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Abstract

Automatic video segmentation into semantic units is important in order to organize an ef-
fective content-based access to long video. In this work, we focus on the problem of video 
segmentation into narrative units called scenes—aggregates of shots unified by a common 
dramatic event or locale. In this work, we derive a statistical video scene segmentation ap-
proach that detects scenes boundaries in one pass, fusing multi-modal audiovisual features 
in a symmetrical and scalable manner. The approach deals properly with the variability 
of real-valued features and models their conditional dependence on the context. It also 
integrates prior information concerning the duration of scenes. Two kinds of features ex-
tracted in visual and audio domain are proposed. The results of experimental evaluations 
carried out on ground truth video are reported. They show that our approach effectively 
fuses multiple modalities with higher performance compared with an alternative rule-based 
fusion technique.
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Introduction

A constantly growing amount of available digitized video stored at centralized libraries or 
even on personal computers gives rise to the need for an effective means of navigation that 
allows a user to locate a video segment of interest. Searching of such a segment sequentially 
using simple fast-forward or fast-reverse operations provided by most of the existing play-
ers is tedious and time-consuming. A content-based access could greatly simplify this task, 
giving to a user the possibility to browse a video organized as a sequence of semantic units. 
Such an organization also could facilitate the task of automatic video retrieval, restricting 
the search by the scope of meaningful semantic segments. Another potential area of appli-
cation is an automatic generation of video summaries or skims that preserve the semantic 
organization of the original video.
As the basic building blocks of professional video are shots—sequences of contiguous frames 
recorded from a single camera—it is natural to divide a video into these units. Unfortunately, 
the semantic meaning they provide is at too low of a level. Common video of about one or 
two hours (e.g., a full-length film) usually contains hundreds or thousands of shots—too 
many to allow for efficient browsing. Moreover, individual shots rarely have complete nar-
rative meaning. Users are more likely to recall whole dramatic events or episodes, which 
usually consist of several contiguous shots. In this work, we consider the task of automatic 
segmentation of narrative films, such as most movies, into something more meaningful than 
shots—high-level narrative units called scenes, or aggregates of shots unified by a common 
dramatic event or locale. We need shot segmentation at the first preliminary processing step 
since scenes are generated as groups of shots. Segmentation into scenes can be considered 
the next level of content generation, yielding a hierarchical semantic structure of video in 
which shots are preserved to form the lower level. In this work, we are not concerned with 
the problem of shot segmentation or adopting one of already existing techniques (Boresc-
zky & Rowe, 1996; Lienhart, 1999) but rather focus on the task of video segmentation into 
scenes.
Sharing a common event or locale, shots of a scene usually are characterized by a similar 
environment that is perceivable in both the visual and audio domains. So, both the image 
sequence and the audio track of a given video can be used to distinguish scenes. Since the 
same scene of a film usually is shot in the same settings by the same cameras that are switched 
repeatedly, it can be detected from the image track as a group of visually similar shots. The 
visual similarity is established using low-level visual features such as color histograms or 
motion vectors (Kender & Yeo, 1998; Rasheed & Shah, 2003; Tavanapong & Zhou, 2004). 
On the other hand, a scene transition in movie video usually entails abrupt changes of some 
audio features caused by a switch to other sound sources and sometimes by film editing 
effects (Cao, Tavanapong, Kim, & Oh, 2003; Chen, Shyu, Liao, & Zhang, 2002; Sundaram 
& Chang, 2000). Hence, sound analysis provides useful information for scene segmentation 
as well. Moreover, additional or alternative features can be applied. For example, editing 
rhythm, which usually is preserved during a montage of a scene, can be used to distinguish 
scenes as groups of shots of predictable duration (Aigrain, Joly, & Longueville, 1997); 
classification of shots into exterior or interior ones would allow for their grouping into the 
appropriate scenes (Mahdi, Ardebilian, & Chen, 1998), and so forth.
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In order to provide reliable segmentation, there is a need to properly combine these multiple 
modalities to compensate for their inaccuracies. The common approach uses a set of rules 
according to which one source of information usually is chosen as the main one to gener-
ate initial scene boundaries, while the others serve for their verification (Aigrain, Joly, & 
Longueville, 1997; Cao, Tavanapong, Kim, & Oh, 2003) or further decomposition into scenes 
(Mahdi, Ardebilian, & Chen, 2000). Rules-based techniques, however, are convenient for a 
small number of features, generally do not take into account fine interaction between them, 
and are hardly extensible. Another frequent drawback of the existing methods is binarization 
of real-valued features that often leads to losses of information.
In this work, we derive a statistical scene segmentation approach that allows us to fuse 
multiple information sources in a symmetrical and flexible manner and is easily extensible 
to new ones. Two features are developed and used as such sources: video coherence that 
reveals possible scene changes through comparison of visual similarity of shots and audio 
dissimilarity reflecting changes in the audio environment. For the moment, we fuse these two 
types of information, but our approach easily can be extended to include additional data. In 
contrast to the common rule-based segmentation techniques, our approach takes into account 
a various confidence level of scene boundary evidence provided by each feature.
In our earlier work (Parshin, Paradzinets, & Chen, 2005) we already proposed a simpler 
approach (referenced hereafter as maximum likelihood ratio method) for the same scene 
segmentation task. The advantage of the approach proposed in this work (referenced hereafter 
as sequential segmentation method) is that it is based on less restrictive assumptions about 
observable feature vectors, allowing for their conditional dependence from the context, and 
takes into consideration a nonuniform statistical distribution of scene duration.
We have evaluated the proposed technique using a database of ground-truth video, including 
four full-length films. The evaluation results showed a superior segmentation performance 
of our sequential segmentation technique with respect to the previous maximum likelihood 
ratio, one that in its turn outperforms a conventional rule-based, multi-modal algorithm.
The remainder of this chapter has the following organization. First, the background and 
related work section briefly describes prior work on the scene segmentation problem and 
introduces the basic ideas that facilitate distinguishing video scenes in the visual and audio 
domain; coupling of multi-modal evidence about scenes is discussed as well. In the next 
section, we derive our sequential segmentation approach and make the underlying assump-
tions. Then, in the Feature Extraction section, we derive our video coherence measure used 
to distinguish scenes in the visual domain and provide details on our audio dissimilarity 
feature. In the Experiments section, we report the results of the experimental evaluation of 
the proposed scene segmentation approach using ground-truth video data. Final remarks 
then conclude this work.
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Background and Related Work

Video Scene Segmentation Using Visual Keys

The common approach to video scene segmentation in the visual domain exploits the vi-
sual similarity between shots, which stems from specific editing rules applied during film 
montage (Bordell & Thompson, 1997). According to these rules, video scenes usually are 
shot by a small number of cameras that are switched repeatedly. The background and often 
the foreground objects shot by one camera are mostly static, and hence, the corresponding 
shots are visually similar to each other. In the classical graph-based approach (Yeung & Yeo, 
1996), these shots are clustered into equivalence classes and are labeled accordingly. As a 
result, the shot sequence of a given video is transformed into a chain of labels that identifies 
the cameras. Within a scene, this sequence usually consists of the repetitive labels. When a 
transition to another scene occurs, the camera set changes. This moment is detected at a cut 
edge of a scene transition graph built for the video. For example, a transition from a scene 
shot by cameras A and B to a scene taken from cameras C and D could be represented by 
a chain ABABCDCD in which the scene boundary would be pronounced before the first C. 
An analogous approach was proposed by Rui, Huang, and Mehrotra (1999) in which shots 
first were clustered into groups that then were merged into scenes. Tavanapong and Zhou 
(2004) in their ShotWeave segmentation technique use additional rules to detect specific 
establishment and reestablishment shots that provide a wide view over the scene setting at 
the beginning and the end of a scene. They also suggest using only specific regions of video 
frames to determine more robustly the intershot similarity.
To overcome the difficulties resulting from a discrete nature of the segmentation techniques 
based on shot clustering, such as their rigidity and the need to choose a clustering thresh-
old, continuous analogues have been proposed. Kender and Yeo (1998) reduce video scene 
segmentation to searching of maxima or minima on a curve describing the behavior of a 
continuous-valued parameter called video coherence. This parameter is calculated at each shot 
change moment as an integral measure of similarity between two adjacent groups of shots 
based on a short-memory model that takes into consideration the limitation and preferences 
of the human visual and memory systems. Rasheed and Shah (2003) propose to construct 
a weighted undirected shot similarity graph and detect scene boundaries by splitting this 
graph into subgraphs in order to maximize the intra-subgraph similarities and to minimize 
the inter-subgraph similarities.
In this work, we propose a continuous generalization of the discrete clustering-based 
technique, which is analogous to the approach of Kender and Yeo (1998) in the sense that 
it yields a continuous measure of video coherence. This measure then is used in our multi-
modal segmentation approach as a visual feature providing a flexible confidence level of 
the presence or absence of a scene boundary at each point under examination; the lower 
this measure is, the more possible is the presence of a scene boundary (see Figure 2). In 
contrast to the video coherence of Kender and Yeo (1998), which is a total sum of intershot 
similarities, our measure integrates only the similarity of the shot pairs that possibly are 
taken from the same camera.
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Video Scene Segmentation in the Audio Domain

As the physical setting of a video scene usually remains fixed or changes gradually (when, 
for instance, the cameras follow moving personages), the sources of the ambient sound rest 
stable or change their properties smoothly and slowly. A scene change results in a shift of 
the locale, and hence, the majority of the sound sources also changes. This change can be 
detected as the moment of a drastic change of audio parameters characterizing the sound 
sources.
Since short-term acoustic parameters often are not capable of properly representing the sound 
environment (Chen, Shyu, Liao, & Zhang, 2002), these parameters often are combined within 
a long-term window. The resulting characteristics are evaluated within two adjacent time 
windows that adjoin a point of potential scene boundary (usually shot breaks) or its immedi-
ate vicinity (as sound change sometimes shifted by a couple of seconds during montage to 
create an effect of interscene connectivity) and then compared. A scene boundary is claimed 
if the difference is large enough. Sundaram and Chang (2000) model the behavior of various 
short-term acoustic parameters, such as cepstral flux, zero crossing rate, and so forth, with 
correlation functions that characterize the long-term properties of the sound environment. 
A scene change is detected when the decay rate of the correlation functions, the total for 
the all acoustic parameters, reaches a local maximum, as it means low correlation between 
these parameters caused by the change of the sound sources. Cao, Tavanapong, Kim, and 
Oh (2003) approximate long-term statistical properties of short-term acoustic parameters 
using normal distribution. At a potential scene boundary, these properties are compared by 
applying a weighted Kullback-Leibler divergence distance.
In this work, we adopt Kullback-Leibler distance as an audio dissimilarity feature provid-
ing the evidence of the presence or absence of a scene boundary in the audio domain. This 
distance represents the divergence between distributions of shot-term spectral parameters 
that are estimated using the continuous wavelet transform.

Multi-Modal Data Fusion

The common approach to segmentation of narrative video into scenes is based only on visual 
keys extracted from the image stream. In order to combine information extracted from the 
audio and image streams into one more reliable decision, a set of simple rules is usually 
applied. The audio stream can be used as an auxiliary data source to confirm or reject scene 
boundaries detected from the image sequence. For example, Cao, Tavanapong, Kim, and Oh 
(2003) first segment video into scenes in the visual domain and then apply sound analysis 
to remove a boundary of suspiciously short scenes, if it is not accompanied by a high value 
of audio dissimilarity. Jiang, Zhang, and Lin (2000) propose first to segment the video in 
the audio domain and to find potential scene boundaries at shot breaks accompanied by a 
change in the sound environment; these boundaries then are kept in the final decision if they 
are confirmed by low visual similarity between preceding and succeeding shots. Sundaram 
and Chang (2000) first segment video into scenes independently in the video and audio 
domains and then align visual and audio scene boundaries as follows. For visual and audio 
scene boundaries lying within a time ambiguity window, only the visual scene boundary is 



Statistical Audio-Visual Data Fusion for Video Scene Segmentation   73

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission 
of Idea Group Inc. is prohibited.

claimed to be the actual scene boundary; the rest of the boundaries are treated as the actual 
scene boundaries.
Rule-based approaches suffer from rigidity of the logic governing the feature fusion. Gen-
erally, each feature provides evidence about the presence or absence of a scene boundary 
with a different level of confidence, depending on its value. Making intermediate decisions, 
rule-based techniques ignore this difference for one or several features. Moreover, these 
techniques require the proper choice of thresholds, which usually are more numerous, the 
more rules that are applied. In this work, we derive a segmentation approach that fuses 
multiple evidences in a statistical manner, dealing properly with the variability of each fea-
ture. This approach is easily extensible to new features, in contrast to rule-based techniques 
that often become too complicated and cumbersome when many features are treated. We 
also take into consideration a nonuniform distribution of scene durations (see Figure 1) by 
including it as prior information.

Sequential Segmentation Approach

In this section, we derive our segmentation approach, which makes decisions about the 
presence or absence of a scene boundary at each candidate point. As scenes are considered 
as groups of shots, their boundaries occur at the moments of shot transitions. Therefore, 
in this work, these transitions are chosen as candidate points of scene boundaries. It is as-
sumed that evidence about a scene boundary at an arbitrary candidate point is provided by 
a locally observable audiovisual feature vector. Further in this section, we first do some 
assumptions about observable features in the following subsection. Then an estimate of the 
posterior probability of scene boundary is derived, and the final segmentation algorithm is 
given in the next two subsections.

Figure 1. Scene duration pdf
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Conditional Dependence Assumptions about Observable 
Features

Let’s consider an observable audiovisual feature vector Di measured at a scene boundary 
candidate point i independently from the rest of vectors. In the general case, this vector is 
conditioned on the fact of presence or absence of a scene boundary not only at this point 
but at the neighboring points as well. Indeed, in the visual domain, the corresponding fea-
ture usually represents visual similarity between two groups of shots adjoining to the point 
under examination. If a scene boundary appears exactly between these groups, then the 
similarity measure usually has a local extremum. But if a scene boundary lies inside one of 
these groups, then the similarity measure takes an intermediate value that is closer to the 
extremum, the closer the scene boundary is (see Figure 2). Similar considerations also hold 
true for the audio data (see Figure 2).
For the purpose of simplification, we assume that local features are conditionally dependent 
on the distance to the closest scene boundary and are independent of the position of the rest 
of the scene boundaries. As the visual feature used in this work is a similarity measure ap-
plied to the whole shots, it is reasonable to assume the conditional dependence of this feature 
on the distance expressed in the number of shots. Let’s denote a time-ordered sequence of 
scene boundaries as },...,,{ 21 nbbbB = , in which each boundary is represented by the order 
number of the corresponding candidate point. As the scene boundary closest to an arbitrary 
candidate point i is one of two successive boundaries bk–1 and bk surrounding this point so 
as 

kk bib <≤−1
, the likelihood of video feature vi measured at point i given partitioning into 

scenes B can be written as:

)|(),|()|( 1 iikkii vPbbvPBvP D== − ,                   				    (1)
in which Di is the distance from point i to its closest scene boundary bc defined as:

ci bi −=D ,                             						      (2)



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= −−

otherwise.
if, 11

k

kkk
c b

ibbib
b

                      					     (3)

The audio feature is defined in this work as a change in acoustic parameters measured within 
two contiguous windows of the fixed temporal duration. Therefore, we assume conditional 
dependence of this feature on the time distance to the closest scene boundary. Denoting 
the time of i-th candidate point as ti, the temporal distance from point i to its closest scene 
boundary—as 

it , we write the likelihood of audio feature ai measured at point i as:

)|(),|()|( 1 iikkii aPbbaPBaP t== − ,                   				    (4)
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In this work, we calculate likelihood values )|( iivP D  and )|( iiaP t  using the corresponding 
probability density functions (pdf) considered to be stationary (i.e., independent of time index 
i). It is assumed that observable features are dependent on the closest scene boundary only 
if the distance to it is quite small (i.e., lower than some threshold that is on the order of the 
length of the time windows used to calculate these features). This assumption facilitates the 
learning of parameters of pdf estimates based on a set of learning data.

Taking into account expression (1) and (4), the likelihood of the total feature vector },{ iii avD =  
given partitioning into scenes B can be reduced to:

),|()|( 1 kkii bbDPBDP −= .                        					     (7)

In this work, we assume conditional independence of the components of Di given B:

),|(),|()|()|()|( 11 kkikkiiii bbaPbbvPBaPBvPBDP −−== .          			   (8)

If more observable data are available, expression (8) can include additional feature vector 
components that provide an easy extensibility of our segmentation approach.

Segmentation Principles

Statistical analysis of scene duration shows that it has nonuniform distribution, as most scenes 
last from half a minute to two to three minutes (see Figure 1). In order to take into account 
the information about scene duration, we include a prior of a scene boundary that depends 
on the time elapsed from the previous scene boundary and does not depend on the earlier 
ones, much as it is done in the case of variable duration hidden Markov models (Rabiner, 
1989). Furthermore, the posterior probability of a scene boundary bk at point i is assumed 
to be conditionally dependent solely on local feature vector Di given the position bk–1 of the 
previous scene boundary. This assumption agrees with the intuition that evidence of the 
presence or absence of a scene boundary at an arbitrary point is determined by the feature 
vector measured at the same point. Indeed, this feature vector reflects the degree of change 
in the visual and audio environment of a scene, and the larger this change is, the higher is 
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the probability of a scene change. Using Bayes rule, the posterior probability of k-th scene 
boundary at point i given bk–1  is written as:

)|(),|()|(),|(
)|(),|(

),|(
1111

11
1

−−−−
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==
==
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1−>∀ kbi . 				    (9)

In expression (9), it is further assumed that the next scene boundary 
1+kb  takes place a long time 

after boundary bk, so that the likelihood of Di given bk < i always is conditioned on bk when 
computed according to expressions (1) through (6). We denote this assumption as +∞=+1kb
. It also is supposed that scene boundary duration is limited in time by a threshold value S. 
Then a possible position of k-th scene boundary is limited by a value mk defined as:

}|max{
1

Sttlm
kblk ≤−=

−
.                        					     (10)

Under these assumptions, expression (9) is continued as:
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It is assumed that the prior probability )|( 1−kk bbP  of scene boundary bk is determined by 
the duration of the scene, which ends up at this boundary and is calculated using pdf of 
scene duration ps as:

)()|(
11 −

−=− kk bbskk ttpbbP a .                       					     (12)

Normalizing coefficient a can be omitted when this expression is substituted in equality 
(11), as only the ratio of probability values is taken into account. In this work, we use a 
nonparametrical estimate of pdf ps with Gaussian kernel (Duda & Hart, 1973) and limit its 
range of definition by lower and upper boundaries.
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We propose to segment an input video into scenes sequentially, choosing each next scene 
boundary based on the position of the previous one. So, the video can be segmented in real 
time with a time delay of the order of the maximal scene duration S. Knowing the posi-
tion of scene boundary bk–1, we select the next boundary bk using the posterior probability 
estimated at each candidate point i, i > bk–1, on time length S according to expression (11). 
In this chapter, the boundary bk is placed at the point of the maximal probability, as such 
a decision criterion has appeared to work well in experimental evaluations. This criterion 
is based on a relative comparison of the evidence of a scene boundary at each point under 
consideration provided by the feature vector measured at the same point. In this manner, 
the resulting segmentation procedure resembles the conventional techniques that pronounce 
scene boundaries at the points of local extremum of some visual or audio similarity curve, 
expression (11) being considered as a way to fuse multiple data into one cumulative measure. 
Four posterior probability curves along with audio dissimilarity and video coherence curves 
obtained for a ground-truth film are depicted in Figure 2. The probability curves are shown 
partly overlapped; each curve begins at the first candidate point inside a scene, achieves the 
global maximum at the point of transition to the next scene, and is interrupted at the middle 
of the next scene (in order not to encumber the figure).
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Figure 2. Audio dissimilarity (upper curve), video coherence (middle curve), and scene 
boundary posterior probability in sequential segmentation approach (partially overlapping 
curves in the bottom) vs. frame number; vertical dashed lines delimit scenes
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We deliberately include only one local feature vector Di in expression (11) and exclude 
surrounding data from consideration. Otherwise, there would be a need to treat properly 
the strong dependence that usually exists between contiguous observable data. This would 
complicate the proposed approach and possibly would require more learning data. Ex-
perimental tests on a more complicated model that includes the complete set of observable 
data up to the point under examination, much as the model proposed by Vasconcelos and 
Lippman (1997) for the task of shot segmentation, suggest that simple neglect of this de-
pendence in such a model degrades considerably the segmentation performance, let alone 
the increase of the computational complexity. For the same reasons, we do not adopt hidden 
Markov models that assume conditional independence between observable feature vectors. 
The problem of dependence between feature vectors is avoided in our model, as the single 
feature vector Di in expression (11) usually is placed far enough from boundary bk–1 at the 
most points under examination and, thus, does not depend strongly on the feature vector 
measured at this boundary.

Final Algorithm

The final segmentation algorithm used in this work is resumed as follows.
Segment an input video into shots and assign candidate points of scene boundaries to be the 
shot transition moments. Estimate feature vector Di at each point i.
Place the initial scene boundary b0 at the beginning of the first scene (which is supposed to 
be given). Select recursively each subsequent scene boundary bk based on the position of 
the previous one bk–1 through the following steps:
Calculate the posterior probability of k-th scene boundary at each candidate point i of set 
{bk–1 + 1, ..., mk} according to expression (11) in which mk is defined by expression (10) and 
is limited by the last candidate point.
Place the next scene boundary bk at the point of the highest posterior probability.
If a stopping criterion is fulfilled, exit the algorithm.
The stopping criterion is used mostly to keep inside the narrative part of the input video. 
In this work, we suppose that the position of the last scene boundary is given and that the 
stopping criterion is fulfilled when scene boundary bk appears to be closer in time to the 
last scene boundary than a predefined threshold value that is approximately equal to the 
mean scene duration.

Feature Extraction

In this section, we propose visual and audio features that provide evidence of the presence 
or absence of a video scene boundary and describe the corresponding likelihood estimates 
required in our sequential segmentation approach.
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Video Coherence

Our video coherence feature is derived as a continuous generalization of the conventional 
graph-based approach (Yeung & Yeo, 1996). As mentioned in the section describing related 
work, in this approach, visually similar shots first are clustered into equivalence classes 
and labeled accordingly. Then, a scene transition graph is built, and scene boundaries are 
claimed at cut edges of the graph. Let’s consider the following shot clustering technique. 
First, a similarity matrix for an input video is built, each element Sim(i,j) of which is the 
value of visual similarity between shots i and j. Then, each pair of shots that are similar 
enough (i.e., their similarity is higher then a threshold Tcl) is merged into one cluster until 
the whole matrix is exhausted. This is almost a conventional clustering procedure, except 
the radius of the clusters is not limited. In practice, we consider the shots that are far apart 
in time and, hence, are not likely to belong to one scene as nonsimilar and never combine 
them into one cluster. So, we need to treat only the elements of the similarity matrix located 
near the main diagonal, which makes the computational burden approximately linear with 
respect to the duration of the video.
Let’s define for each shot i the following variable:

),(max)(
,

0 baSimiC
ibia ≥<

= .                        					     (13)

If this variable is less than the clustering threshold Tcl, then, according to the proposed 
clustering technique, it means that there are no common clusters that combine at least one 
shot preceding shot i with shot i or with a shot that follows shot i. In this and only in this 
case, there would be pronounced a scene boundary (at the transition to shot i) according to 
the graph-based segmentation method.
Hence, we can reformulate the conventional graph-based procedure of scene segmentation 
procedure as searching points on the curve C0 that fall below the threshold value, scene 
boundaries being claimed in these points. Alternatively, scene boundaries can be pronounced 
at the points of local minima of the curve.
In real video, visual similarity between shots within the same scene often is not quite high, 
especially in action films in which there are many dynamic episodes. Because of this, minima 
of the variable C0 often are pronounced badly, and it can happen accidentally that a shot of 
a scene resembles a shot of the previous or the next scene. In this case, the segmentation 
procedure can miss scene boundaries. Consider, for example, two scenes represented by a 
shot clusters chain ABABCDADCD in which a real scene boundary occurs before the first 
shot of cluster C, and because of accidental similarity, one of the shots from the second 
scene was misclassified as A. Since the shot clusters in this example cannot be divided into 
two nonintersecting groups, clustering-based segmenting procedure fails to detect the scene 
boundary.
In order to enhance the robustness of the segmentation procedure, we can try to implicitly 
exclude isolated misclassified shots from consideration. At first glance, the next maximal 
value after C0 could be taken according to expression (13). However, if a single shot is 
similar to a shot from another scene, it is likely to resemble other shots of the same cluster. 
In the previous example of a cluster chain, the shot from the second scene, misclassified 
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as cluster A, is similar to two shots of this cluster for the first scene. Hence, exclusion of a 
single pair of maximally similar shots does not definitely exclude the influence of a single 
misclassified shot. So, in addition to this pair, we propose not to take into consideration 
all the maximally similar shots that follow or precede it and to define for each shot i the 
following variable:

)},(max),,(maxmin{)(
)(,,)(,,

1

00

baSimbaSimiC
ibbibiaiaaibia ≠≥<≠≥<

= ,              				   (14)

in which the variables a0 and b0 are the shot numbers, for which the expression (13) attains 
the maximum:
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By recursion, we can derive variables to exclude the influence of the second misclassified 
shot, the third one, and so forth:
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The variable Ck has sharp local minima at scene boundaries only if they correspond to k 
misclassified shots. Otherwise, these minima are not well-pronounced. Generally, as the same 
pair of maximally similar shots can correspond to several contiguous shots, the previously 
defined variables C can remain constant during a period of time. If this constant region cor-
responds to a local minimum, the scene boundary position cannot be located precisely. In 
order to use all the variables C together and to reduce the probability of wide local minima, 
an integral variable is defined:
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N

iC ,                          (19)

in which N denotes the number of terms C determined by expression (13) through (18). By 
analogy with Kender and Yeo (1998), we refer to variable )(int iC  as video coherence and 
consider it a visual feature that provides evidence of the presence or absence of a scene 
boundary at the beginning of shot i.
The similarity Sim(a,b) between shots a and b involved in expression (13) through (18) can 
be calculated in various manners. In our experimental evaluations that will be described 
next, it is calculated as normalized color histogram intersection for the pair of maximally 
similar key frames representing the shots. The histogram is defined in HSV-color space 
quantized at 18 hue, 4 saturation, and 3 value points, and included additional 16 shades of 
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gray. Video coherence feature includes three terms; that is, in expression (19), N is equal 
to 3 and is calculated for two contiguous groups of five shots that adjoin the point under 
consideration.
In our sequential segmentation approach, we consider the video coherence feature as a random 
value generated by a stationary process. In order to evaluate the likelihood of this variable 
mentioned in expression (1), we use a nonparametrical estimate of the corresponding pdf 
based on a Gaussian kernel and obtained for a set of presegmented ground-truth data. It is 
calculated separately for each possible value of the distance to the closest scene boundary 
D. We assume that this distance is limited by a range ],[ 21 nn−  in which n1 and n2 are natural 
numbers of the order of value N in expression (19). If it happens that D < – n1, we set D = 
–n1, and if D > n2, we set D = n2.

Audio Dissimilarity

In order to calculate the short-term acoustic feature vector for a sound segment, we divide 
the spectrum obtained from Continuous Wavelet Transform (CWT) into windows by appli-
cation of triangular weight functions Wi with central frequencies fi in Mel scale as it is done 
in the case of Mel Frequency Cepstrum Coefficients calculation (see Figure 3). Unlike the 
FFT, which provides uniform time resolution, the CWT provides high time resolution and 
low frequency resolution for high frequencies, and low time resolution with high frequency 
resolution for low frequencies. In that respect, it is similar to the human ear, which exhibits 
similar time-frequency resolution characteristics (Tzanetakis, Essl, & Cook, 2001).
Then energy values Ei in each spectral window are computed, and finally, the matrix of 
spectral bands ratios is obtained as:

) E / E log(  K jiij = .                          						      (20)

Values from the top-right or bottom-left corner of the matrix K are taken as our acoustic 
features.
The mentioned acoustic feature vector (matrix) is not affected by main volume change, 
unlike spectral coefficients. At the same time, it allows us to detect changes in acoustic 
environment.
The procedure of audio dissimilarity curve calculation is done by moving two neighboring 
windows (with size 8 and step 0.5 seconds in our experiments) along the audio stream and 

f 

W1[f] 

… 
f1 f2 f3 f4 f5 

W2[f] W3[f] W4[f] W5[f] W12[f] 

Figure 3. Triangular weight functions with central frequencies in Mel scale
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by obtaining the distance between the distributions of the corresponding acoustic features. 
Various measures may be used as a distance or dissimilarity for the task of acoustic seg-
mentation: Bayesian Information Criterion (Chen & Gopalakrishnan, 1998), Second-Order 
Statistics (Bimbot, Magrin-Chagnolleau, & Mathan, 1995), Kullback-Leibler (KL) distance 
applied directly to distribution of spectral variables (Harb & Chen, 2003).
The KL-measure is a distance between two random distributions (Cover & Thomas, 2003). 
In the case of Gaussian distribution of random variables, the symmetric KL distance is 
defined as:
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in which µ and σ are the mean value and the variance of compared distributions.
Instead of multi-dimensional KL applied to a feature vector of spectral bands ratios, a sum 
of KL distances applied to each element of the vector is used in this work as audio dis-
similarity measure:

∑=
ij

ijij KKKLD )2,1( ,                          						     (22)

in which K1 and K2—feature matrices for the neighboring windows.
As an observable feature of a scene boundary in the audio domain, in this work, we extract 
the maximal value of audio dissimilarity in a time window of about four seconds centered 
in the corresponding candidate point in order to tolerate small misalignments between the 
audio and image streams of video. The likelihood of this feature included in expression (4) 
is calculated from the joint probability as:
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in which, as earlier, a stands for the feature value, τ—for the time distance to the closest 
scene boundary. We approximate the joint probability with a nonparametric estimate of pdf 
using a Gaussian kernel on a set of learning data. Just as for the visual feature, we limit the 
range of τ by a value having the order of duration of the neighboring time windows used to 
calculate the audio dissimilarity.

Experiments

In this section, we report the results of experiments that are designed to test the proposed 
video scene segmentation approach. For the lack of common benchmark data, a database of 
four ground-truth movies (drama: A Beautiful Mind; mystery: Murder in the Mirror; French 
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comedy: Si J’Etais Lui; and romance: When Harry Met Sally) was prepared and manually 
segmented into semantic scenes. The performance comparisons were made inside time 
intervals that had the total duration of about 22,000 seconds and included 234 manually 
labeled scene boundaries.
The segmentation into shots at the preprocessing stage was carried out automatically using 
a twist-threshold method (Zhang, Qi, & Zhang, 2001) based on color histogram similarity 
measure. To reduce the computational complexity of the segmentation algorithm, likelihood 
values of audio and visual features in expressions (1) and (4) were calculated using linear 
interpolation between tabled values. In the feature domains (fixed through all experiments 
described next), where estimates of the corresponding pdf became unstable due to the lack of 
learning data, the likelihoods were extrapolated as constant functions. Only a small portion 
of data fell into these domains, and experimental evaluations demonstrated that the choice 
of their boundaries was not crucial for segmentation performance.
Segmentation performance was measured by using the value of precision p and recall r 
defined as:
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in which nc, nm, and nf are the number of correctly detected scene boundaries, the number of 
missed boundaries, and the number of false alarms, respectively. Detected scene boundary 
was considered correct if it coincided with a manual scene boundary within an ambiguity 
of five seconds. Otherwise, it was considered a false alarm. A manual scene boundary was 
considered missed if it did not coincide with any of the automatically detected boundaries 
within the same ambiguity of five seconds. As a unified performance score, F1 measure 
was used:
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=
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Segmentation performance of the proposed sequential segmentation algorithm relative to 
various films entered into our database is compared in Table 1. Feature likelihoods and scene 
duration pdf were estimated on the learning set including all four films. The highest integral 
performance F1 for the film Murder in the Mirror was caused mainly by the most stable 
behavior of the video coherence curve, as the scenes were shot by relatively slow-moving 
or static cameras. In contrast, the outsider film Si J’Etais Lui was characterized by intensive 
camera movements. A reason for a relatively low performance for the film A Beautiful Mind 
was a less accurate shot segmentation for gradual shot breaks, which sometimes merged 
shots that were contiguous to a scene boundary.
In order to evaluate the generalization capability of the segmentation approach learned on 
a set of presegmented data, the cross-validation tests were carried out. The learning set 
included three films, and the test set consisted of the resting fourth. The overall results for 
all four films are given in Table 2. Three trials were made: the first one did not use cross-
validation at all, serving as a reference; the second used a separate set to learn only the pdf 
estimates for the audio and visual features, while the scene duration pdf was estimated on a 
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common set including all four films; the third trial supposed separate learning and test sets 
for all the pdf estimates. As it follows from Table 2, our segmentation approach does not 
suffer much from parameters over-fitting, providing quite a general model for video scene 
segmentation. The perceptible sensitivity to the estimate of scene duration pdf suggests the 
importance of taking into account of prior information about scene duration. The results 
given next in this section assume the same learning and test set, which includes all four 
films of the ground truth.
The capability of our sequential segmentation approach to fuse audiovisual features is shown 
in Table 3, in which the first row presents the segmentation performance when only the visual 
feature was used, the second row gives the performance only for the audio feature, and the 

Table 1. Performance of the sequential segmentation algorithm for various films

Film Precision, % Recall, % F1, %

A Beautiful Mind 67.7 67.7 67.7

Murder in the Mirror 88.9 66.7 76.2

Si J’Etais Lui 66.7 63.2 64.9

When Harry Met Sally 69.8 71.2 70.5

Total for four films 72.4 67.1 69.6

Table 2. Performance of the sequential segmentation algorithm in cross-validation tests

Using Cross-Validation Precision, % Recall, % F1, %

Non 72.4 67.1 69.6

For the feature pdf only 69.9 67.5 68.7

Total for the feature pdf and the scene 
duration pdf 67.6 65.0 66.2
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third for both features. As it follows from the table, fusing the visual and audio features 
enhances both recall and precision.
In order to compare our segmentation approach with related multi-modal techniques, we 
considered the following rule-based scene segmentation algorithm. First, an input video was 
segmented solely in the visual domain. Strong scene boundaries then were claimed as the 
actual scene boundaries, while weak scene boundaries were kept only if they were confirmed 
by a high level of the audio dissimilarity that had to be above threshold A. This is a scheme 
of audiovisual data fusion somewhat analogous to that of Cao, Tavanapong, Kim, and Oh 
(2003). We also refused from the use of scene duration distribution and adopted a segmenta-
tion technique that searched scene boundaries at local minima of the video coherence curve. 
A local minimum was claimed as a scene boundary if it was a global minimum of enough 
depth in a surrounding time window and had the absolute value below some threshold T1. A 
scene boundary was considered weak if the corresponding video coherence value was above 
a second threshold T2, T1>T2; otherwise, it was marked as a strong boundary. Thresholds 
A, T1, and T2 were selected in order to maximize the overall performance measure F1.
The performance of this rule-based algorithm is given in the first row of Table 4, where it 
can be compared with the performance of our earlier maximum likelihood ratio approach 
(Parshin, Paradzinets, & Chen, 2005) and the sequential segmentation one derived in this 
work. The maximum likelihood ratio algorithm uses the same audio feature as the others; 
as the visual feature, it used the video coherence C0 given by expression (13) since it is less 
dependent on the context and, hence, is more suitable for this algorithm. To compare the 
efficiency of audiovisual data fusion provided by our rule-based algorithm, we also include 
the test results for a segmentation algorithm, referenced as “local minima of video coher-
ence,” which works solely in the visual domain. This algorithm detects scene boundaries at 
local minima on the video coherence curve in the same way as our rule-based algorithm with 
the difference that it uses only one threshold value that maximizes performance measure 
F1. A comparison of the results given in Table 4 allows us to conclude that the sequential 
segmentation approach has the best performance measured by both precision and recall.
As for computational time required by our sequential segmentation algorithm, it is quite 
fast, given that audiovisual features are precomputed and take less than a second on our 

Feature Used Precision, % Recall, % F1, %

Visual 61.7 64.1 62.9

Audio 39.9 48.7 43.8

Visual + Audio 72.4 67.1 69.6

Table 3. Performance of the sequential segmentation algorithm for audio-visual feature 
fusion
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Intel Pentium 4 1.8GHz computer for one film. This is because the computational complex-
ity is approximately linear with respect to the film length due to a limited time search for 
each scene boundary. The main computational burden for a raw video file stems from its 
decoding and feature extraction, which, however, can be done in real time without much 
optimization for MPEG 4 video format.

Conclusion

A statistical video scene segmentation approach is proposed that combines multiple mid-level 
features in a symmetrical and flexible manner. In contrast to its rule-based counterparts, it 
deals properly with real-valued observable features by taking into account the variability of 
scene boundary evidence provided by these features. This approach also models the duration 
of scenes, including it as prior information. Two kinds of features are proposed to be used 
in scene segmentation: video coherence and audio dissimilarity extracted in the visual and 
the audio domain, respectively. In contrast to the video coherence measure obtained using 
a conventional short-term memory model, the measure proposed in this work compares 
only the shots that probably are taken by one camera. Currently, our approach fuses only 
two types of observable features, but it easily can be extended to include new data. The 
results of experimental tests carried out on ground truth video showed enhancement of the 
segmentation performance when multiple modalities are fused. Superior performance also 
was demonstrated with respect to a rule-based segmentation algorithm.
As our future work, we expect to extend the proposed approach to new features. Useful 
information, for example, could be provided by automatic person tracking since the same 
scene usually includes the same personages. New features may appear to be strongly con-
ditionally dependent on each other. So there would be a need to propose more complicated 

Table 4. Performance of different segmentation approaches

Segmentation approach Precision, % Recall, % F1, %

Rule-based 61.0 63.9 62.4

Local minima of video coherence 54.1 64.3 58.8

Maximum likelihood ratio 63.2 63.2 63.2

Sequential segmentation 72.4 67.1 69.6
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fusion framework. Also, we are going to apply our approach to other types of video (e.g., 
sports broadcasting, news programs, or documentary video).
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Section III

Image and Video 
Annotation


