
prF

+
=

**21 . (10) 

As it follows from experimental evaluations, F1 has a maximum when recall and precision are 

approximately equal. From expression (4) - (6) follows that equal recall and precision are 
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provided when N=Na, or, as Na is considered as a statistical variable, N is selected as expected 

number of Na: 

 }.{ aNEN =  (11) 
By analogy with expression (9) the expected number of Na is calculated as: 

 ∑∑
==

==−=
T

i
i

T

i
ia sPsENE

11
)1()}1({}{ δ . (12) 

2.2 Computing Optimal Segment Boundaries 

According to our optimal decision rule for segmentation we wish to select N segment boundaries 

so as to maximize expression (9). A straightforward exhaustive search over all possible boundary 

arrangements has an exponential computational complexity on N and thus is unfeasible in most 

cases. A simple and computationally effective algorithm can be proposed in the particular case 

where the segments are not labeled. In this case the only input data are a sequence of segment 

boundary probabilities },...,,{ 21 TPPP , where )1( =≡ ii sPP . N maximal values can be selected by 

scanning this sequence and extracting the maximal value N times, which yields the 

computational complexity on the order of TN ⋅ . Alternatively, the sequence can be sorted in 

ascending order of probability and N first values be related to segment boundaries, which yields 

the complexity on the order of )log(TT required for sequence sorting. 

 In the general case, where the segments are distinguished by their label, segment 

boundaries cannot be selected independently from each other because of constraints of 

expression (1) imposed on segment labels. To attain feasible computational complexity in this 

case, we propose the following procedure. Omitting variable s we denote the probability of 

transition from segment pt to a segment ft at time moment t as ),( tt fpP . Given this probability 

for each time point Tt ,...,1= and for each pair of segment labels, the task is to select N distinct 

segment boundaries },...,,{ 21 Nbbb and the corresponding segment labels
ibp and

ibf so as to 

maximize the sum 

 ∑
=

N

i
bb ii

fpP
1

),(  (13) 

taking into account the constraints of expression (1). We define the following variable: 

 
)},(),({max),,(

1

1

,...,
,...,

,...,

11
1

1

fpPfpPtfnM
nii

nbb
nbb

n
b

n

i
bb

ff
pp

bb
+≡ ∑

−

=

−

, 
(14) 
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where it is assumed that tbb n ≤<<≤ ...1 1 and expression (1) holds true. ),,( tfnM  is the best 

score of expression (13) corresponding to n segment boundaries selected for first t candidate 

points given that the last segment is labeled as f. By induction we have 

 )]},([max),,1({max),,(
1,1

fffpPtfnMtfnM
nn

n
bbtbtttmf
=′=+′′−=

≤<′<′≤≤′≤
, 

(15) 

where m denotes the number of segment labels. To actually retrieve the sequence of optimal 

segment boundaries, we need to keep track of arguments which maximized expression (15). We 

do this via the arrays ),,( tfnL and ),,( tfnB . The complete procedure for finding the best 

segment boundaries can be now stated as follows: 

1) Initializaton: 

 
)},({max),,1(

11

1
1

1
1

ffpPtfM bb

mp
tb

b

==
≤≤

≤≤
, mf ≤≤1 , Tt ≤≤1  

(16) 

 )},({maxmaxarg),,1(
11

11
11

ffpPtfL bbtbmpb

==
≤≤≤≤

, mf ≤≤1 , Tt ≤≤1  
(17) 

 )},({maxmaxarg),,1(
11

11
11

ffpPtfB bbmptb b

==
≤≤≤≤

, mf ≤≤1 , Tt ≤≤1  
(18)

2) Recursion: 

 )]},([max),,1({max),,(
1,1

fffpPtfnMtfnM
nn

n
bbtbtttnmf
=′=+′′−=

≤<′<′≤−≤′≤
, 

(19)

 )]},([max),,1({maxmaxarg),,(
11

fffpPtfnMtfnL
nn

n
bbtbtttnmf
=′=+′′−=

≤<′<′≤−≤′≤
, 

(20)

 )},(),,1({maxmaxarg),,(
1,1

fffpPtfnMtfnB
nn

n
bbttnmftbt
=′=+′′−=

<′≤−≤′≤≤<′
, 

(21)

 Nn <≤2 , mf ≤≤1 , Ttn ≤≤ .  

3) Termination: 

 )},(),,1({maxmaxarg},,{
11,1,

NNN
NbNbN

NN bbbTtNmfmpTbt
bbN fpPtpNMfpb +−=

≤≤−≤≤≤≤≤<
. 

(22)

4) Segment boundaries backtracking: 

 ),,( 11 ++
= nbn bfnBb

n
, (23)

 ),,( 11 ++
= nbb bfnLp

nn
, (24)

 
1+

=
nn bb pf , (25)

 1,...,2,1 −−= NNn . 

As calculation ),,( tfnM requires on the order of 2Tm ⋅ operations for each possible 

triple },,{ tfn , the resulting computational complexity of the procedure is on the order of 

32 TNm ⋅ . 
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2.3 Ambiguity of Segment Boundary Position 

In practical applications segmentation performance measures tolerate some temporal ambiguity τ 

between detected and actual boundaries when deciding whether there is correspondence between 

them [GUI 04]. Taking into account this ambiguity allows us to detect boundaries more reliably. 

In this subsection we propose a required extension to our optimal segmentation rule. For the 

purpose of simplicity we suppose hereafter in this subsection that labels of segments are not of 

interest and consider only their positions. 

 A typical value ofτ is about 5 sec [GUI 04] which is normally less than segment length. 

We assume that segments cannot be shorter than τ2 . In this case it is not possible that two or 

more actual boundaries correspond to one claimed boundary. As so, if we wish to minimize the 

number of misses for a fixed number of claimed boundaries, these boundaries should be placed 

no closer than τ2 from each other as this provides the maximum number of potential 

correspondences. Several claimed boundaries, however, can still correspond to one actual 

boundary. This can be used to “artificially” augment precision by claiming several boundaries in 

the vicinity of highly probable actual ones where the probability of false alarms is low. That is 

why we propose a stricter criterion of one-to-one correspondences between claimed and actual 

boundaries. The maximal number of these correspondences is the number of correct claimed 

boundaries Nc.c. and the number of actual boundaries detected Na.d.. As it was earlier, expression 

(6) holds true and our task is to select N boundaries so at to maximize Nc.c.. According to the 

stricter correspondence criterion these boundaries must be spaced no closer to each other 

than τ2 to minimize the number of misses and false alarms at the same time. 

 Given an input sequence of segment boundary probabilities },...,,{ 21 TPPP let’s derive an 

optimal segmentation rule.  Denote as Gi the set of candidate points lying in the 

vicinity ],[ ττ +− ii tt of an arbitrary candidate point i occurring at time ti. Under our assumption 

only one actual boundary can be found in this region. Hence, the probability of a single claimed 

boundary placed at point i to be correct is written as 

 ∑
∈

==
iGj

jPicP )1)(( , 
(26)

where }1,0{)( ∈ic is indicator function which is equal to 1 when a boundary claimed at point i is 

correct and 0 otherwise. Since claimed boundaries are not closer to each other than τ2 and, 

hence, their corresponding regions G are not overlapped, the expected number of correct 

boundaries Nc.c. is calculated as 

 
∑ ∑∑∑
= ∈==

===−=
N

i Gj
j

N

i
i

N

i
icc

i

PbcPbcENE
111

.. )1)((})1)(({}{ δ . (27)
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Optimal segment boundaries are chosen so as to maximize expression (27). We propose to do 

this iteratively. At each iteration step the sum of expression (26) is computed at each candidate 

point. The point i with the maximal sum is claimed then as a segment boundary and the points in 

Gi are excluded from the further analysis. 

3 Hidden Markov Models 
To obtain estimates of segment boundary probability which are required by our optimal 

segmentation rules considered above, we need to properly choose a model describing an input 

video. Hidden Markov models (HMM) are powerful tools for modeling the dynamics of different 

processes evolving in time, such as video [DIM 00, HUA 99, BOR 98] and speech signals [RAB 

89, BEN 99]. In this section we provide basic definition and assumptions that underlying these 

models, consider their different variations suitable for the purpose of video modeling and derive 

expressions required for segmentation. 

3.1 Basic Model 

A basic HMM is a stochastic process which at any discrete time Tt ,...,2,1=  is at one of a set of 

N distinct states },...,2,1{* NQ = . We denote the actual state at time t as *Qqt ∈ . The dynamics of 

the process is then described as a sequence },...,,{ 21 TqqqQ = . At each time moment the model 

changes the state (or remains at the same state) according to the probability values associated 

with the state. A complete probabilistic description of a stochastic process requires specification 

of the current state depending on all the predecessor states. The HMM is defined as the special 

case of a first order Markov chain, where the probability to be in the current state tq is 

determined completely by the predecessor state, i.e. 

 ijttttt aiqjqPqiqjqP ≡===== −−− )|(,...),|( 121 , (1)

where ija denotes the probability of transition from state i to state j. It is supposed that the HMM 

is stationary and, hence, ija is independent on the time index. The initial state is chosen 

according to the probability denoted as 

 )( 1 iqPi =≡π . (2)

 We collect all state transition probabilities into one matrix }{ ijaA = which satisfies the 

following stochastic constraints: 

 0≥ija , Ni ≤≤1 , Nj ≤≤1 , (3)
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1

1
=∑

=

N

j
ija , Ni ≤≤1 . (4)

Depending on applications, additional constraints can be imposed to matrix A. Forcing some 

coefficients to be zero we can forbid the corresponding transitions. Thus, different topologies can 

be defined that are usually depicted graphically so that the allowed state transitions are shown by 

arrows. One such model is presented in Figure 1. This is a left-right or Bakis model [BAK 76], 

for which low numbered states can only make transitions to higher number states or to 

themselves, i.e. 0=ija for each ij < . This model is suitable for processes whose properties 

change over time, such as speech signals. If every state of the HMM could be reached from 

every other state in a single step, the corresponding topology includes all possible connections 

and is called an ergodic or circular model. 

 
Figure 1. A 4-state left-right HMM. 

 
The states of the HMM are not observable directly (i.e. “hidden”) but generate a vector of 

measurable features according to a probabilistic function. We denote the feature vector observed 

at time t as tD . It is assumed that this vector is conditioned only on the current state. We denote 

the corresponding probability distributions as )}({ tj DbB = , where 

 )|()( jqDPDb tttj == , Nj ≤≤1 . (5)

 The presented above HMM describes double stochastic process. The primary process is 

not observable, or is hidden, and is determined as a first order Markov chain. The secondary 

process },...,,{ 21 TDDDD = is an observable representation of the primary process generated 

according to a probabilistic rule. The joint description of these two processes is given by 

defining the matrix of initial state probabilities }{ iπ=Π , matrix of transition probabilities A and 

probability distributions for generating observations B. This description is a complete 

specification of a basic HMM. 

A widespread approach to the task of video segmentation is to model an input video with 

a single HMM. The states of the HMM are stationary parts of the video, such as frames or 

camera shots. Semantic segments are then related to subsequences of the states. The HMM can 

1 2 3 4 
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be thought as an opaque box, where the sequence of features D is observable, while the sequence 

of the states is hidden. In the simplest case each segment is assigned to a unique state. For 

example, two different HMM topologies – a two-states ergodic and a left-right one (see Figure 2) 

– are explored in [ALA 01]. The aim is to separate dialog scenes from non-dialog scenes in 

movies. The elementary time units in this example are camera shots and state transitions are 

explored at shot change moments. The limitation of such an approach is that it is not general 

enough to separate several contiguous semantic segments of the same type. In the more general 

case each segment is represented by a sequence consisting of different HMM states. For 

example, news video is divided into story units of the same type in [LEK 02] using a four-states 

ergodic HMM. This model allows the authors to track dynamic patterns of shots corresponding 

to news stories. 

 
Figure 2. Left-right (a) and circular (b) HMM for modeling dialog scenes in movies [ALA 01]. 

 
 Semantic segments are commonly detected through reconstructing the full sequence of 

the HMM states. If each segment is represented by a unique state, then the resulting segments are 

the corresponding groups of repetitive state labels. If segments are modeled as subsequences of 

states of several types, then segment boundaries are found as transition to or from unique states 

which begin or terminate the corresponding subsequences. The common criterion used to find 

the best sequence of HMM states is maximizing the posterior probability of the 

sequence )|( DQP which is equivalent to maximizing the joint probability ),( DQP . This 

probability is written as 

 
∏
=

−
==

T

t
tqqqqqqqq DbaaaQDPQPDQP

tTT
1

)(...)|()(),(
132211

π . (6)
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The straightforward maximization of this expression using full search over all possible state 

sequences requires on the order of TTN2 operations which is infeasible for the most applications. 

Fortunately, there exists a computationally effective technique for finding this best state 

sequence, based on dynamic programming, and it is called the Viterbi algorithm [VIT 67]. 

 To write down the Viterbi algorithm, let’s first define the following variable: 

 ),...,,,,...,,(max)( 2121,...,, 121
ttqqqt DDDiqqqPi

t

==
−

δ . 
(7)

This variable is the highest probability for the first 1−t states. It allows one to find the probability 

of the whole optimal path recursively using the following rule: 

  )(])(max[)( 11 ++ = tjijtit Dbaij δδ . (8)

In addition, we define for each t and j the variable )( jtψ  which is the argument maximizing 

expression (8). This variable is needed to retrieve the best state sequence after the maximum 

probability of the whole state sequence has been found. Denoting as P~ the optimal value for the 

probability and as }~,...,~,~{~
21 TqqqQ = the optimal state sequence, the Viterbi algorithm is 

resumed as follows: 

1) Initialization: 

 )()( 11 Dbi iiπδ = , 0)(1 =iψ , Ni ≤≤1  (9)
2) Recursion: 

 )(})({max)( 111 +
≤≤

+ = tjijtNit Dbaij δδ , (10)

 })({maxarg)(
1

1 ijt
Ni

t aij δψ
≤≤

+ = , 
(11)

 Tt <≤1 , Nj ≤≤1 . 

3) Termination: 

 )}({max~
1

iP TNi
δ

≤≤
= , (12)

 )}({maxarg~
1

iq T
Ni

T δ
≤≤

= . 
(13)

4) State sequence backtracking: 

 )~(~
11 ++= ttt qq ψ , 1,...,2,1 −−= TTt . (14)

It is easy to see that the computational complexity of the Viterbi algorithm is on the order of 

TN ⋅2 . 

 As it was discussed above in this report, segmentation via reconstruction of complete 

state sequence does not necessarily lead to the optimal system performance. To find the optimal 

segment boundaries according to our optimality criterion, we need to estimate the posterior 

probability of segment boundaries at each candidate point. For this purpose we first 
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define ),( jitξ , the probability of transition from state i at time t to state j at time 1+t , given the 

observation D: 

 )|,(),( 1 DjqiqPji ttt === +ξ . (15)
For computationally effective calculation of this value we use the forward-backward procedure 

[RAB 89] as follows. Consider the forward variable )(itα defined as the probability of the partial 

observation sequence until time t and state i at time t: 

 ),,...,,()( 21 iqDDDPi ttt =≡α . (16)
This variable is calculated by induction as 

 
)()()( 1

1
1 +

=
+ ⎥

⎦

⎤
⎢
⎣

⎡
= ∑ tj

N

i
ijtt Dbaij αα , Tt <≤1 , Nj ≤≤1 , (17)

where initial value is 

 )()( 11 Dbi iiπα = , Ni ≤≤1 . (18)

In a similar manner a backward variable )(itβ is defined as 

 ),,...,,()( 21 iqDDDPi tTttt =≡ ++β . (19)
Initialized with 

 1)( =iTβ , Ni ≤≤1 , (20)
it is calculated by the following induction 

 
)()()( 11

1
jDbai ttj

N

j
ijt ++

=
∑= ββ , 1,...,2,1 −−= TTt  , Ni ≤≤1 . (21)

After applying the forward-backward procedure, variable ),( jitξ is calculated as 

 
)(

)()()(
)(

),(
),( 111

DP
jDbai

DP
jqiqP

ji ttjijttt
t

+++ =
==

=
βα

ξ , (22)

where )(DP can be calculated, for instance, as 

 
∑
=

=
N

i
T iDP

1
)()( α . (23)

 Segment boundaries are related to transitions between the HMM states. Hence, the 

candidate points of these boundaries are 1−T potential transitions within the sequence of T states. 

If a segment boundary corresponds to a single pair of states i and j, as for instance in the case 

where each segment is represented by one state, then its posterior probability is ),( jitξ . In the 

general case segments are modeled by subsequences consisting of different states. To separate 

these subsequences, one could mark their beginning or the end with a special state or model 

segments with non-overlapping sets of states. Let’s denote the set of states which can end an 

arbitrary segment s1 as G1 and the set of states which can begin an arbitrary set s2 – as G2. Then 
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the probability that a boundary between segments s1 to s2 corresponds to the transition between 

states qt and 1+tq is computed as 

 ∑ ∑
∈ ∈1 2

),(
Gi Gj

t jiξ . 
(24)

3.2 Hierarchical Model 

The content of video is often organized in a hierarchical manner, e.g. a tennis match can be 

divided first into sets, then the sets are decomposed into games etc. In this subsection we present 

a generalization of the basic HMM, called a hierarchical HMM (HHMM) [SHA 98], which 

models this organization directly. These models have found a wide use in many domains of 

application with hierarchical structure, such as image and video segmentation [PHU 05, ZHE 

04], visual action recognition [NGU 05, MOO 01, HOE 01], spatial navigation [BUI 01, THE 

01] and handwriting recognition [SHA 98]. The advantage of HHMMs is that they take into 

account statistical dependences existing between structural elements at multiple levels of 

coarseness, thus enabling to model long-term correlations between observable feature vectors. 

A HHMM is a structured process defined as a Markov chain whose states are hidden and 

modeled with their proper lower-level Markov chains. At the lowest level of the hierarchy this 

process is an ordinary HMM, whose states generate observable feature vectors according to a 

probabilistic rule. The states of higher levels aggregate the lower-level state chains. Therefore 

they generally correspond to sequences of feature vectors. These sequences are generated in a 

recursive manner by activation the corresponding sub-models which may be composed of sub-

models as well. This process terminates when states of the lowest-level are reached. The lowest-

level states are called production states as they are the only states which emit observable data. 

The states of the higher-levels do not generate observable features directly and are called 

internal or abstract states. 
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Figure 3. DBN representation of a HHMM at level l and 1+l at time t, t+1, t+2. l
tq denotes the state at 

time t, level l; l
te is an indicator variable that the HMM at level l has finished at time t; Dt is the 

observable feature vector. 
 

A HHMM can be graphically represented as a dynamic Bayesian network (DBN) [MUR 

01], as shown in Figure 3. The state of the model at level l and time t is denoted as
l
tq . When the 

model enters the abstract state, the corresponding sub-model is activated in a recursive manner. 

This activation is called a vertical transition. When the sub-model is finished (which may 

engender activations of lower level states recursively), the control returns to the upper-level state 

it was called from. Then a state transition within the same level, called a horizontal transition, 

occurs. A sub-model finishes when a special end state is reached. This state never emits 

observable data and immediately engenders the transition to the calling state. To indicate that the 

sub-model is about to enter the end state, the corresponding indicator variable of the DBN 

representation }1,0{∈l
te is set to 1, otherwise it is equal to 0. 

The calling context of vertical transitions is stored in a depth-limited stack. Any HHMM 

can be converted to an ordinary HMM by enumerating all possible states in the stack, from the 

highest model level up to the lowest one. Assuming that the HHMM has L levels and that all 

production states are at the lowest level L, the states of the equivalent HMM are encoded by 

mapping the calling context },...,{ 1:1 L
tt

L
t qqq = of each production state into integers. The same 

sub-model of the HHMM can be shared by several sub-models of the upper level. In the HMM 

representation this shared sub-model must be duplicated for each calling context, which 

generally results in a larger model. So, the power of the HHMMs is in the ability to reuse its 

substructures. As a result, they have a more compact representation, and the less number of 

l
tq  l

tq 1+
l
tq 2+

1+l
tq 1

1
+
+

l
tq 1

2
+
+

l
tq

1+l
te 1

1
+
+

l
te 1

2
+
+

l
te

Dt 1+tD 1+tD
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parameters simplifies their learning. The hierarchical representation of HHMMs also allows us to 

specify their topology or constraints on possible state transition in a more natural way. Using a 

chain of sub-models allows the authors to impose a constraint on the minimum number of the 

corresponding semantic segments, e.g. a game segment consists of no less than 4 points. At the 

same time, these sub-models are not duplicated superfluously. 

In order to give a strict formal definition of the HHMM, let’s specify conditional 

probability distributions of each node type in the corresponding DBN representation (see Figure 

3). Consider first the lowest level L of the model. The states of this level follow the rules of a 

regular HMM, whose parameters are determined by its position in the HHMM encoded by the 

vector of higher state variables },...,{ 111:1 −− = L
tt

L
t qqq . For simplicity of notations we represent this 

vector by the integer k. When the HMM is activated, its initial state j is selected according to the 

prior distribution )( jL
kπ defined for the parent state vector encoded by k. Then at subsequent time 

moments it undergoes a change of state according to the state transition matrix L
kA until the end 

state is reached. In the DBN representation the system never enters the end state, but the 

corresponding variable L
te is set to 1 instead, indicating that the higher-level sub-model can now 

change its state. Thus the conditional probability of a state at level L is written as 

 

⎪⎩

⎪
⎨
⎧

=

=
===== −

−−
1if),(

0if),,(~
),,|( 1:1

11
fj

fjiA
kqfeiqjqP

L
k

L
kL

t
L
t

L
t

L
t

π
 (25)

where it is assumed that endji ≠, . Matrix l
kA~ is the state transition matrix at level l given that the 

parent variables are in state k and the end state is never reached, i.e. it is defined from the 

following equality: 

 ),()),(1)(,(~ jiAendiAjiA l
k

l
k

l
k =− . (26)

The conditional probability for L
te is determined as 

 ),(),|1( 1:1 endiAiqkqeP L
k

L
t

L
t

L
t ==== − . (27)

The observable feature vector tD is generated according to a probability function conditioned on 

the whole stack configuration L
tq :1 . 

 To write down the conditional probabilities for intermediate level l, we need also to take 

into consideration the variable 1+l
te indicating whether the sub-model has finished or not. If this 

variable is 0, which means that the sub-model has not finished, the state transition at level l is 

forbidden. Hence, the conditional probability of state l
tq is written as 
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where ijδ is the Kronecker delta. The variable l
te can be set to 1 only when the state l

tq is allowed 

to enter a final state. Therefore, its conditional probability is written as 

 

⎩
⎨
⎧

=

=
===== +−

1if),,(

0if,0
),,|1( 11:
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The conditional probabilities for the top level of the HHMM are written similarly to expression 

(28) and (29).  The only difference that the no parent states are to be specified, that is why the 

conditioning on kq l
t =−1:1 must be omitted. 

3.3 State Duration Modeling 

The proper modeling of semantic segments of video should account for their duration constraints 

which can be formulated as the corresponding probability distribution. If a segment is modeled 

with a single state of a HMM, the inherent duration probability density is always meet a 

geometric distribution. Indeed, the probability of the Markov chain to remain at a state i during 

first d time moments is written as 

 ( ) )1(),,...,( 1
11 ii

d
iidd aaiqiqiqP −=≠== −

− . (30)

This geometric distribution is often not appropriate. For example, segments of short duration are 

unlikely as they have not enough time to convey the semantics to a viewer, while according to 

this distribution they should be of the highest probability (see the left part of Figure 4). 

 
Figure 4. A sample plot of the inherent duration probability for the 1-state (a) and 2-state (b) Markov 
chain (a=0.96). 
 

 The duration distribution can be fit more freely if the segment is modeled by a chain 

consisting of several different states. To make this distribution to be decreasing when the 

duration approaches zero, two state are enough. Consider the two-state chain presented in Figure 

a) b) 
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5. Denoting as )(1 xP and )(2 xP the probability of remaining x times in state 1 and 2 respectively, 

the probability of remaining in the whole chain is written as 

 
∑∑
−

=

−−−
−

=
−−=−=

1

1
22

1
2211

1
11

1

1
21 )1())(1()()()()(

d

x

xdx
d

x
aaaaxdPxPdP , (31)

where the second equality follows from expression (30). Assuming for simplicity that 

aaa ≡= 2211 , expression (31) is continued as 

 
22

1

1
2

2
)1)(1(11)( −

−

=
−−=

−
= ∑ d

d

x

d aada
a

adP . (32)

This is a second-order Erlang distribution, a discrete counterpart of the gamma-distribution, 

which, for instance, has been shown to be good fit for the probability density function of shot 

duration in [VAS 97]. A sample plot of this distribution is shown in the right part of Figure 4. 

 
Figure 5. A two-state HMM. 

 

 Markov chains of sufficient size can model general probability distributions [CRY 88]. 

Hence, in order to properly realize the state duration, the HMM can be expanded so that its states 

are expanded to sub-models which have their own topology and transition probability. The 

resulting structure is called the expanded state HMM (ESHMM) [RUS 87]. The lower-level sub-

models are regular HMMs whose states have the same emission probability functions. They 

usually have a compact left-right topology. The transition coefficients can be learned with the 

Baum-Welch procedure [RAB 89], an EM-algorithm commonly used for HMM parameters 

estimation. Alternatively, these coefficients can be calculated directly from the estimated 

statistical moments [BON 96]. 

 In many applications the state duration distributions in the ESHMM are fitted with quite 

compact sub-models, thus not increasing crucially the computational complexity with respect to 

the original HMM. For instance, in [BON 96] three states are assumed to be enough for 

modeling phone durations in the task of speech recognition. Since the complexity of the 

probability computations for the regular HMM is quadratic with respect to the total number of 

the states, the resulting three times growing in the total size of the model engender at most a nine 

times increase in the computational burden. 

1 2 

a11 a22 
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The ESHMM is suitable for the tasks where the segment duration distributions are fixed 

and can be fitted only once during the preliminary learning. Sometimes, however, there is a need 

to recalculate these distributions at each time step. These recalculations with the ESHMM lead to 

unacceptable computational complexity. Such a need in the re-estimation of the duration 

probability arises, for example, when the time units corresponding to the states are not of regular 

duration, while the distributions of segment duration are defined in the domain of natural time 

measured in regular units. This is the case in our task of narrative video segmentation into logical 

story units, or scenes. The elementary time units are camera shots whose duration is not regular 

and can change from 1-2 seconds to half a minute or even more. The shot length can change 

considerably from one scene to another, depending on the conveyed semantic, while the time 

distribution of scene duration remains more or less stable. We estimate the probability of a scene 

change as a function of shots length and the time duration of the scene. The resulting state 

transition probabilities of the corresponding model are dependent from these terms as well and 

change from one candidate point to another. Such a non-stationary system seems to be modeled 

more effectively with an extension to the regular HMM where the state duration probability is 

modeled explicitly. This kind of a model is called a variable duration HMM [RAB 89] or a 

hidden semi-Markov model (HSMM) [RUS 85]. 

  The functional difference of the HSMM in respect to the regular HMM, is that in the 

HSMM the transitions from the states back to themselves are prohibited, i.e. the diagonal 

elements of the state transition matrix 0=iia . Instead of the value of iia , which implicitly 

define the state duration in the regular HMM, the occupancy of the state is now determined by an 

explicit probability distribution. For the practical aspects discussed above, in this report we 

extend the HSMM to be non-stationary in the sense that state duration distributions are defined at 

each time step. The evolution of the process described by the HSMM is defined as follows. An 

initial state q1 is chosen according to the initial state distribution iπ . Once activated, each state i 

remains unchanged during x consecutive time moments, where x is chosen according to the state 

duration density )(xpt
i , which is supposed to be non-stationary and dependent on the state 

activation time t. It is assumed that the duration density )(xpt
i  is defined to be non-zero up to a 

maximum possible duration value t
iτ . When state i is finished, the sequence of observable 

feature vectors is generated according to the joint observation density )( 1: −+xtti Db . The next state 

j ( ij ≠ ) is chosen then according to the state transition probabilities ija . 

 To be applied to the HSMM, the forward-backward procedure, used for computationally 

effective calculation of the posterior state transition probabilities, is modified as follows. We 
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assume that the first state begins at time 1=t , and the last state ends at Tt = , i.e. the model 

comprises only entire state duration intervals. The forward variable )(itα  is now defined as 

 

⎩
⎨
⎧

==
<≠=

= +

TtiqDP
TtiqiqDP

i
tt

ttt
t if),,(

if),,,(
)(

:1

1:1α , Tt ≤≤1 , (33)

where jiD : , ij > , denotes the sub-sequence of observable data jii DDD ,...,, 1+ . In the other 

words, the forward variable defines the probability of observing t first data vectors and the state i 

finishing at time t. The variable is initialized as 

 )()1()( 1
1

1 Dbpi iii ⋅= πα , Ni ≤≤1 . (34)

For the subsequent time moments Tt ,...,2=  we have the following induction: 
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The first term of this expression disappears when time t exceeds the maximum possible state 

duration 1
jτ . The value k

jτ  limits the range for the second sum of the second term for time t so 

that the state duration does not exceed its maximum allowed value (in algorithmic realization 

this limit can be effectively tracked with a queue of values k
jτ , whose elements are discarded 

when kt k
j +> τ ). The probability of observing the whole sequence of feature vectors is written 

in terms of the α ’s as 

 
∑
=

=
N

i
TT iDP

1
:1 )()( α . (36)

We also define two backward variables as 

 ),|()( 1:1 iqiqDPi ttTtt ≠== ++β , Ni ≤≤1 , (37)
 ),|()( 1:1

* iqiqDPi ttTtt =≠= ++β , Ni ≤≤1 , (3-38)

i.e. )(itβ  and )(* itβ  are the probabilities of partial feature vector sequence TtD :1+  given that 

state i ends at time t and given that state i begins at time 1+t  respectively. We initialize the 

recursion as 

 1)( =iTβ , Ni ≤≤1 . (39)
Then for 1,...,2,1 −−= TTt  by induction we have 
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The posterior probability of state transitions are computed based on the forward-backward 

variables as 
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)()(
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T
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Tttt DP

jai
DjqiqPji

βα
ξ ==== + . (42)

 To find the most probable sequence of HSMM states, the Viterbi algorithm must be 

modified so that to account all possible durations of states. Defining the variable )(itδ  to be the 

probability of the best state sequence such that the last state i ends at time t, by induction we 

have 

 )()()}()()({maxmax)( :1
1

:1111 tjjjtkj
k
jijk

tk
tkNit DbtpDbktpaij

k
j

πδδ
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+−= +

−≥
−≤≤≤≤

, Nj ≤≤1 . 
(43)

 The observable feature vectors are usually assumed to be conditionally independent on 

each other. Therefore the joint probability of these vectors measured at an arbitrary time run 

from j to k at a model state i is calculated as 

 
)()( : l

k

jl
ikji DbDb ∏

=
= . (44)

Taking into account this equality, the comparisons of the expressions for the forward-backward 

variables for the basic HMM (17) - (21) and the HSMM (34) - (41) allows us to conclude, that 

the HSMM requires about 2/2τ  times the computation, where τ  denotes the average value of 
k
jτ . The same is true for the Viterbi procedure as well. This increase in computational burden is, 

however, not crucial in our task of narrative video segmentation, since the model is applied only 

once for an input video and the main computational efforts are still required for the feature 

vector extraction. A pruning theorem is proposed in [BON 93], which reduces significantly the 

search space in the Viterbi induction (43).  The resulting increase of computational effort is 

reported to be about 3.2 times with respect to a conventional HMM, which is usually 

considerable lower than the use of the original technique. The pruning theorem requires, 

however, that the state duration distributions be log-convex, which is difficult to provide for our 

non-stationary model. 

3.4 Autoregressive Model 

The conventional HMM assumes that the observable feature vectors are statistically dependent 

only on the current states. However it is often the case that there is a strong inherent correlation 

between consecutive feature vectors, which breaks this assumption. To deal properly with 

unwanted dependencies, we could consider the joint probabilities of several consecutive feature 

vectors. But this would require expanding the dimension of the probability functions, which 
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would make more difficult their learning. Alternatively, we could fit the time series of feature 

vectors with some model, which would allow us to get rid of the information redundancy and 

pass to a sequence of independent data. An extension to the conventional HMM, where the initial 

sequence of feature vectors is considered as an autoregressive process, is called an 

autoregressive HMM (ARHMM). This model was initially proposed for speech signals [JUA 

85]. 

 A time series Tddd ,...,, 21  is said to represent an autoregressive process, if it can be 

written as 

 
t

p

k
ktkt edad +−= ∑

=
−

1
µ , (45)

where ka  are p constant coefficients, µ  is the process mean, te  is assumed to be a white noise 

process with mean zero and variance 2δ . The functional difference of the ARHMM is that it 

does not assume any longer the conditional independence of the current observable feature 

vector from the past observations, i.e. in the general case 

 )|(),...,,;,...,,|( 12111 ttttttt qDPDDDqqqDP ≠−−− . (46)
We assume that observable vector Dt consists of K statistically independent components, i.e. 

},...,,{ 21 K
tttt dddD = . Thus, an autoregressive model can be applied independently for each 

component and, hence, its upper index is hereafter omitted. As it follows from expression (45), 

an observable feature can be written as 

 
ttt edd += ˆ , (47)

where td̂  denotes the predicted value calculated as 
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In the other words, values ka  can be considered linear prediction coefficients. Then the 

independent statistical variable te  is written as the difference between the real and predicted 

values of the feature: 
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In the ARHMM te  is assumed to be conditionally dependent only on the current state and, in 

fact, replaces the feature value of the conventional HMM. We additionally assume that this value 

has a Gaussian distribution. The probability of observing te  at model state i is substituted in the 

ARHMM by the following value 
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where iσ  and iµ  are the deviation and the mean corresponding to state i, i
la  - l-th autoregressive 

coefficient corresponding to state i. It is assumed that in the general case the observation are 

generated by different mechanisms at different states. That is why the autoregressive parameters 

in expression (50) are defined depending on the current state. 

 To estimate the autoregressive parameters of the ARHMM, we use the maximum 

likelihood learning criterion. As our final task is the video segmentation, it is assumed that the 

model is trained on a pre-segmented set of videos. We further assume that each semantic 

segment corresponds to a single state, i.e. the learning videos are, in fact, marked up into states. 

Given a training video of length T, the maximum likelihood estimates are selected so as to 

maximize the log-likelihood of the observable sequence written as 
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Substituting expression (50) for )( ti eb , we write the log-likelihood as 
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where α  and β  are inessential constants. The optimal autoregressive parameters can be found 

independently for each state by equaling the partial derivatives to zero: 
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The resulting system of linear equations can be rewritten as 
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After solving this system with respect to i
ka  and iµ , these parameters can be used to estimate 

variation 2
iσ  by equaling the corresponding partial derivative to zero, which yields 
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Expression (55) and (56)  can be easily generalized for the case where several learning videos 

are provided by extending the sums on t to all the available data. 

4 Conclusions 
A statistical framework has been proposed for the task of video segmentation which focuses on 

the detection of segment boundaries. The common approach to the task is to select the single best 

model of the whole video. This does not necessarily lead to the optimal segmentation 

performance which is commonly measured in terms of recall and precision. In our approach we 

select segment boundaries so as to maximize the performance metrics directly. The approach is 

based on the posterior probabilities of the boundaries estimated at each candidate point. It is 

finally formulated as a task of constrained optimization, for which a computationally feasible 

algorithm, applicable to the general case of multiple semantic segments, is proposed. 

 The posterior probabilities of segment boundaries can be estimated in different ways, 

depending on the particular model of the video. In this report we describe a hidden Markov 

model and its modifications which have been shown to be effective tools for modeling the 

dynamics of time sequences, such as video. A basic model is first defined, and its application to 

the video segmentation task is considered. Several modifications of this model are presented 

then, which allow us to overcome some inherent limitations: a hierarchical extension used to 

model multi-level semantic structure; a hidden semi-Markov model which enable the use of 

arbitrary distributions of state duration; an autoregressive version which deals properly with 

statistical interdependencies existing between consecutive feature vectors. 
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