
SAM : Semantic Agent Model for SWRL rules based agents

Julien Subercaze
Université de Lyon

LIRIS UMR 5205 - INSA de Lyon
Villeurbanne, France

julien.subercaze@liris.cnrs.fr

Pierre Maret
Université de Lyon

LaHC UMR 5516 - Université de Saint-Etienne
Saint-Etienne, France

pierre.maret@univ-st-etienne.fr

Abstract

Semantic Web technologies are part of multi-agent en-
gineering, especially regarding knowledge base support.
Recent advances in the field of logic for the semantic
web enable a new range of applications. Among them,
programming agents based on semantic rules is a promising
field. In this paper we present an semantic agent model that
allows SWRL programming of agents. Our approach based
on the extended finite state machine concept results in a three
layers architecture. We detail the architecture, the syntax of
the rules , the agent interpreter cycle and present a prototype
validating the concept.

1. Introduction and motivation

Since the publishing of the agent roadmap in 2003 [14]
that pointed out the lack of connection between Multi-Agent
Systems and Semantic Web technologies, many applications
and frameworks have been developed to bridge this gap.
Semantic Web languages and tools are widely used to rep-
resent agents’ knowledge. TAGA [19] uses OWL and RDF
as Knowledge representation in the field of a trading agent
competition, using a FIPA compliant framework. AgentOWL
[13] extends JADE agents with OWL support for their
Knowledge Base (KB). It also introduces an OWL based
agent semantic model. Knowledge Agents, introduced by
[1], are used for domain specific web search. In this case,
agents KB is based on RDF. RDF is also used in CORESE
[6] which is a semantic web search engine for corporate
knowledge developed within the COMMA (Corporate Mem-
ory Management through Agents) european IST project.
The JADE framework, which is currently the most used in
research and industry supports natively RDF for representing
agents’ knowledge.

While using RDF or OWL to represent agents’ knowledge
is a common, programming agents’ behaviour with Semantic
Web technologies is rare. We identified emerging proposals.
[3] introduced a language called Picola in order to define
behaviours as a composition of Semantic Web Services.
More recently, the S-APL (Semantic agent programming
language) was introduced by Katasonov [12]. This language,

which is the most advanced attempt of agent semantic
programming is built on top of JADE and CWM (Closed
World Machine,a rule based reasoning engine). CWM per-
forms first order predicate inference. Consequently S-APL
doesn’t take advantage of the Description Logic that stands
behind semantic web technologies. Practically, agent’s KB
are represented in RDF and FOPL inferences are performed
using CWM. S-APL is based on RDF, therefore it imposes
straight monotonic construct and is restricted to closed world
assumption [8]. As stated in [7], the incompleteness of
knowledge owned by the agents is the motivation for using
non-monotonic reasoning and open world assumption. Non-
monotonic reasoning imply that adding a rule to

Our motivation is to build an agent model that takes
advantage of Description Logic expressivity, open world
reasoning and nonmonotonic reasoning. On a more technical
point of view, we also aim at defining a model relying on
a semantic rule language and that can be implemented in
several lower language such as JAVA, C++. We base our
approach on Semantic Web (SW) advances. Latest advances
in Semantic Web development enable the development of
new agent programming language. Figure 1 shows current
status of specification in the Semantic Web layer cake. The
logic part, which is of primary interest for us, is still a
work in progress. For this layer, two proposals are pending.
The most well known is the Semantic Web Rule Language
(SWRL)1 [11] one, it is based on a combination of the
OWL DL and OWL lite with the RuleML language. The
second is the Web Rule Language (WRL)2 initiative that
was influenced by the Web Service Modeling Language
WSML. Whereas WRL is at a draft step, the Semantic
Web community drives its research towards SWRL. Indeed
Protege, Pellet and Jess already provides support for SWRL
even if the reference document is only at the submission
step. Thanks to this advances in implementation, it is now
possible to develop agents based on semantic rules. Thus
our choice naturally went to SWRL for the design of the
Semantic Agent Model (SAM). SWRL presents two main
advantages compared to other rule languages. First it is an

1. http://www.w3.org/Submission/SWRL/
2. http://www.w3.org/Submission/WRL/

Figure 1. The Semantic Web Layer Cake - SW rules
langages

OWL-based rule language, consequently it allows to write
rules in terms of OWL concepts, i.e. classes, individuals,
properties and data values. To these OWL concepts, the
SWRL specification adds several built-ins functions for
comparisons, math, strings and time [11]. On the agent
programming point of view, it allows to manipulate concepts
of the agent’s Knowledge Base directly in the rule language.

The second benefit is the logical foundation of SWRL. It
combines OWL-DL (decidable version of OWL) with Rule
Markup Language (RuleML). SWRL can be roughly con-
sidered as the union of Horn-Logic and OWL based on the
description logic SHOIN . Consequently the expressivity of
SWRL comes at the price of decidability [16]. SWRL is not
decidable. But it exists a subset called DL Safe SWRL rules
that is decidable. For the agent development, DL Safe SWRL
is more expressive compared to other rule languages. . Most
of the rule-based agents are based on Prolog supporting Horn
Clauses. Researchs are currently under development for
implementing DL reasoning in Prolog but none is currently
available for agents. Practical advantages of using DL in the
field of Multi-Agent Systems (MAS) has been shown in [15],
especially in the field of information retrieval. We previously
stressed on the benefit of non-monotonic reasoning. It is
currently not supported in SWRL, but a restriction of SWRL
rules allows extension to enable non-monotonic reasoning
[11].

In the next section we detail the construction of our
agent’s model. We first introduce the layered architecture,
then detail the control structure,give an EBNF of the SAM
grammar. In section 3 we describe the ontological model
of the agent that results from the architecture. Section 4
shows a practical example of a SAM behaviour and details
the different steps of its execution. Section 5 concerns the
implementation of the SAM prototype. Our conclusions are
presented in section 6.

2. Building Agents with Semantic Rules

2.1. Architecture

Programming agent behaviour using a rule language can
be carried out in two ways. The first way consists in
extending a logic programming language in order to support
traditional agent features (i.e. message passing, threading,
etc.). The second way consists in building a layered architec-
ture using the rule language at an upper layer. Agent features
are delegated to a lower layer. Commonly, in this type of
architecture, the lower level language (i.e. Java, C++,etc.) is
used to handle communication, file access, thread manage-
ment, etc. The main idea behind this approach is to reuse
the required features for MAS that are already implemented
in another language and to define an agent interpreter to
support a particular architecture, such as BDI for instance.
The literature shows examples of both approaches. Clark et
al. [5] follows the first approach by extending Qu-Prolog
with multi-threading support and inter-thread message com-
munication. However, this approach is not scalable and
does not comply with the Agent Communication Language
(ACL) specified by the FIPA 3. FIPA-ACL is currently
recognized as the standard for agent communication and
ensures interoperability between MAS frameworks. S-APL,
that we discussed in the previous section, follows the same
approach but some direct calls to JAVA functions are inserted
into the rules.

Figure 2. SAM Agent Architecture

Standard MAS languages rely on the second approach.
Agent0, the first agent dedicated language, which is an
implementation of Shoham’s Agent Oriented Programming
was developed on top of LISP. Equally, 3APL, 3APL-m,
JASON and the BDI agent system Jadex are based on JAVA.

3. http://www.fipa.org/repository/aclspecs.html

Our architecture follows the second approach and results
in the following layered architecture (Fig. 2) :

1) Knowledge Base
2) Engine
3) Low level actions

2.1.1. Knowledge Base.

2.1.2. Engine.

2.1.3. Low level actions. A REFORMULER The semantic
layer contains the agent Knowledge Base, the SWRL rules
and the OWL model of agent that we will discuss later. In
this layer all the components are based on OWL and rules
are written in SWRL. The rule engine executes the extended
finite state machine built in SWRL. When a transition fires
it retrieves the sequence of actions to execute and their
parameters. The engine part is made of a SWRL rule engine
that fires rules and an interpreter to chain the transitions and
start low level actions with their respective parameters.

2.2. Control structure

Rule-based agents constitutes an important part of the
research on MAS. In [10], Hindriks et al. define the re-
quirement for a minimal agent programming language that
includes rules and goals. They also defined formalization
tools that were applied to three standard agent programming
languages AGENT-0[18], AgentSpeak(L)[17] (that was later
implemented and extended in JASON[2]) and 3APL[9].
Their definition of an agent program for goal directed agents
includes a set of rules Γ called the rule base of the agent.
They identify rule ordering as a crucial issue in rule-based
agents. However, this presents us with the following problem
: when several rules from the ruleset can be fired, there must
be an order to determine the sequence of execution of those
rules. So the order in which the rules will be sorted must
be defined. Hindriks et al. [10] proposed that all rules fall
into one of the following categories : reactive(R), means-
end(M), failure(F) and optimisation(O) with an order based
on intuition :

R > F > M > O

As SWRL doesn’t support rule ordering, we are also
confronted with the same issue. However, instead of
deciding an arbitrary order, we have decided to use another
model of behavior, a slightly modified version of the
Extended Finite State Machine (EFSM) model [4], that
guarantees the execution of only one rule at a time. In
EFSM, transitions between states are expressed using if
statements. A transition is fired if trigger conditions are
valid. Once the transition has been fired, the machine is
brought from current state to next state and a set of specified
operations are performed. Our choice is to use atomic

Figure 3. SAM Agent Interpreter

actions to fullfill basic MAS requirements. We differentiate
two kinds of atomic actions, external and internal. Internal
actions have an effect on the agent internal Knowledge
Base. External actions are the interactions of the agent
within its environment. These actions include environment
perception, action on the environment, message reception
and emission. External actions are not included in SWRL
built-ins whereas a subset of internal actions is. In section
?? we detail the list of non SWRL built-in atomic actions.
A deterministic EFSM is a restriction of EFSM in which
there is at most one possible transition for each state and set
of triggering conditions. We used this restriction to ensure
that only one rule can be triggered at a time. A pseudo
code algorithm for the interpreter is defined in algorithm 1.
Algorithm 1: SAM Interpreter

begin
CurrentState←− sBegin
while CurrentState 6= sEND do

temp←− nextStateV alue()
if temp 6= currentState then

removeProperty(currentState, stateV alue)
actionList←− getActionList()
if executeAction(actionList) then
addProperty(currentState, temp)
else
addProperty(currentState, errorState)

end

2.3. Language Syntax

The syntax of the rule language that we designed (given
in figure 2.3) is expressed in Extended Backus-Naur Form
(EBNF). This syntax is based on the existing SWRL EBNF
syntax as specified in [11]. SAM grammar is included in the

SAMrule ::= ’Implies(’ [URIreference]
{ annotation } SAMantecedent SAMconsequent ’)’

SAMantecedent::= currentState(’i-variable’)’
hasStateValue’(’i-variable’)’ atom*

SAMconsequent::= hasNextState’(’i-variable’)’
hasActionList’(a-list’)’ atom*

a-list ::= hasValue(action) hasNext(a-list)
| endlist

action ::= URIreference hasParameterName(a-name)

a-name ::= hasParameterValue(i-object)

atom ::= description ’(’ i-object ’)’
| dataRange ’(’ d-object ’)’
| individualvaluedPropertyID ’(’ i-object i-object ’)’
| datavaluedPropertyID ’(’ i-object d-object ’)’
| sameAs ’(’ i-object i-object ’)’
| differentFrom ’(’ i-object i-object ’)’
| builtIn ’(’ builtinID { d-object } ’)’

builtinID ::= URIreference

endlist ::= URIreference

i-object ::= i-variable | individualID

d-object ::= d-variable | dataLiteral

i-variable ::= ’I-variable(’ URIreference ’)’

d-variable ::= ’D-variable(’ URIreference ’)’

Figure 4. EBNF interpreted by SAM

SWRL grammar.

SAM Grammar ⊂ SWRL Grammar

In the antecedent of a SAM rule (SAMantecedent) it is
mandotary to specify to which state the rule applies. This is
set up by the hasStateValue property. The previous property,
currentState, ensures that the rule will be fired when the
current state of the EFSM is the one to which the rule
applies. The second part of the antecedent contains the
triggering conditions. In this part, conditions under which
the transition will be triggered are defined. The range of
these conditions is the knowledge base of the agent. These
conditions are represented by atom* which is not modified
from the original SWRL specification. Conditions can test
the validity of class belonging, property between classes or
between individuals, including received messages.

The rule consequent term (SAMconsequent) specifies the
destination state of the transition and the sequence of atomic
actions to be executed. Each action has different parameters.
Parameters are passed using two properties, hasParameter-
Name and hasParameterValue. The first property applies to
the action which is to be executed and specifies the name
of the parameter. Then hasParameterValue is applied to the
name of the parameter in order to specify its value.

3. Semantic Agent Model

The architecture, control structure and language syntax
we have just seen enable us to elaborate the semantic
agent model. Using the previous given architecture, we
built an OWL representation of the agent with different
components (Figure 5. The components of which we will
now detail. First of all, there is a finite number state, a
list of possible atomic actions and the parameters for the
actions. We defined two specials states, sBegin and sEnd
that specify the beginning and end states of the EFSM.
Every agent’s behaviour must start with sBegin and end
with sEnd. Environment interactions are modelized by the
received messages queue.

Figure 5. The semantic agent model

Possible actions that are not SWRL built-ins are divided
into two categories : internal and external actions. Here we
detail the different atomic actions that we require in both
categories.

Internal Actions : agent knowledge is expressed using
OWL concepts : classes, properties, individuals and data
value. For each concept, three basic operations are needed
: creation, modification, deletion. Unfortunately only the
first one is supported by SWRL built in. SWRL supports

assertion but does not support negation. In practical terms,
it is possible to assert that properties apply to individuals
or classes in the rule consequent. The following example
is taken from the SWRL proposal document and shows the
assertion of the uncle property by composing parent and
brother properties :

parent(?x, ?y)∧ brother(?y, ?z)⇒ uncle(?x, ?z) (1)

However the following rules (2,3) are not possible since
SWRL neither supports negation as a failure (2) nor non-
monotonicity (3). Hence it is not possible to withdraw
information using the rule consequent.

¬Person(?x)⇒ NonHuman(?x) (2)

parent(?x, ?y)∧ brother(?y, ?z)⇒ ¬aunt(?x, ?z) (3)

As only creation is possible using SWRL, we defined the
internal actions that are not supported by the rule language
:

• modify/remove property
• modify/remove class belonging from a ressource
• modify/delete individual
• modify/delete datarange property
Among internal actions, we made the distinction between

SWRL built-in functions that are executed by the rule engine
and the other required actions that in our model, are the low
level atomic actions. These latter are called by the agent
interpreter.

External Actions refer to the agents’ interactions with
their environment. We restrict our scope to software agents
that evolve in an electronic environment. Interactions are
then limited to message exchanges between agents. We rely
on the FIPA ACL specification for the message structures.
Received messages are stored in the messagelist. In the
agent’s KB, messages are put in a list ReceivedMessages
that is an individual from Class. OWLList4. Eventually there
as two basic external actions, sendMessage and receiveMes-
sage. Following the ACL specification, forging a message
requires several parameters, among them we can cite sender,
receiver, ontology used, performative and so on. From those
simple actions, it is possible to build complex interactions
between actions, for instance FIPA ACL specifies an ex-
tensive communicative act library including query-answer,
contracting, proposal, subscribing. Different fields of the
message are represented in the OWL Knowledge Base using
properties, i.e. hasPerformative, hasContent, hasSender

3.1. Defining New Actions

The agent model contains a finite list of basic actions for
communication and knowledge base management purpose.
In SAM there a two approaches to define new actions. The

4. http://www.co-ode.org/ontologies/lists/

Figure 6. Semantic agent ontology : Actions

first it to extend the set of available of low level actions.
The second one is to define new actions by combining
the existing ones. Defining new atomic actions require to
implement them in low level language. This approach is then
of low interoperability and is discouraged by the authors,
it should be applied only in case of an extension of the
model. The regular approach consists in defining new actions
as a sequence of atomic ones. We denoted these actions
as composed actions (Fig. 6). Actually, behavior of agents
is a kind of composed action since it is composed by a
sequence of actions, triggered by transition. To define new
composed actions, we use the same representation as for
agents behaviours. Composed actions are a set of rules that
represent an EFSM. These rules should only be active when
the composed actions is called. Therefore these rules are not
stored as SWRL rules in the knowledge base of the agent
but they are instances of the class Rule and their value is a
string representation of the rule (In Manchester Syntax). The
process of execution of a composed action is the following.
Assuming that the agent is firing a transition between state
A and B. During this transition a composed action called
comp is to be executed. First the engine removes the rules
of the current behaviour from the knowledge base and stores
them using a string representation. The engine also keeps
tracks of the current state and transition sequence that was
executed. The engine sets the current state of the agent
to an intermediate state sBegin. Then it extracts the string
representation of the rules from comp and add them to
the knowledge base. The composed action is then executed
following the same way as an agent behaviour. Once the
action finished, the engine removes the rules and set back the
agents behaviour context. Note that this process is recursive
and a composed action can call another composed action.
It is in fact similar to the calls stack principle in computer
hardware.

Figure 7. Illustrative example (a), Scenario

4. Example

To illustrate the mechanism behind semantic agents, we
will take a simple example and process the several steps of
the execution. Following example will start the agent Alice,
register with the directory facilitator of the framework, send
a query to the agent Bob. If the received message is from
Bob and is this message has the performatrive answer then
Alice adds the content of the answer into its knowledge
base. The resulting EFSM is depicted in figure 7. The left
column of the figure describes the low level atomic actions
executed during a transition. Triggering conditions, that are
in the antecedent of the rule, are on the right side of the
picture. The first transition is conditions free. If Alice is
in the sBegin state then the transition to the state A will
occur. Ations are executed as a sequence. The next actions
is executed only if the previous succeeded. First registerDF
will be executed. If it returns true the instruction a message
with the query performative, containing a query will be sent
to the agent Bob. The rule used to describe this transition is
presented below in a human readable syntax :

CurrentState(?x)
∧ hasStateV alue(x, sBegin)
∧NextState(?y)

⇒ hasStateV alue(y,A)
∧ hasContents(ActionSequence, registerDF)
∧ hasNext(ActionSequence, item)
∧ hasContents(item, SendMessage)

∧ hasParameterName(SendMessage, Sender)
∧ hasParameterV alue(SendTo,Bob)
. . . same with other parameters

∧ hasNext(item, endList)

Within the architecture, the engine checks whether a
transition occurs by asking the knowledge base the NextState
value. If this value is different from the CurrentState one
then a transition is enabled. Engine then retrieves the values
of ActionSequence, with the respectives parameters. Action-
Sequence is actually a simply linked-list (Fig.8) in which
each item has as the hasParameterName property. The name
of the parameter of the value has the hasParameterValue
property to specify the value of the parameter. The structure
of the list of actions follows the OWL model depicted in fig-
ure 5. For this transition, only the Sendmessage instructions
has parameters. The instruction is linked to its parameters
using properties as described in figure 8.

The second transition contains triggering regarding the
received message. As Alice sent a query to Bob, the next step
of the behaviour is to handle the answer from Bob. Thus,
we specify condition on the received message to ensure that
Bob is the sender and that the message is of type Answer.

CurrentState(?x)
∧ hasStateV alue(x, A)
∧NextState(?y)
∧ hasReceived(?z)
∧ hasPerformative(z, Answer)
∧ hasSender(z, Bob)
∧ hasContent(z, ?w)

⇒ hasStateV alue(y, sEnd)
∧ hasContents(ActionSequence,AddInvidual)
∧ hasNext(ActionSequence, endList)
∧ hasParameterName(AddInvidual, name)
∧ hasParameterV alue(name, w)

We will then detail the interactions between the different
layers in the architecture during the execution of the first
transition.

4.1. Execution Phase

Representing the action execution following the architec-
ture as in Section 2.1 on a timeline is represented in Figure 9.
It follows Algorithm 1. The SAM engine firstly enquires of
a rule triggering, in this case, the Knowledge Base query
returns NextState = A. As A 6= sBegin, the engine
retrieves the current list of actions containing RegisterDF
and SendMessage. Actions are performed sequentially. First
RegisterDF is executed and if it returns true then SendMes-
sage will be executed. When both actions succeeded, the
current state of the agent is updated to NextState value, in
this case it is A.

Figure 8. Illustrative example (b), ActionList data struc-
ture

5. Implementation

We developed a JAVA interpreter that communicates with
the Knowledge Base using the Protege-OWL API. Pellet is
used in combination with Jena as a SWRL reasoner. The
JADE framework is used for the low level external actions.
The framework handles agent registration, service discovery
and messages passing. It also provides an environment that is
FIPA-ACL compliant. One implementation issue we encoun-
tered is that OWL does not support RDF lists. Fortunately, an
OWL equivalent called OWLList has been developed and is
used to represent action sequences and the queue of received
messages. A first version of the open-source prototype is
available online 5.

Along to the validation of the model, the implementation
showed us some current limitations. Nowadays status of
SWRL reasoners is not satisfying because none of them fully
support the SWRL specification. We used Pellet as SWRL
reasoner, since it is currently the most advanced open-source
implementation. At the current stand of development, several
main features are not supported by Pellet, for instance
SWRL built-ins are not yet available.

The implementation results shows the feasability of the
proposal and we intend to further develop the prototype to
make it fully suitable for the development of applications.
Advances in the field of the Semantic Web technologies be-
ing very fast, current restrictions on SWRL supports should
soon belong to the past and allow further development of
the prototype. Finally, this implementation of the prototype
allowed us to validate our approach and to identify the
limitations.

6. Conclusion and perspectives

In this paper we showed how next generation of Semantic
Web technologies can be applied in MAS programming. We

5. http://code.google.com/p/semanticagent/

Figure 9. Illustrative example (c), Flow chart of the
transition from Begin to A

presented an agent model called SAM that allows to develop
agent using the Semantic Web Rule Language. We described
an extensive model with a detailed architecture, a semantic
agent model, its rules syntax and validated our approach by
the implementation of a prototype.

Description Logic that stands behind SWRL is a very
powerful logic and allows greater agent reasoning capabil-
ities than standard Prolog. It will allow in a near future
the development of powerful Knowledge Management and
Semantic Web applications relying on multi-agent systems.

In current MAS applications based on Semantic Web
technologies, agents behaviour is hardcoded in a lower level
language making behaviour exchanges a complex task for
agents. In SAM, integration of the behaviours as part of the
agents knowledge base (SWRL is OWL compatible) com-
bined with the reflexivity of the agent model enable native
behavior exchanges. As behaviour exchanges are related to
learning processes, this feature is of very interesting purpose
for cognitive agents applications.

Our contribution is situated at a lower level of an agent
programming language. SAM is then a step forward an
assembly language for semantic agents. Several complex
architectures, as for instance BDI, can be implemented on
top of it. Further research will focus on the improvement of
the model and the prototype, the development of an IDE. We
are also investigating possible relationships with the Agent
UML modeling language.

References

[1] Yariv Aridor, David Carmel, Ronny Lempel, Aya Soffer,
and Yoëlle S. Maarek. Knowledge agents on the web. In
CIA ’00: Proceedings of the 4th International Workshop on
Cooperative Information Agents IV, The Future of Information
Agents in Cyberspace, pages 15–26, London, UK, 2000.
Springer-Verlag.

[2] R.H. Bordini and J.F. Hubner. BDI agent programming in
AgentSpeak using Jason. In Proceedings of 6th International
Workshop on Computational Logic in Multi-Agent Systems
(CLIMA VI), volume 3900, pages 143–164. Springer.

[3] P. Buhler and J.M. Vidal. Semantic web services as agent
behaviors. Agentcities: Challenges in Open Agent Environ-
ments, pages 25–31, 2003.

[4] K.T. Cheng and AS Krishnakumar. Automatic functional test
generation using the extended finite state machine model. In
Proceedings of the 30th international conference on Design
automation, pages 86–91. ACM New York, NY, USA, 1993.

[5] K. Clark, P.J. Robinson, and R. Hagen. Multi-threading and
message communication in Qu-Prolog. Theory and Practice
of Logic Programming, 1(03):283–301, 2001.

[6] O. Corby, R. Dieng-Kuntz, and C. Faron-Zucker. Querying
the semantic web with corese search engine. In ECAI,
volume 16, page 705, 2004.

[7] Carlos Viegas Damásio, Anastasia Analyti, Grigoris Anto-
niou, and Gerd Wagner. Open and closed world reasoning in
the semantic web. In Proceedings of the 11th International
Conference on Information Processing and Management of
Uncertainty in Knowledge-Based Systems (IPMU-06), special
session Works on the Semantic Web, pages 1850–1857, Paris,
France, July 2006. Editions E.D.K. Participaçãoo por convite
e sujeita a avaliação.

[8] C.V. Damasio, A. Analyti, G. Antoniou, and G. Wagner.
Supporting open and closed world reasoning on the web.
LECTURE NOTES IN COMPUTER SCIENCE, 4187:149,
2006.

[9] K.V. Hindriks, F.S. De Boer, W. Van der Hoek, and J.J.C.
Meyer. Agent programming in 3APL. Autonomous Agents
and Multi-Agent Systems, 2(4):357–401, 1999.

[10] K.V. Hindriks, F.S. De Boer, W. Van Der Hoek, and J.J.C.
Meyer. Control structures of rule-based agent languages. In
Intelligent Agents V: Agent Theories, Architectures, and Lan-
guages: 5th International Workshop, Atal’98: Paris, France,
July 1998: Proceedings, page 384. Springer, 1999.

[11] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean. SWRL: A semantic web rule
language combining OWL and RuleML. W3C Member
Submission, 21, 2004.

[12] A. Katasonov and V. Terziyan. Semantic agent programming
language (S-APL): A middleware platform for the Semantic
web. In Proc. 2nd IEEE International Conference on Seman-
tic Computing, pages 504–511, 2008.

[13] Michal Laclavik, Zoltan Balogh, Marian Babik, and Ladislav
Hluchý. Agentowl: Semantic knowledge model and agent
architecture. Computers and Artificial Intelligence, 25(5),
2006.

[14] M. Luck, P. McBurney, and C. Preist. Agent technology:
Enabling next generation computing. AgentLink II, 2003.

[15] Ralf Mller, Volker Haarslev, and Bernd Neumann. Expressive
description logics for agent-based information retrieval. In
Treur (Eds.), Knowledge Engineering and Agent Technology,
IOS. Press, 2000.

[16] B. Parsia, E. Sirin, B.C. Grau, E. Ruckhaus, and D. Hewlett.
Cautiously Approaching SWRL. Technical report, Technical
report, University of Maryland, 2005.

[17] A.S. Rao. AgentSpeak (L): BDI agents speak out in a logical
computable language. Lecture Notes in Computer Science,
1038:42–55, 1996.

[18] Y. Shoham. AGENT0: A simple agent language and its
interpreter. In Proceedings of the Ninth National Conference
on Artificial Intelligence, volume 2, pages 704–709, 1991.

[19] Youyong Zou, Tim Finin, Li Ding, Harry Chen, and Rong
Pan. Using semantic web technology in multi-agent systems:
a case study in the taga trading agent environment. In
ICEC ’03: Proceedings of the 5th international conference
on Electronic commerce, pages 95–101, New York, NY, USA,
2003. ACM.

